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ABSTRACT In this work, we propose two Deep Neural Networks, DNN-1 and DNN-2, based on residual
Fast-Slow Refined Highway (FSRH) and Global Atomic Spatial Attention (GASA) to effectively recognize
and detect actions. The proposed DNN-1 includes a 3D Convolutional Neural Network (3DCNN), Residual
FSRH (R_FSRH), reduction layer, and classification layer for action recognition. In action detection of
subject-region extraction and classification, the proposed DNN-2 consists of a 3DCNN, region proposal
network, R_FSRH, GASA, and classification-localization layer. The 3DCNN takes the front layer to the
‘‘Mixed-3c’’ layer of the pre-trained Inflated 3D (I3D) network as the backbone structure. FSRH is composed
of two Refined Highway (RH) units to extract a pair of features from fast and slow actions, where RH has
temporal attention from a non-local 3D convolution and an affine transform by a temporal bilinear inception.
In R_FSRH, multiple cascaded FSRHs with different residual connections were investigated to determine an
effective one. GASA sequentially computes and concatenates the correlation features of an atomic subject
and other subjects to effectively discover high-level semantic information. In ablation studies, extensive
experiments were conducted to demonstrate the superior performance of the proposed DNN-1 and DNN-2
on five challenging video datasets of JHMDB-21, UCF101-24, Traffic Police (TP), Charades, and AVA.
Notably, the proposed DNN-1 shows state-of-the-art performance of 98.6% on UCF101-24 and 98.1% on
TP, and DNN-2 exhibits state-of-the-art video-mAP of 27.7% on AVA, and the second best video-mAP of
25.7% on Charades, to the best of our knowledge. Therefore, the DNN-1 and DNN-2 proposed herein can
be outstanding context-aware engines for various video understanding applications.

INDEX TERMS 3D CNN, inception network, highway network, residual network, attention mechanism,
action recognition, action detection.

I. INTRODUCTION
In context-aware video applications, the complicated inter-
actions among subjects, objects, and environments in a
scene may not be easily perceived. In particular, it is still
challenging to recognize subject actions that involve mul-
tiple subjects’ behaviors and interactions. These interac-
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tions, which are not always observable in a single frame,
require multiple consecutive frames for further comprehen-
sion. Recently, deep learning has been successfully demon-
strated with impressive performance in video understanding.
However, the learning process used to demand large and
diverse data in which collection and annotation tasks take
a lot of time. Additionally, it is extremely time-consuming
to train deep neural networks on massive video datasets.
Accordingly, many researchers have dedicated efforts to
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FIGURE 1. Proposed deep neural networks for action understanding. (a) Actions recognition (b) Action detection.

realize efficient recognition using a limited amount of
data [1], and even to employ unsupervised approaches to deal
with large-scale detection tasks [2].

Previous studies used Convolutional Neural Networks
(CNNs) to handle spatial and temporal features individu-
ally. To perceive long-term information in a video, Recur-
rent Neural Networks (RNNs) are integrated with 2D CNNs
to dig out temporal correspondence [3]. In contrast to 2D
CNNs, 3D CNNs capture spatial and temporal information
simultaneously using 3D spatiotemporal kernels [4], which
are beneficial to video perception. Accordingly, 3D CNNs
are popularly employed in the field of action recognition,
where many improved networks have been derived [5]–[9].
Spatiotemporal 3D CNNs were effectively fulfilled in action
recognition, where structural and semantic features were
addressed [6], [10]. Alternatively, several pose-based net-
work structures were successfully developed for action
classification [7].

Intrinsically, 3D CNNs are computationally complex.
There are some available structural modifications aimed
at reducing the computational complexity of 3D CNNs.
A separable 3D CNN factorized a 3D convolution into
2D and 1D convolutions [11]. The multi-fiber network
employed multiple-path 2D convolutions with multiplexers
to reduce considerable computation and maintain similar
performance [12]. The temporal shift module moved feature

maps along the temporal domain, which were processed by
2D CNNs to accommodate temporal information [13]. Their
computation and parameter amounts were similar to those of
commonly used 2D CNNs.

To ameliorate application performance, some very deep
neural networks are quite promising. However, it is challeng-
ing to effectively train a very deep neural network. To address
training efficiency, the highway mechanism adopted in a
network with hundreds of stacked layers was successfully
demonstrated using stochastic gradient descent learning [14].
Each highway unit allows extensive flexibility in controlling
the transformation and transport of inputs. The flexibility of
highway units is likely to contribute to performance improve-
ment, even in a network without a relatively high depth [15].
However, these studies are based on local operations for
short-term contextual information extraction and expand the
receptive field by stacking multiple units, resulting in ineffi-
ciency and difficulty in obtaining long-term contextual infor-
mation. To overcome this issue, we propose an improvement
means associated with feature transform and carry to allow
the network to go deeper for preferable performance and fair
computational complexity, in which a RefinedHighway (RH)
unit is designed to yield transformed and carried features.

Generally, subject actions involve short- and long-time
movement characteristics. Every frame associated with a
short-time action is relatively significant, whereas the onset
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and offset frames for a long-time action may not be neces-
sary. For instance, falling occurs quickly, whereas jogging
may take a very long time. Therefore, fast and slow actions
can be partitioned and then identified separately [16], [17].
Additionally, most subject actions involve both short- and
long-time behaviors. Behavior features at short and long time
need to be treated simultaneously. Accordingly, we devise a
Fast-Slow Refined Highway (FSRH) block based on two RH
units to extract a pair of features from fast and slow actions.
Furthermore, various stacking topologies of multiple FSRH
blocks in the Residual FSRH (R_FSRH) module are explored
to find out an effective one according to the ideas from the
Gated Recurrent Unit (GRU) and residual networks.

For subject detection, Region-based Convolutional Neural
Networks (R-CNN) series have been popularly used to extract
region proposals by selective searches or Region Proposal
Network (RPN) [18]–[20]. Inspired by RPN, we employ
a sampling method to localize the subjects who perform
actions. In addition, the detector is fulfilled over frames to
generate a set of detection results. Subsequently, the Region
of Interest Alignment (RoIAlign) scheme is used to adjust
the misalignment of all detected persons according to their
features [19]. Bounding boxes of detected persons, which
are likely the cores of actions, are applied together to find
subject interactions as well as individual actions. The same
person with multiple interactions with others in a scene leads
to multiple action labels. Hence, it is essential for action
detection to characterize the interaction context.

