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ABSTRACT In recent years, Wi-Fi infrastructures have become ubiquitous, providing device-free passive-
sensing features. Wi-Fi signals can be affected by their reflection, refraction, and absorption by moving
objects in their path. The channel state information (CSI), a signal property indicator, of the Wi-Fi signal
can be analyzed for human activity recognition (HAR). Deep learning-based HAR models can enhance
performance and accuracy without sacrificing computational efficiency. However, to save computational
power, an inception network, which uses a variety of techniques to boost speed and accuracy, can be adopted.
In contrast, the concept of spatial attention can be applied to obtain refined features. In this paper, we propose
a human-human interaction (HHI) classifier, CSI-IANet, which uses a modified inception CNN with a
spatial-attention mechanism. The CSI-IANet consists of three steps: i) data processing, ii) feature extraction,
and iii) recognition. The data processing layer first uses the second-order Butterworth low-pass filter to
denoise the CSI signal and then segment it before feeding it to the model. The feature extraction layer uses
a multilayer modified inception CNN with an attention mechanism that uses spatial attention in an intense
structure to extract features from captured CSI signals. Finally, the refined features are exploited by the
recognition section to determine HHIs correctly. To validate the performance of the proposed CSI-IANet,
a publicly available HHIs CSI dataset with a total of 4800 trials of 12 interactions was used. The performance
of the proposed model was compared to those of existing state-of-the-art methods. The experimental results
show that CSI-IANet achieved an average accuracy of 91.30%, which is better than that of the existing best
method by 5%.

INDEX TERMS Channel state information (CSI), convolution neural network (CNN), deep learning,
inception module, spatial attention.

I. INTRODUCTION

Human activity recognition (HAR) is a fast-paced and
demanding research area. The human ability to recognize
another person’s activities is of great interest in the fields
of machine learning and Wi-Fi vision. Several applications,
including surveillance cameras, human—computer interac-
tions, and robots for human behavior characterization, require
multiple activity detection systems as a consequence of this
study. Traditional activity-recognition systems use image
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sensors [1], wearable sensors [2], RFID [3], RADAR [4],
and other special-purpose devices. There are some limitations
that affect their performance: The image sensor-based activity
recognition methods produce false positive results owing to
the deviation of the line of sight, illumination condition, and
view-angle and run the risk of privacy leakage. For wearable
sensing, users need to put on the sensing devices while moni-
toring, which can be uncomfortable. Radar-based approaches
are expensive irrespective of the coverage range.

According to several studies, indoor human activities can
be detected by examining the characteristics of Wi-Fi signals
that are influenced by their activity [5]. Therefore, human
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activities can be recognized by analyzing the pattern of Wi-Fi
signals that are affected by the object in the propagation path.
Wi-Fi signals offer a wider range of coverage than traditional
RF-based sensing technologies. In addition, Wi-Fi signals
are noninvasive, which protects users’ privacy, and human
activity identification techniques based on Wi-Fi signals are
device-free and do not require users to put on sensors. Hence,
Wi-Fi signals can be utilized to replace traditional sensing
technologies in activity recognition because of these advan-
tages. Wi-Fi signals may travel through doors, furnishings,
and windows. Wi-Fi signals can be analyzed by exploiting
the signal properties in two ways: the received signal strength
indicator (RSSI) and channel state information (CSI). The
RSSI signal is currently the most widely utilized signal in
indoor positioning [6], tracking [7], and radio tomographic
imaging (RTM) [8]. However, RSSI is measured by a single
value from each packet. RSSI is unable to function well in
complicated scenarios owing to multi-way fading and time-
dynamic properties. For other types of wireless signals (e.g.,
CSlIsignals), the amplitude of the signal transmission channel
and the response to each subcarrier step can be expressed as a
complex matrix. The quality of a channel can be evaluated by
calculating the amplitude and frequency at the receiver end
for each channel using a complex number. The signal power
attenuation induced by the multipath effect is thus demon-
strated by the amplitude of the CSI signal. CSI is measured
per orthogonal frequency-division multiplexing (OFDM) per
packet. When compared to RSSI, this is a fine-grained signal
property representation of the wireless connection. In this
regard, the use of CSI is of great potential in a complex
environments as a robust solution. This has a broad range
of applications, including respiration detection [9], gesture
recognition [10], and human behavior identification [11], and
has shown excellent results. Consequently, the focus of this
study is on HAR using Wi-Fi signals based on CSI.

Most existing CSI signal classification methods use sta-
tistical features that are extracted manually from the CSI
signal. These handcrafted features are then analyzed using
traditional machine learning classifiers, such as the hidden
markov model (HMM) [12], random forest, and support
vector machine (SVM) to classify CSI signals. Despite the
positive results obtained with handcrafted features, extracting
new features to characterize the information irrespective of
time, frequency, and spatial domains is considered difficult.
Deep convolutional neural networks may be used to learn
deep features from input signals without having to construct
them explicitly. The CSI captures the variations in the ampli-
tude and phase information associated with different subcar-
rier frequencies of a Wi-Fi channel. Multi-path effects and
the presence of moving objects in the signal propagation route
affect the amplitude and phase information of the CSI signals.
Changes in the amplitude of the CSI signals were more stable
than changes in the phase information. Hence, we focused on
the amplitude of CSI to build the model.

