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ABSTRACT This study aims to suggest a new quasi-oppositional chaotic neural network algorithm (QOC-
NNA) for simultaneous network reconfiguration and distributed generations allocation (SNR-DG) in radial
distribution networks (RDNs). The proposed QOCNNA is developed by combining original NNA with
chaotic local search (CLS) and quasi-oppositional-based learning (QOBL) approaches. Integration of QOBL
helps the algorithm improve exploration of the search space and convergence speed. Meanwhile, CLS can
improve exploitation of the algorithm by performing local search around the current best solution. The
objective of the SNR-DG problem is to define the network configuration, settings of distributed generations
to optimize active power loss and voltage stability in RDNs. The performance of QOCNNA is tested on
the SNR-DG problem with 33-, 69- and 118-bus RDNs considering different scenarios. The result analysis
indicates that SNR-DG implementation is effective for power loss reduction and voltage stability improve-
ment. Notably, QOCNNA yields active power loss reductions and voltage stability index improvements
associated with case multi-objective SNR-DG at nominal load condition of {70.79%, 16.36%}, {84.02%,
8.59%}, and {57.79%, 10.10%}, respectively, for 33-, 69-, and 118-bus RDNs. In comparison with previous
studies, QOCNNA is more effective in improving the performance of RDNs. Compared with other methods
that we have applied, QOCNNA dominates the performance in solution accuracy, convergence speed, and
robustness for all case studies. Also, QOCNNA finds effective and feasible solutions for daily variable load
and generation scenario with the minimized total annual energy loss. Simulated outcomes in this scenario
verify the superiority of QOCNNA over analytical-based approaches and the applied methods regarding
total annual energy loss reduction and cost savings as well. There are hence simulation-based evidences to
state that the CLS and QOBL help QOCNNA achieve a good trade-off between exploration and exploitation.
Thus, QOCNNA has proved to be a favorable method in dealing with the SNR-DG problem.

INDEX TERMS Distributed generations, neural network algorithm, network reconfiguration, radial distri-
bution networks.

I. INTRODUCTION
Radial distribution network (RDN) plays a crucial role in the
power systems, responsible for power supply from the trans-
mission systems to the customer. However, the continuously
growing load has posed challenges for power companies to
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operate RDN efficiently and reliably. Power loss significantly
affects the operating efficiency of RDNs. Hence, it is imper-
ative to reduce power loss for RDNs to operate efficiently
and economically. In this regard, many approaches have been
implemented to minimize the power losses of RDNs. Net-
work reconfiguration (NR) and distributed generation (DG)
integration are two prominent techniques that attract much
attention due to the development context of power sources
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and investment costs. NR is an effective method to mini-
mize power loss in RDNs. RDNs are operated in the radial
topology to decrease the fault level and protect coordination
effectively. Tie-line switches (normally opened) and section-
alizing switches (normally closed) are two types of switches
in RDNs. NR leads to a new network topology by altering
the opened/closed status of switches while maintaining the
radial topology of the system. NR is a vital grid strategy that
decreases active power losses, improves voltage profile and
system reliability [1]. Moreover, NR can transfer load from
one branch to another to avoid overloading. Recently, dis-
tributed generations (DGs) have been swiftly integrated into
RDNs due to electricity deregulation, fossil fuel depletion,
and environmental concerns. Apart fromNR implementation,
the deployment of DG units is also a well-known grid strategy
to decrease power losses and boost the voltage profile of
RDNs. Therefore, the NR application in RDNs should be
studied in the presence of DGs.

Since the NR problem was firstly introduced by Mer-
lin and Back [2], a large amount of research has also
been done on the NR problem using various approaches
from heuristic approaches like branch-and-boundmethod [2],
modified branch exchange method [3], and switch exchange
method [4] to metaheuristic approaches like particle swarm
optimization (PSO) [5], [6], genetic algorithm (GA) [7],
biased random key GA (BRKGA) [8], harmony search algo-
rithm (HSA) [9], heuristic rules-based fuzzy multiple objec-
tives [10], fireworks algorithm (FWA) [11], GA with varying
population (GAVP) [12], and cuckoo search algorithm (CSA)
[13]. In general, heuristic methods are characterized by
fast convergence, but they lack the ability to handle large-
scale systemswithmany constraints.Meanwhile, metaheuris-
tic methods have robust searchability to discover optimal
solutions or near-optimal solutions, which are well suited
for large-scale networks. Hence, the applications of meta-
heuristic methods to NR problems are constantly evolving.
Recently, many researchers have applied several artificial
intelligence and analytical methods to solve the optimal DGs
allocation problem in RDNs. In [14], comprehensive ana-
lytical expressions were suggested to define the allocation
of PV units for maximizing the technical benefits in RDN.
The objective functions include active and reactive power
losses, voltage stability index, line congestion margin and
voltage deviations. Mahmoud and Lehtonen [15] proposed
generic closed-form analytical expressions to determine opti-
mal locations and sizes of multi-type DGs and capacitors
for optimizing reactive power loss in RDNs. Moreover, the
proposed method incorporated an optimal power flow (OPF)
algorithm to consider the constraints of systems. In [16], the
authors utilized an efficient analytical (EA) method to obtain
an optimal mix of different DG types with various generation
capabilities to minimize power losses in RDNs.

Researchers have constantly proposed new methods to
achieve better performance for RDNs. One of those efforts
is the simultaneous integration of NR and optimal DGs
placement. Recent studies on the integration of these two

effective strategies have been done using metaheuristic meth-
ods. Shaheen et al. [17] developed an improved equilib-
rium optimization algorithm (IEOA) to deal with the optimal
integration of NR with DGs. Different load conditions of
33- and 69-bus systems were utilized to test the IEOA
method, and its superiority was confirmed. Onlam et al. [18]
applied the adaptive shuffled frogs leaping algorithm to
acquire optimal NR and DGs settings on several circum-
stances of 33- and 69-bus RDNs to minimize system losses
and enhance voltage profile.Murty andKumar [19] suggested
NR and optimal renewable-basedDGs placement considering
load uncertainties. A hybrid fuzzy-bees approach was devel-
oped by Tolabi et al. [20] for NR with DG placement for
reducing power losses, improving the feeder load balancing
and voltage profile. In [21], an artificial bee colony was
combined with a hybrid method of HSA and PSO to deal
with the combined problem of NR with shunt capacitors
and DGs allocation to optimize the power loss. In [22],
a fuzzy multi-objective technique was utilized for handling
NR. Afterwards, a heuristic approach was applied to obtain
the optimal NR, which generated a solution based on the
initial NR. In [23], an improved plant growth simulation
method was proposed for NR with DGs presence for power
loss reduction. Optimal DG locations were defined using
sensitivity analysis. Bayat et al. [24] developed a heuristic
approach for NR and DGs allocation to maximize loss reduc-
tion. In [25], levy flights embedded in sine–cosine algorithm
to deal with NR and DGs allocation in 33-bus and 69-bus
RDNs. The proposed problem considered power losses and
voltage stability index objectives. Some other typical meta-
heuristic methods have also been applied to handle the combi-
nation of NR and DGs allocation, such as HSA [26], adaptive
CSA [27], FWA [28], big-bang crunch algorithm [29], [30],
hybrid grey wolf optimizer and PSO (GWO-PSO) [31],
electromagnetism-like mechanism (ELM) [32], firefly (FF)
[33], and three-dimensional group search optimization
(3D-GSO) [34].

Based on the aforesaid literature survey, applying themeta-
heuristic algorithms to the integration of NR with DGs place-
ment has several certain limitations. Most of the previous
studies only focused on small- andmedium-scale RDNswith-
out considering large-scale RDNs. Moreover, integration of
NR and DGs placement is a combined optimization problem,
which poses a challenge to achieve optimal solutions due to
its complexity. Although the powerful search capabilities of
metaheuristic algorithms are well suited for achieving opti-
mal solutions, there is no guarantee that they will be effective
for all optimization problems [35]. Such methods may not
yield reasonable quality solutions and may get stuck at a local
optimum. Therefore, developing an appropriate algorithm is
of interest to effectively solve the simultaneous NR and DGs
placement, especially for large-scale systems.

Recently, a new meta-heuristic method inspired by biolog-
ical nervous systems and artificial neural networks (ANNs),
namely neural network algorithm (NNA), has been developed
by Sadollah et al. [36]. Thanks to the ANNs structure, NNA
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has proven its high performance for benchmark functions.
Furthermore, NNA is a parameter-free metaheuristic method;
hence, algorithm parameters do not need to be fine-tune
except for the population size and stopping criteria, making
NNA easy to implement to solve optimization problems. Nev-
ertheless, NNA has the notable disadvantage of converging
prematurely and getting stuck in local minima due to its
stochastic nature. Hence, improving the performance of NNA
to efficiently solve the simultaneous NR and DGs placement
problem is certainly worth further consideration.

Motivated by the above problems, this study proposes a
new modified NNA called quasi-oppositional chaotic neural
network algorithm (QOCNNA) to deal with the simultaneous
NR and DGs integration (SNR-DG) problem in RDNs. The
SNR-DG problem aims to minimize active power loss and
maximize voltage stability index while sustaining system
constraints, including power balance, feeder capacity limits,
bus voltage limits, capacity and penetration limits of DGs,
and radial topology constraints. QOCNNAwas developed by
integrating chaotic local search (CLS) and quasi-opposition-
based learning (QOBL) strategies into the structure of NNA.
QOBL is a highly effective strategy that helps meta-heuristic
algorithms improve global search ability to explore more
promising regions on the design domain. In addition to
QOBL, CLS is a strategy to boost the local search ability
of algorithms to exploit promising regions (i.e., neighbor-
hoods of best solutions). The incorporation of QOBL and
CLS strategies aims to strike a good equilibrium between
the exploration and exploitation tendencies of QOCNNA.
The proposed QOCNNA was evaluated on 33-bus small-
scale, 69-bus medium-scale, and 118-bus large-scale RDNs
with different scenarios at different load conditions. Consid-
ering practical situation of daily variable load demand and
generation, an effective methodology has been developed to
determine the optimal network configuration and settings of
DG according to a 24-h load curve and an hourly output
curve of photovoltaic (PV) DG so that total annual energy
loss is minimized. QOCNNAwas compared with the original
NNA, ant lion optimizer (ALO), whale optimization algo-
rithm (WOA), sine cosine algorithm (SCA), and different
intelligent algorithms in the literature, where its robustness
and efficiency in solving the SNR-DG problem was proved.

