IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 25, 2021, accepted December 6, 2021, date of publication December 10, 2021,
date of current version December 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3134760

Multi-Robot Workspace Division Based
on Compact Polygon Decomposition

GEORGY SKOROBOGATOV “, CRISTINA BARRADO , AND ESTHER SALAMI

Computer Architecture Department, Technical University of Catalonia, 08860 Castelldefels, Spain
Corresponding author: Georgy Skorobogatov (georgy.skorobogatov @upc.edu)

This work was supported by the Ministerio de Economia, Industria y Competitividad, and Gobierno de Espaifia under Award
BES-2017-079798 and Award TRA2016-77012-R.

ABSTRACT In this work, we tackle the problem of multi-robot convex workspace division. We present
an algorithm to split a convex area among several robots into the corresponding number of parts based on
the area requirements for each part. The core idea of the algorithm is a sequence of divisions into pairs
with the lowest possible perimeters. In this way, the compactness of the partitions obtained is maximized.
The performance of the algorithm, as well as the quality of the obtained parts, are analyzed in comparison
with two different algorithms. The presented approach yields better results in all metrics compared to other

algorithms.

INDEX TERMS Multirobot systems, workspace division, polygon partition.

I. INTRODUCTION

Systems of multiple robots are used in a wide range of appli-
cations and can be a better choice compared to single robots.
Using several robots can provide such advantages as time
efficiency, ability to perform simultaneous actions at different
locations, fault tolerance, and others. On the other hand, using
several robots makes it more complex to operate them. One
of the complexities that can arise in various applications
when using several robots is area partition. The area partition
problem in multi-robot systems is a problem of splitting a
polygon defining an area into several parts, where each part
is assigned to one robot.

There are several families of algorithms that perform the
area partition. The most common way is where the area is
discretized into a grid and then the cells of this grid are
divided between the robots. In works like [9], [15], [18],
[23], [5], and [36] the area of interest is rectangular with or
without a set of obstacles made of rectangles coinciding with
the cells of the rectangular grid. Similarly, in [34] an area was
covered by footprints of sensors which were then grouped by
an improved k-means clustering algorithm into several groups
to delimit an initial area into sub-areas of equal sizes. In [8]
and several other related works from the same authors, an area
is split into a triangular mesh using constrained Delaunay
triangulation with Steiner points. The obtained cells are then

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

covered using various approaches such as flood fill algorithm,
watershed algorithm, spanning trees, genetic algorithms, and
others.

There are also several works like [25] and [32] that used
the Voronoi diagram for splitting a polygon. A set of lattice
points is constructed inside the given polygon and several
clusters are found based on the number of parts the polygon
has to be split into. A centroid point is found for each clus-
ter. The resulting set of centroids is then used to construct
the Voronoi diagrams. While this approach produces good
quality results for multi-robot workspace partition, it is not
possible to specify the areas of the resulting parts. In [24]
authors proposed a weighted Voronoi diagram for a partition
that takes into account the different capabilities of the robots.
The areas proportions of the resulting parts will be closer to
the given capabilities proportions but it will be still impossi-
ble to specify precisely the areas of resulting parts. Moreover,
these algorithms were tested only on convex and close-to-
convex polygons. It is not clear how they will perform on
more complex polygons.

In [30] it was proposed to split an area into a set of stripes
and divide them according to the area requirements for each
robot. This approach, though, has the drawback of producing
disconnected areas in many cases with complex polygons.

Finally, [20] proposed an algorithm that represents a poly-
gon as a directed region-adjacency graph with nodes as its
convex parts. The nodes of the graph are then processed
recursively, and reorganized into parts according to the given

165795

https://orcid.org/0000-0003-2536-1470
https://orcid.org/0000-0003-0100-724X
https://orcid.org/0000-0002-4635-2963
https://orcid.org/0000-0002-4408-9153

IEEE Access

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

area requirements. It was noted in several research works
that the resulting parts can be of shapes that make them a
poor choice for being covered by robots. In [35] authors
improved the algorithm for convex polygon partition by
post-processing each obtained part. The lines that divided
the obtained sub-polygon from the rest of the polygon were
moved until the two angles introduced by each line were as
close as possible to 90 degrees. The algorithm was tested only
on a single rectangle, so more tests are needed to understand
if it works for more complex cases. In our previous work [33]
the same algorithm for dividing non-convex polygons was
implemented with several extensions. It was shown that per-
forming the initial partition into convex parts has a big effect
on the quality of the resulting partition. The larger parts were
yielding better results than when the polygon was split into
triangles. Later when we will present the results, we will use
this algorithm for comparison of qualities of obtained results
and performance.

The contribution of this paper is a completely novel
mathematics-based approach able to find the optimum solu-
tion to the problem of partitioning a convex polygon into
various number of parts. In contrast with the other parti-
tioning algorithms that need to apply numerical solutions
by iterating towards the optimum, we find this directly by
solving the equations that maximize the compactness. The
core idea of the algorithm is that it is possible to calculate
analytically the best possible way to divide a polygon into two
parts for a given area requirement in terms of the perimeter
of the corresponding part. We will present a theory behind
the algorithm, and compare the results with two different
approaches, one of which is taken from the aforementioned
paper [33] and the other one is based on discretizing the
polygon border into a set of vertices and brute-force search
for the most compact solution.

Il. OUTLINE OF THE ALGORITHM

Let us say we have a convex polygon with a perimeter P and
an area requirement R that is less than the area of the polygon.
The boundary of the polygon is defined by an ordered set of
vertices Vj_, arranged in counterclockwise order. Let us also
say that arandom point 7 was chosen on the polygon’s border.
Then there can be only one point H such that when the poly-
gon is split by a line TH, the sub-polygon on the right would
have an area R (see Fig. 1). We will call points T “‘tails”
and points H “heads”. We will also name ‘“‘countervertices”
those points that when connected with any given point will
result in two parts where one of them has area R. So, for any
given point, there are always two countervertices, except for
when the R equals the half of the polygon area. And T is a
countervertex of H and vice versa.

