IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 25, 2021, accepted December 7, 2021, date of publication December 10, 2021,

date of current version December 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3134459

Heuristic Drone Pathfinding Over Optimized

Charging Station Grid

KEMAL IHSAN KILIC™ AND LEONARDO MOSTARDA ™, (Member, IEEE)

Computer Science Division, University of Camerino, 62032 Camerino, Italy

Corresponding author: Kemal Thsan Kilic (kemal.kemal @unicam.it)

ABSTRACT We proposed a novel optimisation framework for drone-based operations which consists of the
optimised Charging Station (CS) grid and the pathfinding heuristics for the drone. The proposed pathfinding
heuristics are assessed for two different (triangular and square) CS grid configurations that are optimised
for the drone range. We presented the case study of a boat rescue operation that is carried out in the sea.
The minimisation of the “flight distance” and ‘“‘number of chargings” are the objectives for the drone
party and the minimisation of the “‘average waiting distance” (AWD) is the objective for the boat party.
We studied the ““single drone with many entities” case which is a form of Travelling Salesman Problem
(TSP). We presented mathematical analysis and simulation results for the effectiveness of the pathfinding
heuristic which we called the ““red-grey path” heuristic. A novel and fast TSP heuristic was also proposed
as part of the pathfinding heuristics and its performance was assessed.

INDEX TERMS UAV path optimization, heuristic pathfinding for UAVs, optimized charging station grids

for electric vehicles, multi-objective multi-party optimization, TSP heuristics.

I. INTRODUCTION

With today’s technology, it is possible to package many
electronic devices into drones. The utilization of sensors
and communication devices on the drones make these flying
devices very versatile, vital, and economic option for many
important operations. Among these operations monitoring,
search and rescue, industrial inspection, communication, and
delivery applications can be listed. The study in [1] presents
an extensive survey on the application areas of drones.

Since the drones can fly directly to the desired location
without being subjected to any obstacle, they can reach
quickly and economically to the desired mission region.
A small onboard communication module enables drones to
transmit data and receive commands related to the opera-
tion. If necessary, they can carry important medical supplies
or other necessary items. The main problem for such an
operation involving drones is the limited amount of onboard
energy available to the drone. This problem can be solved
by deploying CSs over the “mission region” in optimised
grid configurations. Such a CS grid gives an optimised
(min number of CSs and no blind-spot) coverage of the
mission region. However, for the drone, the path to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chatterjee

164070

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

targets via CSs should also be optimised for energy-saving.
The drone can charge or swap its battery on the individ-
ual CSs. In our work, we addressed these problems and
proposed heuristics to carry out drone-based missions in an
optimised way. Just to give a real-life context to our work,
we can consider a consumer-grade drone the DJI Inspire 2
(https://www.dji.com/it/inspire-2). This drone can be seen
in Figure la.

It has a 4280 mAh battery which can provide a drone
27 min flight. The drone can reach a max speed of 94 km/h
achieving about 40 km maximum range. Generally, the bat-
tery can be charged in 30 min with linear quick charg-
ing. However, the recently emerging technologies reduced
the charging time to 5 min [2]. The charging stations can
charge the drone with a “contact-based” charging system
(https://skycharge.de/charging-pad-outdoor) that can be seen
in Figure 1b. The charging system has stainless steel land-
ing platform and it is designed for outdoor environments
(IP65 grade). The pad provides 5S00W loss-free charging
system for the drones. In our work, the terms “drone” and
“UAV” are used interchangeably. In this context, our work
proposes a framework that can help drones to cover and
operate on the mission region by deploying CSs in a static grid
configuration over the mission region. Although we proposed
this framework for general-purpose drone operations, the

VOLUME 9, 2021

https://orcid.org/0000-0002-6277-4867
https://orcid.org/0000-0001-8852-8317
https://orcid.org/0000-0002-9363-9289

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

(a) DJI Inspire 2 drone
ot
2 - AN

(b) The charging pad

FIGURE 1. The consumer grade drone DJI Inspire 2 and the charging
station.