The contributions of this study are presented as below:
• A new meta-heuristic algorithm, namely QOCNNA,
is developed to deal with the SNR-DG problem, where
real power loss and voltage stability index are simulta-
neously optimized.

• The QOCNNA is validated on the 33-bus, 69-bus, and
118-bus RDNs. Different scenarios at three load condi-
tions are also investigated for the SNR-DG problem.

• The performance of RDNs is remarkably enhanced in
terms of active power loss, voltage profile, and volt-
age stability after SNR-DG implementation using QOC-
NNA.

• A new effective methodology is developed to find the
optimal network configuration and settings of a PV

FIGURE 1. A single line of an RDN.

DG relative to daily variable load and generation sce-
nario to minimize total yearly energy loss. Simula-
tion results from QOCNNA are compared with NNA,
ALO [37], WOA [38], SCA [39], and analytical-based
methods [40] to demonstrate its effectiveness in this
scenario.

• The comparisons of QOCNNA and other algorithms
show that QOCNNA obtains better solution quality, con-
vergence speed, and standard deviation of solutions in
most case studies.

Section 2 defines the SNR-DG formulation. Then, the
QOCNNA concept and its implementation for the SNR-DG
problem are introduced in Sections 3 and 4, followed by
the simulation results in Section 5. Lastly, Section 6 is the
conclusion of this study.

II. PROBLEM FORMULATION
The aim of the SNR-DG problem is to define optimal network
configuration, locations and sizes of DGs for minimizing
active power loss and maximizing voltage stability index in
RDNs while sustaining all operational constraints, which can
be generally determined as follows:

A. ACTIVE POWER LOSS
Active power loss in an RDN can be determined as follows:

OF1 = Min(PL) = Min

( NL∑
k=1

Rk I2k

)
(1)

where NL signifies the total number of branches, PL is the
active power loss, Rk denotes the resistance of the k th branch,
and Ik represents the current of the k th branch.

B. OVERALL VOLTAGE STABILITY INDEX
A single line of an RDN is portrayed as in Fig. 1. The voltage
stability index (VSI) of the (i + 1)th bus is calculated as
follows:

VSIi+1 = |Vi|4 − 4(Pi+1Xk − Qi+1Rk )

− 4(Pi+1Rk + Qi+1Xk ) |Vi|2 (2)

where Xk is the reactance of the k th branch.
The overall voltage stability index (OVSI) of an RDN can

be defined as the following equation:

OVSI =
NB∑
i=2

VSIi (3)

where NB denotes the total number of buses.
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The overall stability of the RDN is improved as the OVSI
value increases. Hence, the objective to maximize OVSI can
be given as follows:

OF2 = Max(OVSI ) = Min
(

1
OVSI

)
(4)

C. MULTI-OBJECTIVE FUNCTION
In this study, active power loss and OVSI are simultaneously
considered in a multi-objective function. The fitness function
(FF) of the SNR-DG problem can be formulated as follows:

FF = Min
(
w1

PL
PL,base

+ w2
OVSIbase
OVSI

)
(5)

where w1 and w2 are penalty coefficients, PL,base and
OVSIbase are values of active power loss and OVSI in the
initial case.

D. SYSTEM CONSTRAINTS
The SNR-DG problemmust satisfy the following constraints:
1) Power balance: The power balance of RDNs must be

balanced according to equations:

PS +
NDG∑
i=1

PDG,i =
NB∑
j=1

PD,j +
NL∑
k=1

PL,k (6)

QS +
NDG∑
i=1

QDG,i =
NB∑
j=1

QD,j +
NL∑
k=1

QL,k (7)

where PS and QS denote the active and reactive power
outputs at the slack bus, respectively; PDG,i and QDG,i
symbolize the active and reactive power outputs of the
ith DG, respectively; PD,j and QD,j represent the active
and reactive powers at the jth bus, respectively; PL,k and
QL,k designate active and reactive power losses of the
k th branch, respectively; and NDG represents the total
number of DGs.

2) Bus voltage and feeder capacity limits: Limit of bus
voltages and feeder capacity must be in the permissible
ranges:

Vmin,i ≤ Vi ≤ Vmax,i, i = 1, . . . ,NB (8)

|Ik | ≤
∣∣Imax,k

∣∣ , k = 1, . . . ,NL (9)

where Vi denotes the voltage magnitude at the ith bus,
Vmax,i and Vmin,i represent the voltage limits of the ith

bus, respectively; and Imax,k denotes the current limit of
the k th branch.

3) DG capacity limits: The DG capacities must be in the
permissible ranges:

PDGmin,i ≤ PDG,i ≤ PDGmax,i, i = 1, . . . ,NDG
(10)

where PDGmin,i and PDGmax,i denote the power limits of
the ith DG, respectively.

4) DG penetration limits: The minimum and maximum
DG penetration levels to an RDN are defined as 10%

and 60% of the total active power load demand of that
network, respectively [25]. The threshold 10% chosen
is to maintain the existence of DGs in the network for
their impact evaluation while the selection of threshold
60% is to prevent the network from reverse power flow
situation due to excessive penetration of DGs. These can
be demonstrated by the following equation:

0.1×
NB∑
j=2

PD,j ≤
NDG∑
i=1

PDG,i ≤ 0.6×
NB∑
j=2

PD,j (11)

5) Radial configuration constraint: After reconfiguration,
the distribution network must ensure radial configura-
tion and all loads are served [5], [41]:

det(A) =

{
1 or− 1 (radial system)
0 (not radial)

(12)

where A denotes a matrix indicating the connection of
branches and buses in the network. Aij is set to−1 or 1 if
the ith branch is connected from/to the jth bus; otherwise,
Aij is set to 0.

III. QUASI-OPPOSITIONAL CHAOTIC NEURAL NETWORK
ALGORITHM
A. NNA
1) INITIAL POPULATION
In the search space, the initial population of pattern solutions
X are randomly created as the following matrix:

X =


x11 x12 . . . x1N
x21 x22 . . . x2N
...

...
...

...

xNP1 xNP2 . . . xNPN

 (13)

where NP is the population size and N is the number of deci-
sion variables. After initial population initialization, fitness
function values of pattern solutions are defined. Then, the
best pattern solution having the best fitness function value
is determined as the target solution (XTarget ).

2) WEIGHT MATRIX
In order to generate new candidate solutions, each pattern
solution is assigned a corresponding weight vector, and initial
weights are determined as follows:

W t
= [W1,W2, . . . ,WNP ]=


w1
1 w1

2 . . . w1
N

w2
1 w2

2 . . . w2
N

...
...

...
...

wNP1 wNP2 . . . wNPN


(14)

whereW t is a square matrix at the t th iteration that generates
uniform random numbers from 0 to 1 over iterations.

To control the creation of new pattern solutions and bias
of movement, the sum of the weights for a pattern solution is
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TABLE 1. The pseudocode of bias strategy in NNA.

TABLE 2. The pseudocode of NNA.

subject to the following constraint:

NP∑
j=1

wtij = 1, i = 1, 2, . . . ,NP (15)

where

wij ∈ U [0, 1], i, j = 1, 2, . . . ,NP (16)

This constraint is imposed to allow pattern solutions
of NNA to control movement with slight bias (changing
from 0 to 1). After creating initial weights, the weight cor-
responding to the target solution (XTarget ), called the target
weight (WTarget ), is selected from the weight matrix W in
Eq. (14).

New pattern solutions at the (t+1)th iteration are generated
and updated as follows:

X t+1j,New =

NP∑
j=1

wtij × X
t
i , j = 1, 2, . . . ,NP (17)

X t+1i = X ti + X
t+1
i,New; i = 1, 2, . . . ,NP (18)

The weight matrix is then updated based on the target
weight (WTarget ) as the following equation:

W t+1
i = W t

i + 2× rand(0, 1)× [W t
Target −W

t
i ],

i = 1, 2, . . . ,NP (19)

During the optimization process, the weight matrix must
satisfy the imposed constraints in Eqs. (15) and (16).

3) BIAS OPERATOR
To explore the design domain, a bias operator is applied to
adjust the probability of pattern solutions created in the new
population and updated weight matrix. By virtue of its role,
the algorithm is prevented from premature convergence (par-
ticularly in initial iterations). Table 1 gives the Pseudocode of
bias strategy in NNA.

Modification factor β defines the probability of the pattern
solutions to be adjusted. The value of β is initially set to 1,
and the value of β is reduced at each iteration as follows [36]:

β t+1 = β t × 0.99, t = 1, 2, . . . ,Tmax (20)

When reducing operator bias adaptively, the algorithm
tends to search for optimal solutions close to the target
solution (XTarget ) and avoids drastic changes in the pattern
solutions in the last iterations.

