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ABSTRACT The number and accuracy of image feature matching directly affect the accuracy of image
warping, which is gaining widespread attention in image stitching. The alignment accuracy is gradually
improved from a single plane to a regular multi-plane warping model. To further improve the accuracy of
image alignment, this paper proposes a multi-plane alignment method based on superpixel segmentation,
which preserves the integrity of local planes as much as possible to reduce ghosting. Recent warps
prove that line features provide strong correspondences, especially in low-textured cases. Moreover, image
segmentation methods such as superpixel segmentation have the function of protecting the object’s integrity.
On the one hand, our approach is based on GMS matching and introduces superpixel segmentation to refine
the matching in the feature matching stage. The homography combines line features to enrich as many
matching points as possible. On the other hand, to solve the problem of misalignment caused by local
warping, the proposed method makes full use of the characteristics of superpixels to perform irregular plane
segmentation to avoid the traditional rectangular segmentation method from dividing different planes into
the same grid. Experimental results demonstrate that the proposed method outperforms some state-of-the-art
warps from both qualitative and quantitative aspects, including the as-projective-as-possible warp (APAP),
the as-natural-as-possible warp (ANAP), the global similarity prior (GSP), etc.

INDEX TERMS Image stitching, image segmentation, local warping, image alignment.

I. INTRODUCTION
Image stitching, which is widely used in video surveil-
lance [1], panorama [2], [3], virtual reality [4], [5], and other
fields of technology, is an important research area in the
past few decades [6]. It can combine multiple images into a
single wide-angle panorama through the critical process of
alignment and blending [7]. Multi-homography, calculated
by matching and mesh-based warping [8], transforms the
image to the same coordinate system to complete local align-
ment [9]. Image blending, the process is to apply reasonable
weighting coefficients in the overlapping area, adjust the
pixel intensity to achieve a smooth transition of the image.
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Earlier, the warps directly stack the homography, a com-
monly used warping model due to the flexibility of its plane
transformation, gradually improving the local alignment abil-
ity. The global warps represented by AutoStitch [10] are
devoted to minimizing the projection deviation between over-
lapping positions by iterating a global transformation. This
method is perfect only when the scene is coplanar. The
spatially-varying warps [11]–[14] based on multiple trans-
formations weighted by relative positions replace the single
global transformation to address the problem of misalign-
ment in overlapping regions. These methods perform rect-
angular segmentation on the image and calculate the local
transformation relationship based on the position correlation,
which improves the alignment accuracy to a certain extent.
However, limited to segmentation methods, these methods
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still have the problem of misalignment in overlapping regions
(see Figure 1(b)). What is more, the distortion of the non-
overlapping region is also a challenge in scenes with large
parallax.

Later, the warps focus on obtaining more natural stitched
images [15]–[17]. The mainstream method introduces sim-
ilarity to reduce distortion caused by viewing angle
changes [18]. The method of improving the naturalness of
the image by introducing corresponding constraints (mainly
line features [19], [20]) is also popular [21]–[23]. Because the
line feature can provide excellent and reliable local geometric
correspondence, even in low-texture scenes such as white
walls. Not only that, the warping method based on seam
driving and constraint terms can effectively solve the artifact
like ghosting caused by parallax without relying on high-
alignment accuracy models [24]–[26]. Alignment accuracy
and distortion are still challenging in large parallax scenarios
for these methods (see Figure 1(c)).

Recently, the warps [27], [28] with deviation correction
based on the thin-plate spline [29], [30] have effectively
improved the alignment effect. Moreover, the optimized
warping for the homography model [9], [31] effectively
solves the distortion problem caused by the change of viewing
angle. Moreover, reasonable meshing to adapt to the coplanar
characteristics of homography can also achieve better visual
effects [32], [33]. The warps have achieved considerable
splicing results, but they are difficult to cope with complex
scenes (see Figure 1(e)).

