IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 23, 2021, accepted December 6, 2021, date of publication December 13, 2021,
date of current version December 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3134941

Multi-Objective Accelerated Particle Swarm
Optimization With Dynamic Programing
Technique for Resource Allocation

in Mobile Edge Computing

TAHA ALFAKIH"', MOHAMMAD MEHEDI HASSAN"'', (Senior Member, IEEE),
AND MUNA AL-RAZGAN?

! Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
2Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Mohammad Mehedi Hassan (mmhassan @ksu.edu.sa)

This work was supported by King Saud University, Riyadh, Saudi Arabia, through the Researchers Supporting Project, under

Grant RSP-2021/206.

ABSTRACT Mobile edge computing (MEC) is a powerful new technology with the potential to transform
and decentralize the way our cell phone networks currently work. The purpose of MEC is to process the
intensive mobile applications in the available resources, which are embedded in the base station of the cell
phone systems and closer to users (i.e., MEC support stations). We assumed that the telecommunications base
station supports MEC, which provides edge computing with tiny latency. However, the problem of inevitable
optimization emerges in terms of the quality of service (QoS) and user experience (QoE). Therefore, MEC
services provide integrated services close to end-users to achieve QoS and QoE. This study examined how to
jointly optimize resource allocation when offloading tasks from mobile devices (MD) to edge servers (ES)
in MEC systems, thereby minimizing the computing time and service cost. The study’s main insight is
that offloaded tasks can be delivered in a scheduled manner to the virtual machines (VMs) in the ES to
minimize computing time, service cost, waste over the capability of the ES, and maximum associativity
(Ag x) of a task with an ES to maintain MD mobility. We present a dynamic task scheduling and load-
balancing technique based on an integrated accelerated particle swarm optimization (APSO) algorithm with
dynamic programming as a multi-objective. The proposed method was compared with the standard PSO,
APSO, and PSO-GA algorithms using experimental simulations. The results show that the proposed method
outperformed these algorithms, with a reduction in task makespan of 30% and an increase in resource
utilization of 29% observed compared to PSO-GA. Additionally, the proposed method was associated with
reducing service cost and waiting time compared to the other algorithms and improvements in the fitness
function value.

INDEX TERMS Service-oriented computing (SOC), web services composition (WSC), web service (WS),

web service selection (WSS), ant colony system (ACS).

I. INTRODUCTION

In recent years, there has been explosive growth in com-
putationally intensive mobile applications, including aug-
mented reality, image and signal processing, and online
gaming. This has led to substantial computational demands
on resource-limited mobile devices (MD). MDs are limited

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh

VOLUME 9, 2021

in computation, storage capacity, and battery, which means
there is a growing demand to offload intensive tasks to
powerful remote computing platforms as a service. Mobile
cloud computing (MCC) introduces powerful computing as
a computation offloading model for MDs [1]. It provides a
pool of resources with CPUs, high power, and storage capa-
bilities as cloud servers to compute specific tasks. However,
the considerable distances between cloud servers and MDs
lead to significant communication costs in response time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 167503


https://orcid.org/0000-0003-0366-5932
https://orcid.org/0000-0002-3479-3606
https://orcid.org/0000-0002-3360-9440

IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

delay, which negatively impacts real-time applications [2].
Therefore, recently, the remote cloud’s capabilities in terms
of computation and storage have been partially offloaded to
edge servers (ES), which are positioned closer than cloud
servers are to the MDs. The emerging mobile edge computing
(MEC) paradigm provides numerous services and powerful
remote computing for both enterprisers and users [3].

In MEC, user devices can exploit cloud computing capa-
bilities at the mobile network edge. MEC is implemented
through the intensive deployment of ES on the cellular net-
work edge and the base station (BS), all of which have the
necessary resources in terms of storage and computation. The
main objectives of MEC are to ensure service deployment
and effective network operation, offer an improved QoE, and
decrease latency [3], [4]. Noteworthily, in the smart cities that
can benefit from offloading operations to ES, this process
gives rise to cyber-physical social systems (CPSS). These
systems utilize MEC for various purposes, including geo-
logical surveys, drone delivery services, and traffic violation
tracking cameras, among other applications.

An ES executes an offloaded task itself rather than send-
ing it to a remote cloud. Therefore, MEC can meet QoS
requirements and enhance the quality of the QoE, which it
can achieve — for example — through low response times and
minimal energy consumption. Despite the massive potential
of MEC, there are still challenges to overcome. As stated
before, real-time mobile applications are highly sensitive in
terms of response time and energy consumption. For this
reason, the most prominent challenges facing MEC are long
execution times, scarcity of resources, high cost, mobility,
and optimization of resource allocation [5].

The main idea in MEC is how to manage resources within
the edge node while satisfying critical requirements in terms
of time processing, cost of service, and mobility. We recom-
mend that the offloaded task is processed in the same edge in
which it was initially mapped, irrespective of the fact that the
user may have left the edge node’s coverage area. We suggest
that the task is not migrated to another node (i.e., one closer to
the user) because this increases the processing time; instead,
the result should be transferred only through the nearest edge
node. Optimal allocation is a critical issue because overuse
of resources causes scarcity, whereas underutilization leads
to drastically lower QoS in the system. Additionally, the opti-
mized allocation of tasks to virtual machines (VM) reduces
latency and increases system throughput by trading off the
load across all available VMs.

With the above considerations in mind, it is necessary to
develop a system for optimizing resource allocation when
offloading tasks to minimize computing time (T,) And ser-
vice cost and maintain mobility, where the tasks can be pro-
cessed locally and offloaded to the ES. Furthermore, efficient
resource allocation is required concerning all of the conflict-
ing computation-offloading objectives, and the waste over the
capability of the ES should be reduced. In addition, due to
the limited resources of ES, resource utilization should be
improved so that QoS requirements are met (e.g., response

167504

time requirement). Moreover, the heterogeneity of edge node
resources, user mobility, and the physical distribution of
MDs present additional challenges for offloading computa-
tion in ES. Most studies have highlighted these challenges
and proposed solutions to resolve them [6], [7]. However,
prior studies have been restricted to optimizing QoS through
dynamic service, service placement, and network selection
issues; they have overlooked the impact of distributing tasks
inside ESs as resources management and load balancing.
Furthermore, most studies have not applied efficient multi-
objective optimization to ensure the maximum utilization of
limited edge node resources and reduce the computing cost.
This study sought to solve these challenges and improve
resource management by proposing the MOAPSO-DP
algorithm.

The main challenges addressed in this study are the
following:

1) How can Minimize(T,) be achieved? The tasks are
placed in a wait queue to enable each task to be pro-
cessed separately, which leads to an increase in the
service time T, and a delay in terms of responsiveness.

2) How can the maximum associativity of a task (Ag x)
be obtained with an ES? This challenge concerns how
to maintain the computation services when the MD
moves mobility) from the coverage area of the ES into
another coverage area. Therefore, it is necessary to
measure the time that the MD has been connected to
the ES.

3) What is the best way to reduce the number of VMs
(i.e., Minimize(y;)), thereby minimizing the service
cost? Regarding this challenge, when creating VMs,
V = {v1,v2,v3, ..., v, } overcomes this challenge sub-
task assigns to an individual VM to parallel processing
to reduce the processing time. Therefore, this leads to
waste over the capability of the ES and, as a result,
an increase in the service cost (C;). Furthermore, the
tasks are stacked in the queue to wait for available VMs
to receive new tasks, which exacerbates the delay in
computation.

An elegant way to overcome these three challenges is to
regard them as conflicting objectives. Conceptualized in this
way, the problem becomes one of achieving efficient resource
allocation with respect to the conflicting objectives of the
computation-offloading task. In the literature, problem45s in
this class are known as multi-objective optimization (MOO)
problems. MOO problems require specific model designs
to handle multiple objectives and identify the best possible
operating point. In this study, we formulate these issues and
find the optimal solutions for MOO. MOO is an essential
aspect of optimization activities because most optimization
problems in the real world involve conflicting objectives.
Therefore, multi-objective evolutionary algorithms have been
used to develop efficient solutions to problems involving
multiple conflicting objectives; an example is the accelerated
particle swarm optimization (APSO) algorithm [8]. APSO is
an evolutionary and heuristic algorithm that has been used in

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

diverse models to solve challenges such as task scheduling in
cloud computing.

This study presents a scheduling model for offloading
tasks in an ES, the wider context being to satisfy the multi-
objectives of improving performance in the following vari-
ables: task processing time, mobility, and VM processing
cost. To address these multi- objectives, we need to deal
with these objectives as one objective with three dimensions
based on the MOAPSO-DP model. A notable feature of the
model is that it assigns equal priority to the three conflicting
objectives, and it also designs problems using a mathematical
model. We also evaluate these objectives separately based
on a weight value policy to elect the best solution. The
MOAPSO-DP algorithm is used to select the optimal VMs
depending on the three conflicting objectives. To see how
these objectives conflict with each other, consider how reduc-
ing the task processing time (TPT) leads to an increase in the
VM cost. In addition, to maximize task associativity (Ay),
we should increase the number VMs, which also increases
the service cost. The MOAPSO-DP model evaluates each
objective separately using the integration between the APSO
and dynamic programming strategy, solving the knapsack
problem to find the appropriate VM for each offloaded task.

The main contributions of this study are the following:

1) Resource allocation management in an ES context,
most notably using an efficient method to improve
resource utilization,

2) Reduction in the number of VMs by ensuring that
VMs are created on-demand according to the number
of offloaded tasks and a load balancing between them
to eliminate the problem of wasting VM resources.
This contribution was achieved using dynamic pro-
gramming to solve the knapsack problem, resulting in
a substantial reduction in the processing cost.

3) Mapping between tasks and VMs to achieve the opti-
mal position increases system throughput by balancing
tradeoff load across all available VMs.

4) Improvement in the offloaded task’s associativity with
VM to support mobility by making scheduling non-
preemptive. This contribution was achieved using the
APSO.

The rest of the paper is organized as follows: Section 2
presents the related work review. In Section 3, we outline
the architecture of MEC. In Section 4 system model, and
presented the problem formulation in Section 5. Then in
Section 6, we describe our proposed model MOAPSO-DP.
Section 7 implements the model on a simulation and provides
the analysis of the results, followed by the conclusion in
Section 8.

Il. RELATED WORK

A rich body of literature exists on resource allocation meth-
ods in general cloud computing and mobile edge comput-
ing (MEC) in particular. However, sufficient attention has
not been paid toward task scheduling in the context of multi-
ple optimization objectives in complex applications. Instead,

VOLUME 9, 2021

at present, the resource allocation process occurs after the
decision-making process is applied to offload computation to
the MEC (resulting in either partial or full offloading), which
highlights the need for a proper allocation of resources. If it
is impossible to offload, then the partitioned and paralleled
application is only allocated on a single edge node for the exe-
cution. In contrast, the partitioned application is distributed
over several nodes.