Despite the impressive performance of current CSI-based
HAR methods, these methods were primarily focused on
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recognizing single-person actions conducted by a single indi-
vidual [13]-[15]. These methods may not be applicable for
detecting multi-person activity in real-world scenarios. Pre-
vious research has shown that the difficulty of identifying
human-human interactions (HHIs), which involve multiple
interacting people (e.g., high five and pushing interactions),
is more challenging than identifying single-human activi-
ties (e.g., running and sitting activities) [16]. A three-layer
CNN [17] is proposed, which employs publicly available CSI
data [18], converting it into a 2D grayscale image to recognize
the HHIs. This approach did not use any denoising, and the
same time lost certain important features while converting the
grayscale image.

To address these issues, a CNN design is proposed that
employs both the inception module and the attention mech-
anism and is called CSI based inception attention network
(CSI-TANet). It is an inception CNN with an attention mech-
anism that uses spatial attention in an intense structure. This
network is utilized for the recognition of HHIs with CSI
signals without converting it into other representations.

To summarize, the contributions of this paper are shown as
follows:

1) To develop a CNN-based inception attention network

(CSI-IANet) utilizing a spatial attention module.

2) To validate the effectiveness of the proposed model

using publicly available datasets.

3) To verify the performance of the proposed model with

that of other state-of-the-art models.

The remainder of this paper is organized as follows.
In section II, we review related works of CSI signal-based
HAR method. Section III presents details of the public
HHI Datasets. Section IV describes the details of the sys-
tem modeling including data processing, features extraction,
recognition and methodology. The experimental results and
discussion are presented in Section V and finally Section VI
concludes the paper with a discussion on the future work.

Il. RELATED WORKS

Sensing, recognition, and detection of humans are the
driving factors for building a ubiquitous and pervasive
indoor environment that can sense the environment and can
act accordingly. Three types of approaches, vision-based,
wearable-sensor-based, and RF-based approaches, are mainly
applied for sensing, recognition, and detection [19]. Among
the existing solutions, RF-based approaches are preferable
because of their contactless and non-line-of-sight character-
istics. The wireless signals transmitted from the transmitter
propagate in the environment, which is reflected, refracted,
and absorbed by the object and human presence before being
received by the receiver. By analyzing the pattern of the
received signal, it is possible to sense, recognize, and detect
the target object. RF-based techniques, including RFID [3],
Bluetooth [20], UWB [21] and Wi-Fi [22] are frequently used
in this regard. The ubiquitously available infrastructure and
the adaptation of the MIMO OFDM technique in Wi-Fi keeps
it one step further than other RF-based techniques. The Wi-Fi
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signal can be analyzed using the two channel property indi-
cators: received signal strength indicator (RSSI) and channel
state information (CSI). The existing literature can be divided
into two categories: RSSI-based and CSI-based technologies.

A. RSSI-BASED TECHNOLOGY

In the past decade, RSSI has been employed in studies on
human positioning, human surveillance systems, and human
activity analysis. RSSI is a device-bound technique that uti-
lizes radio frequency sensing devices and uses the signal
strength obtained under the direct influence of shadowing
and multiway fading. The existence of a human between the
wireless links reduces the strength of Wi-Fi signal, so the
discrepancy between the signal intensity broadcasted and
received can be computed. Although this is a fundamen-
tal and simple strategy, it is challenging to record changes
in the signals in real time. Moore et al. [23] suggested a
human movement detection method that keeps track of the
variations in the default signal strength considering fixed
wireless transmitters and receivers. An RSSI-based envi-
ronment tracking system was proposed by Kosba et al. [24],
which monitors the variation in the environment when a
human enters the area of interest. Yang et al. [25] intro-
duced a hybrid approach to classify human intrusion patterns
simultaneously. Booranawong et al. [26] introduced a human
movement detection and tracking system based on the RSSI
approach. It first captures and measures the RSSI signals due
to human movement and then introduces a region selection
technique for the identification of human motion.

Sigg et al. [27] presented a system for the recognition of
human activity that considers the variation in RSSI sig-
nals. They recognized a number of human behaviors, includ-
ing lying, moving, sitting, and crawling. Their technology
obtained remarkable precision under various situations utiliz-
ing a universal software peripherals radio platform. A gesture
identification system, WiGest, is proposed [28], which relies
on the RSSI fluctuation induced by human hand gestures
in test movements. WiGest identified different patterns of
hand gestures and utilized one overhead and three overhead
transmitters. The average accuracies for a single transmit-
ter and three overhead transmitters were 87.5% and 96%,
respectively. Gu et al. [29] demonstrated an HAR method
using the Wi-Fi RSSI. From the RSSI signal, they manually
extracted several representative features. Then, to recognize
the simple activities of sitting, standing, and walking, a fusion
method was developed. The average accuracy achieved
ranged between 75% and 92.58%. However, the RSSI-based
techniques suffer from the drawback of RSSI signal variation,
which is caused by the varying environment. This may lead
to an erroneous detection.