4) TRANSFER FUNCTION OPERATOR
To create better quality solutions toward the target solution,
the transfer function operator transfers the new pattern solu-
tions from their current positions to new positions closer
to the target solution (XTarget ) in the search space. Hence,
the proposed method for a transfer function operator (TF) is
defined as follows:

X t+1i,Updated = X t+1i + 2× rand(0, 1)× [X tTarget − X
t+1
i ],

i = 1, 2, . . . ,NP (21)

The bias operator has more opportunities to create new
pattern solutions to explore unvisited pattern solutions in the
first iterations. However, the chance for the bias operator
is decreasing as the number of iterations goes up, and the
transfer function operator has more opportunities to exploit
towards target solutions. Table 2 presents the Pseudocode of
NNA.

B. THE QOBL STRATEGY
The theory of opposition-based learning (OBL) was first
introduced by Tizhoosh [42]. The OBL strategy considers
concurrently existing guesses and its opposite guesses to bet-
ter approximate existing candidate solutions. Moreover, the

165622 VOLUME 9, 2021



T. V. Tran et al.: Reconfiguration of Distribution Networks With DGs Using Improved NNA

TABLE 3. The pseudocode of QOBL approach.

TABLE 4. The pseudocode of CLS approach.

theory of OBL was further developed into QOBL, showing
that QOBL can be more effective than OBL for obtaining
global optimal solutions [43]. The QOBL is integrated into
metaheuristic methods to improve solution quality and con-
vergence speed.

Based on a population of pattern solutions Xij, the opposite
point OXij of Xij is then generated as follows [42]:

QXij = LBj + UBj − Xij (22)

Finally, the quasi-opposite point QOXij of OXij can be
defined as follows [43]:

QOXij = rand
(
LBi + UBi

2
,OXij

)
(23)

In this study, QOBL is used in two phases of QOCNNA:
population initialization and generation jumping. As for
QOBL population initialization, the algorithm creates a
quasi-oppositional population of the randomly generated ini-
tial population. Then, randomly created initial population and
their quasi-oppositional population are considered simultane-
ously to define the best solutions for the initial population.
As for QOBL generation jumping, the search process of
the algorithm may be driven to jump to quasi-oppositional
solutions that have better fitness function values. In this

step, jumping rate jr is used to decide whether to jump to
the quasi-oppositional solutions or keep current solutions.
Table 3 depicts the Pseudocode of the QOBL approach.

C. THE CLS STRATEGY
Chaos is randomness created by simple deterministic sys-
tems. In QOCNNA, the chaotic sequence is employed to
boost searchability and to prevent the algorithm from getting
stuck into the local optimization. An initial chaotic value is
defined as follows:

Z0 = rand(0, 1) (24)

The following values of that chaotic sequence using a
logistic map are given as the following equation [44]:

Zk+1 = µ× Zk × (1− Zk ) (25)

where Zk ∈ (0, 1)∀k ∈ {0, 1, 2, . . .} and µ ∈ (0, 4].
The CLS strategy is integrated to accelerate the search

process by exploring the neighborhood of the current target
solution (i.e., best solution). Hence, a new candidate solution
is created as follows [45]:

XNewTarget,k = XTarget,k + (Zk − 0.5)× (Xi,k − Xj,k ) (26)

where XTarget,k and XNewTarget,k are the current target solu-
tion and the new target solution created at the k th CLS
iteration, respectively; Xi,k and Xj,k are the two solutions
randomly selected from the current population, respectively;
and Zk is the chaotic variable at the k th iteration. If fitness
function value of XNewTarget,k is better than that of XTarget,k ,
XNewTarget,k will replace XTarget,k in the population. The CLS
strategy is executed until the CLS limit (K ) is satisfied. The
Pseudocode of the CLS strategy is given in Table 4.

D. THE PROPOSED QOCNNA
In this study, the original NNA is combined with QOBL and
CLS strategies to develop an improved version of NNA called
QOCNNA. Initially, QOCNNA randomly generates a popu-
lation of pattern solutions X. The QOBL is then employed
to create the quasi-opposite population QOX of the initial
population. Afterwards, QOCNNA combines two sets of X
and QOX, and then the NP best solutions from the combined
set {X, QOX} are selected for the initial population. Next,
the same search process as NNA is implemented to create a
new population of pattern solutions and to update the weight
matrix. Based on jumping rate jr , QOBL may be used to help
QOCNNA transition to better quasi-oppositional solutions of
current pattern solutions. Lastly, the CLS is implemented to
obtain a better target solution. The optimization process is
executed until satisfying stopping criteria. QOCNNA pseu-
docode is presented in Table 5.

IV. APPLICATION OF QOCNNA TO SNR-DG PROBLEM
A. INITIALIZATION
Each pattern solution of the initial population in QOCNNA
represents a solution vector for the SNR-DG problem con-
sisting of opened switches, locations of sizes of DGs. Hence,
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TABLE 5. The pseudocode of QOCNNA.

the ith solution vector is expressed as follows:

Xi = [S1, . . . , SNSW ,L1, . . . ,LNDG ,P1, . . . ,PNDG ],

i = 1, . . . ,NP (27)

where S, L, andP are opened switches, the locations and sizes
of DGs, respectively, NSW denotes the number of opened
switches.

To start QOCNNA, the initial population are randomly
initialized within the design space as follows:

Si = round[Si,min + rand(0, 1)× (Si,max − Si,min)],

i = 1, . . . ,NSW (28)

Lj = round[Lj,min + rand(0, 1)× (Lj,max − Lj,min)],

j = 1, . . . ,NDG (29)

Pj = Pj,min + rand(0, 1)× (Pj,max − Pj,min),

j = 1, . . . ,NDG (30)

where Si,min is equal to 1 and Si,max is the length of the ith fun-
damental loop vectors. The principle of the fundamental loop
vectors can be found in [30]. Lj,min is equal to 2, indicating
that DGs may be integrated to all buses except the slack bus.
According to Eqs. (28) and (29), values for opened switches
(Si) and locations of DGs (Lj) are rounded due to their integer
nature.

FIGURE 2. Flowchart of QOCNNA for solving the SNR-DG problem.

B. FITNESS FUNCTION VALUE
The fitness function value (FF) of each pattern solution can
be obtained as follows:

FF = OF + K
NB∑
i=1

(Vi − V lim
i )2
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FF = +K
NL∑
k=1

(Ik − I limk )2 + K (PEDG − PE lim
DG)

2 (31)

whereK embodies penalty constants for inequality constraint
violations and is set to 103 in this study. The limit values of
bus voltages (Vi), currents (Ik ), and DG penetration (PE) are
expressed as the following equation:

x lim =


xmax if x > xmax

xmin if x < xmin

x otherwise

(32)

where x signifies the values of Vi, Ik , and PEDG, and x lim

signifies their limitations, respectively.

C. OVERALL PROCEDURE
QOCNNA implementation steps for the SNR-DG problem
can be summarized as follows:
Step 1: Data acquisition for SNR-DG problem includes

detailed data of test systems (load data and branch data),
allowable limits for control variables (opened switches, loca-
tions and sizes of DGs), and operational constraints;
Step 2: Select the control parameters of QOCNNA (NP,

Tmax, jr , and K );
Step 3: Generate randomly initial population X of NP

pattern solutions as in Section 4.1. Implement the QOBL
approach to create a quasi-opposite population QOX. Calcu-
late fitness function values using Eq. (31) for all solutions in
X and QOX. Select the NP best solutions from the set {X,
QOX} for the initial population;
Step 4: Create the initial weight matrix randomly as Eq.

(14), satisfying the imposed constraint according to Eqs. (15)
and (16);
Step 5: Define target solution (XTarget) having the best

fitness function value and its corresponding target weight
(WTarget). Set t = 0;
Step 6: Start the main loop, t = t + 1;
Step 7: Create new pattern solutions and update the pattern

solutions as Eqs. (17) and (18);
Step 8: Update the weight matrix (W ) via Eq. (19);
Step 9: If rand ≤ β, perform the bias operator to update

new pattern solutions and weight matrix using Algorithm 1.
Otherwise, perform the transfer function operator to update
the new position of pattern solutions according to Eq. (21);
Step 10: Update modification factor β using Eq. (20);
Step 11: Check the jumping rate condition. If rand <

jr , implement the QOBL approach to obtain quasi-opposite
points of the current population. Evaluate fitness function val-
ues of quasi-oppositional solutions and select better solutions
for new population;
Step 12: Update target weight corresponding to the target

solution;
Step 13: Perform the CLS strategy to create a better target

solution;
Step 14: If t ≥ Tmax, stop the optimization process;

otherwise, back to Step 6.

FIGURE 3. The IEEE 33-bus RDN.

Fig. 2 depicts the flowchart of QOCNNA for solving the
SNR-DG problem.

V. SIMULATION RESULTS
This study validates the performance of the proposed QOC-
NNA on 33-bus, 69-bus, and 118-bus RDNs. In scenario
1, active power loss minimization is considered as a single
objective function, where the weighting factors w1 and w2
in Eq. (5) are set to 1 and 0, respectively. For scenario 1,
three cases at three load conditions are considered for an
in-depth study. Cases 1 and 2 study NR and DGs installa-
tion problems separately, while case 3 investigates these two
problems concurrently as a combined optimization problem.
In scenario 2, active power loss minimization and voltage sta-
bility index maximization is considered as a multi-objective
function, where w1 and w2 are set to 0.7 and 0.3, respec-
tively, as proposed in Ref [25]. Moreover, the considered
load conditions are as follows: light load (0.5), nominal load
(1.0), and heavy load (1.6). In addition, a practical scenario
relative to daily variable load demand and generation has also
been considered with the objective of total annual energy loss
minimization. The voltage magnitudes at load buses must not
exceed±10% of the rated voltage for case studies. For 33-bus
and 69-bus RDNs, the number of DGs is fixed to 3 with the
size of each one ranging from 0 to 3 MW. Meanwhile, the
number of DGs is 5 where the maximum size of each DG is 5
MW for 118-bus RDN.