The total size of the tasks offloaded to the MEC system
should be compatible with processing time requirements and
energy consumption threshold [9]. The application’s priori-
ties are to determine where tasks should be allocated based on
the availability of computing resources at the MEC system.
The authors in [10] assumed that there are several nodes in the
density area by the user equipment (UE), which enabled MDs
to access the MEC system using the improved node B (eNB).
Furthermore, an offered efficient method and policy by pro-
pose an equivalent discrete-time Markov decision problem
(MDP) framework. Noteworthily, the outcome of this method
was high computational complexity. The authors overcame
the problem by developing an index policy of the application
assignment, which is calculated for each eNB based on its
available computing resources. The eNBs are broadcast to
this index policy, and the MDs select a suitable MEC server.
The results demonstrated that computation delay and energy
consumption are minimized. The research in [11] is similar
to the studies of [9] and [10], where the main goal in each
article was to minimize latency, energy consumption, channel
overload, execution resource overload, and VM migration
cost. In [11], the authors used enhanced small cells (sCeNB)
as a server node at the MEC system, and each of the MDs
mapped the VM at the SCeNB. This minimized the commu-
nication latency because the high-quality transmission of data
characterizes the SCeNBs.

The advantage of the methods mentioned above is that they
reduce computation delay, energy consumption, communi-
cation overhead, computing overhead, and migration cost.
Reducing computation time is achieved by using a multi-
resource that allocates the SCeNBs as a cluster, thereby
avoiding sending to remote cloud computing [12], [13]. The
proposed cooperative game approach creates a nearby sCeNB
in the same cluster based on the distance between them
and the overlap of their service coverage; this reduces the
execution delay through the parallel offloading of application
portions and their distribution to VMs at the sCeNB in the
same cluster. Data compression is applied to compress the
offloaded data before transmission to reduce the data size.
The problem of jointly optimizing computation offloading,
data compression, and resource allocation to minimize energy
consumption under the latency constraint and finite MEC
computation capacity is considered. In order to solve this non-
convex problem, the authors convert it into a convex one and
apply convex optimization [14].

The research [15] goals to minimize the latency. This
is performed using a one-dimensional search model, which
attempts to make an efficient offloading decision based on

167505



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

the following factors: state buffer of queuing applications,
available energy in the ES, and the status of communication
between the MD and ES. The advantage of this method
is compared with the policies of greedy offloading, cloud
computing, and local computing. The results of the sim-
ulation framework show that latency is reduced by up to
81%. The drawback of the model is that in order to make a
decision, the MD requires feedback from the ES. In [16], the
authors proposed a low-complexity Lyapunov optimization-
based dynamic computation offloading (LODCO) algorithm,
which decides either local computation or migration each
time. When offloading to the MEC system, the proposed
algorithm can reduce delays by up to 65%. As mentioned
in the paper [15], one limitation of the methods is that the
authors did not consider power consumption when user expe-
rience (UE) offloading decision.

In [17], the authors improved the performance capability to
leverage edge servers to execute offloaded tasks and accom-
modate them. In the research, the authors created a pool of
co-located devices as a local cloud service at the ESs and,
in turn, enabled the MDs of multiple clients to be configured
into coordinated computing services at the cloud, despite an
increase in the participation of MDs. The authors in [18]
introduced a new model of computation offloading in the
MEC paradigm. The idea of the model was to support the
use of virtual resources in the ES to transfer the burden of
resources, save energy, and improve application performance.
This model is known as mobile virtual resources (MVR),
and it automatically moves from a paradigm of single device
execution (on the client) to distributed execution (on the client
and ES). The research in [19] presented a novel model for
computation offloading from an MD to an ES with the avail-
ability of the highest CPU to minimize latency at both the MD
and MEC system. The main concept of the proposed model
was based on an estimated value of round-trip time (RTT)
between the ES and the MD. It depended on the signal qual-
ity of the radio network information service (RNIS) and an
application programming interface (API) to decide whether
to offload or compute tasks.

An opportunistic computation offloading scheme was
developed for the MECC model to implement data min-
ing tasks in edge networks while minimizing latency and
energy consumption [20]. The authors in [21] designed a
distributed computation offloading algorithm that exploits
a Nash equilibrium technique to achieve high performance
in computation offloading and scales and increase the user
size. This involved the use of distributed learning to solve
server mode selection on the server-side [22]. In [6], the
authors analyzed and evaluated the performance of compu-
tation offloading from MDs to the small cell cloud. The
research in [23] focused on the offloading of deep neural
network (DNN) based applications into ESs from the stand-
point of resource-limited devices (e.g., MDs) that cannot
support DNNs. However, the offloading process of these
dense applications is time-consuming, which lengthens the
computation time and impacts the user experience. In their

167506

research, the authors used a parallel scheduling process with
genetic algorithms (GA) and the greedy algorithm to address
the problem and reduce processing time.

In [24], a resource scheduling model was proposed as a
two-level system in the fog nodes using the non-dominated
sorting genetic algorithm (NSGA-II). The results demon-
strated that the proposed scheme reduced service latency and
improved the stability of task execution. The main idea of
the NSGA-II is to build the specific chromosome population
non-dominated sets, where non-dominated sets in several
levels are sorted via the individual’s crowding distance. The
authors in [25] proposed a novel resource allocation model
for computations involving big data. The idea is to select
computing resources like cloudlets, considering the mobility,
quality of AP signal, QoS, and workload distribution at the
corresponding cloudlets. The assumption is made that there
is a master cloud, which selects the appropriate cloudlet based
on information from the MD. The authors considered the
movement of the user with both change speed and track, and
they used a model of SMOOTH random mobility to predict
direction and velocity on the next time step.

In [26], the authors aimed to reduce energy consumption
and resource provision by developing a hybrid metaheuristic
algorithm known as genetic simulated annealing-based PSO.
PSO is an evolutionary and heuristic algorithm that has been
used in various models to solve diverse issues, including
task scheduling problems in cloud computing. Non-stationary
time series prediction for the IoT in the ES avoids accelerating
convergence and an early convergence rate, which is differ-
ent compared to standard PSO [27]. Minimize the compu-
tation time and consumption of energy by making decisions
about computational resource allocation and computation
offloading. The offloading decision determines the comput-
ing location for the computational application (e.g., mMEC
offloading or sMEC offloading). However, resource alloca-
tion focuses on the problem of how to meet sSMEC and mMEC
resources for task execution [28]. The proposed module in
the research [29] was based on an integration between PSO
and GA to minimize data transmission and data storage
for IoT applications. This module studies task offloading
of the multi-service with multiple ESs and optimizing the
MEC access network selection. The authors described MEC
network selection as an NP-hard problem and proposed a
PSO-based algorithm as a solution. The algorithm focused
on service placement and network selection by mapping each
task to the appropriate edge [30]. It consisted of a three-tier
architecture containing a centralized cloud, roadside cloudlet,
and vehicular cloud.

In the research of [31], the authors proposed a hybrid
adaptive PSO (HAPSO) algorithm as an optimization pro-
cess for resource allocation. The authors focused on three
objectives (i.e., a MOO problem): namely, to enhance net-
work latency, reduce total energy consumption, and increase
availability [30]. They examined the migration strategy in
the MEC to transfer services from the early nodes to other
edge nodes that can offer services to meet QoS by resource

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

allocation to reduce time service and energy consumption.
In another study undertaken by [32], the authors developed a
particle swarm-based service migration scheme integrated by
the modified quantum particle swarm algorithm and queuing
delay prediction algorithm (DCRA). Reference [31] argued
that PSO is an ideal option for distributed load processing in
independent edge clusters in the context of multi-cluster edge
architectures for IoT management. The authors used PSO to
decide which edge node to allocate a request to. The main
idea was to divide the edge layer into smaller clusters, with
each cluster having a central coordinating node; each node
also communicates with other nodes by the controller [33].
In another research project, the authors integrated the greedy
strategy PSO with dynamic PSO algorithms to reduce the cost
and maximize the performance of the computation offload-
ing process [34]. In the literature, other researchers have
developed a location-based mapping scheme that uses the
positions of particles and the current best solution to generate
high-quality solutions [35]. The authors in [36] used the ant
colony optimization (ACO) algorithm to solve MEC resource
allocation and the computation offloading problem, focusing
on selecting the MEC node in the shortest possible time.

Based on the extant literature, it is evident that schedul-
ing management in the MEC context is an important issue.
It influences edge cloud performance and directly impacts
costs for edge cloud users and providers. At the same time,
previous studies have primarily investigated providers’ bene-
fits concerning specific objectives, including improving tech-
niques for resource utilization, reducing service cost, and
increasing the throughput of the cloud computing system.
Therefore, in the present research, we address these objec-
tives from other perspectives using the MOO process. MOO
has featured prominently in various related studies in recent
years. Additionally, our model supports mobility, which pro-
motes service continuity, and this factor has not been consid-
ered adequately in previous studies.

We conceptualize computing time as having a local execu-
tion component and a remote execution component. In remote
execution, the time is present as three cases: communica-
tion delay to the ME, execution time at the ME and the
result received from the ME. We also focus on the dynamic
strategies, present an optimization model, and formulate the
problem of task allocation scheduling. The load balancing
algorithm manages edge resources, such as finding the most
efficient VM to offload a task within the expected response
time. It also determines each VM’s capability in the ES,
serves new tasks to the most efficient VM, and minimizes
the response time. This study uses APSO with dynamic pro-
graming as a MOO approach to allocating incoming requests
to the respective VMs. Significantly, the results reported in
the later parts of this paper outperform many previous studies
and, as such, are state of the art.

In the next section of this paper, an explanation is given of
MEC architecture and system models. The problem formula-
tion is presented, and the proposed method based on APSO
is described in detail.

VOLUME 9, 2021

lll. MOBILE EDGE COMPUTING ARCHITECTURE

MEC [4] is a new technique and paradigm that is cur-
rently being standardized in an ETSI Industry Specifica-
tion Group of the same name and which offers computing
resources installed over a radio access network (RAN) near
MD. Therefore, these cloud centers are called mobile edge
hosts. They are essentially computing equipment installed
near the RAN or within or near the base station (BS). Hence,
the MEC architecture is managed by the network operator.
The computing resources within the mobile edge host must
be virtualized; access to these virtualized resources takes
place via access points (APs). Therefore, the goal of MEC
is to minimize latency, ensure effective network operation
and service transfer, and improve the user experience [4].
Various challenges are associated with MEC [37], including
service synchronization and orchestration between the cloud
servers and the ES and central cloud. Connectivity at the
edge computing infrastructure may also be interrupted due
to mobility, which has produced the problem of seamless ser-
vice delivery. Also, service-centric structure (SCS) is marked
by a situation, and the changes are centered on the service
itself rather than its position; as a result, standard IP-based
operation problems become infeasible, particularly regarding
the handling of interactions between servers and clients and
selecting the ES that the user is employing to offload their
intensive task. Accordingly, resource management is the most
prominent challenge in this technology because it reduces
cost and serves the most significant possible number of
devices [22].