B. CSI BASED TECHNOLOGY

CSI has recently been used for indoor localization and
activity classification because it provides a fine-grained
representation of the wireless link compared with RSSI.
Damodaran et al. [30] presented a device-free HAR and CSI
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fall detection system that identified five activities using long
short-term memory. Linear discriminant analysis is used for
feature extraction, and discrete wavelet transformation is used
for noise removal during data preprocessing. This yields an
average accuracy of approximately 95%. A reliable HAR
framework Wi-Motion [31] is proposed, which uses ampli-
tude and phase information from CSI to classify five common
human activities. R-DEHM [32] is a modern method for
robust duration estimation of human motion that employs CSI
for motion detection to predict the presence, absence, and
duration of human motion. Furthermore, CSI segmentation
was used to estimate the motion duration, with an average
accuracy of 94%. Chase [33] used all CSI subcarrier data to
distinguish coarse movements such as standing, jogging, and
moving hands. Unlike moving activities, hand movements
use recurring patterns in a stable position. This method uses
two ML techniques: k-nearest neighbor (kNN) and SVM.
The Wi-Chase research claims that the performance can be
updated utilizing additional CSI channel subcarriers with
multiple access point (AP) and receiver links. The E-eyes [34]
algorithm was presented to detect various indoor activities
and walking directions. The E-eyes method calculated the
correlation between known and unknown activities to identify
unknown activity. Moreover, the E-eyes algorithm used CSI
variance to distinguish between walking activity and in-place
activity because walking activity causes more CSI variance
than in-place activity. Subsequently, using Earth Mover’s Dis-
tance, in-place activities were detected based on similarities
to known activities, and walking directions were identified
using dynamic time warping. They also claim that the recog-
nition accuracy increases for large packet transmission rates.

Wi-Fi CSI is used to identify vital indicators (respi-
ration and heartbeat rates) in a smart healthcare system.
Wang et al. [35] employed CSI phase information to discover
the vital signs. The researchers employed multiple antennas
at the AP end to increase the power of the reflected signal to
detect heart rates and heart motions. Likewise, Liu et al. [36]
used CSI to detect the respiratory rates. To enhance the signal
quality, the AP and receiver were placed on opposite sides of
the user in the test-bed scenario. They discovered that sleep-
ing positions had an impact on the accuracy of respiration
detection: when a person sleeps in the “Embryo,” “Block,”
or “Yearner,” the back of the patient interrupts the Wi-Fi
signal routes. As a result, the researchers concluded that users
should move frequency-domain spectral measurements for
detection. A gesture recognition system was proposed by
Tian et al. [37] based on CSI signals. The main concept is to
create a virtual antenna using the signals reflected by hand
motions. To identify each hand action, they used an SVM.
The proposed technique was tested with six hand gestures and
was found to be 97% accurate on average.

A number of obstacles stand in the way of the creation
of a reliable and efficient HHI recognition model. The first
and most difficult task is to reduce noise from raw CSI that
has been included in the received signal as a result of the
carrier frequency offset (CFO). This is a typical issue caused
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by oscillator differences between the transmitter and receiver.
The phase data of the received signal are changed by the CFO,
making it impossible to determine whether the signal loss is
due to CFO or human movement. This problem is handled
by ignoring the phase of received signal and focusing on
the strength of the complex CSI, which includes adequate
indication of a body’s movement. However, residual noise
lowers the signal strength and can be compensated by using
effective denoising algorithms. Another difficult task for opti-
mal activity detection using CSl is feature processing. Certain
implicit features that are useful for activity detection may be
lost when features are extracted using handcrafted methods.
It is quite difficult to model the complex domain as the
related information are not always obvious. Machine learning
can helps us in this regard because it uses computational
methods to learn the information from data and can predict
the unknown. So, ML algorithms are now used in a wide
variety of applications. In activity recognition several ML
approaches are used for feature detection, classification or
prediction purpose. Convolutional neural networks (CNNs)
are used to learn the feature space automatically which
reduced the overfitting problem and number of calculations
in traditional handcraft features and shallow ML algorithms.
Therefore, modern researchers have adopted CNN in deep
learning with autonomous feature learning [38]-[40]. The
end-to-end deep learning framework (E2EDLF) [17] consists
of a three-layer CNN that can handle temporal and spatial
features and utilizes publicly available CSI data [18]. They
converted the raw 4-dimensional CSI data into 2D grayscale
images to recognize HHIs for the first time and reported an
86.3% accuracy. This approach did not use any denoising and
simultaneously lost some important features while converting
CSI data into grayscale images.

Network design has become an essential aspect of the
present research because how well a network is constructed
depends on the performance of an application. Since the suc-
cessful implementation of CNN, an extensive range of archi-
tectures has been developed, from a relatively simple LeNet
to a complicated inception network. When prior models went
deeper to improve performance and accuracy with time com-
plexity, Inception net set a new standard in CNN classifiers
and has been meticulously planned. It employs a variety of
techniques to boost the speed and accuracy [41]. Recently,
several researchers [42]-[44] have investigated another crit-
ical topic called attention to improve the performance of
CNNs. Several prior studies on object identification have
highlighted the importance of the attention process [45], [46].
It not only indicates where an object’s focusing points are,
but also increases the interest representation. In this paper,
we propose a CNN design that employs both the inception
module and the attention mechanism, inspired by recent
developments in deep learning. Here, we refer to the proposed
model as CSI based inception attention network (CSI-IANet).
It is an inception CNN with an attention mechanism that uses
spatial attention in an intense structure. Instead of converting
the raw CSI data to grayscale images, we directly utilized
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the raw CSI data, which preserved all the features. Moreover,
we utilized a second-order Butterworth filter to denoise the
raw CSI data. The proposed CSI-IANet shows better perfor-
mance in terms of accuracy and number of interactions that
are being recognized.

