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ABSTRACT Early onset ataxia represents a group of heterogeneous neurological conditions typically
characterized by motor disability. Speech problems are one of the main core features of ataxic syndromes,
where automatic and computational characterization of speech impairment might represent a source of
biomarkers for early screening and stratification of patients. The main contribution of this paper consists
in proposing a novel hierarchical machine learning model (HMLM) to improve detection and assessment
of dysarthria from a structured speech disturbance test. Performances are tested on a new audio dataset
containing 10 seconds recordings of standardized clinical PATA test for 55 subjects: 18 healthy subjects and
37with ataxia. Results show that the proposed HMLMachieves performances with an accuracy of about 90%
at the first level (healthy vs patients) selecting an optimal subset of conventional features. In cascade, at the
second level, speech disturbance severity (Low vs High) is assessed using deep learning feature extraction
technique based on a VGG pre-trained network with maximum accuracy of about 80%. Both levels are
processed through themajority voting ensemble technique testing Support VectorMachine (SVM), k-Nearest
Neighbors (kNN), Decision Tree (DT) and Naïve Bayes (NB). In our results, the use of HMLM considerably
outperforms the results achieved with a single machine learning or deep learning modeling. These outcomes
demonstrate that the investigation of the PATA speech test throughHMLMcan be considered very promising.
We also observed that the use of conventional feature extraction techniques and machine learning modeling
seems to be a good solution for the diagnosis of patients with ataxia, while the deep learning approach is
more appropriate for stratification of severity of dysarthria.

INDEX TERMS Ataxia, dysarthria, speech disturbance, pata test, deep learning, feature extraction,
hierarchical systems, machine learning, speech recognition.

I. INTRODUCTION
Early onset ataxia (EOA) represents a heterogeneous group of
neurological disorders, with inherited or acquired aetiology
and usually with onset before 25 years [1]. Depending on
the clinical progression, they can be divided in progressive
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ataxias (PAs) and congenital non progressive ataxias (CAs),
including respectively entities with different aetiology, phe-
nomenology, and prognosis [1]–[7]. Regardless of such
clinical features, although rare (estimated European preva-
lence 26/100,000) [8], EOAs are responsible for relevant
disability and high costs, since no effective treatment is
still available [9]–[11]. Patients suffer many neurological
disturbances responsible for severe physical limitations,

166720 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9467-2024
https://orcid.org/0000-0002-8778-2775
https://orcid.org/0000-0002-7416-4855
https://orcid.org/0000-0002-8089-7449
https://orcid.org/0000-0002-3195-3168


G. Tartarisco et al.: Artificial Intelligence for Dysarthria Assessment in Children With Ataxia: Hierarchical Approach

which negatively affect their well-being [9]. Generally,
ataxia is characterized by coordination disturbances with
an effect on walking, standing and voluntary movements
of the upper limb. Moreover, patients can manifest speech
disturbances that can be responsible for communicative and
social limitations, significantly decreasing patients’ quality
of life [9]. Indeed, dysarthria (motor difficulties in speech)
and dysphagia (motor difficulties in swallowing) are frequent
signs in ataxic syndromes.

The number of experimental trials, covering both potential
disease-modifying treatments [12] and symptomatic inter-
ventions (physical therapy or neuromodulation) [13], are
significantly increasing in the ataxia field. Indeed, there is
an urgent need of specific and reliable biomarkers, either for
early stratification of patients or for the accurate monitoring
and prognosis. Actually, assessment of patients with ataxia
currently relies on the clinical scores, such as the Scale
for the Assessment and Rating of Ataxia (SARA) [14].
In the case of speech, it can be assessed by the perceptual
tests, where an expert listener rates 21 parameters of
speech considering prosody, respiration, phonation, reso-
nance, intelligibility, naturalness and articulation. A complete
evaluation of dysarthria in Friedreic’s ataxia has been
reported by Folker et al., in 2010 [15]. Some limitations of
clinically-based ataxia rating methods are: rater variability,
the ceiling and floor effects [1], [16], [17] and the loss of
accuracy, particularly in the pediatric age [17], [18]. In the
last years, the use of technologies is providing a promising
help showing reliable, objective, accurate and continuous
outcomemeasures either in conventional and ‘‘telemedicine’’
settings [19]–[26]. An objective assessment of speech could
represent a potential source of biomarkers. Indeed, it has
been proven, in several neurodegenerative diseases, that
there is a relationship between oral motor deficits and CNS
integrity [15], [27–[29]. Concordantly, objective measures
of speech have been suggested as meaningful information
on the patient and health-related quality of life in clinical
trials [30], [31]. However, there is a lack of ecological
evaluation of speech disturbances in patients with ataxia [15],
[31], [32]. As already suggested in [35], to assess dysarthria
in children with ataxia, artificial intelligence has shown very
promising results. A fundamental step is the extraction of
all features that can be used as input parameters in disorder
characterization systems [33], [34]. The aim is to identify
the relevant information contained in the speech signal.
Binary classifiers are commonly used to distinguish patho-
logical from the healthy condition [35], [36]. For instance,
Rudzicz et al. [35], employed feed-forwards artificial neural
networks (ANNs), and SVMs with phonological features
have been used to design discriminative models for dysarthric
speech. A binary classifier [37], based on Mahalanobis
distance and discriminant analysis was developed for improv-
ing classification of dysarthria severity levels, reaching an
accuracy of 95%. An automatic intelligibility assessment
system that performs a binary classification by capturing
atypical variation in dysarthric speech by using linear