The other challenges of edge cloud computing services
may not permanently suppose the availability of local infras-
tructure and the allocation of computing resources at the
ES. The MEC paradigm can be viewed as a natural extension
of the evaluation of mobile BS. Therefore, as we progress into
the new era of 5G technology, MEC appears as a new product
of the evolution of BS from pure communication, which
provides computational capacities integrated with the BS.

As shown in Figure 1, the MEC architecture is divided
into the mobile edge, terminal, and remote cloud layers.
The terminal layer typically consists of collected resource
requestors, including cell terminal units such as cellular tele-
phones and personal computers. The latency sensitive tasks
and intense tasks created by these devices request resources
from the mobile edge layer, which consists of computing
servers, routers, gateways, and edge resource providers on
the BSs. In turn, the intensive tasks migrate to the core
layer (remote cloud and data centers). Computation offload-
ing enables applications to benefit from remote computer
resources; this is achieved using partitioning that minimizes
response times by moving compute-intensive tasks to the
remote cloud. However, memory offloading includes parti-
tions of the application state across mobiles and nodes to
mitigate memory constraints and reduce offloading over-
heads by computation. In contrast, network offloading mini-
mizes network traffic by partitioning application states across
MDs and nodes at edge locations in a mobile network.

167507



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

Therefore, it transmits only the objects that are used at the
device.

" ) 8

User Devices User Devices User Devices

FIGURE 1. The architecture of mobile edge computing.

MDs have exploited the mobile cloud computing (MCC)
infrastructure in smart cities to improve the QoS, mini-
mize power consumption, and reduce latency by offloading/
uploading services to powerful remote servers and other
pooled MDs. Application partitioning is a required step for
computation offloading, and it is considered critical in deter-
mining which parts can be offloaded and which cannot. Due
to the influence on the computing process, the partitioning
algorithms play an indispensable role in the performance of
the offloading system.

Previous studies such as [38] used the Ford-Fulkerson
method to resolve the partition computation offloading prob-
lem. The authors applied the maximum-flow minimum-cut
(MFM) approach, representing the network as the application
graph model and the program as a node. Also, it divides
the network graph based on the label theory of propaga-
tion. According to the results of [37], the partitioning algo-
rithm achieved the best performance in terms of computation
offloading but was unsuitable for most applications when
using 5G networks. From our perspective, the MOO method
will be effective because there are multiple constraints for
dynamic offloading. The MOO [39] introduced decision-
making with various criteria concerned with mathematical
optimization models involving multi-objective functions that
must be optimized concurrently. The migration and balancing
of the workload across a set of VMs depend on the avail-
ability of capability and capacity across all VMs. Migration
will reduce the load on the current VM and increase the
response time and execution speed [40]. The intensive com-
ponents need to be offloaded to compute or store and schedule
them. The migration module is required to make decisions
regarding offloading, saving energy, and reducing latency
by the remote cloud. The research [41] provides problem

167508

optimization by a mathematical analysis for joint wireless-
aware resource allocation of the mobile application and cloud
offloading.

Other remote cloud resources surround MDs, including
fog computing systems, cloudlets, and peer devices. When
an MD does not need to send a service directly to the cloud
(due to cost or latency), it is possible to send it to an existing
proximity edge network or cloudlet. If the MD cannot catch
any available edge computing, then it will offload the service
to the remote cloud; alternatively, in the worst case, it will
execute the tasks locally. Therefore, a user receives a real-
time response by one-hop, low-delay, low-cost access to the
cloudlet, along with high bandwidth. As remarked in [42],
“[this] is similar to a small data center located on designated
areas and connected to a remote cloud server via the internet.”

Security and privacy in the context of edge paradigms are
critical, and many studies dealt with those issues that threaten
the usage of resources in mobile edge computing [43], [44].
In this study, we did not address security issues; we will
do detailed research in the future to address security issues
related to the usage of the MEC resources.

IV. SYSTEM MODELS

We consider a MEC system with two sides: MDs and edge
servers embedded at the telecommunications base station
(BS). Also, we assume that the tasks have been offloaded
and have already reached the edge server. Accordingly, this
section describes the process in the edge computing model,
including computation, offloaded tasks, task scheduling man-
agement, and edge resources management. In turn, we for-
mulate a task scheduling problem for reducing computation
latency and minimizing the service cost, which is caused due
to wastage of the edge server (ES) capability.

Figure 1 illustrates how the monitoring and control unit
creates elastically virtual machines (VMs) in the edge server
to handle the offloaded tasks. The first VM is created to
satisfy the processing requirements of the offloaded task.
In turn, the VM control unit creates a mirror of the original
VM to generate other VMs, thereby occupying the remain-
ing capabilities of the ES with similar specifications as the
first VM.

A. SERVER MODEL

We assume that an ES has limited resources but high compu-
tational power. We also assume that each ES can run several
VMs instances, allowing them to compute offloaded tasks
submitted by MDs. The resource allocation management
algorithm runs on the ES at regular, scheduled intervals. The
ES has four major units: the application clone unit, MARC
unit, mobility, and communication unit, and scheduling and
balancing unit.

The control edge cloud computing controller (CE3C)
is responsible for the most complex computation: namely,
finding the mapping between ESs that are close to each
other, as well as the optimal mapping of MDs to the ESs,
which is known as associativity. Additionally, the mapping

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

of offloaded tasks to the MDs must be undertaken because
each task contains ((Xjz, Data, Djz), where X4 is the task
ID and Dj; is the MD’s ID, from which the application is
sent. When the MD moves, the CE3C delivers the results to
the MD through the closest ES; this is achieved by defining
the location of the destination MD and connecting it to the
nearest edge server.

The mobility and communication unit contains informa-
tion about the historical mobility of each MD that is con-
nected to the ES, as well as the geographic locations (Xe, Ye).
Additionally, the mobility unit analyzes the patterns of device
mobility to predict the speed and direction at future time
steps based on the MD’s historical information. The request
scheduling and balancing unit receives all offloaded tasks and
schedules them after a certain interval e. Further challenges
to solving the resource allocation problem thus arise from
the varied task response times ¢, of the task, as well as the
movement of MDs.

Figure 2 shows a typical cross-server resource manage-
ment scenario in the context of a MEC model. Multiple VMs
with limited resources are created on the ES to serve MDs.
Each device can independently send its tasks through ESs,
while each ES that deploys the applications can process tasks
concurrently. This involves creating multiple VMs to meet the
task in terms of computation requirements, thereby achieving
a balanced distribution of the workload among VMs.

‘We assume that the MD has offloaded a task X to the ES,
after which the ES separates it into sub-tasks X = {x;}. Thisis
achieved using the solver unit to serve the tasks concurrently
by accommodating it in the VMs without waste over the capa-
bility. Accordingly, the VMs are filled as mentioned above to
process the sub-tasks on the VMs one by one (i.e., thereby
reducing service cost and service time through concurrent
processing). Therefore, we have X, = {xy,1, x0.2, ..., i},
where x,, is the task indicator vector of v VM and Xy,j 1S
the indicator of the j” sub-task. If the VM (v) serves the
sub-tasks j, then m,; = 1; otherwise, m,; = 0. The task
details for all VMs can be expressed using a task indicator
matrix X = {X,X>,....,Xn}, where the v™ a row is the
task indicator vector of the ES v. Accordingly, regarding
the supply and demand relationship between the offloaded
tasks and the VMs on the ES, each task bids on each VMs’
resources to receive the services. The VMs with limited
capacity simultaneously send requests for their resources.

B. EDGE RESOURCES MANAGEMENT MODEL

Resource scheduling is needed to minimize computation
latency for tasks offloaded to the ES and ensure current
resources can serve the largest number of tasks at the low-
est cost. Resource allocation management control (RAMC)
is concerned with assigning the tasks submitted from the
resource scheduling unit into the appropriate VMs, as shown
in Figure 1. The MARC is selected according to the CPU
performance. It occupies the VM’s remaining capabilities,
which ensures that resources are not wasted, which is called

VOLUME 9, 2021

M “Networka |
Monitoring Unit |
e J CE3C
T
0 ing Control L | S izati I
Unit | Unit l
L N O I_ ——— Mobility & Communication
H | App Clone Unit 1 Unit
""" ' | XiltFIxIGx2[t].....xn[t} 1

I AppWingr Uit | I ! i
' I T R e e e |
: Partitioning : : : ; 1 : RAMC :

ver
1 |—>’ 1 | Xijr = x1aexa2ig [ ! VMs Manager Unit 1
| | Code Analyzer | 1 el x22l] 1 : :
|| &Decision |, H 1 1 1 i
1 1 : 1 1 Vi={v1,va.....,vn} :
—————— ' | 1 : |
! . 1 JI ! 1
o ==
Local Exe. Unit |- - - _- - i 1
_ | "Scheduling & | (S ————— 3
Mobile Device I_Ba_lan_cm_ggmt_ J Edge Server

FIGURE 2. Typical resource management scenario of mobile edge
computing model.

a waste over the capability of the ES. Each task uses an
individual VM to undertake parallel processing to reduce
processing time, but the result is a waste over the capability
of the ES; this increases the service cost and stacks the tasks
in the queue to wait for available VMs to receive new tasks,
and it also exacerbates the computation delay. The MARC is
also responsible for task migration between VMs. Whenever
a task requests resources from the ES, the MARC commu-
nicates with another VM and allocates the appropriate VM
resources to perform the tasks. This is known as resource
scheduling among VMs.

Resource scheduling among VMs follows two principles:
first, the availability and resource utilization of VMs, and
second, the capability of the VM to serve the submitted task.
Although resource maintaining leads to serving the largest
number of tasks at the lowest cost, if wasted VM capability is
exploited, the user will not bear the additional service cost;
the service time will also decline due to the fact that pro-
cessing occurs concurrently. Consequently, when scheduling
resources among the VMs, it is also necessary to consider ES
resource utilization.