It is beneficial to implement subject detection and action
classification using scene context [19]–[21]. Intuitively,
semantic clues of actions from the scene context can be
adopted to ameliorate action identification performance.
We incorporate the scene context by correlating the region
features of an atomic subject with those of the other subjects
in a scene. The features from the other subjects provide the
global interaction context useful for the action detection of an
atomic subject. Therefore, the Global Atomic Spatial Atten-
tion (GASA) module is designed to discover contextual scene
descriptors, including high-level semantic information from
all discovered subjects. A single-class label per task is often
insufficient to describe the content of a video. Even a single
frame may contain several prominent persons with multi-
ple labels. Accordingly, the proposed GASA is an effective
approach for exploring the interaction relationship between
an atomic subject and other subjects in an environment for
efficient multi-label action identification.

According to the abovementioned innovative units, blocks,
and modules, we implement two tasks: (i) an action recog-
nition task that only estimates the category label for a
video clip without localization, as shown in Fig. 1(a), and
(ii) an action detection task that not only estimates the cat-
egory of an action but also localizes an action instance in
Fig. 1(b). In action recognition, the proposed Deep Neural
Network at type I (DNN-1) includes a 3DCNN, R_FSRH,
Reduction Layer (RL), and classification layer. In action
detection, the proposed DNN at type II (DNN-2) consists

of a 3DCNN, RPN, R_FSRH, GASA, and classification-
localization layer. 3DCNN is based on the front layer to
the ‘‘Mixed-3c’’ layer of the pre-trained Inflated 3D (I3D)
network [20]. In R_FSRH, multiple cascaded FSRH blocks
with different residual connections are investigated to deter-
mine an effective one according to the ideas from GRU and
residual networks in favor of simplicity and ease of train-
ing. GASA computes subject-correlated features with high-
level semantic information for effective action discernment.
In ablation studies, extensive experiments were conducted
to demonstrate the outstanding performance of the proposed
DNN-1 and DNN-2 on five challenging video datasets of
JHMDB-21 [18], [22], UCF101-24 [18], [22], Traffic Police
(TP) [23], [24], Charades video classification [25], and AVA
spatiotemporal action localization and classification [20].

To clearly illustrate our work, the remainder of this
paper is organized as follows. Section II provides a brief
review of previous researches related to the proposed DNNs.
In Section III, the proposed framework is introduced and
explained in detail. Section IV addresses the experimental
results for large video datasets of JHMDB-21, UCF101-24,
TP, Charades, and AVA. The analyses, comparison, discus-
sion, and visualization of the experimental results are pre-
sented. Finally, the work is concluded in Section V.

II. RELATED PREVIOUS WORK
A. ACTION UNDERSTANDING VIA DNNS
3D CNNs that explore the features from both spatial and tem-
poral domains simultaneously have been increasingly imple-
mented in video analysis tasks. 3D CNN aims to perform spa-
tial and temporal feature learning together [26], andRNNs are
used to capture temporal context and handle variable-length
video sequences [27]. However, 3D CNN architectures have
many more parameters than 2D CNNs, making them compu-
tationally expensive. Inspired by residual networks, skip con-
nections over layers can be applied to 3D CNNs to overcome
the problem of vanishing gradients [28]. Another effective
approach is to localize subjects on a temporal scale regarding
their actions. Many architectures, such as fast temporal action
proposals and region convolutional 3D network [29], have
also been developed.

B. ATTENTION MECHANISMS
Numerous specialized attention mechanisms have demon-
strated promising performance in computer vision tasks [30].
There is also a lot of interest in combining CNNs with
various forms of self-attention for image classification [31],
object detection [32], and video action recognition [9], [33].
Attention is an effective way to capture short- and long-range
dependencies that are commonly used in CNNs to boost
the performance of image classification and scene segmen-
tation [34]. Spatial attention emphasizes the spatial rela-
tionship among features, while channel attention enhances
the most meaningful channels and weakens the others. The
approach using the channel-wise attention mechanism [35]
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was advantageous for increasing the CNN’s performance at a
low computational cost. On the other hand, non-local block
operation considers spatiotemporal information to learn the
dependencies of features across frames for video classifica-
tion tasks [36]. Such non-local block operation can be viewed
as a self-attention strategy. For action detection, a hierarchi-
cal dilated attention layer was developed in which attention
weights were allocated to local frames at multi-temporal
scales to improve the quality of local feature representation
across time [37].

The proposed DNNs are devised by referring to slow-fast
attention [17], highway network, temporal bilinear, and non-
local attention of transformer [21], [38]. Because the relation
between an atomic subject and its surrounding subjects is
employed, the attention from the subject interaction context
highlights the relevant parts in a feature map. In particular,
the proposed attention mechanism, working as a conditioned
feature provision, can yield context information effectively.

C. BOUNDING BOX DETECTORS FOR ACTIONS DETECTION
The task of action detection aims to discern the actions of
interest that are present in a video, and to localize them in both
spatial and temporal domains. Intuitively, action detection
consists of two major steps: (i) a subject related to an action
is found by a region scheme or dense sampling via anchors,
and (ii) the discovered subject is localized with refinement
and identified. In the literature, R-CNN series extracted
region proposals using the selective search or RPN at the
first stage and then classified subjects from these potential
regions at the second stage [18]. Owing to the success of the
R-CNN series, most of the studies detected subjects in each
frame first and then adequately linked these bounding boxes
as region tubes [18]. Although these networks have achieved
promising results, the temporal properties of videos are not
explicit or fully exploited for detection. To better leverage
temporal cues, several recent studies have been developed to
carry out action detection using video clips. For instance, the
action tubelet approach takes a short sequence of frames as
an input and yields regressed tubelets, which are then linked
by a tubelet linking scheme to construct action tubes [39].
Gu et al. further demonstrated the importance of temporal
information by using a long video clip and taking advan-
tage of I3D pre-trained on a large-scale video dataset [20].
Rather than linking detection results based on a frame or
segment level, some schemes connect the action tube propos-
als from multiple video segments before classification [40].
Grid CNN (G-CNN) trained a repressor to iteratively move a
grid of bounding boxes toward objects [41]. Cascade R-CNN
presented a cascade framework for highly promising object
detection, where a sequence of R-CNN detectors was trained
with an increased threshold of Intersection over Union (IoU)
to iteratively suppress false positives [42]. In context recogni-
tion, a two-pathway slow-fast structure was introduced at low
and high temporal resolutions to flexibly and effectively char-
acterize videos [16]. The approach took a long-term feature
bank with supportive information extracted over the entire

video clip to comprehend subject actions well [43]. In gen-
eral, the task of action detection for each subject in a video
clip is more complicated than that of action recognition for
a video clip with subject(s). It requires accurate localization
and precise categorization of the subjects at a time interval.
In contrast to previous work, this study proposes an effective
framework for spatiotemporal action detection.