“boat rescue” case study is used as a presentation tool in our
article. The choice of the boat rescue case study is also partly
inspired by the regional project once attempted in the Marche
region of Italy. The project is aborted due to a lack of finances.
However, the proposed framework can be easily adapted to
ground-based operations. One of the differences between sea
and ground-based operations can be CS deployment. On the
sea, the CS deployment has more freedom. However, for
the ground-based operations, there could be locations that
deploying CSs can not be possible. In these cases, the CS
grid will have ‘“holes”. But the pathfinding heuristics can
just go around these holes. Another difference can be in the
network connection technologies that are used in these cases.
For the ground-based operations connection is easier as the
coverage is better on the ground. For sea-based operations,
long-range connection technologies should be used for drone
communication. The current work is an extension of the
previous study in [3]. In the previous study, only the CS grid
deployment was analysed and the sketches of the pathfinding
algorithms were presented. Mostly theoretical aspects were
presented in the previous work. Also, the synergy between
CS grid deployment and the pathfinding heuristic was not
concretely established in the previous work. The current work
proposed and implemented a heuristic pathfinding algorithm
and presented performance evaluation through simulations
and benchmarks. In addition to that, the synergy between
CS grid deployment and the heuristic pathfinding is explained
through simulations. The degree that red-grey paths provide
savings according to the CS grid deployment is measured in
the simulations.

We aimed to design a drone dispatcher system by consid-
ering multiple static boat configurations and a single mission
drone. This dispatcher system can be utilized in an event or
time-based simulation. This version of the problem is related
to the Traveling Salesman Problem (TSP). On the other hand,
the multiple drone version of the rescue problem is related
to the generic Vehicular Routing Problem (VRP). However,
the fact that off-shore flights are required over a regular geo-
metric CS grid makes it a special and novel variant for both
TSP and VRP. In this sense, it can be said that the framework

VOLUME 9, 2021

we proposed offers novel contributions to mainstream TSP
and VRP research. In addition to that, many concepts and
methods can be borrowed from TSP and VRP research. Both
TSP tour [4] and VRP [5] are known as \/P-Hard problems.
For this reason, we proposed novel heuristic algorithms for
finding the optimum path for the mission drone.

The proposed framework consists of the deployment of
CSs, the novel TSP heuristic algorithm we called ‘“‘con-
caveTSP”, and the energy-saving pathfinding heuristic we
called the “redGreySP” heuristic (hereafter “redGreySP”’,
red-Grey Shortest Path). We presented a mathematical anal-
ysis for different CS deployment strategies in connection
with the proposed “‘redGreySP” heuristic method. The pro-
posed novel TSP heuristic algorithm is analyzed and bench-
marked against the other standard approximation algorithms
by considering various standard TSPLIB datasets and cus-
tom datasets. The savings from the proposed ‘‘redGreySP”
heuristic are tabulated by comparing the results of the same
rescue operation with and without the heuristic. The proposed
CS deployment schemes ensure no blind-spot mission region
coverage. The proposed TSP heuristic finds the ““best order”
for rescuing the boats. Finally, the proposed “‘redGreySP”
heuristic by using a modified shortest path algorithm finds
the “‘best path” from one boat that frog-leaps on the deployed
CSs to the next boat. The “graph” structure that represents
the system is dynamically augmented with the red, grey edges
when there is a rescue call. After the boat is rescued these red
and grey edges are deleted. The mission drone leaves the BS
and after completing the rescue mission returns to the BS.
In this sense, the TSP tour starts from the BS, visits boats
via CSs, and returns to the BS.

The multi-objective and multi-party optimisation is inte-
grated into the proposed framework for the boat rescue case
study. While for the drone the shortest rescue (min energy)
path is important, for the boats the less AWD is desirable.
A weighted scenario-based scheme can be used for these
objectives. For urgent missions, the shortest tour for the drone
can be completely overridden in favour of the least AWD (or
least average waiting time) for the boats. The boats can be
prioritized according to the type of the necessary rescue oper-
ation. The effectiveness of the proposed rescue framework is
evaluated in simulation in which randomly distributed rescue
calls are generated over the real-life region over the Adriatic
Sea close to the shores of Marche, Italy.