C. CE3C MODEL

We assume that an intensive application on the MD requests
offloading to the edge server (ES). This is the basis for
designing an application in which one part involves local
processing, and another part requires computation offloading
to a close ES. When the tasks arrive at the ES, they are placed
in a scheduled queue to start processing. Each task is divided
into sub-tasks, and VMs are created within the ES to execute
the tasks in parallel. Due to MD mobility, we assume that
after the task is offloaded to the ES, which is located in the
ES’s coverage region, the MD moves and exits the initial
coverage area. The MD does not receive the task results from
the current ES. Therefore, the main challenge is how to return
the results to the MD and satisfy the task’s time requirements.

Tom <Tim; VYeeES, xeX

167509



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

We suppose that there exists a CE3C that works by tracking
the MD that offloaded the tasks. It can also predict the amount
of time that the MD will remain in the ES’s coverage area and
the service on the ES, additionally predict the next direction
of the MD will go to receive thereby enabling the MD to
receive the output via the closest ES after entering its service
range.

V. PROBLEM FORMULATION

We assume that intensive applications have already been
offloaded onto the edge server (ES), integrated with a com-
munication base station (BS). These applications are denoted
as a set of sub-tasks X = {x;}. The main problems and
challenges can be summarized as follows:

« The tasks are placed in a wait queue to process each task
separately, which leads to an increase in the service time
T, and a delay in responsiveness. Therefore, we aim to
achieve Minimize(T,).

« Mobility challenges arise from how to maintain the com-
putation services when the MD moves out of the initial
ES’s coverage area. Therefore, we need to measure how
long the mobile device is connected to the ES and the
maximum associativity (Ag x) of a task with an ES.

o When creating VMs V. = {v, v, v3,...,V,}, each
sub-task is assigned to an individual VM for parallel
processing, thereby reducing processing time. However,
this leads to waste over the capability of the ES, along
with an increase in the service cost (C;). The tasks are
stacked in the queue to wait for available VMs to receive
new tasks, increasing the computation delay. Therefore,
we aim to reduce the cost by the minimizing the number
of VMs, namely, Minimize(n;).

We use process capability measures (Cp) and process per-
formance (Pp) to monitor and verify the ES’s ability to serve
the offloaded task. Cp and Pp work to compare the process
requirements to execute the tasks with the performance of
the ES [45]. If the ES is capable of computing the offloaded
task, virtual servers (i.e., VMSs) are created, and the tasks are
assigned to them; in turn, the value of each VM is deter-
mined (the VM’s value, VMV) based on the CPU speed and
size of memory allocated to it. If the virtual server (VS) is
overworked, it will be incapable of serving the sub-tasks.
Furthermore, the weight process capability (W-PC), which
we denote by y, is used to measure the ES’s capability. Cp and
Pp are observing indices for the spread of our operations
compared to the specification spread. In brief, they are used
to determine whether a process is capable and receive feed-
back. The greater the value of y, the better; this is because
y measures the process capability to achieve defect-free
work.

1

W= T, vi={v,va,....,v}, Vviee (1)
P
n

Ye=) v, YecES &)

i=1

167510

where @ workload computation for each created VM at the
edge server, and ¢ is the processing time.

The process capability ratio is an ES capability measure
for offloaded task computation within specified limits. The
process capability analysis helps determine the ES’s ability
to serve the offloaded tasks within the tolerance limits.

Wy = fﬁ 3)
Ip
where
n
We = ZwVi’ Y viee (@)
i=1
1
When the t, = (——> D (5)
vi

where D size of data, and f,; a computation frequency of
each VM.

Thus, the measure of the capability of edge node resources
is denoted using a two-dimensional matrix, Cp, in which
an element Cp(x;, v;) represents the computation time at the
virtual server v; for the sub-task x;. The sub-task [x;] assigned
to the first vi And the capability of v is evaluated (workload
W,), is as capable of serving x; unless it is assigned to va.
In turn, vy is re-evaluated for its ability to serve x3 and if
it cannot do so, v2 is evaluated; in the event that it is not
able to, it is assigned to v3. In case v; can serve x3, vi
serves x1, and xg concurrently, and so on, where ultimately
Xy = {xv.1. %02, .. .. Xy}

If the measure of how much ‘“‘natural variation” a pro-
cedure experiences relative to its specification limits, this
enables a comparison of different processes concerning each
other, after which the most effective process can be chosen.
Cp and Pp are monitoring indicators for the distribution of
offloaded tasks compared to current capacity and the specifi-
cation of ESs.

Cp, = (USL — LSL)/ Y, (6)
Pp, = (USL — LSL)/, 7

where USL is the upper specification limit indicating the
highest value that can be assigned to each VM, such as CPU
and memory size, which reflects the VMV. Moreover, LSL is
the lower specification limit, which indicates the lowest value
that can be set for each VM. These are controlled and allo-
cated by resource allocation management control (RAMC),
responsible for assigning VM tasks in VMs. The CP for each
VM is stated as follows:

Cp,, = (USL — LSL)/ Y, ®)

Therefore, the scheduler must know the characteristics of
each task and the task request, including variables such as
data size D, workload computation (rate of maximum pro-
cessing of node) w, required CPU frequency F, and mem-
ory M. It is possible to acquire this information through
the profiling process. We assume that the profiling pro-
cess retrieves information about offloaded task requirements.

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

Additionally, profiling is used to determine the LSL and
USL of the ES, after which the LSL and USL of each cre-
ated VM are calculated. If the execution requirement of the
offloaded tasks falls between the limits of capabilities, then
they are given priority for execution. Otherwise, they are
placed in the queue, and a VM is created that conforms to
their requirements, with the process carried on similarly until
it terminates.

Execution. Otherwise, they are placed in the queue and a
VM is created that conforms to their requirements, and so on
until it is completed.

1, if x; allocate on V;

Ry = ©)

0, otherwise

Therefore, the service time of the sub-task x; running
on VM at the edge node V;, denoted as T(x;, v;), can be
expressed as:

ﬂ=mw$mmm (10)

where F; is the instruction number to process for sub-task x;.
Therefore, the service time in the ES for X; can be calculated
as follows:

Tg=Y " T (11)

i=1,j=1

In addition, to meet the computation task requirement, it is
necessary to satisfy the following condition:

T (Xi. Vj) < req(T}) (12)

The scheme of optimal resource scheduling in MEC is
considered a multi-objective optimization (MOOQO) problem
that reduces the service execution time Minimize(T,).

N
minimize Z T., e€E (13)

i=1
It is assumed that these tasks are related to a mobile user
because the ES received the task, and the user moved out of
the ES’s coverage area. Furthermore, we suppose that there
are no other requirements for the task; that is to say, there
is no interaction between the user and the task. The network
monitoring unit tracks the user, after which the nearest ES is
chosen, and the output is transmitted to the user via the identi-
fied ES. The control edge cloud computing controller (CE3C)
is used to find the mapping between the ESs that are closest
to each other, as well as the optimal mapping of the mobile
device (MD) to the ES, which is known as task associativity
(Ax). In this case, the aim is to find the greatest value of Ay
between the ES and the task, namely, Maximize(Ay ), which

is calculated using the following equation:

1, when the velocity ri= 0
A, —111)Ry
ri

Maximize A, = .
otherwise,

(14)

VOLUME 9, 2021

where d is the distance between the location /; and the next
location /41, and r; is the velocity of the population i. Due
to MD mobility, the location doesn’t change. When A, = 1,
this means that the velocity of particles is 0, which implies
that the particles are in the same position as they were when
the offloaded tasks were received. We suppose that the VM’s
capability is constantly checked when a new offloaded task x;
arrives at the ES, thereby ensuring the ability of the currently
active VM| to serve it before creating a new VM, which
reduces the service cost. We also assume that the LSL and
USL values for each VM are given. First of all, we need to
calculate the capacity of the available task processing u;; of
VM ; for each corresponding task x; [46].

Wijj = Pijhi/tpi (15)
where the LSL < u;; < USL, |USL, LSL| € CP.
Where p; ; is the probability VM; in the edge, server to

serve the offloaded x; the task and X is the task arrival rate
in the edge server.

TABLE 1. The important notations used in this paper.

Notation Definition

ty processing time of the task in the VM

Yy Weight process capability of VM

Ve Weight process capability of edge server (ES)

Wy Workload computation of VM

W, Workload computation of ES

DPT Dynamic programming technique

r;(t) Current velocity of the particle

L;(t) Current position of the particle

VMv VM value

VMc Cost of each VM

ot Price of each VM per time

n; Number of VMS

TPT Task processing time

Tex Time of the processing task at the edge server

Agx Task associativity

Cirost Cost of the edge server

a An acceleration coefficient

foi Computation frequency of VM

Cp. , Cp, Process capability of ES, and VM respectively

Pp.,Pp, Process performance of ES, and VM respectively

Ry Resource allocation of the task x; In the VM v;

F; Instructions number to the process of task X

TS, Ty Services time of the offloaded task X; On ES

Y Services time of the sub-task x; On VM

D Uploaded massive real-time tasks

Hij VM capacity of available task processing

USL & LSL Upper specification limit, and

pij Probability VM; In the edge server to serve the
offloaded x; , lowest value that can be set for each
VM

L* Best position of the particle

We assume that the X is fixed. In practically, the available
task processing capacity of the VM; is greater than task

167511



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

request rate 6; ; to satisfy task QoS requirements.
0ij = pijhi, where w;; > 6;; (16)

Therefore, the sum of the processing capacities of all VMs
in the ES is the available task processing capacity of the ES.

n
Mij 17

We aim to reduce the process of creating VMs, as well as the
number of VMs used to serve an offloaded task, to facilitate
a reduction of service cost by maintaining resources, namely,
Minimize(nj):

W=

1 @ <1
_ Hj
nj = 0: ; 0: (18)
round <l> , >
Hj Hj

Unlike single-objective optimization problems, whose aim
is only to achieve the single most efficient solution, MOO
problems allow a set of factors to be regarded as a set of
the Pareto-optimal solutions, which represents the options
between these objectives. Table 1 provides an overview of the
important notations used in this research.

V1. MULTI OBJECTIVE HYBRID ACCELERATED PARTICLE
SWARM OPTIMIZATION AND DYNAMIC

PROGRAM (MOAPSO-DP)

The proposed model uses three algorithms: first, the non-
preemptive priority algorithm; second, accelerated particle
swarm optimization (APSO); and third, dynamic program-
ming (DP) for the knapsack problem.

The first algorithm used in the proposed model is the
non-preemptive priority algorithm. This is used to sort the
offloaded tasks and process them according to the priority
assigned to each task. In this way, any task that has started
processing is prevented from being transferred to another
resource, thereby increasing the task’s associativity with the
edge server (ES) to which it has been offloaded (regardless
of whether the mobile device (MD) moves to another ES
coverage area). This means that task execution is not inter-
rupted until the completion of processing. Following this, the
second algorithm — the APSO algorithm —assigns these tasks
to the VMs according to priority to start processing while
minimizing processing time. In turn, DP is used to perform
resource balancing across the VMs to reduce the service cost.