discriminant analysis (LDA), k-nearest neighbor (KNN) and
SVM classifiers was proposed [36] with an accuracy of
68%, 66% and 70% respectively. Otherwise in [33] four
levels of intelligibility were recognized with an accuracy
between 40-50%, using SVMs and testing different feature
sets. Moreover, the combination of the statistical GMM
and ANNs was used in [38], achieving accuracy of 86%
over three degrees of severity levels. Speaker identification
(97.2%) and severity level assessment (93.2%) revealed
the best performance using SVMs and hybrid GMM/SVM
systems in [34]. Existing studies were carried out through the
employment of the few available dysarthric speech databases
such as TORGO [39] and NEMOURS [40]. Both of these
databases include few subjects (not more than 15) with
different levels of dysarthria, due to various conditions such
as cerebral palsy (CP), head trauma (HT) and amyotrophic
lateral sclerosis (ALS). They are composed of short sentences
andwords or acoustic and articulatory features extracted from
them. The lack of suitable and sufficient data is one of the
biggest limits in the field of analysis of speech and verbal
communication disorders. Moreover, in our specific case of
ataxia, the design and collection of a suitable database is a
critical issue since it is a rare genetic group of disorders and
there are constraints such as recording conditions, patien’s
availability, and approval of health agencies.

Here we developed a tool aimed at automatically rec-
ognizing ataxic syndromes. For this purpose, we collected
recordings of their speech disturbance assessment, made
through the standardized clinical PATA speech test of the
SARA scale. To our knowledge, this is the first study
dealing with artificial intelligence for the assessment and
stratification of dysarthria severity in ataxia through a
standardized clinical speech test. In our case, we developed
a novel HMLM based on a fusion of conventional and
deep learning features to automatically assess the healthy
vs patients and quantify the level of speech disturbance.
Results demonstrate that the use of two binary models of
artificial intelligence in cascade, outperforms compared to
a single machine learning or deep learning classifier. The
results obtained are encouraging and highlight the validity of
HMLM with mixed conventional and deep learning features
to recognize ataxia and stratify the level of severity of
dysarthria. However, an extensive validation phase on a
greater number of subjects is needed. In fact, we plan to
continue to test a higher number of subjects to validate
the HMLM applied to the PATA speech test as a tool to
support clinicians for optimizing screening, clinical tests and
personalized treatments.

II. METHODS
A. OVERALL ARCHITECTURE
The HMLM model is the main component developed and
tested for the assessment of ataxia. Given pre-processed ‘‘PA-
TA’’ speech data, the first level of machine learning (ML)
processes and discriminates healthy vs patients. Once the
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FIGURE 1. Flowchart of overall architecture.

speech disease is detected the second level ofML assesses the
severity of dysarthria. The overall system is detailed in Fig. 1,
which shows the data flow and indicates which features and
ML are selected and tested for each level to achieve the best
performance. All these elements are detailed in the following
sections.