This paper proposes a multi-plane alignment method based
on superpixel segmentation to overcome the drawback of
image misalignment in existing stitching methods. Different
from our previous work [28] that obtains the aligned image
by correcting the projection deviation (see Figure 1(d)), this
paper uses appropriate image segmentation tomake the image
cell fit the ideal condition of coplanarity as much as possible
to improve the alignment ability. Not only that, line features
are introduced into the feature matching stage of the image to
enrich the number of features. They are used as an auxiliary
means to improve the accuracy of image alignment. Our
proposed warping creates a precisely aligned mosaic (see
Figure 1(f)).

To summarize our contribution:
1) We introduce line features that can be regarded as

an effective supplement to point features to enrich image
matching. Because, in most scenes, line features are relatively
rich, which can provide rich correspondences for accurate
distortion model estimation. In addition, compared to feature
points, line features have more stable geometric informa-
tion, which is conducive to creating a more natural-looking
mosaic.

2) We introduce superpixel segmentation in the feature
matching and local warping stages. The proposed method
protects the integrity of image cells. Specifically, image
segmentation is helpful to feature matching by classifying
features according to their respective planes. In addition,
irregular plane segmentation can effectively avoid the hetero-

geneous objects sticking in the same image cell, and fit the
homography coplanar condition as much as possible.

The rest of this paper is organized as follows. Section II
briefly describes important works. Section III gives our
approach in detail, which is a multi-plane alignment method
based on superpixel segmentation. Experimental results and
comparisons with other methods are shown in Section IV.
Finally, the conclusion of our work is drawn in Section V.

II. RELATED WORK
The algorithm for stitching images has been well studied,
and a comprehensive survey about it can be found in [6]
and [34]. Feature matching and image alignment are two
critical processes of image stitching. This section reviews
some important works of image stitching in feature matching
and image alignment.

A. FEATURE MATCHING
Scale Invariant Feature Transform (SIFT) [35], Speeded Up
Robust Features (SURF) [36], and Oriented fast and Rotated
Brief (ORB) [37] are representative algorithms for early fea-
ture point matching. Lowe used the Gaussian model to dif-
ferential pyramid image and constructed a 128-dimensional
feature descriptor. Bay et al. introduced box filter and integral
graph to accelerate SIFT, while Rublee introduced pyramid
image and centroid algorithm based on the Features from
Accelerated Segment Test (FAST) [38] to propose a faster
feature detection and matching algorithm. Bian et al. [39]
proposed a grid-based motion Statistics (GMS) algorithm
based on assuming that adjacent pixels in an image will move
together. These methods will still cause some mismatches in
some scenarios (see Part III).

Line feature is another form of the image feature, which has
significant value in the field of vision. Earlier research, such
as Line Segment Detector (LSD) [19] based on pixel gradient,
led to the fragmentation of straight lines. Zhang et al. [20]
proposed the introduction of the Gaussian pyramid to con-
struct Line Band Descriptor (LBD), which enhanced the
scale invariance of line matching. Recently, Jia et al. [40]
proposed Coplanar Line-Points Invariants based on LSD to
improve the tolerance of line matching to low texture and
parallax. Li et al. [41] proposed hierarchical line matching
by constructing Line-Junction-Line in multi-scale pyramid
images. Line features have strong geometric constraints for
image alignment, but few studies integrate line features into
feature matching to improve image alignment accuracy.

B. IMAGE ALIGNMENT
After the feature matching is completed, the warping is con-
structed through the corresponding relationship of the fea-
tures to achieve image alignment.

Early warping focused on global alignment [10]–[12], and
this solution is effective only under the assumption that the
input images are roughly coplanar (i.e, the scene depth dif-
ference is small). The global warpage is robust but lacks
flexibility and is difficult to provide accurate alignment.
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FIGURE 1. Stitching images with large parallax. (a) Input images. (b) to (f) are the stitched images of APAP [13], ANAP [16], AAAP [28], TFA [33], and our
approach.