QOCNNA is implemented on MATLAB 2019a, and Mat-
power 6.0 toolbox [46] is deployed to compute the load flow.
The control parameters of QOCNNA contain a population
size (NP), a maximum number of iterations (Tmax), jumping
rate (jr ), and maximum iterations of chaotic local search
(K ), which are respectively set as follows: NP = 50 (for
33- and 69-bus RDNs) and NP = 100 (for 118-bus RDN),
Tmax = 200, jr = 0.3, and K = 20. Moreover, QOCNNA
is performed 30 times independently for each case study.
To confirm the results of QOCNNA, the original NNA, ant
lion optimizer (ALO) [37], whale optimization algorithm
(WOA) [38], and sine cosine algorithm (SCA) [39] are also
implemented for the SNR-DG problem. These methods also
use the same population size and maximum number of itera-
tions as QOCNNA for the same experimental system.
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TABLE 6. Simulation results of QOCNNA for scenario 1 of 33-bus RDN.

FIGURE 4. Active power loss for scenario 1 of 33-bus RDN at three load
conditions.

A. 33-BUS RDN
The 33-bus RDN is a small-scale system with a voltage level
of 12.66 kV, 37 branches, 32 closed switches, and 5 opened
switches [47]. The single line diagram of the 33-bus RDN is
shown in Fig. 3. For base configuration, the total active and
reactive loads of 33-bus RDN are 3.73 MW and 2.3 MVAr,
respectively.

1) SCENARIO 1: ACTIVE POWER LOSS MINIMIZATION
In this scenario, QOCNNA is applied to minimize active
power loss as a single objective function. Three different
cases with three load conditions of light (0.5), nominal (1.0),
and heavy (1.6) are considered. Table 6 details the numer-
ical results found by QOCNNA for 33-bus RDN. Figs. 4

FIGURE 5. Voltage profiles for scenario 1 of 33-bus RDN at three load
conditions.

and 5 depict active power losses and voltage profiles for all
cases of scenario 1 of 33-bus RDN at three load conditions,
respectively. In the case of light load condition, the active
power loss from the initial case is 47.07 kW, which is reduced
to 33.2690 kW, 18.1929 kW, and 13.5084 kW for cases 1,
2, and 3, respectively. As a result, the power loss reduc-
tion (PLR) percentages associated with cases 1, 2, and 3 are
29.3213%, 61.3499%, and 71.3018%. Similarly, at nominal
load condition, the active power loss of the initial case is
reduced from 202.68 kW to 139.5513 kW, 75.4237 kW, and
54.6942 kW, which leads to PLR of 31.1460%, 62.7863%,
and 73.0141% corresponding to cases 1, 2, and 3, respec-
tively. Notably, in comparison with the initial case, PLR for
cases 1, 2, and 3 at heavy load condition are 33.7391%,
64.8581%, and 74.8134%, respectively. Moreover, signifi-
cant improvements in the voltage profile of the system for
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FIGURE 6. Convergence characteristics of QOCNNA, NNA and ALO for
case 3 of scenario 1 of 33-bus RDN.

three cases at all load conditions are also obtained, as shown
in Fig. 5.

In case 1, changing positions of opened and closed
switches contribute to modifying the power flow paths, which
is the main reason for such power loss reductions. As a result,
the distribution of power is realized through low resistance
roots; therefore, power loss and voltage profile are improved.
Meanwhile, in case 2, DG units provide local power supply,
resulting in reduced power flows through the branches, which
is the main reason for the improved system performance.
From Table 1, improvement in PLR and voltage profile for
case 2 are higher when compared to case 1. It shows that
the DG installation offers more desirable results of maximum
PLR compared to the NR implementation. Finally, a com-
bination of NR and DG installation is studied in case 3.

FIGURE 7. Voltage profiles for scenario 2 of 33-bus RDN at three load
conditions.

As shown in Table 1, Figs. 4 and 5, the optimal results in case
3 are better than cases 1 and 2 at all load conditions in terms of
reduced power loss and improved voltage profile. Therefore,
it shows that combining NR with the DGs installation in the
SNR-DG problem would yield better results than considering
each problem individually.

Table 7 presents comparisons between the proposed QOC-
NNA and other methods at all load conditions for case
3 of 33-bus RDN. At light load condition, QOCNNA yields
opened switches {11-28-31-33-34}, DG locations at 8th,
18th, and 25th buses with the DG sizes of 0.2547 MW,
0.2982MW, and 0.5616MW.As a result, QOCNNA acquires
an active power loss of 13.5084 kW, which is much lower
than 15.1660 kW from NNA, 14.9030 kW from ALO,
15.17 kW from EOA [17], 14.51 kW from IEOA [17],
16.24 kW from ISCA [25], 17.78 kW from HSA [26],
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TABLE 7. Comparative results of QOCNNA and other methods for case 3 of scenario 1 of 33-bus RDN.

and 16.22 kW from FWA [28] for this load condition.
At normal load condition, QOCNNA optimizes the NR
with opened switches {7-9-14-27-30}. Moreover, DGs are
connected to 12th, 25th, and 33rd buses corresponding to
0.4822 MW, 1.0153 MW, and 0.7315 MW DG sizes. QOC-
NNA obtains the best active power loss for this load con-
dition among compared algorithms, as shown in Table 7.
At heavy load condition, opened switches {7-9-14-28-31}
is obtained by QOCNNA to create the optimal NR. DGs
are linked to 12th, 25th, and 33rd buses with 0.7318 MW,
1.8961 MW, and 0.9386 MW DG sizes. For the heavy load
condition, QOCNNA obtains the lowest active power loss
(144.9139 kW) in comparison with NNA (158.8140 kW),
ALO (158.8809 kW), EOA [17] (152.26 kW), IEOA [17]
(148.42 kW), ISCA [25] (167.96 kW)HSA [26] (194.22 kW),
and FWA [28] (172.97 kW). As shown in the 7th column
of Table 7, QOCNNA possesses smaller standard deviations
of solutions than NNA and ALO for all loading conditions,
which proves that QOCNNA is more robust than NNA and
ALO for these case studies.

From the comparisons in Table 7, the proposed QOCNNA
offers the highest solution accuracy among the compared
methods due to the attainment of minimum objective value
for the 33-bus system at all load conditions. It is worth
highlighting that the superiority of QOCNNA over NNA in
terms of solution quality, proving the integrated improvement
strategies contribute to enhance the search ability of NNA.
Moreover, Fig. 6 presents the convergence curves provided

by QOCNNA, NNA, and ALO for case 3 at all load con-
ditions, which show that QOCNNA has better convergence
characteristics than NNA and ALO. In initial iterations, NNA
illustrates a slow convergence speed because bias values used
in these iterations are sufficiently large to mainly perform
exploration via the bias operator. In later iterations, NNA
primarily implements exploitation as bias factor is reduced
to lower values. Meanwhile, QOCNNA manifests a signif-
icant improvement in convergence speed in the initial iter-
ations thanks to integrated CLS strategy, which enhances
the exploitation of QOCNNA. Further, QOCNNA finds the
final solution with higher accuracy. This proves that adopting
the QOBL strategy helps QOCNNA achieve a good balance
between exploration and exploitation in the later iterations.
Compared to ALO, QOCNNA performs the search more
effectively for all cases of this scenario based on lower
objective values obtained. Therefore, QOCNNA improves its
performance compared to the original NNA and ALO for
solution quality and convergence characteristics.

2) SCENARIO 2: ACTIVE POWER LOSS AND OVSI
OPTIMIZATION
In scenario 2, QOCNNA is implemented to the SNR-DG
problem (i.e., case 3) for themulti-objective scenario of active
power loss and OVSI, where loading levels of 0.5 (light),
1.0 (nominal), 1.6 (heavy) are investigated. Table 8 displays
the optimal results obtained by QOCNNA. PLR for case 3 at
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TABLE 8. Comparative results of QOCNNA and other methods for scenario 2 of 33-bus RDN.

light, nominal and heavy loadings are 71.5947%, 70.7981%,
and 71.9608%, respectively. Meanwhile, the improvement
in OVSI for increasing load levels are 7.2037%, 16.3629%,
and 30.0315%, respectively. It can be seen that active power
loss and OVSI are better enhanced than the initial case.
Hence, QOCNNA is capable of providing a good compro-
mised solution for consideration of both active power loss
and OVSI objectives. Fig. 7 presents the voltage profile
of the system for light, nominal and heavy loadings for
the initial case and after the SNR-DG, which shows bus
voltages are completely improved. Accordingly, the min-
imum voltages are improved to 0.9870 p.u., 0.9732 p.u.,
0.9565 p.u. for light, nominal and heavy loadings,
respectively.

The results yielded from the QOCNNA are compared
to those from NNA, ALO, and ISCA [25] as in Table 8.
QOCNNA yields a lower active power loss than that from
NNA, ALO, and ISCA [25] for light load condition while the
OVSI value obtained by the QOCNNA is slightly better than
those from NNA and ALO, and much better than that from

ISCA [25]. From the optimal results, QOCNNA has a better
solution than NNA, ALO, and ISCA [25] for both active
power loss and OVSI objectives for light load condition.
For the nominal load condition, active power loss obtained
by QOCNNA, NNA, ALO, and ISCA [25] respectively are
59.1855 kW, 61.8983 kW, 60.8613 kW, and 67.57 kW, which
leads to PLRs being 70.7981%, 69.4597%, 69.9713%, and
66.66%, respectively. Obviously, PLR obtained byQOCNNA
is better than those obtained by other techniques. Likewise,
the OVSI values (in p.u.) found by the QOCNNA, NNA,
ALO, and ISCA [25] are 30.0893, 29.9359, 29.9176, and
29.97, respectively. Hence, QOCNNA can provide a better
result for active power loss and OVSI objectives than NNA,
ALO, and ISCA [25]. For heavy load condition, active power
loss and OVSI value obtained by QOCNNA are 161.3266 kW
and 29.0555 p.u., respectively. As a result, QOCNNA yields
a significant enhancement in both two objective functions
in comparison to NNA, ALO, and ISCA [25]. Moreover,
standard deviations of optimal solutions found by QOCNNA
are smaller than NNA and ALO, which shows QOCNNA
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TABLE 9. Simulation results of QOCNNA for scenario 1 of 69-bus RDN.

is also more robust than other methods in solving multi-
objective SNR-DG problem.