We designed simulations and benchmarks to assess the
performance of the proposed concaveTSP heuristic against
other standard TSP heuristics. Also, the effectiveness of the
proposed redGreySP heuristic is assessed by estimating the
savings over the base case (without heuristic). The redGreySP
heuristic provides about 17% path length savings for the
triangular grid and about 10% for the square grid. While
the proposed TSP method is on a par with the standard TSP
heuristics in small dataset (less than 1000 vertices) simula-
tions, for the bigger (1000+ vertices) datasets it offers faster
solutions. Especially for regular grid datasets, it is better than
the other heuristics in every aspect. In its essence, our work

164071

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

proposes a novel framework solution to the generic problem
of region coverage with CSs and a special TSP heuristic for
visiting the entities in the covered region in an optimum way.
This flexible framework can be used in various drone-based
operations like search and rescue, delivery, and monitoring.

The rest of the paper is organized as follows: In Section II
we presented related work. Section III presents the elements
of the proposed framework in subsections with mathemat-
ical analysis and experimental results on the case stud-
ies. The basic elements of the proposed framework consist
of the CS deployment (Section III-A), the proposed con-
caveTSP heuristic (Section III-B), the redGreySP heuristic
(Section III-C). The experimental results are discussed in
Section III-D. The conclusions and ideas for future work are
listed in Section IV.

Il. RELATED WORK

Drones can reach many places with ease and they can provide
economic ways for many important operations. They can
be fully automated and can be used in operations that are
dangerous for human health. Real-life examples of search and
rescue operations can be found in [6]—[8]. A list of advantages
of using drones in such operations is presented in [9]-[11].
The paper [12] presents a review of the applications of the
drones and details on the types of drones.

Regarding autonomy, the operation modes of drones can be
classified mainly into two groups: Autonomous and manual.
In the case of autonomous mode, drones are either make deci-
sions by themselves or they communicate with other drones
to carry out the mission. When the decision making is from
the operator, the manual mode is engaged. The mission can
be planned and scheduled centrally by BS or it can be planned
in a distributed manner involving swarms of autonomous
drones. The work [13] presents a study on the use of swarms
of drone related to the ‘““smart city’’ concept. In our research
we proposed centrally planned and scheduled mission for
the autonomous drone. However, once the drone reaches
the operation cite the mode can be changed to autonomous
mode for various tasks. Like panning the onboard camera or
focusing it on the various locations.

The deployment of CSs is an important design element
for the operations involving electric vehicles. Especially for
drones since they carry a limited amount of energy, the cov-
erage of the mission region depends on the range of the vehi-
cle and on the CS deployment configuration. ‘“Refuelling”
techniques can provide partial solution to the energy prob-
lem of the drone. However, the operation range/effectiveness
of the drone depends on the deployed CS grid. In the
case of drone that uses electrical energy, the battery can
be charged even replaced with various technologies. The
work [14] even suggested ‘“drone-swapping” to address the
limited onboard energy problem. The charging technologies
can be ‘“‘contact-based” or ‘“‘contactless”. One example of
contact-based technology can be found in [15]. In [16], Wire-
less Power Transfer (WPT) by using electromagnetic waves is
presented as one of the contactless ‘“‘charging” technologies.

164072

The Laser-Powered UAV wireless communication system
is studied in [17]. While the drone can charge its battery
with the contact based technologies [15], An example battery
swapping technology is presented in [18]. Beside the cost and
deployment/maintenance aspects, these technologies should
be evaluated for their “energy refuelling time” and “‘energy
capacity” that they can offer to the electrically energized
drones. Other important aspects are the location and condi-
tions that these technologies can be deployed and operated.
The priorities of these parameters are important for the type
of operation that drones are utilized for. For example in the
case of important rescue operations the “quick refuelling”
may have the highest priority.