B. DATA COLLECTION
1) PATIENTS ENROLLMENT
The study population was recruited in 2018 at the Move-
ment Analysis and Robotics laboratory (MARlab) of the
Intensive Neurorehabilitation and Robotics Departments of
IRCCS Bambino Gesù Children’s Hospital (Rome, Italy).
Overall, it is composed of 55 subjects: 18 healthy (H),
21 with Progressive Ataxia (PA) and 16 with Congenital
non Progressive Ataxia (CA). H group included sex/age-
matched healthy volunteers without personal/familiar history
of neurological diseases and no signs at clinical exami-
nation (age 12[7.6]; 12F/6M). All patients had genetically
confirmed diagnosis and a routine diagnostic workup,
including general and neurological examination, brain MRI,
sensory evoked potentials, nerve conduction study and visual
acuity evaluation; moreover, they were in follow-up at the
MARlab for at least 2 years, to ensure a correct group
classification. None of the enrolled subjects had relevant
cognitive impairment or were taking psychoactive drugs
(other usual medications, such as vitamin or antioxidant
were allowed). Patients with severe disability, moderate-
severe cognitive impairment affecting tests execution were
excluded. Demographic data were collected for the three
groups. The research conformed to the ethical standards

laid down in the 1964 Declaration of Helsinki. All subjects
participated on a voluntary basis, after that they or their
legal responsible signed the informed consent (the study was
approved by local ethical committee Protocol NET-2013-
02356160 WP3, nr. 1619-2018, received 03 July 2018).

2) EXPERIMENTAL SETUP
After receiving a clinical evaluation, all the 55 subjects were
asked to perform the ‘‘PATA’’ test in a quiet room. Each vocal
task was recorded with SaraHome, a novel technology for the
assessment at home of patients with ataxia symptoms [41],
using the microphone array mounted on the Microsoft Kinect
V2 for 10 seconds at sampling frequency (Fs) of 16 KHz.
Each subject was asked to repeat the word ‘‘PATA’’ as many
times as possible in 10 seconds, as reported in [42], [43].
At the end of each task, speech disturbance was scored
by expert personnel using a standardized clinical scale:
SARA [14]. For each patient with CA and PA, the same
test was repeated after 12 months (time t1) to monitor the
possible evolution of disturbances. It was possible to repeat
the test only for 21/34 patients (12 PA and 9 CA) For this
reason, 76 audio recordings were totally considered. All the
data were analyzed using Matlab version 2020 (Mathworks,
Natick MA).

C. SIGNAL PRE-PROCESSING AND ‘‘PA-TA’’
SEGMENTATION
Sometimes the collected data were affected by background
noise such as external voices, door slamming sounds or
environmental noises; therefore, a step of pre-processing and
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TABLE 1. Moving-Average Filter Parameters.

FIGURE 2. Signal short-time Fourier Transform with a detailed view
between 500 ms and 1500 ms.

clean-up was necessary.Initially, we evaluated the average
signal spectrum (Short Time Fourier periodogram) to detect
the frequency range of interest (Fig. 2). Since patients’
voice repeating ‘‘PA-TA’’ was mostly under the frequency of
1 kHz, in order to reduce all the noise above this frequency,
we applied an eleven-order low-pass Chebishev filter with a
cut-off frequency of 1 kHz and aHanningwindowwith length
equal to the 0.5% of Fs. After, we applied the method based
on fine-tuning of threshold short-term energy and spectral
spread [44] to detect speech boundaries and remove the
remaining noise. The envelope of each signal was extracted
by applying firstly the module of the Hilbert Transform and
later a zero-phase moving-average filter whose parameters
were tuned according to signal approximate entropy. If signal
approximate entropy was lower than the empirical threshold
of 0.8, a single moving-average filter was applied to the
Hilbert Transfor; otherwise, the two cascade filters were
employed as reported in Table 1.

The main steps of signals pre-processing are shown in
Fig. 3. After these steps, ‘‘PA’’ & ‘‘TA’’ peaks were detected
from the envelope selecting only maxima with a minimum
prominence equal to the 10% of the absolute value of Hilbert

FIGURE 3. Main Steps of signal pre-processing from noise removal to
‘‘PA’’ & ‘‘TA’’ peaks identification. The red circle on original signal
highlights an example of background noise (squeak) that is removed
through the low-pass filter. Later, the detect speech method based on
threshold short-term energy and spectral spread [44] is employed to
remove the remaining background noise. The cleaned-up signal is used to
obtain the envelope and consequently to identify peaks.