III. PROPOSED DNNs
To realize action recognition, the proposed DNN-1 has a
3DCNN, R_FSRH, RL, and classification layer, as shown in
Fig. 1(a). The 3DCNN based on the 1st layer to the ‘‘Mixed-
3c’’ layer of the pre-trained I3D network processes an input
of a video segment with T frames. The output from 3DCNN
forms a 3D feature map X with a dimension of (T , H ,W , D),
where H andW represent the height and width, respectively,
and D denotes the number of channels. To obtain the long-
term dependency, X feeds into the proposed R_FSRHmodule
for context extraction. By stacking multiple FSRH blocks
with residual connections, R_FSRH can extract dense long-
term spatiotemporal relation information of which dimension
is reduced by RL. The classification layer is a two-layer
feedforward neural network.

In action detection, the proposed DNN-2 in Fig. 1(b)
includes a 3DCNN,RPN,R_FSRH,GASA, and classification-
localization layer. Here, 3DCNN, whose structure is the same
as that used for action recognition, generates features for RPN
to look for subjects present in a scene. The first, middle, and
last frames of the feature map in the temporal domain are
selected, and element-wise averaged at the spatial domain to
yield the averaged feature frame that passes through RPN.
The region proposals from RPN are processed to produce a
region feature tube using the proposed Bounding-box Filling-
up (BF) procedure and the RoIAlign scheme. Subsequently,
R_FSRH is employed to unveil the short- and long-term con-
text features from each region feature tube related to a subject,
and GASA is used to enrich the relationship features between
an atomic subject and its surrounding subjects. Meanwhile,
the region feature tube is regressed to form a 4D offset vector
to adjust the region proposal into a tight bounding box around
a person. Finally, the action classification-regression layer
adopts two two-layer fully connected networks in which there
are C action classes and background (total C + 1).

A. PROPOSED R_FSRH
R_FSRH inspired by the GRU, highway networks, and resid-
ual networks consisting of multiple stacked FSRHs with
residual connections are presented as follows:

1) PROPOSED FAST-SLOW REFINED HIGHWAY BLOCK
a: RH CONCEPT
The transform and carry gates in traditional highway net-
works adopt simple nonlinear operations, such as a sigmoid
function. Fig. 2 shows the conceptual block diagram of the
proposed RH unit that extends highway networks with two
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FIGURE 2. Conceptual block diagram of the RH unit for 3D attention.

new traits: (1) temporal attention driven parameters,α provid-
ing weighting ratios of transformed and carried outputs, are
produced by a non-local 3D convolution, and (2) the affine
transform, E , is computed by operations such as Temporal
Convolution (TC), Temporal Bilinear (TB), and Temporal
Bilinear Inception (TBInc). Temporal attention driven param-
eters, α, are normalized by an activation function of SoftMax
to obtain values in the range of 0 to 1, where each param-
eter can be dynamically adjusted according to temporally
shifted features. The output from E takes a matrix multipli-
cation with attention weights, α, to yield the transformed one
while a given input, X , performs a matrix multiplication with
1-α to yield the carried one. Afterwards, the transformed and
carried ones are element-wise added together to produce the
output X ′. In particular, if α is close to zero in the transform
state, then 1- α for the carry state approaches one. Such a case
directly passes an input X to the output in which RH works
like a write gate of GRU. Intuitively, the RH unit behaves like
a variant of the highway network, GRU, and residual network.
In the following, TC, TB, and TBInc used in E are further
presented.

b: TEMPORAL CONVOLUTION (TC)
T feature frames can be represented by X1,X2, . . . ,XT

at X i ∈ RD. In this work, these features are aggregated
in the temporal domain. The output signals are defined as
Y 1,Y 2, . . . ,Y T

′

where Y i ∈ RD, and T ′ is the temporal out-
put dimension. In practice, each output feature corresponds to
several consecutive input feature frames. Similar to [44], the
temporal convolution is extended from the spatial convolution
operator. It performs a learnable transformation on the input
feature frames as follows:

yC =
∑⌊

k
2

⌋
j=1−

⌊
k+1
2

⌋W j
cX

i+j (1)

where W j
c is the weight matrix for the cth output neuron, and k

is the number of input feature frames. Based on convolutions
at (3× 1× 1), TC obtains the transformationwithin T feature
frames.

FIGURE 3. Inception units. (a) 3D Inception (Inc.). (b) Proposed Temporal
Bilinear Inception (TBInc).

c: TEMPORAL BILINEAR INCEPTION (TBInc)
Based on the 3D inception in Fig. 3(a), the learning of spatial
and temporal features needs to be fairly addressed to balance
spatial and temporal clues for good performance. Because
the temporal information stored in the shifted channels may
be lost owing to a large number of channels, TB opera-
tions between two TCs in a TBInc, as depicted in Fig. 3(b),
are considered. In TB, 3D convolution first calculates the
transformation. Second, a temporal shift operator based on
a time index is implemented using translation operations.
Element-wise multiplication and summation are performed
to obtain the final result of TB for all spatial and temporal
elements. TBs are embedded in four branches of an inception
unit. In each TB, a temporal shift can address degraded
spatial feature learning. Fig. 3(b) displays the concatenation
topology of four branches including four TBs in which two
are inserted between two pairs of two TC operators at 3 ×
1 × 1, one is appended after the operator of maxpool at
3×3×3, and one is appended in the branch without the other
operation.

d: TEMPORAL ATTENTION DRIVEN (TAD)
The operations of TAD in Fig. 4 are executed as follows. X
denotes the 3D feature mapwith a dimension of T×k×k×D,
which are transformed to (T × D) × (k × k) feature tensors
at three different 3D convolutional layers with kernels at a
size of 1 × 1 × 1 to generate feature maps of P, Q and U
where P,Q,U ∈ R(T×D)×(k×k). k × k is the dimension of a
spatial feature map.P andQ are used to calculate the attention
weights of α ∈ R(T×D)×(T×D) by matrix multiplications.
αi,j is the relationship intensity of the ith location to the jth

region at i, j ∈ (1, . . . ,T × D), represented by the following
equations:

αi,j =
exp

(
Vi,j
)∑T×D

i=1 exp
(
Vi,j
) (2)

V = PQT (3)

Subsequently, α is convoluted withU to obtain the output that
goes through a 3D convolution at a 1× 1× 1 kernel to yield
m ∈ RT×k×k×D.