The problem of optimally deploying CSs is studied in [19]
and [20]. These studies proposed adjustable CS deployment
strategies. As it is stated in [19], the UAV routing research can
be grouped into three classes: The delivery truck-drone coop-
eration, transporting drones mostly with public transportation
and deployed CS grid assistance. However, the last group,
namely CS grid assistance, can be further classified into two
groups based on the research that is done: The CS grid can
consist of mobile CSs or static CSs. Our study considers
optimum static deployment.

Historically the similar routing/pathfinding problems were
studied under the title of ““Fuel Constrained, UAV Routing
Problem” (FCURP). In the seminal work [5], the founda-
tional questions related to the problem is studied by con-
sidering cars and gas stations with symmetric travel costs.
This framework is extended by considering UAVs and asym-
metric travel costs in [21]. The study [22] considered the
“cooperation” between routing and CS grid in the context
of CS mobility. It proposed ‘“mobile refuelling stations”
and optimal routing related to the CS deployment labelling
the problem as ‘“Fuel Constrained UAV Routing Problem
using Mobile Refuelling Stations” (FCURP-MRS). While
these studies considered the generic routing problem, they
did not propose synergy between CS grid configuration and
the routing algorithms. The operation region is assumed to be
completely covered by the CS grid.

Delivery operations with truck-drone systems are getting
widely used as drones can fly without much traffic problems.
TSP with Drone (TSP-D) is a very widely studied topic.
The delivery truck is paired with drones that can serve the
customer request. While the truck goes on its way the drone
or drones assist the delivery, helping the truck in the TSP
tour. The review of such delivery systems and the variants
of them can be found in [23]-[28] In our study, a single
drone from a single static BS (depot) goes and serves the
static boat requests. This is a classical TSP case. However,
the necessity of charging for the drone and the specific con-
figuration of the CS grid makes the problem a variant of TSP.
In our framework, there is no moving truck but the static
BS. The path of the drone is determined by the CS grid
configuration. On the other hand, the configuration of CSs
should be adjusted according to the range of the drone that
is utilized. In this sense, while the boats can be regarded

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

as “‘the clients”, the CSs on the way can be regarded as
special clients or depots that should be visited. In addition
to these differences, we aimed to evaluate the TSP tour by
considering multiple objectives. Especially the consideration
of AWD of the TSP tour is a novel contribution we proposed
in our framework. Further details and methods on the Multi-
Objective TSP (MOTSP) can be found in [29]-[31].

The classical TSP literature is very rich since the problem
has been around for a long time. The works [32] and [33] are
two seminal works from which many of the heuristic methods
were germinated. The studies [34] and [35] are two excellent
works that give rather detailed explanations and analyses on
the heuristic methods that are used in the TSP approximation
algorithms. The TSP, in the graph-theoretic domain, is studied
by focusing on the edge distances and vertices. However, the
geometric TSP instances contain coordinates of the vertices.
This extra information is essential for the approximation
algorithms that are based on the geometric configuration of
the vertices. Computational geometry offers various tools for
“grouping”’, “connecting’’, and ‘“‘shaping” of the vertices on
the Euclidean Plane. The convex hull, or in general “charac-
teristic hull” methods are useful for fitting a ““shape” to the
points scattered on the plane [36], [37]. In this way, if not all,
some of the points can be grouped into a closed curve. This
is a useful method for creating an initial sub-optimum tour.
In studies [38], [39], the use of convex hull in the context
of TSP is discussed. The concave hull is another useful tool
that can be used in the same manner [40], [41]. The proposed
concaveTSP uses a concave hull in a novel way during the
sup-optimum tour creation phase. The ‘“improvement” phase
in which the created concentric hulls are merged follows this
“‘construction” phase. The proposed improvement heuristics
are utilized in an ‘““on-the-fly”’ manner during the merging
phase.

Our study proposes novel static CS grid deployment strate-
gies and synergistically integrated optimised pathfinding
heuristics. By unifying these two research fields in a syn-
ergistic way, we believe our study filled a research gap in
the drone-related literature. The studies that proposed rout-
ing coupled with the CS grid strategy did not elaborate on
the analyses on the different CS grid configurations. How-
ever, in our work not only do we propose optimum cov-
erage configurations with different geometries, but we also
proposed an optimum pathfinding heuristic synergistically
adapted to the CS grid configuration. Mathematical analyses
were also presented related to the CS grid configurations we
proposed. Our study proposed novel metrics for assessing the
coverage-effectiveness of the CS grid. Although the proposed
framework presented with a case study of boat rescue opera-
tions, our study can impact many drone-assisted applications.