C. BACKGROUND OF CsI

CSI measures the channel features of a wireless commu-
nication system that integrates the effects of delay time,
intensity reduction, and phase change [47]. A signal from the
recipient is generally superimposed as scattering, diffraction,
and reflectance events that occur in the passage of the signal
channel. The fundamental objective of CSI is to adjust the
communication system to the present channel circumstances.
The multiantenna system ensures excellent dependability
and high-speed connections. The entire wireless channel is
split into several narrowband subcarriers in an orthogonal
frequency-division multiplexing (OFDM) scheme. The com-
munication system can be calculated as follows [47]:

y,':H,'Xi—‘rV, i=1,2,3......... N, (1)

where H; € CNRXNT denotes the CSI matrix of i subcarrier,
v denotes the noise term, N represents the number of OFDM
subcarrier frequencies, and y; € RM&x and x; € RV is the i
received and transmitted signal.

nto k2 h N
l ] e l
A T
H; = 2
h?lrl hi»sz hg\]TNR

where hék is the CSI of the i subcarrier for the link between
the j transmitted antenna and the k" receiving antenna. The
hi.k is a complex value, which can be represented as

hi:k _ |h:k|e/lhik 3)

where |hi.k | and Zh§k denote amplitude and phase respectively.

Therefore, one CSI measurement will contain N, CSI
matrices with N7, x Ng_dimensions, N7, and Nr_ denote
the number of the transmit and receive antennas, respectively.
The amplitude and phase information are included in the CSI
measurements. The carrier frequency offset (CFO) frequently
deteriorates phase information [13]. CSI has a somewhat
steady amplitude and is commonly used for human identifi-
cation [48]. In this study, we use CSI amplitude information
to recognize HHIs.

Ill. DATASET DESCRIPTION

In this study, we used a CSI dataset of HHIs [18], which
is available online to train and measure the performance of
our model. This dataset has 12 distinct interactions made by
40 different pairs of participants from 66 participants who
were willing to experiment in an indoor space. Each pair of
participants engaged in ten trials of 12 different interactions:
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FIGURE 1. Number of samples in each class of the dataset.

approaching (I7), departing (I7), hand shaking (/3), high-five
(14), hugging (I5), kicking with the left leg (/¢), kicking with
the right leg (/7), pointing with the left hand (Ig), pointing
with the right hand (I9), punching with the left hand (I19),
punching with the right hand (/11), and pushing (/13). There-
fore, they recorded a total of 4800 trials of 12 interactions.
There are two types of intervals in each of the 12 HHIs:
steady-state and interaction intervals. Within the steady-state
duration, the two participants faced each other and did noth-
ing. Within the interaction duration, the pair of participants
performed one of the twelve different HHIs. As a result, the
thirteenth interaction was recorded.

The recorded Wi-Fi signals transferred from a commercial
off-the-shelf access point (AP) named Sagemcom 2704, to a
desktop PC equipped with an Intel 5300 NIC with the help of
the publicly accessible CSI tool [49]. The AP was set up to
operate in the 2.4GHz band, with wireless channel number 6,
a channel bandwidth of 20MHz, and an index 8 modulation
coding scheme. The AP has two internal transmit antennas
(N, = 2) whereas the NIC has three external receive anten-
nas (Ng, = 3) and the resulting system has 2 x 3 Wi-Fi
streams. The CSI tool captures the CSI for 30 subcarriers
(i.e., Ny = 30) uniformly distributed across the channel
bandwidth of 20MHz. As a result, each packet contains 2 x
3 x 30 CSI values. Fig. 1 shows the number of samples
in each interaction class of the datasets used. It shows that
the steady-state interaction class has the highest number of
22792 samples. Pointing with the left hand and pointing
with the right hand had almost equal numbers of samples.
Similarly, interactions kicking with the left leg and kicking
with the right leg have a close number of samples. Because of
these variations in the number of samples for each interaction,
this dataset is imbalanced in nature.
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FIGURE 2. Block diagram of the proposed CSI-IANet CSI signal classifier.

IV. SYSTEM MODELING

The proposed CSI signal classifier works in four sections:
CSI data collection, data processing, feature extraction and
recognition as shown in Fig. 2. The commercial off-the-shelf,
Wi-Fi device was used as the transmitter to collect the CSI
data. An Intel 5300 NIC interfacing with a personal computer
was used as a receiver to collect CSI signals. Here, the online
available public data set was utilized. Detailed descriptions
of the datasets are included in previous III data description
section. Noise may induce while propagation; thus, we used
the second-order low pass Butterworth filter [50] to remove
the noise. Next, a three-layer CNN with inception and spatial
attention module is used to capture the features from the CSI
data. The features are then classified into 13 different classes
in recognition section.

A. DATA PROCESSING

In this section, the data pre-processing task is presented. Pre-
processing was performed in two steps: 1. Denoising Filter
and 2. Segmentation. Detailed descriptions of denoising filter
and segmentation are provided in Sections IV-A1l and IV-A2
respectively.