Transform mean. Instead, signal minima were recognized by
computing the energy and by choosing only the minimum
prominence of 0.01 and at least 10% of the sampling
frequency apart.

D. FEATURE EXTRACTION AND SELECTION FOR MACHINE
LEARNING
Audio signals were segmented in order to increase the
statistical significance of the dataset in terms of inter-subject
and inter-class variability [45]. Because of windowing the
signals, it was possible to assume their quasi-stationary
within each frame, easing the subsequent analysis [46].
Since the performance of the system depends largely on
noise reduction among peaks and the selection of useful
acoustic events only (Fig. 4), it was necessary to carry out
the segmentation using the ‘‘PA’’ & ‘‘TA’’ peaks as reference
points, and the samples between the closest preceding and
consecutive minima considering each PA-TA cycle.

After performing audio segmentation, we investigated
the most relevant conventional features of our targeted
application. In literature, the issue of feature extraction in
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FIGURE 4. Audio segmentation. Each signal was segmented using ‘‘PA’’ &
‘‘TA’’ peaks identified on the envelope as reference points and
considering, for each PA-TA cycle, only the samples between the closest
preceding and consecutive minima. Each peak corresponds to a syllable.

the field of audio processing is quite challenging because
of several factors such as the simultaneous presence of
different sound sources and the background noises that
may affect machines performance [46]. These characteristics
are considered to identify the most reliable parameters.
In Fig. 1, all the features extracted and grouped by time
domain (PATAfreq, Approximate Entropy), frequency domain
(spectral values, mfcc and gtcc coefficients), chaotic domain
(Lyapunov Exponent) and Age of children, are listed. All the
features were extracted from each PA-TA cycle and then the
average value for each subject was calculated.

PATA frequency (PATAfreq), is a simple time domain
physical feature, whose calculation is directly performed
from the temporal envelope of signals in order to assess a
fundamental parameter of our specific task, according to the
following equation:

PATAfreq =
npeaks
2 · l

(1)

where npeaks is the total number of recognized peaks and l is
the length of the signal.

Approximate Entropy is calculated to measure the com-
plexity and possible fluctuations of the signals [47] and for
its strength to discriminate human voice components from
corrupted speech [48]. Lyapunov Exponent is calculated to
consider the non-linearity of speech [49]–[53]. Frequency
domain features, conventionally used for lots of applica-
tions [54], [55] are the most described in literature. These
variables, are intended to describe the physical properties of
the signal frequency content and they cover a large number of
different categories. Among this wide range of possibilities,
we computed the following features:

• Mel-Frequency Cepstral Coefficients (MFCCs): They
are one of the most popular features employed in speech
processing. They constitute the mel-frequency cepstrum
(MFC), a compact representation of the short-term
power spectrum of an audio signal, obtained through a

linear cosine transform from the log power spectrum to
the nonlinear mel scale frequency [56].

• Gammatone Cepstral Coefficients (GTCCs): They are a
modification of MFCCs inspired from biology and are
obtained applying Gammatone filters with equivalent
rectangular bandwidth bands [57].

• Spectral Centroid: It can be considered the barycenter of
the spectrum and indicates where most of signal energy
is contained:

Spectral Centroid =

∑b2
k=b1

fksk∑b2
k=b1

sk
(2)

where fk is the frequency in Hz and sk is the spectral
value that corresponds to bin k, while b1 and b2 are the
band edges, in bins, over which to calculate the spectral
centroid [55], [58].

• Spectral Spread: It is a measure of the spread of the
spectrum around its mean value:

Spectral Spread =

√√√√∑b2
k=b1

(f k − µ1)2sk∑b2
k=b1

sk
(3)

where fk is the frequency in Hz and sk is the spectral
value that corresponds to bin k, while b1 and b2 are the
band edges, in bins, over which to calculate the spectral
spread and µ1 is the spectral centroid [56], [59].