Later, warping focused on the quality of alignment to
solve the problems caused by global alignment. The as-
projective-as-possible (APAP) warp [13] based on the rect-
angular grid provides more flexible warping, while other
methods ([24], [25], and [42]) dynamically calculate stitched
parallax images through the seam-driven method. The APAP
uses moving direct linear transformation to assign global
homography weights to each grid to achieve local approx-
imation alignment. The stitching method of seam-driven

guidance does not require perfect alignment in the entire
overlapping region. However, these methods are still homog-
raphy warping, which will suffer from perspective distortion
without constraints. Correspondingly, introducing constraints
is an effective way to improve image alignment. The spa-
tial combination method of homography and similarity is
a typical constraint, and the most representative ones are
the shape-preserving half-projective (SPHP) warp [15] and
the as-natural-as-possible (ANAP) warp [16]. They balance

VOLUME 9, 2021 168317



J. Li et al.: Locally Aligned Image Stitching Based on Multi-Feature and Super-Pixel Segmentation

homography and similarity to deal with the distortion caused
by perspective. However, the distortion will be amplified
for images with a large field of view. Lines can provide
more robust correspondences than point matching and can
be used as constraints for image alignment. The straight-line
constraint is introduced in warping to improve the alignment
accuracy of the image in [1], [21]–[23], and [26]. However,
the problem of image misalignment still exists.

The recent warps solve the naturalness problem of the
image by implementing different constraints. Zhang et al. [17]
used regular mesh grids to define the energy function, includ-
ing alignment term, regularization term, scale term, and extra
constraint and transformed the image to the same coordinate
system to complete the image alignment. The grided global-
similarity-prior (GSP) warp [18], which includes alignment

term, local similarity term, and global similarity term, con-
strains the warp to resemble a whole similarity. Constructing
a binary mapping system is also an effective constraint
method. Li et al. [9] constructed a binary function of slope
preservation and scale linearization to describe perspec-
tive distortion and projective distortion and proposed the
quasi-homography (QH) warp. The single-perspective warp
proposed by Liao et al. [31] contains two more abundant
alignment schemes. One is a combination of dual-feature-
based APAP and the quasi-homography warp, and the other is
an energy function that integrates alignment term, distortion
term, and saliency term. In the previous work, we optimized
the feature fine matching, and inspired by [27], we proposed
the As-aligned-as-possible (AAAP) warp [28] based on the
thin-plate spline (TPS) [29] to correct the mapping deviation

FIGURE 2. Flowchart of the proposed image stitching approach.
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FIGURE 3. Mismatches in advanced matching methods. Rounded rectangles mark obvious mismatch points.

to obtain more accurate stitching of images. In the latest work
of Li et al. [33], the scene is approximated as a combination
of adjacent triangular facets, and a warping based on the
triangular facet approximation (TFA) is proposed.

III. THE PROPOSED APPROACH
The Framework of the Proposed Method: This section
describes our proposed approach, which uses a common
image stitching pipeline. Figure 2 illustrates the overall pro-
cess of the proposed method, which mainly consists of two
steps. Figure (a) shows the resulting image of each process,
and figure (b) illustrates the flow of the proposed method
and related algorithms. The first step is a parallel process of
multiple algorithms, including point feature matching, line
feature matching, and image segmentation based on super-
pixels. Then, the initial homography is calculated by super-
pixel constraints to refine the feature set, and the endpoints
of the line feature are introduced. In the second step, the
APAP-based homography is first updated from the refined
features, and then the homography of a specific plane is
calculated through the constraints of superpixels. Finally, the
estimated homography is used to map the image onto the
canvas, and the pixels on the canvas are merged with linear
weights to complete the image stitching.

A. RICHER FEATURES
Feature matching is a crucial step in image stitching,
which directly determines the quality of the resulting image.
At present, even for some advanced matching algorithms,
there are still some challenges, as shown in Figure 3.
As a result, some wrong matches are kept. Feature richness
is another factor affecting feature quality. Therefore, the
line features that contain the mapping relationship between
images, like the importance of feature points, are also of
great significance for image stitching. To enhance the rich-
ness of features, we added line features to point features
and introduced superpixel segmentation to improve matching

FIGURE 4. Flowchart of matching strategy.

accuracy. The matching strategy is shown in Figure 4. First,
algorithms such as point feature, line feature, and superpixel
segmentation are executed in parallel. Then the point features
are matched to calculate the global homography matrix. And
at the same time, the local homography matrix is calculated
using plane constraints. Finally, the feature point set (the
feature point and the line’s endpoint) is precisely matched to
delete the mismatched point.