1) DENOISING FILTER

The raw Wi-Fi CSI data obtained from the publicly avail-
able CSI dataset are four-dimensional tensors. These ten-
sors describe the time (packet index), frequency (OFDM
subcarrier frequencies), and spatial variations of the carrier
frequency response values observed for a Wi-Fi system (i.e.,
pairs of transmit-receive antennas). High-frequency noise,
outliers, and artifacts are induced in the raw Wi-Fi CSI data,
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FIGURE 3. Visualization of CSI raw and filtered signal for different interactions.

which may decrease the recognition rate of the classifier.
Therefore, it is necessary to eliminate this unwanted noise.
Here, a second-order low-pass Butterworth filter is utilized
to remove high-frequency noise. This filter can remove a
significant amount of noise from CSI data. Fig. 3 shows the
raw and filtered CSI signal of 1% subcarrier among the 30 sub-
carriers for the 1% transmit-receive antenna pairs of 13 HHIs.
The shaded area indicates the steady state before and after
performing any interactions. The denoising filter is utilized
in the four-dimensional data space. The dimension of the
datais I x N7, x Ng, x Ny. Where, number of subcarriers,
N; = 30, the number of transmit antenna Ny, = 2, the
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Packet Index
Filtered signal Steady state
number of receive antenna Ng, = 3) in the testbed, and

I denotes the number of packets recorded during a given
trial. After denoising the four-dimensional filtered CSI data
is converted into 2D matrix of dimension D x [ that retains
the time, frequency, and spatial data. Where, D = N, x N,
N, = N1, xNg_, the number of transmit-receive antenna pairs
in the test-bed.

2) SEGMENTATION

Segmentation is the process of partitioning signals into
smaller segments, also called windows. This helps to resolve
certain limitations due to data pre-processing issues. The first

166629



IEEE Access

M. H. Kabir et al.: CSI-IANet: Inception Attention Network for Human-Human Interaction Recognition Based on CSI Signal

0 250 S0 750 1000 1250 150 1750
Packet Index (I)

(i)

W=256

750 1000 1250 1500 1750

Packet Index (I)

(ii) (iif)
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Segmented signal.

issue is that the recorded trials of data of different subjects
have different lengths, which may limit the recognition pro-
cess. Another issue is that the large length of recorded data
requires high computational power, which consumes more
time. To overcome these limitations, the window size is set
at 256, and 50% of the window is overlapped. Moreover,
the overlap window reduces noise caused by data truncation
during the windowing process and improves efficiency by
increasing the number of data points. Fig. 4 shows the seg-
mentation process of CSI signals.

B. FEATURE EXTRACTION

In this paper, a convolutional neural network (CNN) design
that employs both the inception module and the spatial atten-
tion mechanism is proposed. This CNN was utilized to extract
both the temporal and spatial features. Here, the proposed
model is termed an inception attention network (CSI-IANet).
It is an inception CNN with an attention mechanism that uses
both temporal and spatial features in an intense structure. The
architecture of the model is shown in Fig. 5. It has four layers.
First three layer used for extracting temporal and spatial
features. Inception and spatial attention module are utilized
in two layers to produce more refined features. Each layer
uses different size of filter, pooling and stride. For normal-
ization and activation batch normalization (Batch Norm) and
Rectified Linear Unit (ReLU) is used respectively. A brief
description of each component of the proposed CSI-IANet
model is given here.

1) INCEPTION MODULE

Recently, inception nets have set a new standard for CNN
classifiers. It reduces the computational complexity and
improves the performance and accuracy compared to the con-
ventional multilayer-based approach of CNN. It also employs
a variety of techniques to boost the speed and accuracy [41].
The inception module is usually slightly wider than the
deeper. The proposed CSI-IANet used a three-step approach
for the inception module, and instead of maximum pooling
(MaxPool), it utilizes average pooling (AvgPool). The dotted
portion in Fig. 5 shows the architecture of the inception layer.
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The inception module uses the features from the previous
layer. The first step will perform a convolution with a filter
size of 1 x 1 and stride value of 1. The second step first
performs a convolution with a filter size of 1 x 1 and stride
value of 1, and then apply another 3 x 3 convolution with
stride value 2. The last step in this inception module consists
of using an average pooling with 3 x 3 filters and a stride
value of 2, followed by a 3 x 3 convolution applied with
stride 2. Finally, all the outcomes of the three steps were
concatenated and passed through the next layer.

2) SPATIAL MODULE

Nowadays, the concept of the attention module was intro-
duced to improve the performance of CNNs [42]-[44]. Sev-
eral prior studies on object identification have highlighted
the importance of the attention process [45], [46]. It not
only indicates where an object’s focusing points are, but it
also increases the interest representation. Many recent stud-
ies have revealed that typical fully convolutional networks
provide local feature representations that can lead to object
misclassification [51], [52]. To model different descriptive
relationships regarding local feature representations, a spatial
attention matrix is developed, which represents the spatial
interactions between features of every two neighbors. The
spatial attention module (SAM) concentrates on “where’” and
“which” information is the most significant to a section of
the data. The average pooling and max pooling procedures
are used first to calculate spatial attention, and then they are
added elementally to provide a series of resilient features.
Finally, the concatenated descriptor uses a convolutional
layer to build a spatial attention map, which highlights or
weakens the information in the inputs. A schematic represen-
tation of the SAM is presented in Fig. 6.