• Spectral Skewness: It is a measure of the asymmetry of
the spectrum around its mean value and is computed
from the 3rd order moment:

Spectral Skewness =

∑b2
k=b1

(f k − µ1)3sk

(µ2)3
∑b2

k=b1
sk

(4)

where fk is the frequency in Hz and sk is the spectral
value that corresponds to bin k, while b1 and b2 are
the band edges, in bins, over which to calculate the
spectral skewness, µ1 is the spectral centroid and µ2 is
the spectral spread.
Skewness=0 symmetric distribution
Skewness <0 more energy on the right
Skewness >0 more energy on the left [60]
Spectral Kurtosis: It gives a measure of the flatness
of the spectrum around its mean value and indicates
a possible nonstationary or non-Gaussian behavior in
the frequency domain. It is the 4th order moment
and is computed starting from the short-time Fourier
Transform of the signal S(t,f):

Spectral Kurtosis =
〈|S(t, f )|4〉
〈|S(t, f )|2〉2

− 2, f 6= 0 (5)

where 〈·〉 is the time-average operator
Kurtosis=3 normal distribution
Kurtosis <3 flatter distribution
Kurtosis >3 peaker distribution [61]–[63]

• Spectral Slope: It represents the amount of decrease of
the spectral amplitude and is computed as the linear
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regression of the spectral amplitude:

Spectral Slope =

∑b2
k=b1

(f k − µf )(Sk − µs)∑b2
k=b1

(f k − µf )
2

(6)

where fk is the frequency in Hz and sk is the spectral
value that corresponds to bin k, while b1 and b2 are
the band edges, in bins, over which to calculate the
spectral slope, µf is the mean frequency and µsis the
mean spectral value [64].

• Spectral Decrease: It represents the amount of decrease
of spectral amplitude too, but it was defined from
the perceptual studies to be more correlated to human
perception.

Spectral Decrease =

∑b2
k=b1+1

sk−sb1
k−1∑b2

k=b1+1
sk

(7)

where sk is the spectral value that correspond to bin k,
while b1 and b2 are the band edges, in bins, over which
to calculate the spectral decrease.

• Spectral RolloffPoint: It is the frequency below which
there is 95% of the signal energy:

Spectral RolloffPoint

= i so that
∑i

k=b1
sk0.95

∑b2

k=b1
sk

(8)

where sk is the spectral value that corresponds to bin k,
while b1 and b2 are the band edges, in bins, over which
to calculate the spectral rolloffpoint [65]

• Spectral Flatness: It is a measure of the noisi-
ness/sinusoidality of a spectrum and is computed as the
ratio between the geometric mean and the arithmetic
mean of the energy spectrum:

Spectral Flatnes =
(
∏b2

k=b1
sk )

1
b2−b1

1
b2−b1

b2∑
k=b1

sk

(9)

where sk is the spectral value that corresponds to bin k,
while b1 and b2 are the band edges, in bins, over which
to calculate the spectral flatness.
For tonal signals it is close to 0, for noisy signals it is
close to 1 [66].

• Spectral Crest: It is a measure of the noisiness/
sinusoidality of a spectrum too but it is computed as the
ratio between the minimum value within the band and
the arithmetic mean of the energy spectrum:

Spectral Crest =
max

(
sk∈[b1,b2]

)
1

b2−b1

b2∑
k=b1

sk

(10)

where sk is the spectral value that correspond to bin k,
while b1 and b2 are the band edges, in bins, over which
to calculate the spectral crest.

• Spectral Entropy: It describes the complexity of the
distribution:

Spectral Entropy =
−
∑b2

k=b1
sk log(sk )

log(b2 − b1)
(11)

where sk is the spectral value that correspond to bin k,
while b1 and b2 are the band edges, in bins, over which
to calculate the spectral entropy [67]

• Pitch: It is the fundamental frequency of the audio
signal, so that its integer multiple best explain the
content of the signal spectrum [68]–[71].

• Harmonic Ratio (HR): It is the ratio between the power
of the fundamental frequency and the total power in an
audio frame:

HR =

∑N
n=1 s (n) s (n− m)√∑N

n=1 s (n)
2∑N

n=0 s (n− m)
2
1 ≤ m ≤ M

(12)

where s is a single frame of audio data with
N elements and M is the maximum lag in the
calculation [72], [73].

Once features have been extracted, the next step was
to eliminate redundant variables preserving the amount of
information and increasing computational speed and perfor-
mances [74], [75]. Among the highly correlated variables
(Spearman correlation≥ 75% [74], [75]), the least correlated
variables with the output of classification were removed
as shown in Fig. 5, and features min-max normalization
was implemented. After this step, the ranking of the
univariate features according to the predictor importance
score, was performed using chi-square tests [76]–[79].
Then the optimal subset of features was defined selecting
the highest difference between consecutive scores as the
break-point. Finally, the best combination of features was
achieved by selecting 6 main features (mfcc3, Age, PATAfreq,
Spectral Centroid, Spectral Kurtosis, mfcc8) as shown in
Fig. 6. We tested different techniques for feature selection
obtaining comparable results so that we chose the best
feature selection technique in terms of the computational
cost.