The task is to find the location of points 7' and H so that
the corresponding right part with the area R would be the
most compact. We define the compactness of a polygon as
the ratio of the square root of its area to its perimeter P. Since
the area requirement is fixed, and the only variable part is the

165796

Vs Va
Ve VE
H
V7 Vo
T, Vo Vi

FIGURE 1. For a tail point T located on the border of the polygon, there
can be only one head point H such that the area on the right of the line
TH is equal to R.

V3 Tvo Hyg V2
Hyz i.l‘"-"r ' ‘ 71 Tus
.‘.‘ ‘.‘A
: 5
Tvi bz} <y Huo
AL, PP
Vo Hya Tyz Vi

FIGURE 2. An example polygon defined by vertices V — V5. For an area
requirement of R=12.5%, the image shows those heads (Hy . Hy1. Hy2.
Hy3) where the corresponding tails are original vertices and vice versa
(Tyo: Tv1: Tya. Ty3)- Each directed line splits the polygon into two parts.
Dashed lines connect the tails lying on the original vertices with their
corresponding heads. Dotted lines connect the heads lying on the original
vertices with their corresponding tails.

perimeter, the equation takes a form:

vpolygon.area VR

polygon.perimeter ~ P(T)

compactness = (1)
where P(T) is a function of the perimeter of the part on the
right of the line TH. Therefore we can say that the problem
of maximization of compactness is equivalent to a problem
of minimization of a perimeter. As an example, the function
P(T) for the polygon depicted in Fig. 2 is shown in Fig. 3.

If we obtain this function, we can find its minima and the
corresponding tail points 7. These tail points will correspond
to those lines TH that split the polygon in such a way that
the parts on the right from these lines have the minimum
perimeter.

In order to construct this function, two tasks should be
solved:

1) Find the limits of the function domains: It is clear that
P(T)in a general case is a piecewise-smooth function (see, for
example, Fig. 3). The domain of each constituent function is
defined by those line positions where any of the endpoints T
or H snaps from one segment to another. The task here is to
find the limits of those domains. Our approach is presented
in the next section.

2) Calculate the minimum of the perimeter function: For
each part of this piecewise function, we then need to find
locations of T and H that correspond to the part with the
minimum perimeter. This can be done by calculating the
derivative of a function P(T") for the given domain.

VOLUME 9, 2021

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

IEEE Access

perimeter

19

18

17 1

VaHwa

]
V
]
]
]
1
]
]
i
|
i
i
i
i
I
i
]
]
]
]
]
]
]
]
]
]
]
1
i
i
]
i
|

Vi

Ve (0.25,0) (0.5.0) (0.75.0)

(1,025 (1,05) (L0753 vy (0.75.1) (0.5.1) (0.25 1)

S mmmmmm e ——————

[0, 0.75) [0, 0.5) (0, 0250 1y

coordinates of the tail of the line-splitter

FIGURE 3. Function P(T) for the polygon given in Fig. 2 assuming the length of each side to be equal to 1.
Vertical dashed lines correspond to the locations of the lines 7H containing the original polygon vertices. Each
dashed line is annotated with the vertices of the corresponding line.

It is worth noting that the number of domains does not
depend only on the number of vertices. One can imagine
two cases with a square polygon and two area requirements:
12.5% and 50%. The case with 12.5% is depicted in Fig. 2
and the corresponding function in Fig. 3. One can see that,
in total, there are eight domains. But for the case with the area
requirement equal to 50%, the number of domains would be
just four as the countervertices of the original vertices of the
polygon would always point to the original vertices as well.

Ill. FINDING THE DOMAINS

Finding domains of P(T') for a given area requirement R can
be done in O(n) time, where 7 is the number of polygon’s ver-
tices. For that, we can use linear equations for each segment
of the polygon’s border and the shoelace formula:

-1 n—1
1 n
A=3 Zx,'ym +Xny1 — XI:XHI)H = X1Yn
=

i=1
1
=3 [x1y2 + Xx2y3 + ...+ Xn—1Yn + Xu)1

—X2¥1 — X3Y2 — ... — XpYn—1 — X1Vn)

The algorithm for finding the domains of each part of the
piecewise function goes as follows. First, we choose as the
first tail Tp one of the original vertices of the polygon, V;.
We iterate over vertices Vi;2Vit3... in counterclockwise
order until a vertex V; is found such that the covered area
Area(V;Viy1...V)) is greater or equal than the area require-
ment R, i.e.:

Area(ViViy1...Vi-1)) <R <Area(ViViy1...V) (3)

In case the Area(V;Viy1 ... V))is equal to the area require-
ment R, then the head corresponding to Ty, Hy, is the last seen
vertex V;. Otherwise, we define the remaining area R’ as the
difference between the area covered in the last iteration and
the given area requirement, i.e.:

R =Area(ViViy, ... Vi)—R “4)

VOLUME 9, 2021

In such a case, the position of the head H is located some-
where on the last seen segment V;_{V; and we can find its
exact coordinates using the shoelace formula.

Having the initial pair of tail and head vertices (Ty, Hyp),
we can proceed to locate the next tail 77 that will delimit
the first domain [Ty, 7] or the next head vertex H;. Which
one of them will be discovered first depends on the relative
location of the vertices and the area requirement. The next tail
T, will be searched on the segment V;V;; excluding the V;
as it is already taken by Tj. Likewise, the next head H; may
be located somewhere on the segment HyV;11 excluding Ho.

In order to find the locations of the next head H; and/or
the next tail 71, we can compare the areas of the triangles
ToViz1Ho and Vi1 HoV; as shown in Fig. 4. Three situations
can arise:

1) Area(ToViy1Ho) = Area(Vir1HoV)). In this case, the
segment (V;y1, V;) is already a line that makes a right
sub-polygon with the requested area. This is, 77 will
be located at V;41 and the corresponding head point H;
will be located at V;.

2) Area(ToViy1Ho) > Area(Vir1HoV)). In this case, the
next head vertex H; will be located at V; and we have
to find 77 somewhere on the segment 7(V;;1 by using
the shoelace formula and the linear equation for this
segment.

3) Area(ToViy1Hoy) < Area(Vir1HoV)). In this case, the
next tail vertex 77 will be located at Vi and its corre-
sponding head vertex Hj will be located on the segment
HyV; and can be found by using the shoelace formula
and the linear equation for this segment.