Let us consider the input features F € RE*H*W which
are given to two pooling layers to generate two 2D maps:
F3, € RPXW anq Fa, € RIXHXW where, C is the
number of input channels, H and Ware the height and width
of F respectively. Subsequently a convolution operation is
performed with the help of a single convolution kernel with
a size of 7 x 7 filter. Lastly, a sigmoid activation function
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FIGURE 5. Proposed model architecture.

is applied to the convolutional procedure to create a feature
map. Finally, a sigmoid activation function was applied to
the convolutional procedure to create a feature map. In the
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spatial dimension, the output feature map matches the input
feature map. F/ represents the result of the spatial attention
map (SAM (F')) element-wise multiplied by F* which is passed
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FIGURE 6. Spatial attention module.

to the next step. The mathematical expression of SAM and
final output F/ can be expressed as follows:

SAM(F) = (f"*7([AvgPool(F); MaxPool(F)])  (4)
SAM(F) = o (f 77 ([F3q  Fpac)) )

where o is the sigmoid activation function.
F' = sam(F) Q) F (©)

where Q) represents the element wise multiplication.

C. RECOGNITION

The fourth layer of the proposed CSI-IANet acts as a recogni-
tion phase. It consists of five sublayers: flatten layer, dropout
layer, dense layer-1, dense layer-2 and softmax layer. The
refined feature obtained from the previous layer is passed
through the flattened layer of the recognition phase. Subse-
quently, the dropout layer could deactivate 20% of neurons to
avoid overfitting. Dense layer-1 is composed of 256 neurons
and utilized the ReLU activation function. In contrast, the
dense layer-2 used 128 neurons with the ReLU activation
function. Finally, the softmax layer classifies the CSI signals
into 13 different groups. A summary of the different layers of
the proposed model is presented in Table 1.

D. METHODOLOGY
The methodological steps involved in the proposed recogni-
tion method are described in the block diagram in Fig. 7. This
was done in two phases. In the first phase, pre-processing
of raw CSI signal and data split was performed, and in the
second phase, model training and evaluation were performed.
Three steps must be followed to design a statistical model
for classification: i. Model building, ii. Training and model
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Convolution
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Refined Feature

TABLE 1. Summary of the proposed CSI-IANet model.

[ Section [ Layer Type | Patch size/Stride | Output size |
Convolution 3x3/1 254178 x 32
Batch Normalization 254x178 x 32
Linear Rectified Unit (ReLU) 254x178 x 32
Max pool 3x3/1 84x59 x 32
Inception (a) 42x30 x 96
SAM 42x30 x 96
Convolution 3x3/1 42x30 x 64
Feature Batch Normalization 42x30 x 64
Extraction Linear Rectified Unit (ReLU) 42x30 x 64
Max pool 3x3/1 14x10 x 64
Inception (b) 7x5 x 192
SAM Tx5 x 192
Convolution 3x3/1 7x5 x 128
Batch Normalization Tx5 x 128
Linear Rectified Unit (ReLU) Tx5 x 128
Max pool 3x2/1 2x2 x 128
Flatten 1x512
Dropout 20% 1x512
Recognition Dense 1x256
Dense 1x128
Softmax 1x13

validation, and iii. Model evaluation. The quality of model
development and training depends on the amount of data
with sufficient variety. Moreover, the proper selection of the
hyperparameters (i.e., the number of epochs, learning rate,
batch size, activation function, etc.) also provoked model
quality. This study was performed using a publicly available
CSI dataset. The training set was used to select the hyper-
parameters of the proposed model, and a validation set was
used to evaluate its performance. The proposed CSI-IANet
model was trained for up to 100 epochs with 64 batch sizes.
An early stop callback for validation loss with 10 epochs of
patience was used to end the training if no improvements were
identified. The learning rate is a hyperparameter that governs
how much the weights of the network need to be altered
with respect to the loss gradient. The model can learn to best
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estimate the function given the available resources in a certain
number of training epochs with a perfectly adjusted learning
rate. In this study, a small learning rate is initiated. When val-
idation accuracy did not improve in six consecutive epochs,
the learning rate was updated by 0.75 times of its previous
value. This model utilized Adam optimizer [52] to minimize
error by setting parameters « = 0.001 (learning rate), 1 =
0.9 (decay rate for the first moment), 82 = 0.999 (decay rate
for the second moment) and € = 1e — 08 (constant to sum of
mini-batch variances). Finally, categorical cross-entropy was
used to calculate the error for the optimizing algorithm.

A 10-fold cross-validation (CV) approach was used to
train and evaluate the proposed CSI-IANet and compare its
performance with other state-of-the-art techniques. Before
training, the hyperparameters were defined as described in
the previous section. The labeled, segmented CSI data are
processed from the CSI signals and divided into ten folds.
As shown in Fig. 7, nine randomly selected folds were used
for training, and the remaining fold was used for testing. This
procedure was repeated ten times, and the overall recognition
performance was calculated by averaging the results of each
repetition. A desktop computer with Intel Core 17 3.90 GHz
CPU and NVIDIA Titan XP Pro GTX1080Ti 12 GB GPU,
1 TB HDD, and 32 GB RAM were utilized for the experiment.