1) MATCHING OF FEATURES
As shown in Figure 3, SIFT acquires evenly distributed fea-
tures, while ORB features are too concentrated or sparse.
The SIFT descriptor has high stability, and the matching
efficiency of the GMS is better than the RANSAC [43].
Therefore, we use SIFT to detect features and then use
GMS to perform initial matching of feature points to retain
the scale invariance and efficiency of the feature matching
algorithm. The SIFT-based GMS matching result is shown
in Figure 5, and 1268 pairs of matching feature points are
obtained, which took 2.107 seconds (GMS takes less than
0.01 seconds). In Figure 3(a), there are a total of 507 pairs of
matching features, which took 4.32 seconds (RANSAC took
2.13 seconds).

However, a few mismatches are still obvious in Figure 5.
To this end, we use the feature refinement method based on
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FIGURE 5. Matching results of GMS based on SIFT.

normal distribution [28] to eliminate mismatches to calculate
the initial homography. That is, the initial matching is used
to calculate the global homography, and the local homogra-
phy is calculated by weighting. Then, the projection error
between the feature pairs eliminates the wrong matching.
Considering that the homography is limited by the condition
of coplanarity, this paper introduces superpixel segmentation
to optimize the fine matching of features. Superpixels act on
features in a local plane to obtain the true homography of
the plane instead of approximating the true homography in
a weighted manner. Image segmentation can segment planes
to achieve feature classification. The image is divided into
planes through the Gaussian Mixture Model (GMM) [44]
algorithm, as shown in Figure 6. We know that the feature
points are accurately placed in the plane with the image.
Therefore, we directly use these points to calculate the exact
homography to avoid errors caused by weighting. In partic-
ular, when the number of plane feature points is less than
four pairs, the weighted homography is used as the plane’s
homography.

2) INTRODUCTION OF LINE FEATURES
Line features (endpoints of lines) can also be integrated
into point sets to enrich feature points. The homography
corresponding to each plane can be obtained through the
above steps, which provide stability for introducing line fea-
tures. Therefore, this paper uses precise matching on the
endpoints of the line features output by the HLM algorithm
and introduces point features in the matching set to enrich the
number of features. First, the mapping points corresponding
to the endpoints of the line features are calculated by homog-
raphy. Then, the mapping deviation between the endpoint and
the correspondingmapping point is calculated. Finally, set the
error range of the mapping deviation. The endpoints whose
error is less than the threshold are regarded as matching point
pairs and added to the matching set. In particular, it is known
from experiments that the error range is within the range of

FIGURE 6. Feature distribution under different planes. The purple dots
represent matching features, and irregular green graphics represent
different planes.

FIGURE 7. The introduction process of line features.

2-10 pixels, and the matching effect of the line endpoints is
better.

Figure 7 shows the introduction of line features. The end
of the line is a reasonably objective feature, which can
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effectively compensate for the number of features and pro-
vide a powerful mapping relationship. Compared with the
methods in Figure 3 and Figure 5, the proposed method
(Figure 7(c)) has more feature points, a more uniform distri-
bution, and more accurate matching.

B. ACCURATE ALIGNMENT
We first review the estimation of local homography com-
monly used for image stitching and then describe the pro-
posed multi-plane alignment method based on superpixel
segmentation.