Having obtained the first domain 777 and its correspond-
ing “countersegment” HoHj, we can now repeat the same
procedure for the pair (77, Hy) and obtain the next domain
T T, and its corresponding countersegment HyH». This pro-
cess repeats until all the perimeter is covered. While iterating
in this manner over the polygon’s vertices, we will also
get those fixed parts of the polygon between the endpoint
of the domain and the first point of the countersegment.
So, for example, for a domain T} T} and its correspond-

165797

IEEE Access

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

To Viel To T

(@) (b)

To T1 Via Ta T

(©) (d)

FIGURE 4. a) ToH) is the initial line-splitter where T = V; is some vertex on the polygon border, V;_, is the next
vertex that follows after Ty, and V; is the next vertex that follows after Hy. Comparing the areas of triangles
ToVi,1Ho and V; 1 HyV; can tell us about the location of the next tail point 7; delimiting the current domain and
its corresponding head point H;. b) In the case when both triangles have equal areas, the next tail and head
points are V; | and V; respectively. c) If the area of TgV; 1 Hy is less than the area of V;_;HoV}, T; will be found

on segment ToV; | and H; == V. d) If the area of ToV; H is greater than the area of V;;HoV;, H; will be

found on segment HyV; and Ty == V; ;.

ing countersegment HyHy 1, this constant area part will be
delimited by vertices Tk41..Hx which can be empty or not.
These polygon parts will be later joined with “flexible” parts,
triangles, or quadrilaterals, built on the domain segments and
countersegments.

The pseudocode of the algorithm is shown in Alg. 1.
A part of the algorithm responsible for finding the initial
partition is written out separately in Alg. 2. The function
to_segments returns an iterator over segments built on pairs of
input vertices. The shoelace function takes four parameters:
an area requirement and three fixed points forming a triangle.
It returns a point found on the segment built on the last two
points such that the area of a new triangle built on the first
point, the second point, and the newly found point will be
equal to the area requirement. Finally, the remove_collinear
function takes a list of points, checks if the last three points
are collinear and removes the middle one if this is the case.

IV. FINDING MINIMUM FOR EACH DOMAIN

For each domain, we will have a situation like the one pre-
sented in Fig. 5. Let us denote the domain segment now as
SiSi+1 and its countersegment as E;E; ;1. We search the posi-
tion of the splitter TH with the tail T between the endpoints
of the domain S;S;;1 and the head H between the endpoints
of the corresponding countersegment E;E;;; such that the
polygon TS;11E;H with area R* is the most compact. R* is
the difference between the area requirement R and the area of
the grey region Rr. The grey region is fixed as well as Si1 E;.
It is also possible that the grey area will be empty.

The following lemma will help later demonstrate that find-
ing the minimum of the perimeter of a polygon can be done
by parts.

Lemma: Given two functions g(x) and h(x) with
argmin(g(x)) = argmin(h(x)) = M, if f(x) = gx) + h(x)
then argmin(f (x)) = M.

Proof: Forall x: g(x) > g(M) < g(x) — g(M) > 0 and
h(x) > h(M) < h(x) — h(M) > 0. And since a sum of
nonnegative functions is nonnegative = (g(x) — g(M)) +
(h(x) — k(M)) > 0 which gives g(x) + h(x) > g(M) + h(M)
and, finally, f(x) > f(M) which corresponds to the definition
of minimum. [|

165798

Si TSk

FIGURE 5. We search for the position of the line-splitter TH where the
tail point T is located on the segment S;S; . ; and the head point H is
located on the segment E;E;, ; so that the polygon TS; ; E;H with area
R* is the most compact. R* is the difference of the area requirement R
with the area of the grey region R,. Grey region is fixed as well as S; | E;
for each domain.

In the following theorem, without loss of generality,
we will rotate and translate the polygon such that the origin
of the coordinates is fixed at the intersection of the two rays
on which §;S;;+1 and E;E; are lying. Then, in the following
subsections, the specific formulae will be given for the gen-
eral case and for some specific cases where the formulae are
undetermined.

Theorem: Minimizing the perimeter of a quadrilateral with
a fixed area, one fixed side, and fixed nonparallel rays on
which the adjacent sides are located is equivalent to mini-
mizing the total length of the adjacent sides or minimizing
the length of the opposite side.

Proof: Let us consider the example given in Fig. 5.
We are searching for the location of points 7 and H so that
the quadrilateral 7S;1E;H has the smallest perimeter for a
given area R*. The side S;;1E; is fixed as well as the rays on
which the segments 7.5;41 and E;H will be built. Let us rotate
and align the figure so that the intersection of rays based on
the segments S;S;+1 and E;E; | would be in (0, 0) and E;E; 4|
would be aligned with X-axis. See Fig. 6. Let us also rename
the vertices Siy1 and E; to S and E respectively to simplify
the following equations.

From the shoelace formula (2) for the given case we have:

2R = TySy + Hy Ty — SiTy — ExSy)

VOLUME 9, 2021

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

IEEE Access

Algorithm 1: To_Domains

Algorithm 2: Initial_Split

Data: V — list of n vertices of polygon’s border,
R — area requirement

Result: iterator over domain segments D, their
corresponding countersegments C, areas to find
inside the quadrilaterals based on these
segments, and “‘right” and “left” vertices Vg
and V., where the “right” vertices are all the
polygon border vertices located between the
domain and its countersegment when iterating in
counterclockwise order, and the ““left” vertices
are all the remaining vertices in
counterclockwise order

// The following two are iterators;

tail_segments = to_segments(Vy. , + [Vo]);

head_segments = to_segments(V1_,, + Vo.n);

D = next(tail_segments);

/I See Alg. 2 for details;

Vg, Vi, = initial_split(heads, V, D, R);

C = Segment(Vgy,, Vo) // m - length of Vg;

while D is not None do

// tail-based triangle;

TT = Polygon(D.start, D.end, C.start);

// head-based triangle;

TH = Polygon(D.end, C .start, C.end);

Vr.popleft();