Ill. PROPOSED FRAMEWORK

We presented a brief overview in the Introduction I for the
proposed framework. Here we like to discuss the design
principles and give a bit of the analysis we have carried out on
various elements of the framework. The heuristic algorithms

VOLUME 9, 2021

Boat to Rescue

= 2
Charging Stations

*

- Many drones can use the same
“path” without “collision” at different
altitudes.

- Return path can be different

Objectives can be:

-Min time for the rescue mission
-Min energy consumption for drones
-Min Avg Waiting time for boats

FIGURE 2. Boat rescue operation with drones.

that we designed for optimised pathfinding will be discussed
as well. The basic elements of the proposed framework con-
sist of these:

o Optimised CS grid by using min number of CSs
to cover the mission region without “blind spots”.
Presented in Section III-A.

o The TSP heuristic, concaveTSP, for finding the opti-
mum permutation to visit entities (rescue boats).
Presented in Section III-B.

o The shortest path heuristic redGreySP, for finding the
“best” path from one entity (boat) to another. Presented
in Section III-C.

Simulations and benchmarks are designed to assess the
performance of the proposed framework. Design principles
and experimental results are presented and discussed in
Section (ITI-D).

Figure 2 shows the representative configuration of the
envisioned case study which we called the drone-assisted boat
rescue operation.

The physical entities consist of a static CS grid, BS at a
static location, and the rescue drone. The mission is centrally
controlled by the BS. Upon reception of the rescue request
or requests, the optimum path depending on the objectives
is estimated and the drone is dispatched for the mission.
Currently, the dynamic rescue requests that can be arrived
during the flight of the drone are not considered.

For the deployment of CSs, the drone range is the crucial
parameter. The CS grid spacing depends on the max drone
range and is fundamental for the proposed ‘“‘redGreySP”
heuristic. We assumed that the drones can not be charged on
the boats. In any case, having a charging facility on the boats
does not prevent the utilization of the proposed heuristic. The
“redGreySP” heuristic searches for a path-length (energy)
saving pair of “red” and ““grey” edges on the frog-leaping
path of the drone from one CS to another on its way to rescue
the ““boat”. The “grey” edge is the edge that the drone can
fly to/from any CS. The “‘red” edge is the one-way edge for
the drone to/from the CS. The “red-grey path™ is the pair of
red and grey edges in which the total distance is less than or
equal to the max drone range. Sometimes the drone can find a

164073

IEEE Access

K. I. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

Select Select Select
Region OFF BS OFF ON Boat
Pts Pos Pos

Reset ClosePoly TriGrid SqGrid
Grid type: Edge Filter:
® Triangular © Gray
© Square ® Gray+Red

© Gray+Red+Yellow

RND Boat Number:
1,000

)
T T T T T T T T T
1 101 E E a1 01 60t 01 &0t a0t 1,000

RND Boats

Leaflet | ® OpenStreethap contributors, CC-BY-5A

Drone Range:

RunSim

concave TSP-RG concaveTSP-G concaveTSP-RGY

FIGURE 3. Prototype Ul developed for the rescue system.