1) LOCAL HOMOGRAPHY
Let the points p = [x, y, 1]T and q = [u, v, 1]T denote the
matching in the reference image I1 and the target image I2
respectively. The homography H is estimated by the direct
linear transformation (DLT) from the corresponding points,
H ∈ R3×3, that is uv

1

 ∼
 h11 h12 h13
h21 h22 h23
h31 h32 h33

 xy
1

 (1)

where ∼ denotes equality up to a scale factor, hij is the
element of matrix H.
The homography H can be expressed as q = Hp. The

columns of H are given by hi = [ h1i h2i h3i ]T. The equa-
tion can be rewritten as 03×1 = q × Hp by a cross product,
that is

03×1 =

 01×3 −pT vpT

pT 01×3 −upT

−vpT upT 01×3

 h1
h2
h3

 (2)

where hi is the transposed matrix of the i-th row of H. The
9 × 1 vector [h1 h2 h3]T is denoted as h, p is the points, u
and v are the coordinates of points q.
Only two rows in the above formula are linearly indepen-

dent, so the first two rows are defined as

ai =
[
01×3 −pTi vipTi
pTi 01×3 −uipTi

]
(3)

where ai ∈ R2×9. Let ai be the first two rows of (2) computed
for the i-th datum{pi, qi}.
Given N matching points, and let matrix A =

[ a1 a2 · · · aN ]T. A ∈ R2N×9 is obtained by stacking verti-
cally ai for all i. We can estimate h using

h = argmin
h

N∑
i=1

‖aih‖2 = argmin
h
‖Ah‖2 , ||h||2 = 1 (4)

In [13], the method of using Gaussian weights to assign
homography to any position in Moving DLT(MDLT) is

h∗ = argmin
h

N∑
i=1

∥∥∥ωi∗aih∥∥∥2 = argmin
h
‖W∗Ah‖2 (5)

where the weights {ωi∗}
N
i=1 are generated using the off-

set Gaussian. The ωi∗ = max(exp( − ‖p∗ − pi‖2 /δ2), γ ),

γ ∈ [01]. The δ is a scale parameter. The coordinates of
arbitrary position are p∗ = [x∗ y∗ 1]T. The coordinates of
the i-th feature point are pi = [xi yi 1]T. the weight matrix
W∗ ∈ R2N×2N is composed as

W∗ = diag([ω1
∗ ω1

∗ ω2
∗ ω2

∗ . . . ωN
∗ ωN

∗
])

(6)

where the diag() creates a diagonal matrix given a vector.
The local homography h∗ can be obtained by solving the

smallest right singular vector ofW∗A.

2) LOCAL WARPING
Most work uses a rectangular-based grid to align images.
As shown in Figure 8(a), this method quickly treats multiple
planes as coplanar, which seriously violates the premise of
using homography. Therefore, the problem of ghosting in
the stitched image is exacerbated. The recent warp, called
TFA, triangulates the unit projection plane to construct a
local transformation, as shown in Figure 9. Triangular seg-
mentation is also easy to integrate heterogeneous images
into cell images. Reasonable segmentation of non-coplanar
pixels is the key to approaching the ideal condition of homog-
raphy. Fortunately, superpixels can effectively achieve this
goal. Based on this, we use the superpixel segmentation
method to perform heterogeneous segmentation to approxi-
mate the constraints of homography. As shown in Figure 8(b),
the proposed method also effectively reduces image cells,
that is, reduces the amount of calculation of homography.
Specifically, themulti-plane alignmentmethod is divided into

FIGURE 8. Different styles of grid segmentation methods.

FIGURE 9. Triangulation segmentation [33].
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three steps: First, segment the image to be spliced through
the superpixel algorithm [44]; Second, the homography of
irregular planes with more than 6 feature points (at least
4 pairs of points can be calculated) are calculated through
DLT, while the homography of the remaining planes is cal-
culated by MDLT. Third, use the estimated homography
to project each surface to map the image onto the canvas.
An arbitrary pixel at position x in the source image I is
warped to position x∗ in the target image I ′. The image
to be stitched can be warped onto the canvas at the same
coordinates through equations (7) to (9).

x′∗ = Hx∗ (7)

x ′i,j =
h11xi,j + h12yi,j + h13
h31xi,j + h32yi,j + h33

(8)

y′i,j =
h21xi,j + h22yi,j + h23
h31xi,j + h32yi,j + h33

(9)

where x∗ = [xi,j, yi,j, 1]T, x′∗ = [x ′i,j, y
′
i,j, 1]

T. The xi,j and
yi,j are the coordinates of arbitrary position (i, j) in the image.
The positions mapped to the canvas are x ′i,j and y

′
i,j.