Vi .append(D.start);

if TT.area < TH .area then
C.end = shoelace(TT .area, D.end, C.start,

C.end);
Vi .prepend(C.end);
head_segments.prepend(Segment(Vro, Vi1));
else if 7T .area > TH .area then
AA = TT .area - TH .area;
D.end = shoelace(AA, C.end, D.end, D.start);
Vg.prepend(D.end);
TT = Polygon(D.start, D.end, C .start);
tail_segments.prepend(Segment(Vgp, Vr1));
yield D, C, TT .area, Vg, Vi ;
Vr.popleft();
Vg.append(C.end);
/1 if 3 last points collinear, remove the middle one;
remove_collinear(Vy);
Vi .popleft();
Vi .append(D.end);
remove_collinear(Vy);
D = next(tail_segments, on_exhaustion=None);
C = next(head_segments);

end

Let Ty = kT and Sy = kS. Then:

R 1 E.Sx

He= ©)

VOLUME 9, 2021

Data: head_segments — iterator over “head” segments,
V — vertices of the polygon’s border ordered
counterclockwise, D — initial tail segment, R —
area requirement

Result: Vg — a list of “right” vertices, V, — a list of

“left” vertices

Vg =[] // right vertices;

Vi = Vi.n + [Vol // left vertices;

A = 0// accumulated area;

for C in head_segments do

Vr.append(C .start);

Vi .popleft();

dA = Polygon(D.start, C.start, C.end).area;

A=A+dA;
if A < R then
| continue

else if A == R then

Vg.append(C.end);

Vi .popleft();

C = next(head_segments);

else

A =dA+R—A;

C.start = shoelace(8A, D.start, C.start, C.end);
Vr.append(C .start);

end
return Vg, Vi ;

end

FIGURE 6. A part of the polygon. We search for the position of the
line-splitter TH such that the quadrilateral TSEH with an area equal to a
given area requirement is the most compact.

We define A as Zk—R + E,S, to simplify the following
equations:

H—A 7
x—F ()

X
Let us analyze perimeters of 7S + EH = Py and TH =
P, separately. We assume that if both minimal solutions are
equal, then this solution will correspond to the minimum of
the full perimeter:

P=|SE|+ P+ P (8)
Pi = ITS| + |EH| = |(Ty = $,° + (Ty — 8,

— A
+Hx_Ex:(Tx_Sx) l+k2+F_Ex (9)
X

165799

IEEE Access

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

Py, = |TH| = |/T} + (Tx — Hy)?

A
= \/szxz + (Ty — —)? (10)
T
Setting the derivative of P equal to zero:
dpP A
L=Vitkr- LS =0 (11)
dT, T2

gives the following 7, coordinate:

A
To==4 [—— (12)
* VI 2
For P;:
ap, 2T —)1+ 25) + 27T,
= £ =0 (13)
a2 272 +(T, — 42
Az,
TX—T—SJFka:o (14)
TH1 + k) = A? (15)

we will get the same values for Ty as in Eq. (12). We are
interested in the positive solution only as in our case T, >
Sy > 0.

Both derivatives of P and P, are negative for 7T less than
the obtained solution and positive for 7, greater than the
obtained solution, meaning that argmin(P1) = argmin(P3).
And as it was proved in the lemma above, it means that
argmin(P) = argmin(P1) = argmin(P3). So we can say
that minimizing all the perimeter is equivalent to minimizing
either of these two parts, Py or P;.

Note that for the case with the negative slope of the ray
based on the vertices S; and S;41 the equation will stay exactly
the same. [|

A. GENERAL SOLUTION

We have shown that minimizing the perimeter of the quadri-
lateral in our task is equivalent to minimizing just a part of
the perimeter. We have used a simplified case where the area
was rotated and translated so that we could lose some terms
in the equations. Let us now solve the same task for a general
case.

The shoelace formula (2) gives:

2R = T\Sy + SyEy + ExHy + H, Ty — S, T,
—ESy — HyE, — T,H, (16)

Let Ty = krTx +mg and Hy = kyHy + mpy:

Hy = (2R + ExSy +mpyTy + Sy(kr Ty + mr)
— TSy — SxEy — my Ex)
[(Tx(kr — kgy) + kg Ex + mr — Ey) A7)

Since Sy = krSy +mr and Ey = kpEyx + mpy:

H, = 2R+ ExSy(kr — kH)
+ (Ex + Sy — Ty)(mr — my))
[(Tx(kr — ky) + (m7 — mp)) (18)

165800

Let Ak =k — kg and Am = mp — my:
_ 2R+ E Sy Ak + (Ex + Sc — Tx)Am

T T, Ak + Am (19)
Let H = 2R + E, Sy Ak + (Ex + S)Am:
H—TiAm
YT T Ak + Am (20)

Since minimizing perimeter is equivalent to minimizing the
sum length of segments 7S and EH, let us consider the part
of the perimeter containing these two segments:

P= (T, = $0? + (T, - 5,

+ W — B+ (H, ~E) QD)

Substituting the ordinate coordinates gives:

P=|Ty — Scl\/1+ k2 + |Hy — Ecly\/1 + k% (22)

ar — o

Since 4~
dH
/ 2 x 2
1+kT:|:de l+k=0 (23)

dTx
From the Eq. (20) we get:
dH, —Am(Ty Ak + Am) — Ak(H — Ty Am)

dr, (T Ak 4+ Am)?
Am? + AkH
_ __Amm+ AR (24)
(T Ak + Am)?
And combining the Eq.(23)) and Eq.(24):
5) 1+k2
(T Ak + Am)? = |Am? + AkH| . (25)
1+ k7

And in order to choose the sign, we can replace T with Sy in
this equation since they lie on the same side of the ray relative
to the intersection point of both rays:

krSy — kySy + my — my x £/A (26)

Hence, if k7 Sy + mr > ky Sy + my we choose the plus sign,
and vice versa.