E. FEATURE EXTRACTION AND SELECTION
WITH DEEP LEARNING
Deep Learning Networks are complex architectures used to
detect specific features directly from data. They can have
hundreds of layers and a huge number of parameters such
as weights and bias to be learned. Training from scratch a
deep architecture in order to extract specific features avoiding
overfitting, requires a large amount of data (hundreds,
thousands or even millions, it depends on the application)
resulting in high computational and timing costs. Generally,
the time of training is related to lots of different factors
like the number of epochs, dataset size, computational power
etc., but to reach a certain accuracy even months could be
necessary. Usually, GPUs are employed to speed up the
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FIGURE 5. First Feature Selection step based on remotion of variables
with Spearman correlation ≥75% and lowest correlation with the output.
As example we report the remotion of Spectral Skeweness with
correlation of 89% with Spectral Centroid and 22% with output classes.

FIGURE 6. Second Feature Selection step based on Chi-square test.
Features are ranked and the break-point is chosen as the highest
difference between consecutive scores with the constraint of at least
3 features.

process. Inmany real applications, it is difficult and expensive
to obtain training data that match the feature space and predict
the distribution characteristics of the test data. Therefore,
in practice there is a need to create a high-performance learner
for a target domain trained from a related source domain. This
is the motivation for the transfer learning [80]. Leveraging a
pretrained network that has already learned many features on
a big dataset to exploit it for a new task, and to specialize the
model on a new similar task [45], [81], [82].

There are two main techniques for Transfer Learning:
• Fine Tuning: the approach of ‘‘fine-tune’’ the deeper
layers of the pre-trained network on the new dataset is
typically much faster and easier than training the model
from scratch. Although it requires the least amount of
data and computational resources [83], the new dataset
must be large enough and similar to the pre-trained one.

• Feature Extraction: a more specialized method in which
data of the new dataset are passed only once through the
pre-trained network and then features are extracted from
one of the pools of the network. These features are then
used to train a Machine Learning model such as Support
Vector Machine etc. This technique is the most suitable
for small datasets.

In this work, the Transfer Learning approach with Feature
Extraction was used because of limited dimensions of
dataset. In particular, we chose the pre-trained VGGish
Convolutional Neural Network (CNN) [84], [85], developed
by Google and inspired by the famous VGG networks used
for image classification. Its structure consists of a series of
convolution and activation layers, optionally followed by a
max pooling layer. The VGGish CNN contains 17 layers
in total and it is designed for audio classification tasks.
Originally, it was employed to classify the soundtracks
of a dataset of 70M training videos (5.24 million hours)
with 30,871 video-level labels. In our method, signals were
first segmented starting from the first ‘‘PA-TA’’ peak and
considering windows with a length of 1 second and 50%
overlapped. Then, they were preprocessed to obtain the
format required for the network. In particular, they were
resampled to 16 kHz, then a one-sided short time Fourier
transform was computed, only the magnitude of the complex
spectral values was considered discarding the phase. Finally,
the Mel spectrogram was calculated and it was converted
to a log scale. Overlapped segments of 96 spectra were
given in input to the network. Activations of the pooling
layer ‘‘pool 4’’ were extracted as features to train machine
learning models. We selected ‘‘pool 4’’ since it was the
most discriminative pool layer of the pre-trained model
of VGGish Convolutional Neural Network [84], [85]. The
choice of the pool depends on the similarity between the
dataset of the pre-trained model and the dataset of the new
application. Since the deeper layers extract higher level
features while earlier levels extract lower level ones, the
correct depth is as deeper asmore similar the datasets are [45],
[81], [82]. The structure of VGGish CNN is reported in
detail in Table 2. The flowchart of features extracted by the
VGGish from each data frame of one subject is reported in
Fig. 1. We extracted 12288 features from layer ‘‘pool 4’’.
After the feature extraction step, we selected the best
combination of 1444 deep features using the same approach
described in the previous section D for ML. Two variables
PATAfreq and Age were added also for their high predictive
power.