In practice, the number of pixels between the original
image and the mapped image is not equal. That is, the size
of the image before and after mapping is not consistent.
To avoid empty pixels in the effective area of the map,
we usedMATLAB’s built-in function ‘‘griddata’’ to fill in the
empty pixels. Therefore, the target image I2 can be mapped
to the warped image It, that is, the canvas. And the reference
image I1 can be directly embedded into the canvas to obtain
the warped image Ir.
In the last step, the warped images Ir and It are fused

nonlinearly. The overlapping area (denoted as OLA) between
warped images is an irregular two-dimensional image. Due to
the rotation of the warped images, the pixel weighting is no
longer in the horizontal direction. Inspired by ANAP [16],
we use the following equation to map the two-dimensional
coordinates in the OLA to the axis of rotation. This is similar
to mapping the points inside the circle to the diameter.

Li,j =
−−→prpi,j ·

−−→prpt (10)

where the Li,j is the projection of the pixel at (i, j) on the rota-
tion axis in the OLA. The pi,j is an arbitrary pixel coordinate
in the OLA. The Pr and Pt are the center coordinates of the
OLA in the warped images. −−→prpi,j and

−−→prpt are the vector to
be projected and the axis of the rotation vector.

After the mapping is completed, as shown in equation (11),
the linear weight is obtained by calculating the difference
between the projection point of the pixel and the left boundary
divided by the length of the OLA in the −−→prpt direction.

βi,j =
Li,j − Lmin

Lmax − Lmin
(11)

where the Lmin and Lmax are the left and right borders in the
−−→prpt direction.
The pixel weight matrix Wt of It is calculated by equa-

tion (12) in the overlapping region of images Ir and It.

Specifically, the non-overlapping region weights are 1 in the
image It. The sum of the weights of the images Ir and It at
(i, j) is 1.

wt
i,j = 0.5− 0.5cos

(
π · βi,j

)
(12)

where the element of Wt is wt
i,j, which represents the weight

at (i, j) in the overlapping region.
The elements of the matrix Wt and the pixel of the image

It are correspondingly multiplied to obtain the weight of each
pixel. In the same way, the pixel weight of Ir is calculated.
The stitched image can be obtained by adding the weighted
warped image.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section describes some experiments performed to evalu-
ate the performance of the method on a series of challenging
images. We compare our approach with the classical local
homography methods [13], [16], [18] and other state-of-the-
art stitching algorithms [27], [28], [33]. In our experiments,
we used SIFT [35] and LSD [19] to detect the corresponding
point and line features andmatched the SIFT features through
GMS [39], and HLM [41] matched the LSD features. Not
only that, the proposed method combines GMM [44] and
the normal distribution [28] to perform precise matching of
SIFT and LSD features. Feature matching is done in the
Opencv library [45]. Finally, image stitching is completed
by a multi-plane alignment method based on superpixel
segmentation [44].

A. EXPERIMENTAL SETUP AND DATASETS
We use the source code provided by the authors, and the
parameter settings follow the recommendations of the corre-
sponding paper. If a range of values is provided, the parameter
with the best effect is selected., Code is implemented in
OpenCV 3.4.5 and Matlab 2017 on a desktop PC with Intel
i7 3GHz CPU and 24GB memory for our method.

We compared six methods on a series of publicly available
image pairs and additional images collected by us. The com-
pared methods include APAP [13], ANAP [16], GSP [18],
REW [27] andAAAP [28] and TFA [33]. Due to space limita-
tions, only a few results can be shown here. More comparison
results of overall performance from the dataset are available
in the supplementary material. series of challenging images
from various data sets were tested to evaluate the performance
of the proposed method.

B. COMPARISON OF STITCHING QUALITY
The visual effects of stitched images and objective quality
assessment indicators are often used to measure the perfor-
mance of the method.