B. DOMAIN SEGMENT PARALLEL TO COUNTERSEGMENT
Still, a particular case exists when the domain segment is
parallel to its countersegment. Then we can substitute some
terms in the Eq. (16) with Ty, = kT + mr, Sy = kS, + mr,
Hy = kHy + my, Ey, = kEx + mg which will give:

H, = + Sx + Ex — T (27)

mr —myg

The perimeter of the quadrilateral containing the SE, ST, EH ,
and TH segments is as follows:

P = |SE| + vV 1 +k2|(Tx _Sx) +(Hx _Ex)|
+V(Ty — Hy)? + (kTy — kHy +mr —mp)? (28)

VOLUME 9, 2021

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

IEEE Access

To calculate the location of T, for the most compact partition,
we calculate the derivative:
dP 2Ty — Hy) + 2k(kTy — kHy + mr —mp)

& 0
dTs /(T — He)? + (kT — kHy + mg — mp)?
(29)
which gives:
(T — Ho)(1 4+ k%) + k(my — mp) = 0 (30)
and therefore:
R S E k -
T — LS +Ex k(mr H;H) 31)
mr — mgy 2 2(1 +k)
R Se +E, k(mp —mpy)
H, = 32
x mT—mH+ 2 + 2(1+k2) ()

C. BOTH DOMAIN SEGMENT AND COUNTERSEGMENT

ARE PARALLEL TO Y-AXIS

In case if both the domain segment and its countersegment are

parallel to Y-axis, the area of the quadrilateral is calculated as:

T, - S,+Hy—E,
2

R = (Sx — Ex) (33)

Therefore:

2R
Hy= 48 +E T, (34)

X X

The perimeter of the quadrilateral is calculated as:
P =|SE| + |(Ty — Sy) + (H, — E})|
+ (B = SP + (Hy ~ T, (35)

And to get the location of both the tail point and the head
point that correspond to the most compact area, we calculate
the derivative:

dP —2(Hy — Ty
& H, — Ty —0 (36
Y \/(Ex - Sx)z + (Hy - Ty)z
which gives us:
R S, + E,
Ty = > —H 37
VTS CE T2 Y Gn

D. DOMAIN SEGMENT PARALLEL TO Y-AXIS
In case if it is only the domain segment that is parallel to
Y-axis, we can take the Eq. (16) and perform substitution
Hy = kH; +mand Ey, = kEx +m. And as T, = Sy, we will
get:
H, — 2R + ESy — kSyEx — mEy — 5,8y + STy (38)
—kSy —m+T,

Let B = kSy + mand A = 2R — BE, + Sy(E; — Sy) then
the previous equation can be rewritten as:
A + SxTy

T,—-B
Let us analyze only the part of the perimeter consisting of 7.S
and EH:

H, = (39)

P=|Ty =S|+ |Hy — Ex|V1 + k2 (40)

VOLUME 9, 2021

To get the locations of the tail and head points corresponding
to the most compact partition, we calculate the derivative of
the perimeter function:

dH. A+B
X _A+BS: 41
dTy (T, — B)?

dpP A+ BS)V + k2

dP _ L _@EBSIVIHE (42)
dT, (T, — B)?

which gives:

Tyszi:\/|A+BSx|\/1+k2 (43)

And the sign is chosen according to the location of S with
respect to the intersection point B of the rays. If Sy > B then
we choose the positive solution and vice versa.

E. COUNTERSEGMENT PARALLEL TO Y-AXIS
In case if it is only the countersegment that is parallel to Y-
axis, we take the Eq. (16) and substitute S, = kSy + m and
Ty = kTy + m. And since Hy = E\:
Hy = 2R+ mSy + kSyEy + ELE, — SiE,

—kExTy —mTy)/(Ex — Tx) (44)
LetA = 2R+mS, +kSyEy+EE,—SyEyand B = —kE, —m,
then the equation above can be rewritten like:

A+ BT,

YTUE T,

Next, we analyze the part of the perimeter consisting of 7'S
and EH:

(45)

P=|H,— E|+|Tc — S:|V1 + k2 (46)

By taking its derivative we can find the location of the tail
corresponding to the most compact area:

dH, A+ BE,
dT, — (Ex —Ty)?

dP A + BE,
— =4+ 4+ 14+k2=0 48
ar, T E—rye VT (*45)

|A + BE,|
V1+k2

And the sign is chosen according to if 7 is on the left or the
right side of E.

Finally, finding the most compact part out of all obtained
parts is trivial. The algorithm is shown in Alg.3. The function
to_splitter represents the algorithm discussed in this section
for finding a minimum perimeter for each domain including
special cases. It takes the domain segment, its correspond-
ing countersegment, and an area requirement, and returns a
segment connecting domain with the countersegment in such
a way that the enclosed area has the smallest perimeter. The
add_splitter_vertices is needed to include the endpoints of the
splitter segment to the “right”” and “left” vertices depending
on if the endpoints coincide with vertices of the polygon
border or not.

(47)

T, =E, £ (49)

165801

IEEE Access

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

And to split the polygon into multiple parts we simply
split the polygon by going over a list of area requirements
following the order specified by the user and detaching the
most compact areas one by one. This is, of course, not the
most optimal solution. But the problem of finding the best
order of splitting is complex and, hence, we will not go into
details on how to solve it in this paper.

Algorithm 3: Compact_Split

Data: V — vertices of the polygon’s border ordered
counterclockwise, R — area requirement

Result: Vi — a list of vertices defining a contour of a
part of the input polygon with the area equal to
the given area requirement, V;, — a list of
vertices defining a contour of remaining part of
the polygon

Ppin = 00 // shortest perimeter;

Cr = None // shortest contour of a part with area R;

Cr. = None // corresponding remaining contour;

/I See Alg. 2 for details on to_domains function;

for D, C, R* Vg, Vi in to_domains(V, R) do

/I find segment giving the most compact partition;

S = to_splitter(D, C, R*);

// add endpoints of S to Vg and V[, if necessary;

Vg, VI = add_splitter_vertices(Vg, Vi, S, D, C);

if length(VR)<Ppi, then

Pin = length(Vg);

Cr = Vg,
CL=V;
return Vg, Vi;
end
V. RESULTS

In this section, we show the quality of the results
obtained with our algorithm compared against two different
approaches. The first approach is the algorithm from [20]
implemented in [33]. The second approach is a naive
approach. The polygon border is discretized into a given
number of vertices with a fixed distance between the vertices
along the border. A brute-force search is performed over these
vertices in order to find the most compact partition. We also
show how the performance of our algorithm compares with
these two approaches.