The network was run in a TensorFlow environment. For
the evaluation of the proposed model, three metrics (accuracy,
F1-score, and Cohen’s Kappa) have been reported. To obtain
the reliability of the results, all data were evaluated using
10-fold cross-validation. One of the most prevalent evaluation
metrics in classification issues is accuracy, which is defined
as the total correctly identified predictions divided by the total
of predictions produced given a dataset. Accuracy is adequate
when the target class is well balanced, but it is not a wise
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choice when the target class is unbalanced. As the dataset was
slightly unbalanced, hence, for the complete picture of the
model evaluation, other metrics such as F1-score and Cohen’s
Kappa (k-score) were considered. The values used for the
calculation are listed in Table 2 and equation (7)-(10). Here,
true positive (TP) is a result in which the model accurately
identifies the positive class, true negative (TN) is a result
in which the model accurately identifies the negative class,
false positive (FP) is a result in which the model incorrectly
identifies the positive class, false negative (FN) is a result in
which the model incorrectly identifies the negative class.

P
Recall = —— @)
TP + FN
. P
Precision = —— )
TP + FP
TP + TN
Accuracy = O]

TP+ TN + FP + FN

Recall x Precision
Fl—score = 2 x — (10)
Recall + Precision

The Fl-score represents the harmonic mean of the two
measures (recall and precision). The numerical value starts
from O to 1, where O stands for worst value whereas 1 stands
for best value. In case of imbalanced number of sample
datasets in interested classes, the F1-score can utilize to eval-
uate the recognition performance efficiently [39], [40], [48].
On the other hand, the Cohen’s Kappa score (k-score) can
measure the agreement between the projected classes and the
real classes that match them, eliminating any coincidences.
The Cohen’s Kappa score [41], [49] in particular, allows us
to evaluate the recognition performance produced by random
guessing based on the number of samples in each class.
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FIGURE 8. The confusion matrix of the proposed CSI-IANet model for HHI recognition.

TABLE 2. Confusion matrix.

| Predicted Class |
Class=1 Class=0
True Class | Class=1 | True Positive (TP) False Positive (FP)
Class=0 | False Negative (FN) | True Negative (TN)

TABLE 3. The interpretation of the Cohen’s kappa score (k-score).

| k-Score Value | Interpretation

k-score < 0

Poor agreement

0 > k-score < 0.2

Slight agreement

0.2 > k-score < 0.4

Fair agreement

0.4 > k-score < 0.6

Moderate agreement

0.6 > k-score < 0.8
0.8 > k-score < 1

Substantial agreement
Almost perfect agreement

The significance of the Cohen’s Kappa score (k-score) is
elaborated in Table 3.

V. RESULT AND DISCUSSION

The proposed CSI-IANet was evaluated, and its performance
was compared with other state-of-the-art techniques. The
evaluation results show that the proposed model outperforms
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existing techniques. In this section, the details of the eval-
uation results are presented with a proper explanation. The
proposed CSI-IANet model obtained an average recognition
accuracy of 91.30% across the 13 HHI classes. A confusion
matrix with a heatmap of the proposed CSI-IANet is shown
in Fig. 8. Thirteen different HHIs are considered here. The
average recognition accuracies for each of the 13 classes
are displayed on the main diagonal of the confusion matrix.
Misclassifications occur for two reasons: some interactions
are quite similar, and the beginning and end of certain interac-
tions are identical to steady-state interactions. There is some
overlap for a couple of interactions because of the similarities
between the interactions. From the confusion matrix, it is
assumed that some misclassifications arise for interactions
between punching with the left hand and punching with the
right hand. Similarly, a mismatch also arises for the interac-
tion of kicking with the left leg and kicking with the right
leg. In addition, misclassification may occur because of the
similarities between steady-state interactions with other HHIs
(hand shaking, high fives, pointing with left hand, and point-
ing right hand) as the beginning and end of these interactions
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FIGURE 9. The accuracy score and F1-score obtained by our model.

are identical. Fig. 9 shows the accuracy and F-1 measure in
each of the interaction class.

For performance evaluation of the proposed CSI-IANet
model, accuracy, Fl-score, and Cohen’s Kappa (k-score)
were utilized. The fold-wise results of different performance
metrics (accuracy, Fl-score, and Cohen’s Kappa (k-score))
are tabulated in Table 4. It shows that the fifth fold yields the
highest results for accuracy, F1-score, and k-score, which are
91.98%, 0.92, and 0.90, respectively. Moreover, the second
fold yielded the lowest values for accuracy, Fl-score, and
k-score were 90.46%, 0.90, and 0.88, respectively. However,
there was no major fluctuation in the results for individual
folds, and they provided almost similar results. Accuracy was
calculated as a percentage.

The t-SNE algorithm was applied to visualize these fea-
tures to understand how the proposed model represents the
CSI data in the high-dimensional feature space. To do this,
first, the feature vector is extracted from the previous classi-
fication layer of the proposed model. Next, t-SNE is applied
to map the features onto a 2D space and then visualize the
embedding representations of the dataset. Fig. 10 clearly
shows 13 well-separated clusters of CSI data. The clear and
wide margin among the 13 classes shows how well the CSI
data are separated in the feature space. This indicates that
the distributions of the features are quite different, demon-
strating the good generalization capabilities of the proposed
model.
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FIGURE 10. Two-dimensional t-SNE visualization of the learned

representations of the proposed CSI-IANet model visualized 10% data of
entire dataset.

We used 10-fold cross validation to test and train the
proposed model. Table 4 shows that the 5™ fold achieves the
highest accuracy, Fl-score and k-score among the 10-fold.
Therefore, the training and test accuracy and loss curve for
5t fold of 10-fold cross validation are presented in Fig. 11 for
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TABLE 4. The result obtained from 10-fold CV of the proposed CSI-IANet model.