1) SUBJECTIVE EVALUATION
Stitched Image Comparison: Figure 10 shows the results of
comparing our method with six methods in 2 challenging
cases. The input images are placed in the first row to compare

168322 VOLUME 9, 2021



J. Li et al.: Locally Aligned Image Stitching Based on Multi-Feature and Super-Pixel Segmentation

FIGURE 10. Comparison of stitching quality by the APAP [13], ANAP [16], GSP [18], REW [27], AAAP [28], TFA [33] and our approach on the
garden [25] and building [26] scene.
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FIGURE 10. (Continued.) Comparison of stitching quality by the APAP [13], ANAP [16], GSP [18], REW [27], AAAP [28], TFA [33] and our approach on the
garden [25] and building [26] scene.

the stitching result easily. The results of different methods
are represented in rows, and the distorted area of each result
image is highlighted with the rectangular box. Furthermore,
to facilitate the observation, we mosaic the distorted, partially
enlarged image in the resulting image.

We first analyze the results of the garden case. It can be
observed from the test set on the left of Figure 10 that the top
of the pavilion and the pillars are prone to ghosting. From the
test set on the left side of Figure 10, it can be observed that the
top of the pavilion and the pillars are prone to lose. Among
them (b), (c), and (e), there are two prominent ghost images
and distortions. The pillars in (d) and (g) show prominent
ghost images, but our work (including (f)) does not show
prominent ghost images or distortions.

For another parallax image shown in the right column
of figure 10, it is obvious that the misalignment problem
is extremely serious for methods other than the proposed
method. In (b) and (c), there are 4 obvious ghost images
and distortions (including white clouds, buildings, trees, etc.).
APAP and ANAP are difficult to deal with large parallax and
moving objects, which seriously affects the image quality.
In (d), (e), and (f), the ghosting at the building has been
resolved, but the ghosting at the white clouds and trees has
not been removed. The TFA algorithm’s effect is not good
enough on this test chart, and there are several prominent
ghost images. Furthermore, the result of our method looks
good visually. It can successfully handle the misalignment
issue.
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APAP is a representative method for processing parallax
images by the local homography. ANAP combines local
homography with optimal global similarity to enhance the
naturalness of the image. In addition, Recent warps such
as GSP, REW, and AAAP use global similarity prior and
global deformation constraints image warping, respectively.
The recent warping TFA has taken a different approach, using
triangular segmentation instead of rectangular segmentation.
These excellent algorithms provide us with a wealth of con-
trast materials.

In summary, although APAP based only on the grid
improves the alignment ability to a certain extent, it still can-
not solve the large parallax image. Through the constraints of
similar transformation, ANAP improves the stitching effect
of images. But there are more ghosts. GSP also improves
the effect of image alignment by calculating the best rotation
angle and scale of the image. REW and AAAP achieve the
purpose of improving alignment accuracy through additional
deviation correction methods. For TFA based on triangle
segmentation, the absence of constraints has improved the
effect of image stitching. This is worthy of further study. The
proposed method continues this idea, based on superpixel
segmentation to separate each plane and obtain a more accu-
rate transformation model. Finally, the projection deviation
caused by parallax is improved.

2) OBJECTIVE EVALUATION
Alignment Accuracy Comparison: The matching quality of
feature points is an important indicator to measure image
stitching. In general, the more matches, the more robust the
alignment accuracy. Table 1 shows the number of matching
pairs obtained by different matching strategies. Combining
the content of Figure 3 and the data in Table 1, it can be
intuitively explained that the features acquired based on the
RANSAC method are fewer (there are a few mismatches in
the results). The ORB-based GMS has acquired more feature

point pairs, but it also contains some mismatches. It can be
seen from Table 1 that the number of endpoints of the line
segment is considerable, and the number of features obtained
by RANSAC is mutually beneficial. These endpoints are
potential matching points, which can enrich the matching set.
The endpoint of the introduced line feature is used as the
matching subset. Even if somemismatches are eliminated, the
method in this paper still obtains more and effective feature
point pairs. The proposedmethod has advantages in obtaining
more accurate matches. On the other hand, we use SIFT
descriptors for feature point extraction, which increases the
base of feature matching and effectively improves features’
richness.

To accurately reflect the alignment accuracy of the pro-
posed method, the following formulas are used to calculate
the cumulative sum of absolute deviations in the x and y
directions, respectively.