A. QUALITY

Let us see how the partition of a polygon into ten parts looks
like for a different order of splitting. Fig. 7 shows the partition
of the same polygon into ten parts using different approaches.
In this case, the area requirements were ordered from the
largest to the smallest and relatively scaled as (10,9, 8, ..., 1).
We choose this order for demonstration purposes only. With
any other order of area requirements or their values, the
resulting partitions for each approach will be similar in terms
of quality. And, as was mentioned previously, the problem of

165802

100
7S
50
25
o
-25
=50
=75
-100
-100 —éﬂ EI) 5;3 1(50
(a) proposed algorithm
100
75
50
5
o
-25
-50
-75
=100
-100 50 0 50 100
(b) brute-force search
100 —~
- .
50
5
0
—25
-50
-75
-100
=100 —50 [I}l 5;3 160

(c) algorithm from [20]

FIGURE 7. Comparison of polygon partition using three different
approaches.

finding the best order of splitting is complex, and we leave it
out of our work.

It can be seen in Fig. 7a and Fig. 7b that both the proposed
algorithm results and the approach with brute-force search
result in a much better partition than Fig. 7c built by the [20]
algorithm. It is clear that the resulting areas in Fig. 7c are far
from being compact. It can also be seen that in Fig. 7b there
are some dents in the outer boundary of the polygon due to its
discretization. In some cases this can be undesirable, and the
effect will be more visible for smaller numbers of vertices the
border is discretized into. It is also important to note that with
the discretization it is impossible to have the exact partition,
so the areas slightly differ from the initial area requirements.

VOLUME 9, 2021

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

IEEE Access

=
o

7

= = =
= i =]

=
n

HAvg. normalized compactness

—+— Analytical
Hert and Lumelsky {1998)

=
S

2 3 4 5 & 7 B 9 10
Ne - number of parts

(a) proposed algorithm vs. algorithm from [20]

0.88 /\

0.86

= Analytical
Bruteforce

0.a4

082

Avg. normalized compactnass

078

2 3 4 5 3 7 8 9 10
Ne - number of parts

(b) proposed algorithm vs. brute force

FIGURE 8. Comparison of normalized compactness for three different
approaches.

For a more general comparison, Fig. 8 shows comparisons
of averaged normalized compactness for all three approaches.
Normalizing compactness was done in order to get the same
values for polygons with different areas but the same shapes,
so that, for example, a square with an area R and a square
with area 2R would have the same value of compactness.
We normalized the values so that the maximum possible value
would be 1. And the average value was taken then over all the
resulting parts of the partition.

In Fig. 8a comparison of the compactness of the proposed
algorithm with the algorithm of [20] is shown. Statistics over
100 random polygons are shown with a number of vertices
ranging from five to 100. The order of splitting is chosen the
same as before, starting from the largest part and ending with
the smallest, where area requirements are relatively scaled
as, for example (4, 3, 2, 1) for four parts. One can see that
the quality of the resulting partition obtained by the [20]
algorithm is significantly worse for this setup. We can also
observe the quality of the obtained result degrades with the
number of the parts, and more so for the [20] algorithm.

In Fig. 8b comparison of the compactness of the proposed
algorithm with the brute-force approach is shown. Here we
used only one polygon, the same as in the Fig. 7, as the
brute-force search is very slow even for splitting into two or
three parts. The partition into two, three, four, five, and ten
parts were calculated. The area requirements are ordered and
scaled in the same way as was explained in the description

VOLUME 9, 2021

vk}

06

w
a
E o4
0.2
0 G T T T T T
5 10 15 20 P
My - number of vertices
(a) proposed algorithm
25
20
Y15
o
E
=
10
0.5

5 10 15 20 25
Ny - number of vertices

(b) algorithm from [20]

FIGURE 9. Comparison of performance for the proposed algorithm and
the algorithm from [20].

for Fig. 8a. For the brute-force approach the polygon was
discretized into 100 vertices. One can see that the brute-force
approach results in a bit worse results than the proposed
here approach. For a split into three parts, one can notice,
though, that the brute force yields a better result. This can
be explained by the fact that it returns the parts with areas
that slightly differ from the area requirements, and that due to
discretization, there can be some discrepancies in the shape
close to the original polygon vertices.

B. PERFORMANCE

Fig. 9 shows comparisons of the time to calculate the partition
based on the number of vertices defining a polygon and the
number of parts the polygon is being split into. The area
requirements for each case were chosen equal. The statistics
on 100 random polygons were collected for our algorithm and
the algorithm of [20].

In Fig. 9a one can see the times to calculate the partitions
using our algorithm. The times scale linearly depending on
the number of vertices. We must note that after each iteration
of finding the most compact area for a given area requirement,
the coordinates of the part remaining for splitting were lim-
ited to 100 significant digits. If this was not done, the time
to calculate the consequent parts could grow significantly
due to the increase of significant digits after each split. So,
for example, after the first iteration, if the remaining part
contained a coordinate with 100 significant digits, the next

165803

IEEE Access

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

1000 { = Na=2
Np=3

800

600

time, s

400

200

50 75 100 125
No - number of discretization vertices

FIGURE 10. Performance of brute-force approach depending on the
number of vertices the polygon border discretized into.

700

600

500

400

time, s

200

100

20 25 30 35 40 45 50 55 60
Number of parts

FIGURE 11. Performance of brute-force search for the most optimal order
of splitting depending on the number of parts.

iteration could yield a part with a point that had ten thousand
significant digits, and millions of significant digits on the next
step.

Next, we also check the performance of our implementa-
tion of the algorithm of [20] implemented in [33]. Fig. 9b
shows that it also linearly depends on the number of vertices
the polygon is built on. But the algorithm spends around three
times more time on the same polygons. This comparison,
though, is not entirely fair since the calculations in that imple-
mentation are precise, while in the current paper we drop
precision after each split.

Finally, we were also interested in how our approach scales
compared to the approach with brute-force search over a dis-
cretized polygon border. In Fig. 10 one can see the statistics
for five random polygons. We note that it does not matter
how many vertices are contained in the border of a polygon.
The performance depends only on the number of vertices the
polygon border is discretized into. As it can be seen in the
figure, the performance with this approach is much worse,
even for the cases when the polygon is split into only two
or three parts. This makes it barely usable in any real-life
scenarios.