The assumption is made that tasks are offloaded to the
ES. The density of a task is partitioned into sub-tasks x;,
where x; € X, X, = {xu,l,xu,g, ...,xv,j}. Therefore, it is
necessary to make a tradeoff between makespan and optimal
resource utilization, which will reduce cost. The primary pro-
cess involved in the model is divided into three steps: task par-
titioning, scheduling optimization, and migration only result
from the ES to another, as shown in Figure 2. The schedul-
ing of the task in relation to the available edge computing
resources (ECR) can be modeled as follows:

When tasks are offloaded to the ES, the solver in the ES
partitions each task into sub-tasks X = {x;}. This enables

167512

concurrent processing for the VMs to accommodate the task
without waste over the capability. Accordingly, the VMs
are filled as stated before: to process the sub-tasks on the
VMs one by one, thereby reducing service cost and ser-
vice time due to concurrent processing. This yields X,, =
{xv.1, %02, ..., x,i}, where x, is the task indicator vector of
the v VM, and x, ; is the indicator of the i sub-task. If the
VM v is capable of serving the sub-tasks i, then x, ; = 1; oth-
erwise, x, ; = 0. The task details for all VMs can be expressed
as a task indicator matrix X (i, j) = {XLVJ., Xzyvj, ... .,Xn,vj},
where the v™ a row is the task indicator vector of the ES v.

A. ACCELERATED PARTICLE SWARM OPTIMIZATION
(APSO)

In the proposed model, we use the simplified model of
the PSO algorithm, which is known as accelerated PSO
(APSO) [8]. Both the global best g and the individual best x
are used in standard particle swarm optimization. The indi-
vidual best is primarily used to increase the diversity of the
quality solutions; however, this diversity can be simulated
with randomness. The use of individual best solutions is
not essential unless the optimization problem in question is
highly nonlinear and multimodal.

Using APSO was to facilitate efficient resource utilization
and resource management in the ES as the primary objective,
reduce service cost to the customer as a secondary objective,
and increase the task’s associativity to the edge server as an
auxiliary objective. Therefore, the use of APSO was expected
to yield promising results, as indicated by a comparison of the
simulation results to other algorithms.

For our model, a key objective of resource scheduling was
to minimize computation latency for tasks offloaded to the
ES and maintain resources to serve the largest number of
tasks at the lowest cost. We used MOO algorithms based on
APSO to pursue these objectives, which were represented in
the minimization of the response time of the task 7; and the
conservation of resources V;. This can be expressed using
the matrix #;(X;, V;). In this study, we used the value of the
fitness function for all objectives instead of using the concept
of the Pareto set[47]. This is because the Pareto approach
uses multiple comparisons to find dominant solutions, which
takes longer. The weight or the value for each objective’s
method provided better solutions by relying on only weight
lists. In this method, we establish the weight for each solu-
tion based on the values of the objectives in the MOAPSO
algorithm to select the appropriate VM (V;) for each task (x;),
as shown in Algorithm 1.

Our objectives are to reduce the task processing time (TPT)
atthe ES, 7, x (minimize TPT), increase the task associativity
(AE x) of a task with an ES (highest AT), and minimize the
VM (V;, x) cost, which is reflected in the overall cost of the ES
(minimize e;,,, ). The particles in this work are represented as
VMs, while the values of best fitness are calculated according
to the three factors: minimize the task processing time (7PT),
maximize task associativity (7A), and minimize e;,,,.

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

The TPT is calculated in Equation 9. The cost of each ES
depends on the number of VMs, as calculated in Equation 12,
while the cost of each VM (VMc) depends on the VM’s value
(VMv) value. The value of the VM is based on the VM’s CPU
and memory, which is retrieved automatically from the VM
profile; it is defined as a weight w. Therefore, the edge cost
ecost 1S calculated as follows:

VMc; ., = Tj % VMy; (19)

Minimize e;,,, = n(VMc;,)p;, Vviee; (20)

where 1 represents the number of VMs that were created in
each ES, which was also calculated in function (12), Addi-
tionally, p; represents the price of each VM per time.

Algorithm 1 MOAPSO Task Scheduling

1: input: velocity values
2: Output: Update velocity values, and updated particles position
3:Set 81, 8 = rand|[0, 1], a1, p= 2.05
4: Procedure MOPSO (X, VMS)
forx € X do
for v € vm do
TPT (x, v) =COMPUTE_TPT (x, v ) //Eq#13
TA (x, v )= COMPUTE_TA (x, v ) //Eq#14
VMC (x) = COMPUTE_VMC (x) ) //Eq#19
10: end for
11:  end for
12: INITIALIZE (VMs, Velocity, Position, vbest,)
13: for x; € X do
14: forv; € VM do
15: f=FITENSS (TPT, TA, VMC)
16:  If v; = vbest //Update velocity
17: vbest =EVALUATE(f)

R AR

18: Velocity (vj) — = § x a; //§randomnumber

19: Else

20: Velocity (vj)+ = § * a; /lecaccelerationcoefficients
21: EndIf

22 Maxvelocityl=get _max1(v;, Velocity values) //Update position
23:  Maxvelocity2=get _max1(v;, Velocity values)

24: Swap(vj[Maxvelocity1], v)[Maxvelocity2])

25: end for

26: end for

27: return vbest

28: end Procedure

Regarding the issue of calculating the associativity AT
(Ag x), we assume that each particle VM in the swarm
behavior has two main attributes: a position (L), which spec-
ifies the suggested location of the ES related to the tasks,
and a velocity (r). The APSO algorithm uses a movement
that changes a particle’s position in each iteration. The APSO
updates a particle L; at time ¢ is shown in the following
equation [48]:

Li(t) =L (t = 1) +ri(r) 21

where L; (¢) is the current position and L; (—1) is the next
position. In addition, the velocity of particle i at time ¢ is given
in the following equation [48]:

ri(t) = O0ri(t — 1) + da(vbestj — 1;(t) (22)

where the @ indicates the direction, § is the random number
between [0,1], ¢ is an acceleration coefficient. The vbest is
best position of a particle, which is a VM.

VOLUME 9, 2021

We assume that these tasks are related to an MD user as
the ES receives the task and changes their location due to
mobility. Additionally, considering that there are no other
requirements for the tasks, there is no interaction between
the user and the offloaded tasks. Further, we assume that
the processing occurs on the ES that receives the offloaded
task; the first time, the task is associated with a VM, and
immediately, scheduling and processing procedures are ini-
tiated. This operation leads to an increase in the value of
A,. Otherwise, the recent ES dispatches the offloaded task
to the nearest ES. The user is tracked by the ES and the
network monitoring unit; the results are forwarded through
the adjacent ES. If the user is outside the range of the recent
ES and forwards the offloaded task to another ES to be
processed, this increases the transfer task cost and processing
time. Therefore, we aim to increase the associativity Ay
this ensures that the task is not transferred to the nearest
user server except for when the recent ES cannot undertake
task processing. This is considered a new contribution of the
present study to the literature.

Dynamic programming (DP) was applied to minimize the
cost of resource utilization and minimize the problem of
wasting ES capabilities, dynamic programming (DP) was
applied. Specifically, the DP technique was used to solve the
knapsack problem. DP is useful for solving overlapping sub-
problems, which means that it must rely on a precedent value
to search for a better solution. However, the DP technique
depends on the situation of the current particle and the VM’s
value to find a better solution.

Algorithm 1 shows this study’s novel scheduling algo-
rithm for handling offloaded tasks inside the ES based on
the MOAPSO-DP algorithm. The primary process in this
algorithm is dedicated to the calculation of multi-objectives.
The MOAPSO-DP algorithm is applied to optimize task
scheduling and evaluate the three objectives, namely, to cal-
culate the task processing time (TPT), task associativity (TA),
and cost of each VM (VMC). This will enable selecting the
optimal solution for the offloaded tasks in each VM using
the COMPUTETPT, COMPUTETA, and COMPUTEVMC
functions. These three functions apply Equations 11, 14,
and 19, respectively. Additionally, the MOAPSO-DP algo-
rithm contains the main procedures of APSO, but several
objectives are used instead of one goal.

The primary process in Algorithm 1 is concerned with cal-
culating multi-objectives. The MOAPSO-DP Algorithm 3 is
applied to optimize task scheduling and evaluate the three
objectives: to calculate the task processing time (TPT), task
associativity (TA), and cost of each VM to select the best
solution. In dealing with a MOO problem, we can either
integrate every objective into a single objective or con-
sider each function separately. Therefore, in this research,
DP was used to solve the knapsack problem, thereby bal-
ancing resource allocation, improving resource utilization,
and solving the waste over the capability of each VM in the
ES, as shown in Algorithm 5. solving the waste over the
capability of

167513



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

Algorithm 2 FITNESS Algorithm

1: Procedure FITNESS (TPT, VMC, TA)

2: INITIALIZE (RP) //Repetition & Priority
3: v; <= Valuel=Min (TPT)
4 v; < Value2= Max (TA)
5: v; <= Value3= Min (VMC)
6: for v; € VMs do
7 .

8

9

1

DP=DP (v;)
end for
return DP (v)
0: end Procedure

In the MOAPSO algorithm, the fitness function is invoked
to evaluate the objectives, as shown in Algorithm 2. The
objectives are represented by a two-dimensional matrix (x, v).
Algorithm 2 also shows the process used to compute the value
of the fitness function for the objectives. The value of each
particle (i.e., VM) is computed for each objective, and the best
value is selected for each particle. Consequently, the particle
with the greatest weight value from the corresponding three
objectives is chosen as the best solution.

Algorithm 3 MOAPSO-DP (X, VMs)

I: input: Set of Tasks {Xi,Xp,....,Xn}, set of resources
(VM |, VM, . ..., VM,} € ES

2 Set of subtasks x; € X;, and set v; € VM;

3: Output: maping(x;, v;) // the best solution to allocate X; over VM;
4: Fori = 0to NX //é)sumber of tasks

5: n"M =
6
7
8
9

= LX /I create VM per task on demand
Xﬂ

: While not Reach  do // number of iterations
: MOAPSO (X;, Vj)
For J=0 to n // number of VM
DP (x;, vj)
10  End For
11: Repeat

In more detail, for TPT, TA, and VMC, the task selects
an appropriate VM with the greatest weight value depending
on the balancing method. Weights are assigned because the
objectives are different: the first objective is TPT and the sec-
ond is VMC, the best solution is Min, and the third objective
is TA is Max. This is an instance of the bounded knapsack
problem (BKP), classified as an NP-hard combinatorial opti-
mization problem. The BKP can be stated as follows:

n
minimize Zi:l viX; (23)
. n

subject top® = Zi:] ui,vie{0,1,2,....,n} (24)

Constraints: 0 < v;X; < u?