SUMadx =

N∑
i=1

|x ′i − xi| (13)

SUMady =

N∑
i=1

|y′i − yi| (14)

where SUMadx and SUMady are the cumulative sum of the
absolute deviations in the x and y directions. x ′i and xi are the
x coordinates of the i-th pair of mapping points and matching
points. y′i and yi are the y coordinates of the i-th pair of
mapping points and matching points.

ANAP based on RANSAC is a representative of traditional
matching strategies. MVPC eliminates mismatches by com-
bining local homography with a fixed threshold. REW refines
features through global homography and Gaussian distribu-
tion. AAAP combines local homography and Gaussian dis-
tribution to deal with mismatches. Different strategies have
achieved different results, which provides us with a lot of
experimental data.

TABLE 1. Number of matching features of different algorithms (in pairs).
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TABLE 2. Accumulated projection deviation in the x and y directions. This indicator is an intuitive manifestation of the accuracy of feature alignment.

FIGURE 11. Failure examples. The proposed method will fail in some
scenes, such as sports and large parallax.

We select the algorithm with the least number of feature
sets in each group as the statistical standard number, and other
algorithms take their respective subsets to unify the number
of feature points to achieve the purpose of a single variable
comparison. Calculate the absolute sum of the mapping devi-
ations of the feature points in the x and y directions to obtain
Table 2.

We can see from Table 2 that the projection error of ANAP
is the largest, followed by REW. They have larger projection
deviations in the horizontal and vertical directions, while the
projection errors of MVPC and AAAP are much smaller.

What is more, the projection error obtained from this work
has been further reduced.

In 10 experiments with large parallax, it is obvious that the
results obtained by the proposed method are always smaller
than those of the listed methods. The traditional matching
strategy [16] inevitably retains some outliers in the iterative
process. MVPC uses a constant threshold to eliminate out-
liers, which are prone to error rejection or retention. More-
over, a constant threshold also brings limitations to matching,
which more or less restricts certain matching judgments.
REW and AAAP use ‘‘SIFT + RANSAC’’ for the initial
matching of feature points. Then a combination of homogra-
phy and normal distribution is used to eliminate mismatches
effectively. Finally, the matching error is further reduced,
but the matching points obtained are not sufficient. In terms
of the types of image features, none of them considers the
straight-line features of the image, although they have noticed
the important role of local transformation in featurematching.
We know that the straight-line feature can do the addition
operation for the feature set, and the local transformation can
only delete the potential mismatches in the feature set, that is,
the subtraction operation. Therefore, the introduction of line
features and local classification can enrich the feature set and
improve the matching accuracy. The proposed method intro-
duces line features, split plane calculation homography, and
GMS-based matching strategy, and proposes an optimized
matching method to make up for the shortcomings of the
matching method in the previous stage of work and further
improves the accuracy of image mapping. Finally, uniform
distribution and a considerable number of matching pairs are
obtained. This method achieved the slightest projection error
in Table 2.

C. FAILURE CASES
Our proposed warp could fail if the parallax is too large.
In addition, when there are moving people or objects in the
overlapping area, it will produce more obvious ghosting. Two
failure examples are shown in Figure 11. If the viewing angle
is too large, the scene structure will change greatly. The
appearance of moving objects also increases the difficulty of
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image fusion. Therefore, only relying on homography to deal
with these scenes is less effective.

V. CONCLUSION
In this paper, we propose a novel stitching method to solve
the problem of local misalignment. We introduce line fea-
tures to enrich image matching. Not only that, we introduce
superpixel segmentation in the feature matching and local
warping stages. In addition, irregular plane segmentation can
effectively avoid the heterogeneous objects sticking in the
same image cell and fit the homography coplanar condition as
much as possible. The experimental results show that the pro-
posed method can accurately align the image and outperform
some state-of-the-art warps from both qualitative and quan-
titative aspects. As future work, we will combine the feature
registration research based on deep learning to optimize the
extraction of image features. We will also use linear features
for content protection research to prevent objects in the image
from being bent during the image deformation process.
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