VI. CONCLUSION

In this work, we present a novel algorithm to split a convex
polygon into a given number of parts depending on a list
of area requirements for each part. This algorithm is based

165804

on the most compact partition of a polygon into two parts.
The performance and the quality of the obtained results were
compared against an algorithm described in [20] and [33], and
against an approach with brute-force search over a discretized
polygon border. It was shown that the algorithm presented in
this paper is more efficient and the resulting parts show much
better quality in terms of compactness.

For future work, it will be necessary to adopt this algo-
rithm for partitioning any non-convex polygons with or
without holes. In order to do that, a similar approach can
be used as in [20]. We have already implemented that
algorithm and it is described in detail in [33]. The idea
will be the same — to represent a non-convex polygon as
a directed region-adjacency graph and process it node by
node.

Then, there is a problem of choice of the order of the area
requirements. We saw that when the order is chosen as from
the largest to the smallest, the partition has better quality than
if the order was chosen from the smallest to the largest. But
it is not clear what order will be actually the best in terms
of compactness of the returned parts. What is clear is that it
will be highly inefficient to search for the most optimal order
of splitting. The total number of all possible ways to split a
polygon into N parts when we split it into two on each step
is equal to % This can be found using the Catalan
numbers for the total number of ways to arrange an array
into a binary tree and a total number of permutations of an
array, where array is an array of area requirements. In this
way, for two parts we can have only two possible ways to
split a polygon, for three parts — 12 possible ways, for four
parts — 60, for five parts — 250, for six parts — 1260, and so on.
Fig. 11 shows that using the proposed algorithm if we search
for the most optimal way to split polygon into just six parts,
it will take more than ten minutes to finish the calculations
which is not practical.

Finally, currently, our algorithm uses the compactness of
parts on the right from the splitter to find the best partition.
It is possible that taking into account the compactness of
the left parts can improve the results. More experiments are
needed in this regard.

REFERENCES

[1] J.J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero, “A distributed algo-

rithm for area partitioning in grid-shape and vector-shape configurations

with multiple aerial robots,” J. Intell. Robotic Syst., vol. 84, nos. 1-4,

pp. 543-557, Dec. 2016.

J.J. Acevedo, I. Maza, A. Ollero, and B. C. Arrue, “An efficient distributed

area division method for cooperative monitoring applications with multiple

UAVs,” Sensors, vol. 20, no. 12, p. 3448, Jun. 2020.

[3] A. Agarwal, L. M. Hiot, E. M. Joo, and N. T. Nghia, “Rec-
tilinear workspace partitioning for parallel coverage using multiple
unmanned aerial vehicles,” Adv. Robot., vol. 21, nos. 1-2, pp. 105-120,
Jan. 2007.

R. Almadhoun, T. Taha, L. Seneviratne, and Y. Zweiri, “A survey on multi-
robot coverage path planning for model reconstruction and mapping,”
Social Netw. Appl. Sci., vol. 1, no. 8, pp. 1-24, Aug. 2019.

[5] S. Ann, Y. Kim, and J. Ahn, “Area allocation algorithm for multiple
UAVs area coverage based on clustering and graph method,” IFAC-
PapersOnLine, vol. 48, no. 9, pp. 204-209, 2015.

2

—

[4

=

VOLUME 9, 2021

G. Skorobogatov et al.: Multi-Robot Workspace Division Based on Compact Polygon Decomposition

IEEE Access

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

F. Balampanis, I. Maza, and A. Ollero, “Area decomposition, partition
and coverage with multiple remotely piloted aircraft systems operating
in coastal regions,” in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS),
Jun. 2016, pp. 275-283.

F. Balampanis, I. Maza, and A. Ollero, “Area partition for coastal regions
with multiple UAS,” J. Intell. Robotic Syst., vol. 88, nos. 24, pp. 751-766,
Dec. 2017.

F. Balampanis, I. Maza, and A. Ollero, “Coastal areas division and cov-
erage with multiple UAVs for remote sensing,” Sensors, vol. 17, no. 4,
p. 808, Apr. 2017.

A. Barrientos, J. Colorado, J. Cerro, A. Martinez, C. Rossi, and and
D.J. Sanz, “Aerial remote sensing in agriculture: A practical approach to
area coverage and path planning for fleets of mini aerial robots,” J. Field
Robot., vol. 28, no. 5, pp. 667-689, 2011.

H. Bast and S. Hert, The Area Partitioning Problem. Princeton, NJ, USA:
Citeseer, 2000.

S. Bochkarev, Minimizing Turns in Single and Multi Robot Coverage Path
Planning. Waterloo, ON, USA: Univ. Waterloo, 2017.

J. Braga, F. Balampanis, A. Aguiar, J. Sousa, and I. A. Maza, and A. Ollero,
“Coordinated efficient buoys data collection in large complex coastal envi-
ronments using UAVs,” in Proc. OCEANS 2017-Anchorage, Sep. 2017,
pp. 1-9.

T. Cabreira, L. Brisolara, and P. R. Ferreira, Jr., “Survey on coverage
path planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, p. 4,
Jan. 2019.

D. Deng, W. Jing, Y. Fu, Z. Huang, J. Liu, and K. Shimada, “Con-
strained heterogeneous vehicle path planning for large-area coverage,”
2019, arXiv:1911.09864.

W. Dong, S. Liu, Y. Ding, X. Sheng, and X. Zhu, “An artificially weighted
spanning tree coverage algorithm for decentralized flying robots,” IEEE
Trans. Autom. Sci. Eng., vol. 17, no. 4, pp. 1689-1698, Oct. 2020.

J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete partitioning and
coverage control for gossiping robots,” IEEE Trans. Robot., vol. 28, no. 2,
pp. 364-378, Apr. 2012.

E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robot. Auton. Syst., vol. 61, no. 12, pp. 1258-1276, Dec. 2013.
G.-Q. Gao and B. Xin, “A-STC: Auction-based spanning tree coverage
algorithm formotion planning of cooperative robots,” Frontiers Inf. Tech-
nol. Electron. Eng., vol. 20, no. 1, pp. 18-31, Jan. 2019.

D. C. Guastella, L. Cantelli, G. Giammello, C. D. Melita, G. Spatino,
and G. Muscato, “Complete coverage path planning for aerial vehicle
flocks deployed in outdoor environments,” Comput. Electr. Eng., vol. 75,
pp. 189-201, May 2019.