VOLUME 9, 2021 164891



M.-H. Ha, O. T.-C. Chen: Deep Neural Networks Using Residual FSRH and GASA

FIGURE 4. Fast refined highway.

e: FAST RH (FRH) UNIT
As shown in Figs. 3 and 4, X drives TBInc, which considers
the temporal pairwise feature interactions across adjacent
feature-level frames to increase the capability of charac-
terizing spatiotemporal dependencies. Bilinear with mixture
inception is capable of capturing temporal interactions. The
output of TBInc is the cascaded four outputs of inception
operations at four branches to generate a feature tensor with
a dimension of T ×k×k×D. Therefore, TBInc can be easily
implemented and incorporated into the widely used neural
network architectures.

By looking at conventional highway networks, their
approaches exhibited how an output was produced by trans-
forming and carrying an input. We refer to the transform
and carry gates by weight multiplications of m and 1 − α,
respectively, in Fig. 4. The computation of the RH unit is
defined as

X ′ = m� E(X )⊕ (1− α)⊗ X (4)

where �, ⊕ and ⊗ denote element-wise multiplication,
element-wise addition and matrix multiplication, respec-
tively. With α ranging from 0 to 1, 1-α is defined as ᾱ.
Therefore, the output, X ′, is the weighted summation of the
transformed and bypassed inputs according to the attention
weights of m and ᾱ, respectively, where m represents signif-
icant context parts of α ⊗ U for the transform gate.

f: FSRH BLOCK
In parallel to a fast action, a slow action is also considered
where convolution filters in the FRH unit are replaced by
5× 1× 1. In Fig. 5, FSRH extracts two types of features that
distinguish fast and slow actions, where the kernel sizes of the
convolution operations are 1× 1× 1 and 5× 1× 1 adopted
in the Fast Refined Highway (FRH) and the Slow Refined
Highway (SRH) units, respectively. In order to increase the
relevant feature extraction, the outputs from FRH and SRH
are concatenated and then correlated by 3D Convolutional

FIGURE 5. Fast-slow refined highway.

FIGURE 6. 3DConvDM.

Depth Mapping (3DConvDM). The 3DConDM in Fig. 6 pro-
cesses two output feature maps of F and S stacked at the same
spatial locations across the feature channels to become [F, S]
at a dimension of T × k × k × 2D, which are element-wise
convoluted with the 3D filters of R1×1×1×2D, and then added
with biases b ∈ RD′ . Here, the filter of a 3D convolution
(1 × 1 × 1) to obtain the convolution feature map is used to
reduce the dimension by a factor of two and is able to model
weighted combinations of two feature maps of F and S at the
same spatial location. There are D′ of 3D filters at a size of
1× 1× 1× 2D to characterize the correlation of the stacked
feature maps where these 3D filter matrices are slid in the
temporal, spatial-horizontal, and spatial-vertical directions of
T×k×k , to yield outputs after convolutions. The results from
D′ filters are stacked together to form an output at a size of
T × k × k × D′ where the stride and padding are equal to
one. In this work, the number of 3D filters, D′, is equal to
D. 3DConvDM correlates two input feature maps to yield an
output feature map with meaningful contextual information
and selectively aggregated context.

2) RESIDUAL FAST SLOW REFINED HIGHWAY (R_FSRH)
MODULE
FSRH generates a feature map with refined spatiotemporal
information that may not be powerful enough for accurate
action classification. To obtain richer and denser context
information, multiple FSRHswith a proper stacking topology
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FIGURE 7. R_FSRHs at three types. (a) R_FSRH_S. (b) R_FSRH_E.
(c) R_FSRH_D.

are investigated, where these FSRH blocks share the same
parameters to avoid too many extra parameters. Therefore,
R_FSRH modules having one or multiple cascaded FSRH
blocks with residual connections are constructed and ana-
lyzed at different cascade depths. R_FSRHs at three types
of residual connections, as depicted in Fig. 7, were stud-
ied. The first structure is R_FSRH with a Single residual
connection (R_FSRH_S). The second is R_FSRH with a
residual connection at Each FSRH (R_FSRH_E). The third
one adopts residual connections from an initial input to the
outputs of all FSRHs, named R_FSRH with Dense connec-
tions (R_FSRH_D). Since the appearance information in an
input feature map after convolutions may be lost to some
extent, an input feature map is added to the output(s) of
FSRH(s) to effectively restore the appearance information.
Accordingly, the next layer can attain both appearance and
context information.

To explore the scaling factor associated with the outputs
of FSRHs, three types of R_FSRH are analyzed, where R
represents the operation of FSRH. We multiply the out-
put of R_FSRH using a trainable scalar parameter and
add the result back to the input feature map as a residual
block.
(1) R_FSRH_S in Fig. 7(a) can be interpreted by

Y = γR (γR (γR (. . .)))+ X (5)

in which γ is a learnable weight.
(2) In R_FSRH_E, as depicted in Fig. 7(b), only the first

FSRH block has an input with the original appearance

information. The operations of R_FSRH_E are formu-
lated as follows:

Y = γR
(
γR (. . . (γR (X)+X) . . .)+Y (n−2)

)
+Y (n−1)

(6)

where the input of each FSRH block is added to its output
to form a residual connection.

(3) Fig. 7(c) displays R_FSRH_D of which operations are

Y = γR (γR (γR (. . .)+ X)+ X)+ X (7)

where all the FSRH blocks have inputs from the original
appearance information. These three structures are com-
pared in the next section.

All FSRH blocks in R_FSRHs share weights so that they
can make good use of the learned relationship information
as well as reduce considerable extra parameters. Because the
input and output dimensions of the FSRH block are the same,
the proposed FSRH block can be inserted into any DNN to
provide an inception layer at any stage. Such an arrangement
can meaningfully address the spatiotemporal context features
for performance enhancement.

B. RPN, BF AND GASA
The 3DCNN uses a video segment as an input and generates
a spatiotemporal feature map. The first, middle, and last
frames extracted from the feature map in the temporal domain
are averaged to yield the feature frame that is processed
by the RPN to produce region proposals associated with
subjects. This task is based on faster R-CNN for subject
detection [19], [45]. A region proposal provides a person’s
bounding box. The Bounding-box Filling-up (BF) procedure
is proposed to generate a region feature tube that is scaled to a
specific size by the RoIAlign scheme. The region feature tube
goes through R_FSRH_D and GASA to establish semantic
information among each atomic subject and the other subjects
related to activities. The resulting feature map then inputs
two fully connected layers for classification and bounding
box regression, in which the bounding box is regressed by
a 4D offset vector to achieve a tight box around a person. The
tight bounding box is then classified into multiple labels of
C actions and background.