L* = max(uy) (25)
where L* represents the optimal position. In this study, the DP
technique was used to solve the BKP. In particular, to identify

the available VMs optimally, we used the task allocation
process shown in Algorithm 4:

B. DYNAMIC PROGRAMMING
Dynamic programming (DP) [49] is a technique that is used
to solve overlapping sub-problems. To design a DP algorithm

167514

for a knapsack problem, it is first necessary to derive a
recurrence relation to express a solution as an instance of
the knapsack problem. In DP, each sub-problem is solved
separately, the outputs are stored in a table, and the table is
subsequently used to solve the original problem. The instance
is regarded as a problem defined by the first x; tasks, where
1 < i < N, within the available task processing capacity u;
of the VM for each particle vy .. .., v; and VM capacity vj,
where 1 < j < u;; and to determine the resource require-
ments of VM (t), which are represented as time requirement,
type of resources, and amount of resources. The amount of
resources can be calculated based on the start time of the
request timeg, duration time timeg, and resource type res,.

We calculated the utilization of the resource R;; of each
node VM (t), by:

 JE—
R(t)=—3" Rj(t).ry (26)
pj n=

where R;; is a binary variable to determine whether v; is
allocated by the task at the time instant t or not. In addition,
r, resource amount r, = {timey, timeq, res,}. According to
the computation offloading, the number of tasks offloaded on
v;(t) at time instant ¢ is calculated by:

VM (t) = Z;_’:l R; (t) 27)

In this study’s DP approach to the problem, the task X was
split into sub-tasks x; to fit each VM under the following
constraint:

0<> uf=<u (28)

X11

VM1

X x VM generation

Unit o |

VM

Mapping Unit J— VM

FIGURE 3. Partition of the tasks and accommodates their by VMs.

Let tableli, j] be the optimal solution of this instance (i.e., the
weight (capacity)) of the most valuable of the first sub-tasks
x; that fit into VMj. It is possible to divide all the sub-tasks
x; that fit into VM into two categories: first, sub-tasks that
do not include the xﬁh; and sub-tasks that include the xﬁh. This
leads to the iteration shown in Algorithm 5.

As shown in Algorithm 5, to find Table [N, Weight], the
maximal value of a sub-task of VM under the conditions of
the two boundaries for the VM are:

- The VM equals zero when there is no task allocated in it
(i.e. x;=0).

Table [0,j]1 =0 for v > 0

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

Algorithm 4 Task Allocation (X, VMs)
1: Initialize: x, < X, u’<uV [Capacity]
2: Start at location Table[x, v]

3: While the capacity is greater than 0, do 4:
Table[x,, 1, v] then

Subtask x;,, has not been available in the optimal solution

Else

Subtask x,, has been available in the optimal solution
==MOAPSO-DP (x,, v)

mapping (x,, v) and start process subtask x;,

Move one row up to x,_|

If Table[x,, v] =

R S A

- The VM equals zero when its weight has no value (i.e. v; =
0) because no task can be allocated in it.

Table [i,0] = 0 for x; > 0

Algorithm 5 Dynamic Programming DP
1: Initialize:
(Weights[1...N1], Values[1...N], Table[O .. . Capacity])
2: Input: Weight array include the Welghts(capacuy) of all task
3: Values array include the priority values of all task
4: Table Array used to save the results
5: Output: The final value of Table array (Table[N, Capacity]) contains the
solution for the given weight
6: for i=0to N do
7: for j= Oto Capacity
8: If u} < w7y then
9: Tableli, jl «<—Table[i—1,j]
subtask
10:  Else
11:  Tableli, j] «— maximum Table[i—1,j] Do not use the xi[h
subtask
12: And
13:  p; + Table [i—l,j - weight,-]
14: Return Table[N, Capacity]

Cannot fit the xfh

Use the xl?h item

C. NON-PREEMPTIVE PRIORITY BASED SCHEDULING
(NPP)

We used a non-pre-emptive priority-scheduling algorithm to
sort the offloaded tasks according to the priority assigned
to each task. Thus, this prevented any task that had started
its processing from being transferred to another resource,
thereby increasing the task’s associativity with the ES, which
has been offloaded regardless of whether the MD moved to
another ES coverage area, which means not interrupting the
execution of the task until the completion of its processing.
In Algorithm 6, we sorted the processing of offloaded tasks
based on the given priority to each task and the arrival time of
each task to the edge server. Additionally, we calculated the
processing time and waiting time for each task.

VII. SIMULATION AND RESULTS ANALYSIS

CloudSim [50] was used to evaluate the proposed method,
MOAPSO-DP. CloudSim is an open-source package offering
modules to emulate cloud environments with flexibility to
modify the simulation by adding modules depending on the
desired design. Specifically, we applied our model using

VOLUME 9, 2021

TABLE 2. Description of edge server.

Parameter Value
No. VMs Depending on the no of tasks and task

capacity Eq.18

No. tasks 1-1000

CPU MIPS (1,500 — 3,000) MIPS
Storage 2TB

RAM size (32,000-64,000) MB
Bandwidth (500-2024) MB

CloudSim 3.0.3. CloudSim is valuable as a universal tool and
simulation framework that permits the modeling and simu-
lation of cloud computing infrastructures and services [50].
It includes several libraries and supports different functional-
ities, including events processing and queuing, creating cloud
system objects (e.g., data centers, services, virtual machines,
hosts, and brokers), and communication between modules.

Our proposed MOAPSO-DP integrated three algorithms
(non-preemptive priority algorithm, APSO, and program-
ming (DP) for the knapsack problem). The APSO algorithm
is considered one of the optimal algorithms for managing
resource allocation, which evolved from the PSO; its pros are
its quality and effectiveness, efficient, high-quality solution,
and local exploitation capability. In the APSO algorithm is
not essential to use individual best solutions unless the opti-
mization problem in question is highly nonlinear and multi-
modal. Therefore, DP reduces the service costs by balancing
resources across VMs.

Many studies have been undertaken to develop schedul-
ing algorithms, including studies using genetic algorithms
(GA) [51], PSO algorithms [52], APSO algorithms [8], and
hybrid PSO-GA algorithms [53]. In the simulation for this
research, we compared the proposed MOAPSO-DP algorithm
to each of these state-of-the-art alternatives.

A. SIMULATION SETTING

To evaluate the impact of the proposed method, MOAPSO-
DP, on the resource allocation problem in the mobile edge
computing (MEC) context, we performed a simulation study
with the parameters listed in the following tables: A descrip-
tion of the edge server (ES) is given in Table 2, a description
of the virtual machines (VM) in Table 3, and a description
of the tasks in Table 4. The number of VMs depends on the
number and capacity of tasks arriving at the ES. In addition,
VMs are created based on the number of incoming tasks, their
characteristics, and whether the tasks belong to one or many
users. These factors are reflected in the following equation:

ES
0 < vy, < —F—, 3VM; € ES 29
nvm; < XX i k (29)
1_/m
0 < My < )ﬁ, dx; € X; and v; € VM 30)

i i
More specifically, the experimental simulation model
included three edge nodes and multiple mobile devices (MD).

167515



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

Algorithm 6 Non-Preemptive Priority Based Scheduling

1: Input: number of tasks, duration time timey,arrival timeg, a priority of
each task

2: Output: scheduling tasks depend on the priority

3: Initialize waiting time,, completion time time,

4: Sort the Tasks according to the priorit0079

5: For i=0 to number of tasks

Tp (x;) < timeq(x;) + timeg(x;) // processing time of xq

Tp (xi+l) < timeq(xjy+1) + Tp (x;) // processing time of x;4 |
timec (x;) <— Tp (x;) — timeq(x;) // completion time
timeyy(x;) = timec(x;)—timegq(x;) // waiting time

10: End For

11: Highestpyiority (x;) < timea (x;)

12: Avg (timey,(x;))

13: Avg (Tp (x;))

Rl

180

140

120 4

100 1

=]
o
L

Makespan (sec)
[=1]
o

I
o
L

20
—e— APSO-DP

—3— PSO-GA

0 - —4A— APSO
—&— PSO

T T T T T T T T T

0 20 40 60 80 100 120 140 160 180 200

No. Tasks (x100)

FIGURE 4. Execution time per task.

Assuming the VMs in each ES provided edge cloud services,
we simulated many offloaded tasks using data from the LCG
dataset [54]. This dataset consists of approximately 200,000
tasks, offering a complete description of the tasks served,
such as offloaded time, MD ID, compute task name, and task
runtime. In this study’s simulation, the LCG dataset was used
because it includes all the types of tasks relevant to what is
required in the proposed model simulation.

The simulation system contained three ES nodes with
predefined specifications. The number of VMs was created
depending on the offloaded task requirements. The data size
of each task ranged from 2MB to 4MB. The performance
analyses were conducted over computation offloading activi-
ties with different tasks (from 20 to 210) and specific param-
eters, as shown in Table 4.

TABLE 3. Description of VMs.

Parameter Value
CPU MIPS 2400
Storage size 40,000MB
RAM size 1024
No. VMs 42
VM Price 20 cents

167516

220
—e— APSO-DP
PSO-GA
200 1 A~ APSO
180 -
160 -
c -
2 i S
@ 140 L
% B Y
E 2
14
L4
100 -
80 -
60 -
001234567 8 91011121314 15 16 17 18 19 20 21

Iteration

FIGURE 5. Execution time per iteration.

45

I APSO-DP I APSO
40 4 BN PSO == PSO-GA

012 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21
Iteration

FIGURE 6. Number of VMs per iteration.

1600
—8— APSO-DP
—8— APSO
1400 —A— PSO

1200

Fitness Function Value
[=2] o S
o (=] o
o o o
L 1 L

0 T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Iteration

FIGURE 7. Fitness function.