shorter rescue path to the boat when it flies over such an edge
pair. The energy budget (battery, fuel tank) constraint of the
drone should be checked over such a rescue path to ensure
the safe arrival of the drone to the boat without depleting
all the onboard energy available. If the CS spacing is not
adjusted to the drone range there is a danger of creating “‘blind
spots’’ in the mission region where boats can not be reached.
For this reason, the geometric configuration of the CS grids
should be arranged depending on the drone range. The rescue
drone should find the shortest TSP tour that starts at the Base
Station (BS), visits all the boats, and returns to the BS. On its
way, the drone goes frog-leaping from one CS to another
charging its battery and utilizing the proposed “‘redGreySP”’
heuristic. While the proposed ““‘redGreySP”’ heuristic consid-
ers the shortest path between boats, the custom-designed TSP
heuristic algorithm, ‘“concaveTSP”, proposes the approxi-
mate shortest TSP tour (permutation) for the mission drone
according to the current BS and boat configuration. The
proposed TSP heuristic algorithm designed for the drone in
our framework considers CW (clockwise) and ACW (anti-
clockwise) tours for selecting the best rescue path according
to tour length and AWD. For our experiments, instead of a
weighted scheme, the shortest tour (between CW and ACW)
is chosen. In the case of equal tour lengths, the tour with
the least AWD is chosen as the best rescue tour. A proto-
type research software is developed to study the proposed

164074

framework in which the user can configure the mission region
and select boat positions on a real-world map. The software
converts the geographical configuration of the entities to a
graph structure and simulates the selected algorithm. The user
can see both the geographical configuration and the annotated
graph structure used by the heuristic algorithms. A screenshot
is given in Figure 3 for this research software. In Algorithm 1
a pseudo-code is given for the proposed rescue framework.

Algorithm 1 The Proposed Rescue Heuristic Framework in
Pseudo Code

Inputl: > RescuePoly: User drawn polygon containing the rescue region.
Input2: > GridType: User selected CS deployment configuration, tri or sq.
Input3: > DroneRange: User selected drone range.
Input4: > BS and BoatPos: User selected BS and Boat coordinates.
Output: < RescueTour: The optimum rescue tour: (Vy ... Vg)

: Grid < NULL

: VitxList < NULL
BS and CS Deployment and Boat position selection

: Grid < Grid + asVertex(userSelect(BS))

. VixList <— VtxList + asVertex(userSelect(BS))

: Grid <« Grid 4+ asGraph(deployCS(RescuePoly, userSelect(GridType),
DroneRange))

. Grid « Grid + asGraph(userSelect(BoatPos))

. VixList < VtxList + asVertex(userSelect(BoatPos))
Find the Best TSP tour for the BS + Boats for the drone

: concaveTSPTour < concaveTSP(VtxList)
Find the Best Rescue Path for the drone

: RescueTour < redGreySP(concaveTSPTour, Grid)

oo ~ N AW N —

N=J

10: Return(RescueTour)

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

Firstly, the best TSP tour is searched with the pro-
posed “concaveTSP” heuristic (2) in the algorithm. For
this part, we utilized geometrical distance between vertices
(BS + Boats) not the red-grey path distances. In the domain of
the red-grey heuristic the edge/path distances are dynamical
and direction sensitive. The edges of the red-grey edge/path
are removed from the data structures when the associated
boat is “visited”. CW and ACW approaches may not use the
same set of red-grey edges or paths. For this reason in finding
the approximate TSP tour, we simplified the algorithm with
this scheme. This TSP tour is the “best” (the approximate
shortest TSP tour of the BS + Boats for the drone) rescue
order for the boats. Then, with the proposed red-grey shortest
path heuristic, called “redGreySP” (3), the “best” rescue
tour is returned. In general, the rescue tour is a multi-objective
optimised tour. Namely, the flight distance, AWD, and the
number of chargings are the objectives that can be weighted
for optimisation. However, for simplicity, in our simulations,
we selected the min flight distance by considering the CW
and ACW (with respect to BS) versions of the rescue tour.
In case of equality, the tour with the min AWD is selected.
By default, the algorithm chooses the CW tour in case of
equal distance and AWD values. Because of the directional
sensitivity of the red-grey edge scheme, CW and ACW tours
may differ in total rescue distance. In Algorithm 1, the func-
tions like asVertex(), userSelect(), asGraph(), and deployCS()
are used to explain generic procedures. While the asVertex()
function selects the vertex of the structures, the asGraph()
function selects vertices and the edges of the structures. The
userSelect() function represents user interactions via mouse
clicks or menu selections. The deployCS() function tries to
deploy CSs in an optimum way according to the DroneRange
parameter without any “‘blind spots” (inaccessible points for
the boats in the rescue region).