S. Hert and V. Lumelsky, “Polygon area decomposition for multiple-
robot workspace division,” Int. J. Comput. Geometry Appl., vol. 8, no. 4,
pp. 437-466, Aug. 1998.

S. Hert and B. Richards, ‘“Multiple-robot motion planning = parallel
processing + geometry,” in Sensor Based Intelligent Robots (Lecture Notes
in Computer Science), G. D. Hager et al., Eds. Berlin, Germany: Springer,
2002, pp. 195-215.

X. Huang, M. Sun, H. Zhou, and S. Liu, “A multi-robot coverage path
planning algorithm for the environment with multiple land cover types,”
IEEE Access, vol. 8, pp. 198101-198117, 2020.

A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos, “DARP:
Divide areas algorithm for optimal multi-robot coverage path planning,”
J. Intell. Robotic Syst., vol. 86, nos. 3—4, pp. 663—-680, Jun. 2017.

J. Kim, C. Ju, and H. I. Son, “A multiplicatively weighted Voronoi-based
workspace partition for heterogeneous seeding robots,” Electronics, vol. 9,
no. 11, p. 1813, Nov. 2020.

J. Kim and H. I. Son, ““A Voronoi diagram-based workspace partition for
weak cooperation of multi-robot system in orchard,” IEEE Access, vol. 8,
pp. 20676-20686, 2020.

E. Koutsoupias, C. H. Papadimitriou, and M. Sideri, “On the optimal
bisection of a polygon,” ORSA J. Comput., vol. 4, no. 4, pp. 435-438,
Nov. 1992.

S.K.Lee, S. P. Fekete, and J. McLurkin, “Structured triangulation in multi-
robot systems: Coverage, patrolling, Voronoi partitions, and geodesic cen-
ters,” Int. J. Robot. Res., vol. 35, no. 10, pp. 1234-1260, Sep. 2016.

I. Maza and A. Ollero, “Multiple UAV cooperative searching operation
using polygon area decomposition and efficient coverage algorithms,”
Distrib. Auto. Robotic Syst., vol. 6, pp. 221-230, Jan. 2007.

J. M. Palacios-Gasés, D. Tardioli, E. Montijano, and C. Sagiiés, ‘“Equi-
table persistent coverage of non-convex environments with graph-based
planning,” Int. J. Robot. Res., vol. 38, no. 14, pp. 1674—-1694, Dec. 2019.

VOLUME 9, 2021

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

A. Pintado and M. Santos, ““A first approach to path planning coverage with
multi-UAVs,” in Proc. Int. Workshop Soft Comput. Models Ind. Environ.
Appl., 2020, pp. 667-677.

D. Puig, M. A. Garcia, and L. Wu, “A new global optimization strategy
for coordinated multi-robot exploration: Development and comparative
evaluation,” Robot. Auto. Syst., vol. 59, no. 9, pp. 635-653, Sep. 2011.

B. Sun, D. Zhu, C. Tian, and C. Luo, “Complete coverage autonomous
underwater vehicles path planning based on Glasius bio-inspired neu-
ral network algorithm for discrete and centralized programming,” IEEE
Trans. Cogn. Develop. Syst., vol. 11, no. 1, pp. 73-84, Mar. 2019.

G. Skorobogatov, C. Barrado, E. Salami, and E. Pastor, “Flight planning in
multi-unmanned aerial vehicle systems: Nonconvex polygon area decom-
position and trajectory assignment,” Int. J. Adv. Robotic Syst., vol. 18,
no. 1, Jan. 2021, Art. no. 172988142198955.

Y. Tang, R. Zhou, G. Sun, B. Di, and R. Xiong, ““A novel cooperative path
planning for multirobot persistent coverage in complex environments,”
IEEE Sensors J., vol. 20, no. 8, pp. 4485-4495, Apr. 2020.

S. Xing, R. Wang, and G. Huang, “Area decomposition algorithm for large
region maritime search,” IEEE Access, vol. 8, pp. 205788-205797, 2020.
M. Xu, B. Xin, and L. G. Dou, and G. Gao, “A cell potential and motion
pattern driven multi-robot coverage path planning algorithm,” in Proc. Int.
Conf. Bio-Inspired Comput., Theories Appl., Nov. 2019, pp. 468-483.

J. Yackel, R. R. Meyer, and I. Christou, “Minimum-perimeter domain
assignment,” Math. Program., vol. 78, no. 2, pp. 283-303, Aug. 1997.

GEORGY SKOROBOGATOV received the M.S.
degree from the Moscow Institute of Physics and
Technology, in 2016. He is currently pursuing the
Ph.D. degree in aerospace science and technol-
ogy with the ICARUS Research Group, Computer
Architecture Department, Universitat Politecnica
de Catalunya. He is the author of five articles and
two proceedings.

CRISTINA BARRADO is currently an Associate
Professor with the Computer Architecture Depart-
ment, UPC BarcelonaTech University, Spain. She
is also a member of the ICARUS Research Group
and works in remote piloted aircraft systems
(RPAS): their architecture, civil uses, and integra-
tion into the airspace. Previously, she worked in
parallelization, compiling, operating systems, and
embedded systems. She has been an adviser of five
Ph.D. theses, four master’s theses, and 26 final

degree projects, since her integration into the ICARUS Research Group. She
is also advising three Ph.D. students and five undergraduate/master’s stu-
dents’ final projects. She has 17 indexed journal articles, two book chapters,
and 68 conference papers.

W ESTHER SALAMI received the M.S. degree in
telecommunication engineering and the Ph.D.
degree in computer architecture and technology
from the Universitat Politecnica de Catalunya,
Spain, in 1998 and 2007, respectively. She is cur-
rently an Associate Professor with the Computer
Architecture Department, Universitat Politécnica
de Catalunya. She is also a member of the ICARUS
Research Group and her research focuses mainly
on unmanned aerial systems (UAS), air traffic con-

trol (ATC), image processing, and artificial intelligence. Previous work, as a
part of the High Performance Computing Research Group, UPC, includes
multimedia processors, memory disambiguation, and digital video applica-
tions. She is the author of over 50 technical publications.

165805