Therefore, QOCNNA is a more robust and effective
method than others in reducing active power loss and enhanc-
ing the OVSI of RDNs. Fig. 8 shows the convergence curves
of QOCNNA and other methods for scenario 2 of 33-bus
RDN at all load conditions. These figures show that QOC-
NNA obtains a faster convergence speed than NNA and ALO
for all load conditions of this scenario.

From the obtained results, QOCNNA dominates the orig-
inal NNA and other methods for solution accuracy and
convergence rate in solving the SNR-DG problem for both
scenarios of the 33-bus RDN. Therefore, QOBL and CLS are
successfully integrated into QOCNNA to help the algorithm
avoid local optimum trapping (exploration) and boost the
convergence speed (exploitation) and hence improve QOC-
NNA performance.

B. 69-BUS RDN
The 69-bus RDN is a medium-scale system with a voltage
level of 12.66 kV, 73 branches, 68 closed switches, and
5 opened switches [48]. Fig. 9 describes the single line
diagram of 69-bus RDN. For base configuration, the total
active and reactive loads of 69-bus RDN are 3.802 MW and
2.69 MVAr, respectively.

1) SCENARIO 1: ACTIVE POWER LOSS MINIMIZATION
Table 9 gives the simulation results found by the proposed
QOCNNA for scenario 1 of 69-bus RDN. Figs. 10 and
11 depict active power losses and voltage profiles for all cases

FIGURE 8. Convergence characteristics of QOCNNA, NNA and ALO for
scenario 2 of 33-bus RDN.

FIGURE 9. The IEEE 69-bus RDN.

of scenario 1 of 69-bus RDN, respectively. For the light load
condition, the initial power loss of the system is 51.60 kW,
which is reduced to 23.6118 kW (case 1), 17.2558 kW
(case 2), and 8.6804 kW (case 3), respectively. The
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TABLE 10. Comparative results of QOCNNA and other methods for case 3 of scenario 1 of 69-bus RDN.

FIGURE 10. Active power loss for scenario 1 of 69-bus RDN at three load
conditions.

corresponding PLR percentages are 54.2446%, 66.5614%,
and 83.1790% for cases 1, 2, and 3. Similarly, at nom-
inal and heavy load conditions, PLR related to cases 1,
2, and 3 are {56.1741%, 68.5925%, and 84.2802%} and
{59.0634%, 71.5085%, and 85.7996%}, respectively.

According to the optimal results, PLRs in case 3 at all
load conditions are the best values compared to cases 1 and
2. Furthermore, minimum voltage of the system for cases 1,
2, and 3 at light, nominal, and heavy load conditions are
improved to {0.9754 p.u., 0.9878 p.u., and 0.9904 p.u.},
{0.9495 p.u., 0.9760 p.u., and 0.9802 p.u.}, and {0.9165 p.u.,

0.9597 p.u., and 0.9692 p.u.}, respectively. The voltage pro-
files in case 3 are better improved than in other cases for all
load conditions, as shown in Fig. 11. This implies the solution
of SNR-DG is more effective than the ones of merely NR or
DG in improving voltage issues of the 69-bus network.

Table 10 shows comparisons between QOCNNA and
other methods at all load conditions for case 3 of sce-
nario 1 of 69-bus RDN. At light load condition, QOC-
NNA defines the optimal NR with opened switches
{14-56-61-69-70}, DG installations in 12th, 61th, and 64th

buses with respective DG sizes of 0.2079 MW, 0.6963 MW,
and 0.2364MW. The active power loss attained by QOCNNA
is 8.6804 kW, whereas the ones obtained by NNA, ALO,
EOA [17], IEOA [17], ISCA [25], HSA [26], and FWA [28],
are 9.6156 kW, 10.5353 kW, 9.4497 kW, 9.03737 kW,
10.02 kW, 11.07 kW, and 9.58 kW, respectively. Accordingly,
QOCNNA provides the lowest active power loss in compar-
ison with other methods for this load condition. At normal
load condition, opened switches obtained by QOCNNA are
{14-55-61-69-70}. DGs are installed on 12th, 61th, and
64th buses with 0.4181 MW, 1.3805 MW, and 0.4827 MW
DG sizes. The active power loss achieved by QOCNNA
for this case is the best result compared to other meth-
ods. At heavy load condition, QOCNNA offers the opti-
mal NR with opened switches {14-58-61-69-70}, DG loca-
tions at 12th, 61th, and 64th buses with respective DG sizes
of 0.5920 MW, 2.2781 MW, and 0.7698 MW. The active
power loss by QOCNNA (92.6570 kW) is lower than NNA
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FIGURE 11. Voltage profiles for scenario 1 of 69-bus RDN at three load
conditions.

(97.6747 kW), ALO (99.4677 kW), EOA [17] (106.074 kW),
IEOA [17] (100.4148 kW), ISCA [25] (104.5 kW), HSA [26]
(104.67 kW), and FWA [28] (102.97 kW) for this load
condition.

A comparative study in Table 10 shows that the proposed
QOCNNA is an effective method for solving the SNR-DG
problem. It is noted that QOCNNA is more robust than NNA
and ALO in solving this scenario due to finding solutions
with the lowest standard deviations for all load conditions.
Fig. 12 portrays the convergence curves of QOCNNA, NNA,
and ALO for scenario 1. From these figures, QOCNNA
achieves better convergence than NNA and ALO for all case
studies.

2) SCENARIO 2: ACTIVE POWER LOSS AND OVSI
OPTIMIZATION
Multi-objective optimization of power loss minimization
and voltage stability index maximization are investigated

FIGURE 12. Convergence characteristics of QOCNNA, NNA and ALO for
case 3 of scenario 1 of 69-bus RDN.

for the SNR-DG problem using QOCNNA in this scenario.
Table 11 lists optimal results obtained by QOCNNA for
this scenario. As for the consideration of active power loss
and OVSI, the obtained PLRs are 82.7277%, 84.0223%, and
85.5659% for light, nominal and heavy loadings, respec-
tively. Similarly, the OVSI values for the three loading con-
ditions are effectively enhanced to 3.9261%, 8.5967% and
14.7118%, respectively. It is noted from the optimal results
that SNR-DG application using QOCNNA shows a substan-
tial improvement in both active power loss and OVSI objec-
tives for all load conditions. Further, the voltage profile of the
system is greatly enhanced after the SNR-DG as shown in
Fig. 13. The minimum voltages are 0.9897 p.u., 0.9798 p.u.,
and 0.9668 p.u., respectively, for light, nominal and heavy
load conditions after applying QOCNNA.
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TABLE 11. Comparative results of QOCNNA and other methods for 69-bus RDN for scenario 2.

The results obtained by QOCNNA for scenario 2 of 69-bus
RDN are compared to those obtained by other methods as
presented in Table 11. For light load condition, QOCNNA
obtains an active power loss of 8.9133 kW, which is lower
than those of 10.2143 kW from NNA, 10.2016 kW from
ALO, and 11.02 kW from ISCA [25]. Moreover, the OVSI
values (in p.u.) achieved by QOCNNA, NNA, ALO, and
ISCA [25] are 67.1327, 66.6881, 66.8867, and 67.39, respec-
tively. QOCNNA obtains higher OVSI than NNA and ALO,
and slightly lower than ISCA [25]. However, the fitness value
of QOCNNA is the lowest compared to the other meth-
ods. From the simulated results, the best solution found by
QOCNNA is better than those obtained by NNA, ALO, and
ISCA [25] for two considered objectives.

Moreover, QOCNNA gives the lowest active power losses
and the highest OVSI values in comparison to NNA, ALO,
and ISCA [25] for nominal and heavy load conditions. As can
be observed in Table 11, QOCNNA obtains the best fit-
ness function values as compared to NNA and ALO for all
load conditions. Hence, QOCNNA has a better performance
than the other techniques in finding a compromise solution

among the objective functions. The standard deviation val-
ues achieved by QOCNNA are also much lower than those
achieved by NNA and ALO for all load levels, which con-
firms its robustness in solving the multi-objective SNR-DG
problem.

Fig. 14 portrays the convergence characteristics of QOC-
NNA NNA, and ALO in terms of fitness function for three
load conditions. It can be seen that QOCNNA can quickly
converge to the minimum fitness value for all three load
conditions. Generally, QOCNNA shows its superior perfor-
mance over the original NNA and other methods in terms
of solution accuracy and convergence speed in solving the
SNR-DG problem of medium-scale 69-bus RDN.

C. 118-BUS RDN
The 118-bus RDN is a large-scale system with a voltage level
of 11 kV, 132 branches, 118 closed switches, and 15 opened
switches. For base configuration, the total active and reactive
loads of 118-bus RDN are 22.709 MW and 17.041 MVAr,
respectively.
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FIGURE 13. Voltage profiles for scenario 2 of 69-bus RDN at three load
conditions.