1) COMPUTATION OF BOUNDING BOX VIA RPN
The modified tube proposal network, I , inspired by RPN in
faster R-CNN, is developed. The representative feature tube
corresponding to the RPN proposals is extracted from the
feature map using BF and RoIAlign. Given the feature map
from 3DCNN, the classification and regression labels are
definedwith respect to the tube anchors. Tube anchors that are
similar to the bounding box anchors used in faster R-CNN are
employed in the temporal domain. This indicates that the tube
anchors are implemented by duplicating the boxes to form a
tube. The RPN generates multiple potential person bounding
boxes, along with objectness scores based on class proba-
bilities and IoU values. The box with the highest objectness
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score is selected and further regressed into a tight bounding
box. The resulting features across time are stacked to yield a
spatiotemporal feature tube that passes through the R_FSRH
module, as depicted in Fig. 1.

2) BOUNDING-BOX FILLING-UP PROCEDURE
The bounding boxes related to the same subject in the neigh-
boring frames may sometimes be missing. Accordingly, the
linking and interpolation of bounding boxes are designed
to yield a reliable region feature tube. The proposed BF
procedure for generating a region feature tube is as fol-
lows. Initially, the BF procedure starts to seek the bounding
boxes from the middle of T frames in the temporal domain
and correlates them to those found at the left and right
neighboring frames. If there are some mismatched bounding
boxes, the missing boxes at specific frames are reproduced
by copying the boxes from their close neighboring frames.
The above operations are repeated until two boundary frames
are reached. This approach makes T frames with a consistent
number of bounding boxes. Since these boxes may have
different sizes, the RoIAlign scheme is used to link and
normalize the corresponding bounding boxes at the same size.

3) GASA MODULE
The tasks of action classification and localization have sub-
stantially different objectives and require different types of
information. Accurate action classification demands applica-
ble context features in both the spatial and temporal domains.
Robust localization regression requires precise spatial cues at
the frame level. In this work, the output from R_FSRH_D for
each atomic subject addresses the GASA module to yield a
spatiotemporal correlation feature of an atomic subject and
the other subjects. As shown in Fig. 1, the correlation feature
from GASA is further concatenated with the feature map of
the corresponding atomic subject in the feature frame domain
for the classification-regression layer. This concatenated fea-
ture not only captures the correlative context among subjects
but also includes the local details of an atomic subject for
ameliorating action classification and localization regression.

The region feature tube carries information about the sub-
ject appearing in a scene. Some actions involve multiple sub-
jects. The subject properties of multiple regions feature tubes,
which concentrate on the actions of people, are integrated and
processed byGASA, as depicted in Fig. 8. TheGASAmodule
obtains the reference information from the first subject and
another by using the Atomic Spatial Attention (ASA) block,
ASA

(
A1t , S2

)
. Each ASA accepts inputs of Ait and Si+1 where

Ait is the output from ASA(Ai−1t , Si) and Si is the feature tube
of another subject. Here, Si is randomly selected from the
list of the available region feature tubes. Each GASA takes
care of one atomic subject that is sequentially chosen from
the discovered region feature tubes to yield a spatiotemporal
subject-related feature.

In Fig. 8, two region feature tubes in ASA-1 are projected
into three new feature tensors, P′, Q′ and U ′. The attention
map β ∈ R(k ′×k ′)×(k ′×k ′) is generated by the computations

FIGURE 8. GASA module.

of P′TQ′ and Softmax. Then, β is multiplied with U ′ by
a matrix operation to yield the result that goes through a
3D convolution at a 1 × 1 × 1 kernel to construct m′ ∈
R(T ′×D′)×(k ′×k ′). Finally, the output of ASA-1 comes from
the element-wise summation of A1t andm

′. The same compu-
tation flow is applied to ASA-2, . . . , and ASA-n. In partic-
ular, we concatenate outputs from n ASAs that contain the
global subject correlation from an atomic subject point of
view.

C. LOSS FUNCTION OF END-TO-END LEARNING
The RPN extracts candidate bounding boxes to generate
region feature tubes. We aggregate and correlate features
from a set of regions feature tubes using R_FSRH_D and
GASAs. Finally, multiple loss functions are used for detect-
ing subject actions and regressing the bounding box coor-
dinates according to the subject classes and ground-truth
bounding boxes, respectively. The regression target is to per-
ceive the subject. The total loss L of the proposed network
is

L = LRPN + Lcls + Lreg (8)

where LRPN , Lcls, and Lreg denote the loss of RPN, classifi-
cation loss for identifying subject actions, and the bounding
box regression loss, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the proposed DNNs are evaluated and com-
pared with the conventional ones in the tasks of action recog-
nition and detection on several popularly-used video datasets.
Additionally, extensive ablation experiments were conducted,
analyzed, and discussed.

A. DATASETS
1) DATASETS FOR ACTION RECOGNITION
JHMDB-21 consists of 928 short videos with 21 action cate-
gories associated with daily life [18], [22]. Each video was
well trimmed and had a single action instance across all
frames. Our experiments were performed during the first
split. UCF101-24 is a dataset related to subject actions in
which there are 3,207 videos with 24 action classes [18], [22].
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All experiments using UCF101-24 were fulfilled at the first
split as well. In the dataset of Traffic Police (TP) [23], [24],
there are 21 video clips, including nine actions associated
with how to direct vehicles. The frame resolution and rate
of these video clips are 1, 080 × 1.080 pixels and 15 Hz,
respectively.

2) DATASETS FOR ACTION DETECTION
The proposedDNN-2was tested on four challenging datasets:
JHMDB-21, UCF101-24, Charades, and AVA, where pre-
cise person boxes were adopted in accordance with human
silhouettes as well as the ground truths of labeled actions.
JHMDB-21 and UCF101-24 annotations refer to the ground
truths provided by [18], [22], [45], in which the fair bounding
boxes of subjects were offered. In each video, there may be
multiple action instances that have the same class label but
different spatial and temporal boundaries. Charades [25] and
AVA [20] contain the activities of multiple persons in scenes.
Each video clip was severely untrimmed and had numerous
action labels. These phenomena make both datasets much
more challenging. The Charades dataset has 157 classes in
9,848 training and 1,800 validation videos, each of which
has multiple labels regarding actions at an average interval
of 30 seconds. In each video clip, a person can perform
one or more actions. The AVA v2.1 dataset contains 211 K
training and 57 K validation video samples, each of which
has a 15-minute clip extracted from a movie. Each person in
a frame has a bounding box and multiple labels. The task
in AVA is spatiotemporal action localization and discern-
ment: each person appearing in a test video is detected in
a frame, and the multi-label actions of the detected person
are perceived as well. Notably, each bounding box may be
associated withmultiple action categories, making the dataset
more challenging. There exist 60 action classes that are par-
titioned into three groups of 13, 32, and 15 classes related
to person poses, object interactions, and person interactions,
respectively. According to the AVA v2.1 evaluation process,
the mean Average Precision (mAP) across 60 classes was
calculated.