Each experiment was run ten times, and the start sub-
mitted 100 tasks. The acceleration coefficient (a) was set

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

45
40
35

§ 30
> 25
o
=4 20
o 15
o
3 10
o
o
0
1 2 3 4 5 6 7 8
mAvg.No.VMS APSO-DP 42 40 40 35 32 31 30 30
m Avg. No. VMS PSO 42 42 42 42 42 40 39 39
Avg. No. VMS APSO 42 42 42 4 41 41 39 38
mAvg. No.VMS PSO-GA 42 42 40 38 38 36 35 35
W Exe.Cost APSO-DP 73 69 73 69 64 66 64 66
H Exe.Cost PSO 155 160 162 165 168 165 168 17.4
Exe.Cost APSO 112 112 118 122 122 124 122 124
M Exe.Cost PSO-GA 90 97 96 96 100 98 99 103

m Avg. No. VMS APSO-DP m Avg. No. VMS PSO
H Exe.Cost APSO-DP ® Exe.Cost PSO

FIGURE 8. Cost per the number of VMs.

at 2.05 based on the research undertaken by [47], which
is because it is associated with promising results. In this
simulation, we measured the following parameters:

B. REDUCING THE COMPUTATION TIME OF THE TASKS
(PROCESSING TIME)

In the simulation, we measured the makespan in seconds.
Figure 4 shows the differential of the time of the execution
tasks based on the number of tasks.

As all the tasks in the data set numbering 200 thousand
are offloaded in batches, we fixed the number of VMs at 40,
with 20 epochs. We noticed that when the number of tasks is
few, the difference in execution time between the proposed
model and other models is close. With the increase of the
offloaded tasks, the difference in execution time gradually
increases according to the number of tasks. Nevertheless, the
increase in the proposed method is slight, yet the improve-
ment rate of the APSO-GA algorithm is approximately 28%.
Furthermore, when offloading tasks as one batch and the VMs
are created dynamically based on the absorption of offloaded
tasks, with 20 epochs.

TABLE 4. Description of tasks.

Value
1000-200,000
100-3000
500-5000

Parameter
Task number
Length (MB)
MIPS

The results are shown in Figure 4. Also, we compared
the performance of the proposed algorithm to the standard

VOLUME 9, 2021

9 10 11 12 13 14 15 16 17 18 19 20
30 28 25 22 22 20 20 20 19 18 16 16
39 38 37 37 37 36 35 35 35 35 34 34
38 37 37 37 36 35 35 35 34 33 33 32
34 34 32 32 30 30 30 28 27 27 25 25
66 63 58 51 51 47 48 50 48 46 44 44
179 185 184 194 204 206 209 216 221 226 223 232
129 130 133 136 134 133 139 146 150 150 151 149
102 104 102 103 99 102 105 100 9.8 100 96 938
Iterations

m Avg. No. VMS PSO-GA
® Exe.Cost PSO-GA

Avg. No. VMS APSO
Exe.Cost APSO

PSO, APSO, and PSO-GA algorithms. Figure 5 shows the
execution times of each algorithm based on the iterations.
Significantly, the proposed algorithm achieved the lowest
execution time.

Figure 6 shows the number of VMs for each iteration. For
the first iteration, the number of VMs was 42. The proposed
algorithm’s performance indicates that for the last iteration,
it used a smaller number of VMs and still maintained the
lowest execution time compared to the other three algorithms
(see Figure 5). As shown in Figure 7, the fitness function
values demonstrate that the proposed algorithm outperformed
two other APSO and PSO algorithms with a minimum value
in the last iteration and an improvement of 30%.

C. OPTIMIZING THE PROCESSING COST (COST OF
SERVICES)

The cost of service comparison between MOAPSO-DP and
the standard PSO, APSO, and PSO-GA algorithms is shown
in Figure 8. Notably, MOAPSO-DP-based task scheduling
achieved lower costs compared to the other algorithms. This
can be attributed to the algorithm’s ability to balance the
load, which reduced the number of VMs used. This directly
reduces the costs, as shown in the table underneath Figure 8
(the fee for each VM is estimated at approximately 0.2 cents
per 60 seconds). Figure 8 shows the service cost for each
algorithm with a different number of VMs, where the number
of tasks was fixed at 50. As shown in Figure 9, when the
number of tasks was changed, the cost increased gradually
with the number of tasks; notably, the tasks were distributed
to a sufficient number of VMs to minimize processing time.

167517



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

25

20 A

Cost ($)

—&— APSO-DP
PSO-GA
v— APSO
—&— PSO

T T T T T T T T T T

0 20 40 60 80 100 120 140 160 180 200 220
No. of Tasks

FIGURE 9. Cost per the number of tasks.

The reduction of VM numbers has effects on the cost of
service. Figure 10 showed the proposed algorithm’s perfor-
mance per iteration when the number of tasks was fixed
at 50. Figure 10 also shows the proposed algorithm at a
lower cost based on Knapsack’s algorithm, which uses the
principle of efficient resource utilization and reduces VMs
capability wastage. The cost decreased gradually, and the
proposed algorithm achieved a lower cost compared to the
other algorithms.

25

—e— APSO-DP
—— PSO
—4— APSO
8- PSO-GA

20 4

Ry
‘,kuﬁ——*——a——k""ﬁkt
e

104 gpggOaatatatg ey o9 g
a}

Cost (3)

s-w

0

— T
012 3 456 7 8 9 10111213 14 15 16 17 18 19 20 21
Iterations

FIGURE 10. Cost per iterations.

D. RESOURCE UTILIZATION

Figure 11 showed the level of resource utilization when the
VMs were created to handle offloaded tasks; the number
of tasks ranged from 20 to 210. As the figure indicates,
the proposed algorithm outperformed the other algorithms
in resource utilization and achieved remarkable efficiency.
The simulation results demonstrated that VMs were reduced
when the tasks were sent to a smaller number of VMs.
The number of VMs started decreasing from 42 VMs until

167518

09
0.8
0.7 -
5
S 0.6 5]
8 o
'-_3 o
§ 0.5 o m
=3 | B |
204 - ':'
[
o
0.3
—e— APSO-DP
0.2 4 —%— PSO
—A— APSO
@ PSO-GA
0.1 T T T T T T T T T T

0 20 40 60 80 100 120 140 160 180 200 220
No. Tasks (x100)

FIGURE 11. Resource utilization.

reaching the last iteration of 16 VMs, directly reflected in the
optimization of the resource utilization rate, which reached
85%. We noticed that resource utilization was inversely pro-
portional to the cost of service; in particular, the greater the
resource utilization, the lower the cost of service.

E. AVERAGE WAITING TIME

Average waiting time was measured by computing the dif-
ference between the time a task was offloaded to the ES and
the starting time of task execution. Figure 12 shows that the
waiting time of the proposed algorithm was lower than the
other algorithms. The number of tasks was fixed at 50, but
the number of VMs changed in each iteration based on the
resource balancing method, thereby eliminating the wastage
of resource capabilities. Figure 13 shows the average waiting
time based on the number of tasks when VMs were fixed
at 42 VMs. The waiting time was affected by the number
of tasks offloaded at the ES, as the waiting time gradually
increased based on the number of tasks.

300
EEE APSO-DP
[ PSO-GA
B APSO
250 1 . PSO

]

(=]

o
1

150 -

Waiting Time (sec)

-

(=1

=1
L

50 1

20 40 80 80 100 120 140 160 180 200 220
No. Tasks (x100)

FIGURE 12. Waiting time average per tasks number.

VOLUME 9, 2021



T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

IEEE Access

220
200 -
180 -
o v vV v
E v
= v
B i
5 ¥
8
X 140 1
9 B
<420 -
—8— APSO-DP
100 A PSO-GA
v— APSO
—— PSO
80 T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20
Iterations

FIGURE 13. Waiting time average per iteration when tasks number is
fixed at 50 tasks.

VIil. CONCLUSION

Mobile edge computing (MEC) systems provide integrated
services close to end-users to achieve QoS and quality of
QokE. This study examined how to jointly optimize resource
allocation when offloading tasks from mobile devices (MD)
to edge servers (ES) in MEC systems, thereby minimiz-
ing computing time and cost of service. In this case, the
tasks can be processed locally and offloaded to the MEC
server. The main insight from this study is that the offloaded
tasks are scheduled to the VMs in the ES to minimize
computing time, service cost, the waste over the capabil-
ity of the ES, and the maximum associativity (AE) of a
task with an ES. This paper introduced MOAPSO-DP as
a novel method based on resource allocation management
and offloaded task scheduling to achieve a state-of-the-art
outcome in MEC. Three algorithms were used in the pro-
posed model: non-pre-emptive priority algorithm, APSO,
and dynamic programming (DP) for the knapsack problem
(KP). The experimental comparison of the proposed model
to PSO-GA demonstrated that the proposed model outper-
formed it by reducing task makespan by 30% and increas-
ing resource utilization by 29%. Additionally, the proposed
method lowered service cost, waiting time, and improvements
in fitness function value compared to the PSO, APSO, and
PSO-GA.

REFERENCES

[11 M.J. A.S. M. C. Satyanarayanan and C. Review, “Mobile computing: The
next decade,” vol. 15, no. 2, pp. 2-10, 2011.

[2] G. H. Forman and J. Zahorjan, “The challenges of mobile computing,”
Commun. ACM, vol. 36, no. 7, pp. 75-84, 1993.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. Ist, Ed., MCC workshop Mobile
Cloud Comput., 2012, pp. 13-16.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—A key technology towards 5G,” ETSI White Paper, vol. 11,
pp. 1-16, Sep. 2015.

VOLUME 9, 2021

[5]

[6

—

[71

[8]

[9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

(25]

T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on SARSA,” IEEE Access, vol. 8,
pp. 54074-54084, 2020.

J. Dolezal, Z. Becvar, and T. Zeman, ‘‘Performance evaluation of compu-
tation offloading from mobile device to the edge of mobile network,” in
Proc. Standards Commun. Netw. (CSCN), Oct. 2016, pp. 1-7.

C. Luo, S. Salinas, M. Li, and P. Li, “Energy-efficient autonomic
offloading in mobile edge computing,” in Proc. IEEE 15th Int. Conf.
Dependable, Autonomic Secure Comput., 15th Int. Conf. Pervasive
Intell. Comput., 3rd Int. Conf. Big Data Intell. Comput. Cyber Sci.
Technol. Congress(DASC/PiCom/DataCom/CyberSciTech), Nov. 2017,
pp. 581-588.

X.-S. Yang, S. Deb, and S. Fong, “Accelerated particle swarm optimization
and support vector machine for business optimization and applications,”
in Proc. Int. Conf. Netw. Digit. Technol. Berlin, Germany: Springer, 2011,
pp. 53-66.

T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative schedul-
ing scheme of local cloud and internet cloud for delay-aware mobile
cloud computing,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2015, pp. 1-6.

X. Guo, R. Singh, T. Zhao, and Z. Niu, “An index based task assignment
policy for achieving optimal power-delay tradeoff in edge cloud systems,”
in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1-7.