1) SCENARIO 1: ACTIVE POWER LOSS MINIMIZATION
Similar to the above test systems, QOCNNA is also applied
to 118-bus RDN for three cases at three load levels with the
objective of active power loss minimization in this scenario.
Simulation results are reported in Table 12. Figs. 15 and
16 portray active power losses and voltage profiles for all
cases at three load conditions of 118-bus RDN, respectively.

In the initial case, the power losses at the light, nominal,
and heavy load conditions are 297.15 kW, 1298.09 kW, and
3799.70 kW, respectively. Table 12 shows that the PLRs
for cases 1 to 3 at light load condition are {31.4740%,
53.3198%, 54.2126%}, respectively. Meanwhile, at nomi-
nal and heavy load conditions, PLRs for cases 1, 2, and
3 are {34.2087%, 55.7169%, 59.9941%} and {38.7237%,
59.4512%, 63.8563%}, respectively. Moreover, the mini-
mum voltage magnitudes are improved from 0.9385 p.u.,
0.8688 p.u., and 0.7673 p.u. (initial case) to 0.9764 p.u.,

FIGURE 14. Convergence characteristics of QOCNNA, NNA and ALO for
scenario 2 of 69-bus RDN.

0.9586 p.u., and 0.9384 p.u., respectively, at the light, nomi-
nal and heavy loading conditions in case 3. From the optimal
results, case 3 reduces power loss and improves minimum
voltage remarkably compared to cases 1 and 2 at all load
conditions.

The result comparisons of QOCNNA, NNA, and ALO for
case 3 of scenario 1 of 118-bus RDN are reported in Table 13.
The convergence curves of QOCNNA, NNA and ALO are
depicted in Fig. 17. Obviously, the performance of QOCNNA
is better than those of NNA and ALO in terms of solution
quality and convergence characteristics in all case studies.
QOCNNA also obtains lower standard deviations than NNA
and ALO, which demonstrates the robustness of QOCNNA
over the two methods. Therefore, QOCNNA shows its effec-
tiveness in solving the large-scale SNR-DG problem.
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TABLE 12. Simulation results of QOCNNA for scenario 1 of 118-bus RDN.

FIGURE 15. Active power loss for scenario 1 of 118-bus RDN at three load
conditions.

2) SCENARIO 2: ACTIVE POWER LOSS AND OVSI
OPTIMIZATION
In this scenario, the QOCNNA is applied to deal with the
SNR-DG problem with the simultaneous optimization of

FIGURE 16. Voltage profiles for scenario 1 of 118-bus RDN at three load
conditions.

active power loss andOVSI. Table 14 gives the optimal results
for this scenario. From Table 14, QOCNNA not only obtains
PLR of 56.8199%, 57.7960%, and 64.1986%, but it also
enhances OVSI by 4.5563%, 10.1079%, and 18.7007% for
light, nominal and heavy loadings, respectively. As depicted
in Fig. 18, QOCNNA can effectively enhance the voltage
profile of the system, with minimum voltages being improved
to 0.9803 p.u., 0.9591 p.u., and 0.9345 p.u. for light, nominal
and heavy loadings, respectively. It should be noted that
the multi-objective SNR-DG problem on the 118-bus sys-
tem is not documented in the literature and thus, comparing
QOCNNA and previous studies is impossible. As seen in
Table 14, the optimal solutions obtained by the QOCNNA
for all load conditions are superior to those obtained by NNA
and ALO for both active power loss and OVSI objectives.
This proves that QOCNNA’s performance is better than those
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of NNA and ALO regarding the compromise among the two
objective functions. The convergence characteristics shown
in Fig. 19 demonstrate the excellent global search ability of
the QOCNNA compared with NNA and ALO. Moreover, the
standard deviation of solutions found by the QOCNNA is
also the smallest among compared algorithms for all load
conditions of this scenario.

Hence, QOCNNA can effectively solve the SNR-DG prob-
lem with a high-quality solution. The good performance of
QOCNNA is due to the incorporation of two search strate-
gies including CLS and QOBL. In QOCNNA, the QOBL
approach is integrated to explore a more promising region;
meanwhile, the CLS approach is used to locally exploit the
neighborhood of the best solutions to enhance the solution
accuracy. These approaches improve the exploration and
exploitation capabilities of QOCNNA to avoid premature
convergence and local optima stuck. Hence, QOCNNA can
find the optimal solution with a faster convergence speed.

The QOCNNA, NNA, and ALO are implemented on
a 2.6 GHz 4-core computer with 16 GB of RAM.
Table 15 reports the average computational times of QOC-
NNA, NNA, and ALO for each case. Computational times
of QOCNNA are longer than NNA and ALO for most case
studies. However, QOCNNA has faster computational time
than ALO for all cases of 118-bus large-scale system. The
long computational speed of QOCNNA is due to the extra
search time of QOBL and CLS strategies. Although QOC-
NNA does not dominate the computational time over NNA
and ALO, QOCNNA outperforms the two methods for the
solution quality, convergence characteristic, and robustness
in all cases.

D. EXAMINATION OF DAILY LOAD AND GENERATION
VARIATIONS ON NR AND DG ALLOCATION PROBLEM
From the above simulated results of three separate loading
levels, the optimal solution of open switches, locations and
sizes of DGs varies considerably in relation to different load-
ing conditions. Therefore, the problem is to determine the
optimal network configuration and settings of DGs when the
actual load changes daily. To address this, a novel method-
ology has been developed for finding the optimal opened
switches, locations, and sizes of DGs based on a load demand
curve of a typical day.

Recalling that the object function of minimization of oper-
ational cost (Co) in RDN usually comprises two factors, i.e.,
the cost of shifting switches (Cob) and the cost of active power
loss as follows:

Co = ns × Cob + Coa ×
ns∑
k=1

Ploss,k × Tk (33)

where Coa is energy price; ns is the number of times shifting
switches; Tk is operating time of configuration k and Ploss,k
is active power loss induced by configuration k .
However, some practical RDNs whose cost of shifting

switches is too large when compared with the savings from

FIGURE 17. Convergence characteristics of QOCNNA, NNA and ALO for
case 3 of scenario 1 of 118-bus RDN.

power loss reduction. Also, the system of supervisory con-
trol and data acquisition has not been suitably developed
yet, leading to the switches cannot be controlled remotely.
Accordingly, the process of shifting the status of switches
will result in a power outage since in this process, power
from a path delivered to loads is first cut and power is then
supplied to loads via another path. Hence, in this situation
the switches will be remained unchanged for a long time by
power suppliers and the prime objective of the NR process is
therefore minimizing the cost of energy loss during variable
load period. In other words, the problem of minimization of
the operational cost will be converted into the problem of
finding a constant network configuration during the operating
time so as to minimize energy loss. The object function of the
NR problem for minimizing energy loss (EL) can be stated as
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FIGURE 18. Voltage profiles for scenario 2 of 118-bus RDN at three load
conditions.

follows:

EL(S) =
24∑
t=1

Ploss(t)×1t (34)

Besides network reconfiguration, the allocation of pho-
tovoltaic (PV)-based DG has also been examined on the
scenario of daily variable loads for minimizing energy loss.
In this scenario, one PV DG is considered for allocation
where the outputs of PV DG are estimated from the average
output curve as in Fig. 20 [40]. Fig. 21 illustrates an hourly
load demand curve of the 69-bus network which is similar
to the one in [40]. To make a fair and efficient comparison
with the analytical method in [40] for the case of only PV
DG, the object function EL has been modified for computing
total annual energy loss (AEL) with an interval 1t of 1 h.
Precisely, the computation of AEL is the summation of the

FIGURE 19. Convergence characteristics of QOCNNA, NNA and ALO for
scenario 2 of 118-bus RDN.

active power losses of 24 loading levels over a day times
365 days a year. In addition, this object function has also been
adopted to investigate two remaining cases including the case
of only NR and the case of simultaneous NR and PV DG
allocation. For the general case of simultaneous optimization,
the function AEL may be expressed as:

AEL(S,L,P,Q) = 365×
24∑
t=1

Ploss(t)×1t (35)

For the test network, only is the 69-bus RDNwith medium-
size selected for the investigations. Bus voltage profile of the
69-bus network in a representative day before the optimiza-
tion is illustrated in Fig. 22. To validate the simulation results
of the proposed QOCNNA for case studies, we have fur-
ther run four different optimization methods including whale
optimization algorithm – WOA [38], sine cosine algorithm
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TABLE 13. Comparative results of QOCNNA and other methods for case 3 of scenario 1 of 118-bus RDN.

– SCA [39], ALO [37], and original NNA [36] methods for
each case study to compare results. The algorithm parameters
of WOA, SCA, ALO and NNA are set the same as in their
original studies [36]–[39]. The respective optimization results
for the three cases of NR and PV DG allocation with the aim
of minimizing the function AEL in the 69-bus network are
tabulated in Table 16 in which the step-by-step computation
procedure in Appendix A is utilized.