B. IMPLEMENTATION DETAILS
In our experiments, a video clip was partitioned into many
video segments, each of which had 10 frames, i.e. T = 10. All
frames in a video segment were resized to 224 × 224 pixels.
We trained our models using Adam [21], and a batch size
of 8. The initial learning rate was 5 × 10−5 with a step
decay after 20 and 30 epochs at a decay rate of 0.1. In this
work, the experiments associated with model training and
testing were performed on a 16-core Intel Core i7 computer
accompanied with two Graphic Processing Units (GPU) of
Nvidia Titan X 1080/12 GB at 64GB RAM, where the CPU
system is a 64-bit Ubuntu 18.04 and GPUs are supported by
the Anaconda distribution for Python programming.

1) TRAINING DETAILS
Based on the transferred parameters of the I3D network [16],
[46], 3DCNNs were retrained for our tasks. By using the

RoIAlign scheme, all of the region proposals from the feature
map are represented by the fixed-shape feature vectors that
pass through the fully connected layers to become the region
feature vectors. A proposal is assigned to a ground-truth
box based on an IoU criterion greater than 0.5. Proposals
with an IoU between 0.1 and 0.5 are treated as negatives
whereas proposals with an IoU below 0.1 are ignored. The
networks are trained using sigmoid cross-entropy for multi-
label classification loss in all proposals at mini-batch, where
the standard smooth L1 loss for bounding box regression
is employed by localizing a positive proposal. To remove
duplicates, a category based on the Non-Maximum Suppres-
sion (NMS) schemewas applied [19]. The final output is a list
of all predicted subjects with probabilities higher than the IoU
threshold. The labels of a ground-truth box are assigned to a
predicted box if these two boxes have an overlap of IoU≥ 0.5.
Because a specific personmay havemultiple actions at a short
interval, the output result has a dimension ofG∗(C+1), where
G indicates the number of predicted subjects, C denotes
the number of action classes, and an additional class is the
background. In practice, the detection outputs at each step are
gathered and used to select the positive and negative samples
for training in terms of IoU. We accumulate the losses of all
steps and back-propagate the entire network to update their
weights at the same time.

2) METRICS
In action recognition and detection, the metrics are the aver-
age accuracy and video-level mAP at specific IoU thresholds,
respectively. In this work, an IoU threshold of 0.5 is adopted
to assess the detection performance. Additionally, the compu-
tational complexities of FLOPs for network inferences were
provided. To avoid unnecessary calculations in the network
model, we freeze the model before measuring FLOPs and
then sum the operations of all convolution layers based on the
numbers of output feature maps, kernel sizes, input channels,
and output channels. In particular, the actual inference time is
computed by a function of time() at 10 224× 224× 3 image
frames.

C. ABLATION STUDIES
The proposed DNNs are investigated for action recognition
and detection. First, the performance of R_FSRH at different
structures in DNN-1 was explored on three datasets. Sec-
ond, DNN-2 with variant simplified configurations based on
FSRH, R_FSRH, and GASA were analyzed and compared.
In particular, the proposed R_FSRH module is generic and
can be applied to other network topologies for performance
improvement.

1) ACTION RECOGNITION ON JHMDB-21, UCF101-24 AND
TP
Table 1 lists the accuracy performance of the proposed
DNN-1 with and without R_FSRH_D at γ = 1, as shown
in Fig. 7(c), on three datasets where the number, τ , of FSRH
blocks ranges from 1 to 5. Compared to the baseline of
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TABLE 1. Accuracies of DNN-1 with and without R_FSRH_D on
JHMDB-21, UCF101-24 and TP.

3DCNN, the proposed DNN-1 with R_FSRH_D at τ = 1
increased the accuracies by 1.88%, 2.04%, and 2.61% on
JHMDB-21, UCF101-24, and TP, respectively, clearly reveal-
ing the contribution of R_FSRH_D. Furthermore, the perfor-
mance at τ from 1 to 3 is ameliorated from 0.12% to 0.28%
on three datasets, demonstrating the effectiveness of dense
contextual information. Meanwhile, the number of FSRH
blocks increased from three to four, and slightly reduced the
performance by 0.16%, 0.36%, and 0.36% on JHMDB-21,
UCF101-24, and TP, respectively. Additionally, the number
of parameters and the inference time increasedwith τ . Specif-
ically, when τ is equal to 5, the number of parameters is a
maximum of 25.39M but the accuracy decreases compared
to that at τ = 3. Therefore, R_FSRH at τ = 3 has a relatively
good spatiotemporal interpretation capability, where the net-
work achieves the highest accuracy for the three datasets. The
proposed DNN-1with the R_FSRH_Dmodule at three FSRH
blocks achieves the best performance. This effect reveals that
the increasing number of FSRH blocks in R_FSRH_D likely
tends to diminish the importance of the supportive context.
To focus on the performance and resource usage, R_FSRH
using three FSRH blocks was adopted in the following
experiments.

In the proposed DNN-1, the R_FSRH modules with three
FSRH blocks at different residual connections in Fig. 7 were
investigated. The experimental results are listed in Table 2.
The weight γ in Eqs. (5) to (7) is learnable so that the ratio of
inputs to outputs from FSRHs can be adjusted automatically.
According to the simulation results, the accuracies varied at
different initial values of γ . The experimental settings in these
three structures are the same, where γ is set to nine different
initial values ranging from none to 1.0. When γ is none,
there is no γ in Eqs. (5)–(7), indicating R_FSRH without
a learnable weight. The experimental results show that the
top-1 accuracies of the proposed R_FSRH_Dmodule at γ =1
are 86.03% and 98.56% for JHMDB-21 and UFC101-24,
respectively. This indicates that the initial contribution from
FSRHs is the same as that from the residual paths, which

TABLE 2. Accuracies of DNN-1 using three types of R_FSRHs at different
γ on JHMDB-21 and UCF101-24.

is beneficial for good convergent performance. Therefore,
we adopted the initial value of γ as 1 for the other exper-
iments. Compared with R_FSRH_S and R_FSRH_E, the
structure of R_FSRH_Dmakes good use of the dense correla-
tion information in capturing long-range dependencies using
three FSRH blocks. Because the accuracy of R_FSRH_D
is higher than that of the others, the proposed DNNs adopt
R_FSRH_D.