F. CLASSIFICATION
The classification task was conducted processing audio
signals as input of a hierarchical model which discerns
healthy subjects, low severity patients and high severity
patients using Speech Disturbance score of SARA Scale
as clinical output. As shown in Fig. 1, we defined binary
labels for each level: the first layer to discriminate subjects
with Ataxia vs healthy and the second layer trained only
on patients to recognize speech disturbance severity (Low
[0-1] vs High [2-3]). Speech Disturbance item is one of
the eight items that compose SARA scale. It has a score
between 0 (normal) - 6 (anarthria) assigned hearing words
intelligibility [14].

In our dataset, since the enrolled subjects do not cover the
full range of the score, we decided to label it considering
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TABLE 2. VGGish network structure.

TABLE 3. Dataset Information.

the maximum observed value of the 3 to obtain a balanced
dataset. Detailed information about the dataset is summarized
in Table 3. The classification step was performed by
testing four of the most conventional classifiers: Support
Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naïve
Bayes (NB) and Decision Tree and adopting the majority
voting ensemble technique [86]. In our approach, we used
two binary levels of classifiers. The first level discriminates
healthy vs patients and the second level assesses the
speech disturbance severity (Low vs High). We tested
the best combination of features extracted with machine
learning and deep learning approaches for HMLM, and
performed a comparison with a flat classification approach
(a parallel multi-classifier with three classes: Healthy vs
Low severity vs High severity). Cross-validation techniques
such as 5-fold, 10-fold and leave-one-out were applied
to check overfitting and to avoid data selection bias.
Finally, majority voting ensemble technique was used to

FIGURE 7. K Folds results aggregation. For each typology of
cross-validation, we created a unique confusion matrix and then we
computed the performance measures.

aggregate the outputs of the single audio frames into related
subjects.

G. PERFORMANCE METRICS
Classification performances were assessed using Accuracy,
Precision, Recall and F1-Score [87]. These metrics are
summarized in Table 4. For HMLM, the employed definitions
of Precision, Recall and F1-Score discriminate and weight
differently each type of misclassification error, taking into
account the output of each level instead of just the final
one [87], [88]. As it regards accuracy, we reported the result
for each level and the overall one. Given that cross-validation
was carried out, we have computed correctly and incorrectly
predictions of each class for each fold and we have summed
them up at the end of all iterations before calculating the
performance measures Fig. 7.

III. RESULTS
Results about HMLM are shown in Table 5. We report the
performances of machine learning with canonical features,
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TABLE 4. Performance Metrics.

TABLE 5. Hierarchical approach performance metrics [Level 1: Healthy vs Patients – LEVEL 2: Low Severity vs High Severity].

deep learning features and their combination respectively for
level 1 (healthy vs patients) and level 2 (low vs high severity).
All the models were tested with ensemblemajority voting and
three different cross-validation techniques (5-fold, 10-fold
and leave-one-out). No significant differences were found

between the performancemetrics of the three cross-validation
methods. The combination of machine learning (level 1)
and deep learning (level 2) approaches achieved optimal
results in discriminating patients with ataxia from healthy
individuals with a mean accuracy of approximately 90%,
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TABLE 6. Comparison between Clinical Assessment (Target) and Hierarchical Model (Predicted) for each subject.
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TABLE 7. Flat Multi-Class approach performance metrics (single model with three-classes [Healthy, Patients with Low Severity and Patients with
High Severity]).

and in identifying ataxia speech disorders severity with an
accuracy of about 80%. For level 1 and for level 2 with 5-fold
cross validation (see other details of 10-fold & Leave-one-out
in Table 5 ) we achieved a precision of 93.44% and 78.55%,
a recall of 98.28% and 79.50% and a f1-score of 95.80% and
79.02% respectively. While the overall precision, recall and
f1-score achieved by the model is 84.67%, overall accuracy
obtained is 76.32%. Detailed information about collected
dataset and classification output is reported in Table 6 and
Fig. 8 with confusion matrix of leave-one-out. We observed
that healthy subjects were never classified as patients with
high severity, although they were sometimes confused with
the low severity patients. Since many of these patients
had a speech disturbance score of 0 as healthy subjects
and so the two classes were partially overlapped. For the
same reason, the network made few mistakes distinguishing
patients with low and high severity. Table 7 reports results
achieved with flat multi-class approach. In this case the use
of a unique level with three classes reached a maximum
overall accuracy of about 65% with the use of deep learning
approach.