For the case of only NR, the proposed QOCNNA obtains
an optimal configuration with opened switches {14-57-63-
69-70}, which is fixed during varying of loads. Hourly active
power losses relative to this configuration are depicted in
Fig. 23. This configuration achieves a reduced AEL value
of 617.69 MWh compared with an initial AEL value of
1,381.97MWh. Notably, this value is significantly lower than
760.65 MWh fromWOA [38], 784.04 MWh from SCA [39],
790.06 MWh from ALO [37], and 738.60 MWh from NNA.
Accordingly, the QOCNNA obtains the highest cost savings
of 91,713.84 $ among the comparative optimizers. Also, the
QOCNNA requires a CPU time of approximately 147.93 s to
reach the final solution, which is faster than WOA and ALO,
but slower than SCA and NNA. QOCNNA has a longer CPU
time due to the extra time relative to the exploration process of
QOBL and the exploitation process of CLS as well. It is noted
that the extra search time makes a remarkable improvement
in the performance of QOCNNA. Further, the voltage profiles
of the network in a representative day after NR are plotted in
Fig. 24. From the figure, the optimal solution of NR leads to
a significant improvement in voltage magnitude at all buses
compared with the initial case shown in Fig. 22. Convergence
curves of five methods for minimizing the AEL function

in Case 1 are depicted in Fig. 25. The QOCNNA shows a
fast convergence to the optimal solution within 27 iterations
while the remaining methods fail to approach the optimal
solution. To further analyze the convergence of NNA, in the
first iterations with a sufficiently large modification factor
(MF), the bias operator will be more likely activated to satisfy
the exploration ability of NNA. This likelihood will gradually
decrease as the MF decreases by iterations, meaning that in
later iterations the transfer function operator may be activated
to help NNA implement the local search in the designed
space. In fact, with a decreasing step of 0.01, a MF value
of 0.5 reached at the 50th iteration is large enough for NNA
to remain the exploration ability throughout the searching
process. This causes an over exploration situation without
effective exploitation, resulting in the NNA being trapped in
a local minimum for this case. Meanwhile, the exploitation
ability of QOCNNA has been significantly upgraded, which
leads to its convergence speed boosted in the first iterations
thanks to CLS integration. Besides, the combined QOBL
strategy has assisted QOCNNA to a better balance between
the exploration and exploitation during the searching process.

For the case of only PV DG, the proposed QOCNNA
achieves a final solution with the bus location of 61 and max-
imum size of 2.304 MVA for one PV DG connection into the
69-bus network. With this connection, the AEL value of the
network is improved to 569.78 MWh from 1,381.97 MWh in
the initial case (i.e. 58.77% reduction) and the respective cost
savings is 97,462.83 $. Clearly, the AEL obtained by QOC-
NNA is the lowest compared with those of analytical method
(AM) [40], exhaustive load flow (ELF) [40], WOA [38],
SCA [39], ALO [37], and NNA. Also, the execution time of
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TABLE 14. Comparative results of QOCNNA and other methods for 118-bus RDN for scenario 2.

QOCNNA is longer than AM [40], WOA [38], SCA [39],
ALO [37], and NNA except for ELF [40]. It is reasonable
when QOCNNA takes much more time than NNA to find
a solution due to extensive search strategies. Further, the
hourly optimized outputs of PV DG related to the daily load
demand of the 69-bus network by using different optimizers

are plotted in Fig. 26. The hourly active power losses of the
network obtained by the methods before and after the PV DG
connection are shown in Fig. 27. From the two figures, in the
time range of 6 – 20 hours when network load demand tends
to increase, the output of PV DG optimized by QOCNNA
meets the load demand better than those optimized by the
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FIGURE 20. Hourly power output of PV DG in a representative day.

FIGURE 21. Hourly load demand of network in a representative day.

rest of methods. This leads to lower power loss values in
this period achieved by QOCNNA. In addition, the voltage
profiles of the network in a representative day after connect-
ing one PV DG at bus 61 are plotted in Fig. 28. From the
figures 22 and 28, for hours with non-zero outputs of PV
DG, the voltage profiles at nodes from 53 to 65 of the feeder
where PV DG connected is remarkably improved. Moreover,
convergence curves of five methods in solving the PV DG-
only case of the network are shown in Fig. 29. The three
ALO, NNA and QOCNNA methods have high competition
in exploring the search space and the QOCNNA exhibits a
strong search ability to approach the best solution among the
three. For the convergence of NNA, in the first 50 iterations
when the MF decreases from 1 to 0.5 by a step of 0.01, the
MF values belonging to this range are large enough to activate
the bias operator with a high probability for performing the
exploration. In this phase, there are relatively large changes
in the convergence curve. In later iterations, once the MF
decreases to sufficiently small values, it is highly likely that
the transfer function operator will be activated to execute the
exploitation. Due to the local search at this stage, there are
small changes observed in the convergence curve. For QOC-
NNA, thanks to the integrated CLS strategy, the exploitation
aspect is noticeably enhanced in the first 50 iterations which
leads to a better convergence profile as compared with NNA.
In addition, the use of the QOBL strategy also supports
QOCNNA for the exploration ability in the later iterations,

TABLE 15. Comparisons of QOCNNA and other methods for
computational time in seconds.

FIGURE 22. Voltage profile of 69-bus RDN in a representative day before
optimization.

resulting in a better convergence tend observed. Clearly, the
QOCNNA with integrated improvement strategies shows a
faster convergence speed and higher solution accuracy for this
case. This proves that QOCNNA achieves a better trade-off
between the exploration and exploitation properties as com-
pared with NNA. While the WOA and SCA methods fail to
achieve an optimal solution for this case, showing a weak
search capability.

Concerning the practical case of simultaneous NR and PV
DG allocation, the QOCNNA settles at the optimal solu-
tion with the opened switches of {16-56-64-69-71} and the
connection of one PV DG at bus 61 with a maximum size
of 2.113 MVA, which results in a reduced AEL value of
369.08 MWh (i.e. 73.29% reduction). This AEL value is the
lowest among those found by WOA, SCA, ALO and NNA
methods. It means the highest cost savings of 121,547.10
$ is achieved by QOCNNA. Regarding CPU time, QOC-
NNA requires about 1012.16 s for the optimization process.
Although it takes more time than the remaining methods,
its solution quality is remarkably better. Also, the hourly
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TABLE 16. Results of NR and PV DG allocation for daily variable load and generation scenario using different optimizers.

FIGURE 23. Hourly power loss of 69-bus RDN before and after NR using
different optimizers.

FIGURE 24. Variation of voltage profiles of 69-bus RDN in a typical day
for Case 1 using QOCNNA.

optimized outputs of PV DG associated with the daily load
demand of the network using other methods are depicted as
in Fig. 30. The hourly active power losses of the network
obtained by the methods before and after simultaneous NR

FIGURE 25. Convergence characteristics of optimization methods for
annual energy loss minimization in Case 1 of 69-bus RDN.

FIGURE 26. Comparison of daily load demand and respective optimal
outputs of PVDG in Case 2 using different optimizers.

and PV DG allocation are shown in Fig. 31. The combination
of NR and PV DG allocation results in a more significant
reduction in power loss at the hours of zero output of PV
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FIGURE 27. Hourly power loss of 69-bus RDN in Case 2 using different
optimizers.

FIGURE 28. Variation of voltage profiles of 69-bus RDN in a typical day
for Case 2 using proposed QOCNNA.

FIGURE 29. Convergence characteristics of optimization methods for
annual energy loss minimization in Case 2 of 69-bus RDN.

DG as compared with the solution of only PV DG allocation
in Fig. 27. Moreover, most of the hourly power loss values
obtained by QOCNNA are lower than those obtained by the
comparative methods. Further, the voltage profiles of the
network in a representative day after simultaneous NR and
PV DG allocation are plotted in Fig. 32. The simultaneous
solution of NR and PVDG leads to a significant improvement
in voltage magnitude at all buses compared with the initial
case shown in Fig. 22. Finally, convergence curves of the

FIGURE 30. Comparison of daily load demand and respective optimal
outputs of PV DG in Case 3 using different optimizers.

FIGURE 31. Hourly power loss of 69-bus RDN in Case 3 using different
optimizers.

FIGURE 32. Variation of voltage profiles of 69-bus RDN in a typical day
for Case 3 using QOCNNA.

applied methods for minimizing AEL function in this case
are illustrated in Fig. 33. The QOCNNA along with the
ALO and NNA again shows high competition in the solution
search process in this case and the QOCNNA is the unique
method converging to the optimal solution. Compared with
NNA, QOCNNA always shows the ability to search in the
area of higher quality solutions and approaches the optimal
solution with a faster convergence rate. This proves that the
improvement strategies have helped QOCNNA achieve better
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FIGURE 33. Convergence characteristics of optimization methods for
annual energy loss minimization in Case 3 of 69-bus RDN.

harmony between exploration and exploitation. For the two
WOA and SCA methods, they do not show the ability to
efficiently explore the search space and suffer from a slow
convergence speed when solving this case.

VI. CONCLUSION
In the paper, QOCNNA has been successfully proposed to
solve the SNR-DG problem. Active power loss minimization
and voltage stability index maximization in RDNs are the
considered objective functions of the SNR-DG problem. The
proposed QOCNNA is implemented to determine optimal
configuration and positions and capacities of DGs for the
33-, 69-, and 118-bus RDNs at several scenarios with various
case studies. For single-objective scenario, among three cases
tested, the case of SNR-DG solved by QOCNNA is the
most effective in reducing power loss in different load levels.
Particularly, the PLRs at nominal load level after the SNR-DG
by QOCNNA respectively are 73.01%, 84.28%, and 59.99%
for the 33-, 69-, and 118-bus RDNs. Likewise, simulation
results of multi-objective scenario also indicate that the opti-
mal solution of SNR-DG found by QOCNNA leads to a
significant improvement in network performance (i.e., power
loss reduction and voltage stability index maximization) in
all load conditions. Especially, as for case SNR-DG of the
33-, 69-, and 118-bus RDNs at nominal load condition, QOC-
NNA yields optimal solutions relative to PLR percentages
of 70.79%, 84.02%, and 57.79%, respectively. At the same
time, the OVSI improvement percentages are 16.36%, 8.59%,
and 10.10%, respectively. The solutions offered byQOCNNA
result in a better improvement in network performance than
the ones found by NNA, ALO as well as previous methods in
the literature in both scenarios. Further, QOCNNA shows a
better convergence and lower standard deviation of solutions
when compared with NNA and ALO for all case studies
in two scenarios. Moreover, QOCNNA obtains the optimal
network configuration and settings of PV DG satisfying the
daily variable load demand and generation while minimizing
total annual energy loss. The solution of QOCNNA in this
scenario leads to more reduction in total annual energy loss

than those of analytical-based approaches and other applied
methods as well.