Metrics Fold Average
) Ist [ 2nd [3rd [4h [5th [6th [7th [8h [O9h [ I0th g
Accuracy (%) 90.56 | 90.46 | 91.78 | 90.31 | 91.98 | 91.09 | 91.25 | 91.76 | 91.91 | 91.85 | 91.30+0.62
F1-score 0.91 0.90 0.92 0.90 0.92 0.91 0.91 0.92 0.92 0.92 0.913+0.0062
Cohen’s Kappa (k-score) | 0.89 0.88 0.90 0.88 0.90 0.89 0.89 0.90 0.90 0.90 0.894+0.0077
] 1.6
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FIGURE 11. Accuracy and loss curve for the 5t fold training and testing.
TABLE 5. Performance evaluation comparison of CSI-IANet model.
[ Classifier | Accuracy (%) | Fl-score | k-score | Number of trainable Parameter
ResNet-50 68.45+0.47 0.682+0.0017 | 0.662+0.0014 26,667
Inception-V3 70.12+0.56 0.701+0.0031 | 0.692+0.0056 26,667
DenseNet-121 69.59+0.37 0.694+0.0023 | 0.674+0.0043 13,355
E2EDLF 86.30 0.86 0.85 935,053
Proposed CSI-IANet | 91.30+0.62 0.913+0.0062 | 0.894+0.0077 546,321

better intuition. This shows that the accuracy and loss curve
became steady after 60 epochs.

To evaluate the performance of the proposed model, it was
compared with three state-of-the-art techniques. The pre-
trained CNNs, ResNet-50, Inception-V3, and DenseNet-121
were utilized for comparison. The number of neurons in
the last layer was set to 13. In addition, the number of
epochs was set to 50, and the Adam optimizer algorithm
was used to tune the pretrained models. Moreover, the pro-
posed model was also compared with the E2EDLF [17] to
recognize HHIs. The performance comparison of the pro-
posed CSI-IANet with other state-of-the-art techniques is
presented in Table 5. The average recognition accuracies
computed across all thirteen HHI classes for the ResNet-50,
Inception-V3, DenseNet-121, and E2EDLF are 68.45%,
70.12%, 69.59%, and 86.30% respectively. The average
recognition accuracies computed across all 13 HHI classes
for ResNet-50, Inception-V3, DenseNet-121, and E2EDLF
were 68.45%, 70.12%, 69.59%, and 86.30%, respectively.
The average recognition F1-score computed across all HHI
classes for ResNet-50, Inception-V3, DenseNet-121, and
E2EDLF were 0.68, 0.70, 0.70, and 0.86, respectively.
Furthermore, the average k-score computed across all HHI
classes for ResNet-50, Inception-V3, DenseNet-121, and
E2EDLF were 0.67, 0.69, 0.68, and 0.85, respectively.
The proposed CSI-IANet obtained recognition accuracy,
Fl-score, and k-score of 91.30%, 0.91, 0.89 respectively.
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TABLE 6. Runtime comparison.

[ Model | Training time (sec) | Recognition time (sec) |
ResNet-50 12715.67£136 0.0021£0.00015
Inception-V3 8798.16+65 0.0019+0.000021
DenseNet-121 9867.86+149 0.0020+0.000023
E2EDLF 934.27+3.56 0.00022+0.000018
Proposed CSI-IANet | 5497.35+1.7 0.00036+0.000025

Compared with existing studies in the literature, our proposed
model showed superior performance to any existing work in
terms of HHI recognition from CSI data. The performance
analysis of the proposed CSI-IANet model demonstrates that
it outperforms the existing best model E2EDLF by 5% in
terms of accuracy, F1-score, and k-score. This improvement
might be due to the new architecture of the proposed model
and the optimal hyper-parameter selection. Thus, our pro-
posed model can be used for the recognition of HHIs.

The runtime of the proposed CSI-IANet for training and
recognition was calculated and compared with those of
ResNet-50, Inception-V3, DenseNet-121, and E2EDLF tech-
niques. Table 6 tabulates the runtime comparison between
the proposed CSI-IANet with others, in terms of training
and recognition time in average £ standard deviation val-
ues. All the time values were measured over ten repeti-
tions of the 10-fold cross validation procedure. The proposed
CSI-IANet required less training time and recognition time
than ResNet-50, Inception-V3, and DenseNet-121. Although
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it took more training time and recognition time than E2EDLF,
it provided 5% better recognition accuracy.

VI. CONCLUSION

This study developed a CSI-based inception attention net-
work (CSI-IANet) for human—human interaction recognition.
Instead of using deep learning, we utilized an inception mod-
ule that widens the network to save computational power.
In addition to obtaining refined features, the spatial atten-
tion model has also been utilized. The proposed classifier
was composed of three sections. The data processing section
applies a Butterworth low-pass filter to denoise the CSI signal
and perform segmentation. The raw data are used to preserve
more features other than conversion into another representa-
tion. Then, the feature extraction layer utilizes the inception
module with spatial attention to obtain the refined feature that
is fed to the recognition layer. The recognition layer utilized
a flatten, dropout, dense, and softmax layer to classify it into
13 different activities. The proposed CSI-IANet shows better
performance in terms of accuracy and number of interactions
that are being recognized. In the future, we can adopt channel
attention with the spatial attention module to obtain more
refined features.
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