IV. DISCUSSION
The aim of this study was to exploit artificial intelligence
methods, such as machine learning and the most recent
deep learning approaches, to explore and identify new
useful strategies from speech analysis and develop innovative
reliable and accurate tools for supporting clinical practice
in the field of ataxia assessment and treatment. We have
explored the possibility of training some automatic predictive
models able to identify from audio recordings, the presence of
ataxic syndromes and to classify their severity. This is the first
time in which a HMLM has been applied for the assessment
of ataxic disorders with a particular focus on the standardized
speech-based ‘‘PA-TA’’ test. The hierarchical approach was
investigated in comparison with the flat multi-class approach.

FIGURE 8. Final confusion matrix of the Hierarchical model using
leave-one out validation.

The ‘‘PA-TA’’ signal has been pre-processed and segmented
and the HMLM has been implemented and tested using
two binary classifiers in cascade and adopting the ensemble
majority voting technique. We investigated the performances
of each level combining conventional and deep learning
models. Three combinations of models (machine learning,
deep learning, and machine learning + deep learning) were
created by using three cross validation approaches as shown
in Table 5. In Table 7 we reported performances of the
flat multi-class approach. Results of HMLM showed that
the conventional features at the first level work better to
classify healthy vs patients, while at the second level the
transfer learning features-based method was more suitable to
assess the severity of dysarthria. Moreover, our experiments
demonstrate that the HMLM outperforms the conventional
flat classification approach by exhibiting a higher overall
accuracy (76.32% vs 65.58%, 69.74% vs 65.89% and
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71.05% vs 65.79%) for 5-fold, 10-fold and leave-one-out
respectively. Furthermore, the similarity among the three
different techniques of cross-validation speaks about the
robustness of our approach. The employed dataset was
affected by some limitations such as a relatively small number
of available subjects due to the rarity of ataxic syndromes
and the lack of variability of speech disturbance score having
lower range of severity [0-6] as shown in Table 6. In this
scenario, we observed that the HMLM overcomes these
aspects performing much better than the widely adopted
flat multi-class approach. Despite these limitations, it’s also
important to highlight that the collected structured dataset
is the first and the biggest released till date, and there are
a few works in this field [33]. As evidenced from results
of cross validation matrix (Fig. 8), most of the errors were
resulted because sometimes the same clinical scores were
used for different classes such as healthy and low severity
or low and high severity of dysarthria (see also Table 6).
This aspect emphasizes how tricky it is for the clinicians
to discriminate in scoring the subtle changes of speech
dysarthria. These issues highlight the need for larger training
datasets for AI-based automatic score annotation. Extensive
enrollment of patients will increase statistical variability of
severity and the possibility to identify more homogeneous
clinical phenotypes.

V. CONCLUSION
This study provided initial evidence on the reliability of
digital biomarkers based on speech assessment in the field
of ataxia. Specifically, we demonstrated that analysis of
‘‘PA-TA’’ test could provide several variables that are able
to accurately classify subjects depending on their conditions
(patient or control). From a clinical perspective, these
findings have several substantial implications. We introduced
a panel of novel objective parameters for clinical evaluation in
both observational and interventional contexts, which might
in turn to be useful as an outcome. Then, the employed
biomarkers (namely, the voice and speech) is such that it may
cover patients with ataxia at every disease stage, from early-
subclinical to the very advanced, overtaking some limitations
of the current assessment systems and being particularly
suitable for experimental trials. Finally, such biomarkers will
be well fit with the need of implementing telemedicine [89],
since voice recording is now possible at distance, by com-
mercial devices, allowing remote monitoring. These results
encourage the spread of artificial intelligence in meeting the
need of quantitative assessment of disturbances in children
with ataxia. An objective evaluation, of what can be clinically
relevant in the disease, will contribute to obtaining reliable
results also in clinical trials. The association between home-
based treatment and devices for the remote monitoring of
patients could play a crucial role, in particular, if we think
at the efficacy [90], decreasing costs and stress for both
patients and their families. Indeed, the HMLMmodel trained
and described in this work could be a powerful tool of
telemedicine to be exploited for initial screening and for

monitoring in the field of ataxic syndromes, since it requires
only an audio recording to assess the conditions of the
subject.
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