In conclusion, QOCNNA is capable of finding high-quality
solutions with fast convergence speed and small standard
deviation of solutions for the SNR-DG problem. In most
cases, the optimized outcomes by QOCNNA are highly com-
petitive and effective against the previous studies. This proves
the improvement strategies help QOCNNA gain an excellent
harmony between exploration and exploitation. For future
researches, we will focus on expanding the SNR-DG problem
as well as the QOCNNA algorithm in some aspects such
as uncertainty in loads and renewable generations, combi-
nation of technical, economic, and reliability objectives, and
development in the multi-objective version of QOCNNA.
It is noted that the application of QOCNNA for handling
the uncertainty issues relative to the SNR-DG problem is
discussed as in Appendix B below.

APPENDIX
A. EXAMINATION OF DAILY LOAD AND GENERATION
VARIATIONS ON NR AND DG ALLOCATION PROBLEM
The procedure for NR and PV DG allocation considering
daily variable load and generation is presented as:

1. Read the predicted data relative to the 24-h load.
2. Perform a 24-h load flow and calculate the total annual

energy loss for the initial case using Eq. (35).
3. Randomly initialize the opened switches, location and

sizes of one PV DG for each case study using the
equations (A.1 – A.3) in which the numbers of control
variables are 5, 49 and 54 corresponding to theNR-only,
PV DG-only and simultaneous NR – PV DG cases:

Xi = [S1, . . . , SNSW ]; i = 1, . . . ,NP (A.1)

Xi = [L,P1, . . . ,Ph,Q1, . . . ,Qh];

i = 1, . . . ,NP; h = 24 (A.2)

Xi = [S1, . . . , SNSW ,L,P1, . . . ,Ph,Q1, . . . ,Qh];

i = 1, . . . ,NP; h = 24 (A.3)

where P1, . . . ,Ph and Q1, . . . ,Qh are respectively
active and reactive power outputs of PV DG for a 24-
h period.
The control variables of Si, L, Pt , Qt are randomly
initialized using the following equations:

Si = round[Si,min + rand(0, 1)× (Si,max − Si,min)],

i = 1, . . . ,NSW (A.4)

L = round[Lmin + rand(0, 1)× (Lmax − Lmin)] (A.5)

Pt = Pt,min + rand(0, 1)× (Pt,max − Pt,min),

t = 1, . . . , h (A.6)

Qt = Qt,min + rand(0, 1)× (Qt,max − Qt,min),

t = 1, . . . , h (A.7)

This study assumes that PV DG adopts advanced tech-
nologies (i.e., using converters for connection) allow-
ing operation at a desired power factor. With the
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non-dispatchable nature, the output of PV DG depends
on the generation curve for 24-h a day as in [40]. Based
on this generation curve, the hourly output is equiva-
lent to a daily peak output percentage of the DG unit.
Therefore, the output range of PV DG for optimization
at the hour t will be from 0% to 100% of the output at
the hour t of the DG unit. Also, the location of PV DG
may be determined by geographic and resource factors.
For a benchmark RDN, the nodes for DG allocation are
not predetermined and so all nodes except slack node
are considered as candidate nodes for DG placement.
In other words, the search range for the PV DG place-
ment will be from node 2 to node n.

4. Execute the QOBL process to create the population
QOX. Evaluate the fitness function for all candidate
solutions in X and QOX according to Eqs. (A.8) and
(A.9). Choose NP best solutions from {X , QOX}.

FFAEL = AEL +
24∑
h=1

penalh (A.8)

where penalh is a penalty function for controlling the
violation of related constraints in the hour h of the day
and is formulated as follows:

penalh = K ×
(∑NB

i=1
(V h

i − V
lim
i )2

+

∑NL

i=1
(Ihk − I

lim
k )2 + (PEDG − PE

lim,h
DG )2

)
(A.9)

where K is the penalty factor set to 103 for the inves-
tigations in this scenario and PE lim,h

DG is the penetration
limit of PVDG in the hour h depending on the total load
demand of the network at that hour.

5. Define target items XTarget andWTarget.
6. Assign t = 0 and β = 1.
7. while (t < Tmax) do
8. Generate new solutions and update the solutions via

Eqs. (17) and (18). UpdateW using Eq. (19).
9. If rand ≤ β, execute the bias operator to update new

solutions and weight matrix (Algorithm 1). Otherwise,
apply the transfer function operator using Eq. (21) for
solution update.

10. Update β using Eq. (20).
11. If rand < jr , perform the QOBL method to acquire

quasi-oppositional points of the current population.
These new solutions are only updated if their fitness
values are better.

12. Update XTarget and WTarget.
13. Implement the CLS strategy to find a better target solu-

tion;
14. t = t + 1
15. end while
16. Return optimal solution of the opened switches, loca-

tion, outputs of PV DG in relation to practical 24-h load
variations. After acquiring the optimal hourly outputs

of PV DG, the apparent power and the optimal pf of PV
DG at hour t can be respectively computed using Eqs.
(A.10) and (A.11):

SDG,t =
√
P2DG,t + Q

2
DG,t (A.10)

pfDG,t =
P2DG,t√

P2DG,t + Q
2
DG,t

(A.11)

B. DISCUSSION ON THE APPLICATION OF QOCNNA FOR
HANDLING THE UNCERTAINTY ISSUES OF THE PROBLEM
For the optimization problem of NR and DG allocation
in RDNs, the load-predicting errors along with PV and
wind power generation considered as some main sources
of uncertainty can be included in the mathematical mod-
elling. To deal with these uncertainty parameters, there
are three main approach groups in the literature including
probabilistic approaches, possibilistic approaches and hybrid
probabilistic-possibilistic approaches [49]. In this section,
we will present the application of a commonly used proba-
bilistic strategy of Monte Carlo simulation (MCS) belonging
to the probabilistic approaches group for handling relevant
uncertainties. Regarding the application, uncertain param-
eters are first modelled by probability density functions
(PDFs) and are then dealt withMCS strategy. Electrical loads,
PV and wind power generation can be modelled by using the
common PDFs as follows:

1) ELECTRICAL LOAD
Due to the errors in prediction, the loads are frequently mod-
eled as a Gaussian PDF in which the mean of the PDF is
equal to the predicted load value. In most cases, a division
of predicted value is taken as the PDF’s standard devia-
tion [50], [51].

PDF(SL) =
1

√
2πσ

exp

[
−
(SL − µ)2

2σ 2

]
(B.1)

where SL represents load’s apparent power; σ and µ denote
the mean and standard deviation of load power, respectively.

2) PV POWER GENERATION
The power generated by a PV DG is primarily related to solar
irradiation [50], [52], [53]. Solar irradiation is frequently
modeled as a Beta PDF characterized by the following equa-
tion [50].

PDF(s)=


0(α+β)
0(α) · 0(β)

· sα−1 · (1−s)β−1 if 0≤s≤1

x otherwise
(B.2)

where s denotes solar irradiation (kW/m2); α and β represent
parameters relative to Beta distribution.
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3) WIND POWER GENERATION
The power generated by a wind turbine is primarily related to
thewind speed [50], [54], [55].Wind speed is frequently char-
acterized by Weibull distribution as follows [50], [56], [57].

PDF(v) =
(
k
c

)(v
c

)k−1
e(

v
c )

k
(B.3)

where k and c are shape and scale factors ofWeibull function,
respectively.

The power generated by a wind turbine follows a function
of wind speed and is estimated using Eq. (B.4).

P(v) =


0 v < vin or v > vout
v− vin

vrated − vin
vin ≤ v ≤ vrated

Prated vr < v ≤ vout

(B.4)

where Prated is wind turbine’s rated power; vrated is rated
speed of turbine (m/s); vin and vout are cut-in speed and cut-
out speed of wind turbine (m/s), respectively.

After describing the uncertain parameters of the problem
by PDFs, the probabilistic uncertainty handling technique of
MCS is adopted for computations. Specifically, the input-
output relationship of the problem is represented as follows:

y = f (X ,U ) (B.5)

where X denotes the set of uncertain input parameters, i.e.,
loads, generation power of PV DG and wind DG; U denotes
the set of control variables, i.e., open switches and site of DGs
and y denotes the objective function to be minimized of the
problem.

More specifically, in this case, the opened switches and
site of DGs will be found using the proposed QOCNNA so
that the object function in Eq. (B.5) is minimized while con-
sidering the uncertainties of loads and generation power of
PV and wind DGs. In the iteration process of MCS, for each
pattern solution from population initialized by the QOCNNA,
different samples of loads and generation power of PV and
wind DGs are generated corresponding to each fixed value
of U using PDFs, the respective values of object function
are then estimated for each sample based on input-output
relation. Afterwards, the mean of object function values is
judged as the quality of that pattern solution. For this case,
different pattern solutions are assessed at different iterations
and the best pattern solution is chosen as the optimal solution
when the stopping condition is achieved. Below is the pseudo-
code of MCS for handling the uncertain parameters.

for i = 1: ntrial
Create sample Xi of loads and generation power of PV
and wind DGs.

Compute yi = f (Xi, Z )
end for

mean =

ntrial∑
i=1

yi

ntrial
(B.6)

std =

√√√√√ ntrial∑
i=1

(yi − mean)2

ntrial
(B.7)

where ntrial is the number of MCS trials;mean and std are the
mean and standard deviation of the y’s Gaussian PDF.
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