A. THE CS DEPLOYMENT

The first step in the construction of the mission infrastructure
is CS deployment. For the deployment of CSs so far we stud-
ied two different deployment configurations. Namely square
grid and triangular grid. To prevent “blind spots™ in the
mission region, CSs should be spaced in a special geometry
and according to the range of the drones that are selected for
the rescue missions. Throughout our study, we normalized
distances according to the drone range unit as it is the funda-
mental parameter for the proposed rescue framework.

For each case, blind spots should be avoided by estimating
the optimum (min number of CSs and no blind spot) inter
CS spacing. For any selected geometry for the CS grid, if the
inter CS spacing is less than the optimum spacing there will
be no blind spots. But more than necessary CSs will be
required. If the inter CS spacing is greater than the optimum
spacing, then there will be blind spots in the mission region.
In Figures 4a and 4b, these situations are depicted.

In Figure 5 actual CS grid deployments are shown on the
selected rescue mission region on the sea of Marche, Italy. For
the same region, triangular grid coverage requires 24 CSs.

VOLUME 9, 2021

CS Spacing
R R
e 3x100/2V3 =87
DroneRange
100

No Blind Spot

- No blind spots
- More CSs for
the region

RescueRange CS Spacing
50 100
DroneRange
100
- Blind spots
- Fewer CSs for
the region
(a) Triangular grid CS deployment properties.
CS Spacing
RescueRange
50 . 100/v2=71
DroneRange
100

No Blind Spot

- No blind spots
- More CSs for

the region

RescueRange CS Spacing

50 100
DroneRange

100

- Blind spots Blind Spot

- Fewer CSs for

the region

(b) Square grid CS deployment properties.

FIGURE 4. CS grid deployment properties.

For the square grid, the same coverage can be achieved
with 30 CSs. The average shortest path length from the BS
to all the other CSs for the triangular grid is 2.06 drone
range units. For the square grid, the average shortest path
length is 2.07 drone range units. The green-coloured edges
represent the adjacency. In other words, for the drone, they
are possible drone flight paths. The regularity of the CS
grid can be exploited in various ways. The proposed “‘red-
grey path” heuristic is one of them. In Section III-C we
explained in detail how the “‘red-grey path” heuristic can be
used to find a better flight path for the mission drone. We also
presented mathematical analysis for the savings that can be
obtained from the “‘red-grey path” heuristic associated with
the selected grid configuration.

164075

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

Lorets;

Recanati \

Cingoli Patenza Picen,
Marche
Maerata ——Mareh

~~Corridonia

Toléritina

Wandaifox

senigal

Mantemarcial

o i Al
Chiaravalle .

/j ‘.-._
| = Jesi _
/ w7 Osimo \\

Loreto

Recanati

Cingoli Patenza Picen
Marche !
i Civitangya

Macerata _ImEEN i
! - Y
St - Porta Santkleddio

Carridonia

— \

| Tolgriting W\ \

i 0
(b) Actual square grid CS deployment (30 CS).

FIGURE 5. Actual CS grid deployments on the sea of Marche, Italy. The
selected region is 5992 km2. The bounding box has width: 120.93 km and
height: 109.38 km.

B. THE PROPOSED TSP HEURISTIC

The crucial step in the rescue operation is to find the “best”
order to visit the boats. Considering that the boats have equal
priority, the TSP tour of the boats is the shortest tour starting
from BS and returning to BS. For this purpose, we proposed
a custom TSP heuristic algorithm called “concaveTSP”.
The proposed algorithm can be classified as a hybrid of
a geometry-based method with custom ‘‘nearest insertion”
and “2-Opt-like” (3-edge) heuristics. The algorithm takes
the coordinates of the vertices and produces deterministic
output. In the first phase, the proposed algorithm constructs
concentric ‘“‘rings” by using the concave hull method pro-
posed in [42]. For the next phase, the constructed rings are