2) ACTION DETECTION ON JHMDB-21, UCF101-24, AND
CHARADES
To verify the performance of the proposed DNN-2 in the
action detection task, we conducted extensive ablation exper-
iments on the datasets of JHMDB-21, UCF101-24, and
Charades.

a: ANALYSES OF FRHs WITH VARIANT CONFIGURATIONS
In the experiments of action detection using DNN-2 at τ = 1,
the performance of FRHs with variant configurations was
analyzed and compared, where FSRH was simplified to FRH
for analysis purposes. Region candidates associated with
subjects were selected when IoU was greater than or equal
to 0.5. Additionally, Giga FLOPs (GFLOPs) and Number
of Parameters (NPs) for each configuration are listed in
Table 3. As shown in Fig. 4, TAD and TBInc of the FRH
unit provide the transform and carry features revealing how
the output is produced by transforming and carrying an input,
respectively. To explore variant configurations, an FRH unit
can be implemented by a single or pair component, which
includes one of TAD and Attention Mechanism (AM) [5],
and/or one of TBInc, Inc. and TB, as depicted in Fig. 3.
From the list of outcomes associated with FRHs having
only a single unit in Table 3, FRH using TAD achieves the
highest video-mAP values on the three datasets. Particularly,
the GFLOPs and NPs of TAD are less than those of TBInc
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TABLE 3. Performance of DNN-2 using variant FRHs at τ =1.

and Inc. Meanwhile, FRH using a pair configuration of TAD
and TBInc obtains the significantly highest video-mAP of
81.03%, 48.85%, and 22.58% for JHMDB-21, UCF101-24,
and Charades, respectively. The best pair configuration of
TAD and TBInc adopted in FRH increases action detection
precisions by 4.15%–4.81% video-mAP compared to the
best single configuration of FRH using only TAD on three
datasets. The increased precision amounts were contributed
by TBInc. Since Charades has more temporal context than
JHMDB-21 and UCF101-24, the rich temporal context can
be effectively leveraged by a pair configuration of TAD and
TBInc in FRH, which is suitable for action detection on
challenging large-scale datasets.

b: EFFECTIVENESS OF R_FSRH_D AND GASA
Structures of DNN-2 in variant simplified configurations
based on FSRH, R_FSRH_D, and GASA were evalu-
ated using video-mAP@0.5. In Table 4, the architec-
ture of 3DCNN+RPN+R_FSRH_D+GASA achieves the
best performance with increasing video-mAPs from 0.33%
to 11.54%, from 1.86% to 13.95%, and from 0.66%
to 9.62% for JHMDB-21, UCF101-24, and Charades,
respectively. The main reason is that the architecture of
3DCNN+RPN+R_FSRH_D+GASA can provide signifi-
cant spatiotemporal information as well as correlation context
from an atomic subject and the other subjects for action
detection in videos. The spatiotemporal semantic approach
in GASA can further improve precision owing to the com-
plementary properties between atomic subject features and
subject-correlated features. The operation of GASA is an
effective attention mechanism for action detection.

TABLE 4. Performance of DNN-2 at variant configurations of FSRH,
R_FSRH_D and GASA on JHMDB-21, UCF101-24 and Charades.

3) ACTION DETECTION ON AVA AND CHARADES
a: EFFECTIVENESS OF R_FSRH_D AND GASA ON AVA
Table 5 lists the simulation results of the proposed
DNN-2, 3DCNN+RPN+R_FSRH_D+GASA, and the
other variant architectures for action detection on AVA
dataset. Compared to 3DCNN+RPN, three types of
3DCNN+RPN+FSRH, 3DCNN+RPN+R_FSRH_D, and
3DCNN+RPN+R_FSRH_D+GASA structures increased
video-mAPs by 7.06%, 8.95%, and 9.70%, respectively.
The inference time, second per frame, was estimated
using two 1080Ti GPUs. The proposed architecture
is very promising for action detection at 77ms/frame
thanks to the progressive highway refinements and
attention mechanisms. The proposed DNN-2 based on
3DCNN+RPN+R_FSRH_D+GASA achieves the best per-
formance. Although action detection is more challenging
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FIGURE 9. Video-mAP results associated with each category of AVA by using four architectures in Table 5.

TABLE 5. Performance of DNN-2 at variant configurations of FSRH,
R_FSRH_D and GASA on AVA.

for AVA, the proposed DNN-2 still achieves state-of-the-art
result of 27.73% video-mAP at IoU@0.5.

Fig. 9 displays the video-mAP results associated with each
category of AVA using 3DCNN+RPN, 3DCNN+RPN+
FSRH, 3DCNN+RPN+R_FSRH_D, and 3DCNN+RPN+
R_FSRH_D+GASA (DNN-2). In DNN-2, there are dis-
tinct improvements in 27 out of 60 categories in which 1%
to 10% video-mAPs are increased compared to the other
three counterparts. Additionally, a slight increase of 0% to
1% video-mAP occurs in 32 categories using DNN-2. The
relatively large gains take place in the categories of ‘‘text
on/look at a cellphone’’ (+10.0% video-mAP), ‘‘fall down’’
(+9.0%video-mAP), ‘‘take an object from a person’’ (+8.0%
video-mAP), ‘‘push an object’’ (+8.0% video-mAP), ‘‘read’’
(+8.0% video-mAP), and ‘‘touch an object’’ (+8.0% video-
mAP). In these categories, it is critical to characterize the sub-
ject action dynamics that are well addressed by the proposed
DNN-2. Our model is only worse in one category of ‘‘turn
(e.g., a screwdriver)’’ (-1.0% video-mAP). In summary, there
are performance improvements in many categories, including
multiple interactions and relations among subjects. This is
because the GASA module extracts the correction features
from atomic and other subjects, allowing the network to focus
on the subject’s behavior in the complicated surroundings.

b: DNNs WITH FAST, SLOW, OR FAST-SLOW
CONFIGURATIONS IN RHs
In the proposed DNN-2, the FSRH block adopts two RHs
of FRH and SRH. Accordingly, there are three topologies

TABLE 6. Multi-class classification performance of DNN-2 using
R_FRH_D, R_SRH_D and R_FSRH_D on Charades and AVA.

of FRH, SRH, and FRH+SRH (FSRH), which can be used
in DNN-2. Restated, they are DNN-2 adopting R_FRH_D,
R_SRH_D, and R_FSRH_D at τ =3. The experimental
results at the video-mAP@0.5 metrics are summarized in
Table 6. The proposed DNN-2 using R_FSRH_D noticeably
outperformed the other two, with a precision improvement
from 0.18% to 1.17% video-mAP on both the Charades and
AVA datasets. This is because the integrated FRH and SRH
can pay attention to the diverse structural features of fast and
slow motions associated with subject actions.