V. Di Valerio and F. Lo Presti, “Optimal virtual machines allocation in
mobile femto-cloud computing: An MDP approach,” in Proc. IEEE Wire-
less Commun. Netw. Conf. Workshops (WCNCW), Apr. 2014, pp. 7-11.

S. M. S. Tanzil, O. N. Gharehshiran, and V. Krishnamurthy, ‘‘Femto-cloud
formation: A coalitional game-theoretic approach,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1-6.

J. Oueis, E. Calvanese-Strinati, A. De Domenico, and S. Barbarossa,
“On the impact of backhaul network on distributed cloud computing,”
in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW),
Apr. 2014, pp. 12-17.

D. Xu, Q. Li, and H. Zhu, “Energy-saving computation offloading by joint
data compression and resource allocation for mobile-edge computing,”
IEEE Commun. Lett., vol. 23, no. 4, pp. 704707, Apr. 2019.

J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “‘Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2016, pp. 1451-1455.

Y. Mao, J. Zhang, and K. B. Letaief, ‘““Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590-3605, Sep. 2016.

K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in Proc.
IEEE 8th Int. Conf. Cloud Comput., Jun. 2015, pp. 9-16.

X. Wei, S. Wang, A. Zhou, J. Xu, S. Su, S. Kumar, and F. Yang,
“MVR: An architecture for computation offloading in mobile edge com-
puting,” in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jun. 2017,
pp. 232-235.

F. Messaoudi, A. Ksentini, and P. Bertin, “On using edge computing
for computation offloading in mobile network,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1-7.

M. H. Ur Rehman, S. L. Chee, T. Y. Wah, A. Igbal, and P. P. Jayaraman,
“Opportunistic computation offloading in mobile edge cloud computing
environments,” in Proc. 17th IEEE Int. Conf. Mobile Data Manage.
(MDM), Jun. 2016, pp. 208-213.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

S. Ranadheera, S. Maghsudi, and E. Hossain, ‘“Computation offloading
and activation of mobile edge computing servers: A minority game,” 2017,
arXiv:1710.05499.

Z. Chen, J. Hu, X. Chen, J. Hu, X. Zheng, and G. Min, “Com-
putation offloading and task scheduling for DNN-based applications
in cloud-edge computing,” IEEE Access, vol. 8, pp. 115537-115547,
2020.

Y. Sun, F. Lin, and H. Xu, “Multi-objective optimization of resource
scheduling in fog computing using an improved NSGA-II,”” Wireless Pers.
Commun., vol. 102, no. 2, pp. 1369-1385, Sep. 2018.

A. Enayet, M. A. Razzaque, M. M. Hassan, A. Alamri, and G. Fortino,
“A mobility-aware optimal resource allocation architecture for big data
task execution on mobile cloud in smart cities,” IEEE Commun. Mag.,
vol. 56, no. 2, pp. 110-117, Feb. 2018.

167519



IEEE Access

T. Alfakih et al.: Multi-Objective APSO With Dynamic Programing Technique for Resource Allocation in MEC

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with

genetic simulated-annealing-based particle swarm optimization,” IEEE
Internet Things J., vol. 8, no. 5, pp. 3774-3785, Mar. 2021.
L. Kang, R.-S. Chen, W. Cao, Y.-C. Chen, and Y.-X. Hu, “Mecha-

nism analysis of non-inertial particle swarm optimization for Internet of
Things in edge computing,” Eng. Appl. Artif. Intell., vol. 94, Sep. 2020,
Art. no. 103803.

L. N. T. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. T. Nguyen, M. D. Hossain,
and E.-N. Huh, “Efficient computation offloading in multi-tier multi-
access edge computing systems: A particle swarm optimization approach,”
Appl. Sci., vol. 10, no. 1, p. 203, Dec. 2019.

Z. Chen, J. Hu, G. Min, and X. Chen, ‘“Effective data placement for
scientific workflows in mobile edge computing using genetic particle
swarm optimization,” Concurrency Comput., Pract. Exp., vol. 33, no. 8,
p. 5413, Apr. 2021.

S.Ma, S. Song, J. Zhao, L. Zhai, and F. Yang, ““Joint network selection and
service placement based on particle swarm optimization for multi-access
edge computing,” IEEE Access, vol. 8, pp. 160871-160881, 2020.

S. Midya, A. Roy, K. Majumder, and S. Phadikar, “Multi-objective opti-
mization technique for resource allocation and task scheduling in vehicular
cloud architecture: A hybrid adaptive nature inspired approach,” J. Netw.
Comput. Appl., vol. 103, pp. 58-84, Feb. 2018.

L. Liang, J. Xiao, Z. Ren, Z. Chen, and Y. Jia, “Particle swarm based
service migration scheme in the edge computing environment,” IEEE
Access, vol. 8, pp. 45596-45606, 2020.

S. Azimi, C. Pahl, and M. Shirvani, “Particle swarm optimization for per-
formance management in multi-cluster IoT edge architectures,” in Proc.
10th Int. Conf. Cloud Comput. Services Sci., 2020, pp. 328-337.

Q. Wei, L. Liu, F. Wei, H. Ge, A. Feng, Y. Wang, and W. Li, “Computa-
tional offloading strategy based on dynamic particle swarm for multi-user
mobile edge computing,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Dec. 2019, pp. 2890-2896.

Y. Zhang, Y. Liu, J. Zhou, J. Sun, and K. Li, “Slow-movement particle
swarm optimization algorithms for scheduling security-critical tasks in
resource-limited mobile edge computing,” Future Gener. Comput. Syst.,
vol. 112, pp. 148-161, Nov. 2020.

Z. Cheng, Q. Wang, Z. Li, and G. Rudolph, “Computation offloading and
resource allocation for mobile edge computing,” in Proc. IEEE Symp. Ser:
Comput. Intell. (SSCI), Dec. 2019, pp. 2735-2740.

A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359-2391,
Jun. 2017.

L. Dong, F. Wang, and J. Shan, ‘“Computation offloading for mobile-edge
computing with maximum flow minimum cut,” in Proc. 2nd Int. Conf.
Comput. Sci. Appl. Eng., 2018, p. 57.

M. Farshbaf and M.-R. Feizi-Derakhshi, ‘“Multi-objective optimization of
graph partitioning using genetic algorithms,” in Proc. 3rd Int. Conf. Adv.
Eng. Comput. Appl. Sci., Oct. 2009, pp. 1-6.

Q. K. Gill and K. Kaur, “A computation offloading scheme for perfor-
mance enhancement of smart mobile devices for mobile cloud computing,”
in Proc. Int. Conf. Next Gener. Intell. Syst. (ICNGIS), Sep. 2016, pp. 1-6.
S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE Trans.
Cloud Comput., vol. 7, no. 2, pp. 301-313, Apr. 2019.

D. De, Mobile Cloud Computing: Architectures, Algorithms and Applica-
tions. Boca Raton, FL, USA: CRC Press, 2016.

P. V. Rajkumar and R. Sandhu, ““Safety decidability for pre-authorization
usage control with identifier attribute domains,” IEEE Trans. Dependable
Secure Comput., vol. 17, no. 3, pp. 465-478, May 2018.

R. P. V. and R. Sandhu, “POSTER: Security enhanced administrative
role based access control models,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 1802-1804.

G. Sharma and P. S. Rao, “Process capability improvement of an engine
connecting rod machining process,” J. Ind. Eng. Int., vol. 9, no. 1, p. 37,
Dec. 2013.

Z. Li, L. Liu, and Z. Tong, “Task scheduling algorithm based on virtual
machine availability awareness in cloud platform,” J. Eng. Sci. Technol.
Rev., vol. 11, no. 5, 2018.

E.S. Alkayal, N. R. Jennings, and M. F. Abulkhair, “Efficient task schedul-
ing multi-objective particle swarm optimization in cloud computing,” in
Proc. IEEE 41st Conf. Local Comput. Netw. Workshops (LCN Workshops),
Nov. 2016, pp. 17-24.

167520

(48]

(49]

(50]

(51]

(52]

(53]

(54]

J. Kennedy and R. Eberhart, ““Particle swarm optimization,” in Proc. Int.
Conf. neural Netw. (ICNN), vol. 4, Nov. 1995, pp. 1942-1948.

M. Hristakeva and D. Shrestha, “Different approaches to solve the 0/1
knapsack problem,” in Proc. Midwest Instruct. Comput. Symp., 2005,
pp. 1-15.

R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Softw.,
Pract. Exp., vol. 41, no. 1, pp. 23-50, Aug. 2011.

Y. Ge and G. Wei, “GA-based task scheduler for the cloud computing
systems,” in Proc. Int. Conf. Web Inf. Syst. Mining, Oct. 2010, pp. 181-186.
L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization
in cloud computing based on heuristic algorithm,” J. Netw., vol. 7, no. 3,
p. 547, Mar. 2012.

A. M. Manasrah and H. B. Ali, “Workflow scheduling using hybrid GA-
PSO algorithm in cloud computing,” Wireless Commun. Mobile Comput.,
vol. 2018, pp. 1-16, 2018.

H. Li, M. Muskulus, and L. Wolters, ‘“Modeling job arrivals in a data-
intensive grid,” in Proc. Workshop Job Scheduling Strategies Parallel
Process. Berlin, Germany: Springer, 2006, pp. 210-231.

TAHA ALFAKIH received the B.S. degree in com-
puter science from the Computer Science Depart-
ment, Hadhramout University, Yemen, and the
M.Sc. degree from the Department of Computer
Science, King Saud University (KSU), Riyadh,
Saudi Arabia, where he is currently pursuing
the Ph.D. degree with the Information Systems
Department. He also works as a Researcher with
the Computer Science College, KSU. His research
interests include machine learning, mobile edge
computing, and the Internet of Things (IoT).

MOHAMMAD MEHEDI HASSAN (Senior
Member, IEEE) received the Ph.D. degree in
computer engineering from Kyung Hee Uni-
versity, Seoul, South Korea, in February 2011.
He is currently a Professor with the Informa-
tion Systems Department, College of Computer
and Information Sciences, King Saud University,
Riyadh, Saudi Arabia. He has authored or coau-
thored over 210 publications, including refereed
IEEE/ACM/Springer/Elsevier journals and con-

ference papers, books, and book chapters. His research interests include
edge/cloud computing, the Internet of Things, cyber security, deep learn-
ing, artificial intelligence, body sensor networks, 5G networks, and social
networks.

MUNA AL-RAZGAN received the Ph.D. degree in information technology
from George Mason University, VA, USA. She is currently an Associate Pro-
fessor in software engineering with the College of Computer and Information
Sciences, King Saud University, Riyadh, Saudi Arabia. Her research interests
include data mining, machine learning, artificial intelligence, educational
data mining, and assistive technologies.

VOLUME 9, 2021