4) STATE-OF-THE-ART COMPARISONS
We compare the proposed DNN-1 with the conventional
ones listed in Tables 7 and 8 associated with action recogni-
tion tasks on JHMDB-21, UCF101-24, and TP. In Table 7,
R_FSRH_D proposed in our DNN-1 is strongly comple-
mentary to the 3DCNN. State-of-the-art performance was
achieved on UCF101-24 and the second best on JHMDB-21.
Regarding the best outcome on JHMDB-21, the conventional
DNN using the Pose Action 3D (PA3D) architecture via
multi-level semantic factorization and temporal pose convo-
lution of RGB, spatiotemporal poses, and motions, which
is a complicated architecture. This shows that DNN-1 is
an effective and efficient topology for action recognition.
In Table 8, the proposed DNN-1 significantly outperforms
the recent conventional approaches using the convolutional
pose machine and the pose graph convolution network
on the TP dataset [23], [24]. This indicates that the pro-
posed DNN-1 can learn discriminative features for action
recognition.
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TABLE 7. Performance of DNN-1 and the other DNNs on JHMDB-21 and
UCF101-24.

TABLE 8. Performance of DNN-1 and the other DNNs on TP.

TABLE 9. Performance of the proposed DNN-2 and conventional ones on
JHMDB-21 and UCF101-24 at Video-mAP@0.5.

FIGURE 10. Visualization of R_FSRH_D. (a) Bounding box of a subject.
(b) Feature map of a subject. (c) Pixel-wise feature maps highlighting the
spatial regions at τ = 1, 3 and 5 in R_FSRH_D.

The action detection results of the proposed DNN-2 and
the conventional ones on JHMDB-21 and UCF101-24 are
listed in Table 9. Following the standard settings, the results
of action detection were obtained using the video-mAP cri-
terion at IoU = 0.5. Overall, the proposed DNN-2 achieves
comparable outcomes, in which most categories have a

TABLE 10. Performance of the proposed DNN-2 and conventional ones
on AVA and Charades.

FIGURE 11. Results of DNN-2 for action detection at four activity
examples of JHMDB21 where red boxes being the ground truth, and
green boxes being the predicted boundary subjects associate with
multiple labels and their confident scores.

single action per subject. Accordingly, the mechanism of
the proposed DNN-2 using GASA has not been effec-
tively addressed. According to Tables 7 and 9, the proposed
DNNs exhibit the best performance in action recognition and
competitive performance in action detection, respectively.
Notably, DNN-2 achieves the best compromised performance
(85.1%+55.1% = 140.2%) from the two datasets when per-
formance summation from the two datasets is considered.

Table 10 lists outcomes of the proposed DNN-2 and con-
ventional ones on Charades and AVA. The proposed DNN-2
demonstrates state-of-the-art performance on AVA, and the
second best on Charades. The proposed DNN-2 achieves
27.7% video-mAP on AVA, outperforming the second best
by 0.5% video-mAP. Therefore, the proposed DNN-2 can be
successfully applied to various daily-life videos for outstand-
ing context-aware performance.
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FIGURE 12. Results of DNN-2 at different video examples from AVA (1st row), Logistics-Webcam (2nd row) and panoramic camera (3rd and 4th
rows), where the estimated bounding boxes marked by red and green colors being and being not the ground-truth, respectively.

5) VISUALIZATION
In this section, we qualitatively evaluate the proposed DNNs
using the following visualizations. First, Fig. 10(a) shows the
bounding box of a subject for action detection. The bounding
box of a subject is processed to yield highlight features,
as shown in Fig. 10(b). To further validate the effectiveness
of the FSRH blocks in R_FSRH_D, a comparison of different
numbers of τ is illustrated in Fig. 10(c). R_FSRH_D at τ = 3
can effectively emphasize the critical part related to an action,
revealing the effectiveness of dense contextual information
aggregation for action detection. However, at τ = 5, the crit-
ical part related to an action likely leaves out of the main body
as compared to the case at τ = 3. This phenomenon illustrates
that the proposed R_FSRH_D adopts three cascaded FSRHs
at τ = 3.

To understand what has been learned in the process of
DNN-2, we visualize the attention from R_FSRH_D and
GASA. In Fig. 11, the results from DNN-2 are visualized,
where four activity examples of JHMDB21 are displayed
at time steps of 10, 20, and 30. A warm color reveals a
high attention intensity. R_FSRH_D andGASA can highlight
the meaningful parts of motions from different subjects and
integrate them together as a discriminative representation
for action detection. Specifically, with only one subject in
a scene, the emphasized part appears in the subject body,
as depicted in rows 1 and 3 of Fig. 11.Whenmultiple subjects
exist in a scene, GASA provides a relatively important clue
regarding an atomic subject in rows 2 and 4 of Fig. 11.
Hence, the proposed R_FSRH_D and GASA can leverage
significant information from their attention mechanisms to
improve action localization and prediction.

Fig. 12 shows some detection examples on the datasets
fromAVA, a webcam [58], and a panoramic camera [59], [60]
in real indoor actions. The detection results of the proposed
DNN-2 for different videos are visualized, where each sub-
ject has multiple actions. In each row, the detection outputs
for a specific video clip are displayed. Orange is a false-
positive localization. The bounding boxes are labeled with
a red color if the detection results are ground-truth. Other-
wise, the predicted bounding boxes are labeled in green. This
illustrates that the proposed R_FSRH_D and GASA jointly
learning in the spatial and temporal domains via the attention
mechanisms is an effective way to improve the discriminative
capability for action detection.

V. CONCLUSION
In this study, we successfully developed two DNNs based
on R_FSRH_D and GASA to achieve outstanding perfor-
mance in action recognition and detection. DNN-1 has a
3DCNN, R_FSRH_D, RL, and classification layer for action
recognition. DNN-2 includes a 3DCNN, RPN, R_FSRH_D,
GASA, and classification-localization layer for action detec-
tion. R_FSRH_Dhas three cascaded FSRHswith dense resid-
ual connections to progressively dig out significant context
and long temporal information, where FSRH consists of
two RHs to extract a pair of features from fast and slow
actions. In particular, the proposed FSRH block with the
same dimensions of input and output can be embedded in
any DNN to become an inception layer for performance
enhancement. GASA discovers the correlations between an
atomic subject and other subjects to perceive subject inter-
actions from an atomic subject point of view. Extensive
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experiments on the five video datasets were performed and
examined. In action recognition, the proposed DNN-1 can
achieve state-of-the-art performance of 98.6% on UCF101-
24 and 98.1% on TP. In action detection, our DNN-2 achieves
state-of-the-art video-mAP of 27.7% on AVA and the second-
best video-mAP of 25.7% on Charades, to the best of our
knowledge. Therefore, the proposed DNN-1 and DNN-2 are
prominent models for the outstanding performance of action
recognition and detection in various context-aware video
applications.
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