164076

merged (if more than one) based on the nearest insertion and
3-edge heuristics we proposed. The concave hull algorithm
is based on the geometry of the vertices. The intuition behind
using such a sub-tour (concave hull) generation technique
was our observations of the actual optimum TSP tours from
the TSPLIB (http://elib.zib.de/pub/mp-testdata/tsp/tsplib)
datasets. For the optimum tours, we observed, the overall
shape was a “‘non-self-crossing loop’” [32]. This is logical as
self-crossing may introduce some overhead for the tour cost.
We imagined modifying the “outmost’ hull to “visit™ all the
other vertices in a non-self-crossing way. For this task, our
first idea was to merge (insert) the remaining vertices into that
outmost sub-tour in a systematic way. We think that if we put
the remaining vertices onto concentric hulls, this could help
us in the neighbour selection process for the merging phase.
The levelled concentric hulls sort the vertices according to the
distance (and directional order) from the outmost sub-tour
and place them into a merging queue. Adjacent concentric
concave hulls or rings are very useful for fast neighbour
discovery. They kind of play the role of “geometric priority
buffer””. This scheme enables the algorithm to search for
“nearest neighbors” in a speedy manner.

In Algorithm 2 the pseudo-code is given for the proposed
TSP heuristic.

Algorithm 2 The Proposed TSP Heuristic Algorithm
(concaveTSP) in Pseudo Code

Input > VixList: Euclidean vertex coordinates with numbers, (i, X, ¥;),i=1...N
Output < concaveTSPTour: The approximate TSP tour, (V] ... Vy)
Concave hull construction phase

: CHList <~ NULL

: VitxNotVisited < VtxList

: while (|VtxNotVisited| > 2) do

CH <« concave hull(VtxNotVisited)

CHList < CHList U CH

VitxNotVisited < VtxNotVisited \ CH

. end while

: RemainedVtx <— VtxNotVisited

PRDUE PN

Merging phase: Select the nearest concave TSPTour vertex and use 3-edge heuristic
9: NSubTour < |CHList|
10: concaveTSPTour < CHList[1]
11: if (NSubTour > 2) then
12: for each CH € CHList[2..NSubTour] do

13: NVix < |CH|

14: for each Vitx € CH[1..NVtx] do

15: concaveTSPTour <— Merge(concave TSPTour, Vtx)
16: end for

17: end for

18: end if

Merging RemainedVtx if any
19: if (|[RemainedVtx| > 2) then
20: concaveTSPTour <— Merge(concaveTSPTour, RemainedVtx)
21: endif

22: Return(concaveTSPTour)

The proposed algorithm follows a top-down manner. The
inner sub-tours iteratively merged into the outmost sub-tour
starting from the outmost inner sub-tour. For each inner
sub-tour vertex the nearest ‘“merged sub-tour” vertex is
selected. We call this method “‘nearest vertex merging heuris-
ic”’. This selection is faster than the standard ‘“‘nearest inser-
tion” or ‘“‘nearest neighbour” as the nearest vertex is searched

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

Merged ring

PostClosest

Closest vertex

PreClosest "~ =~ __
vertex Ve TS =

Vertex to be
merged

FIGURE 6. The 3-edge heuristic used for merging a new vertex to the ring
(sub-tour) merged so far.

only among the vertices of the merged sub-tour. For this
phase, using a distance matrix type buffering speeds up
the processing. We also experimented with different vertex
selection techniques. Among them, we can list the ‘“‘nearest
edge” and the ‘“nearest edge midpoint”. These heuristics are
computationally expensive selection techniques. Following
the vertex selection, the decision should be made on whether
to make the inner sub-tour vertex a successor or a predecessor
of the selected nearest merged vertex. For this, we proposed a
simple heuristic that considers and compares the cost of three
edges shown in Figure 6.

Namely, if the cost of ““Pre Dist + Post2Vtx Dist” is less
than or equal to the cost of “Post Dist + Pre2Vtx Dist™,
the path labelled as “A” is chosen. Otherwise, the path
labelled as “B” is chosen and the vertex order in the merged
ring is updated accordingly. This simple and computationally
lightweight heuristic is also based on the geometric positions
of the vertices. Functionally, it is a form of the on-the-fly
2-Opt method. We call it a ““3-edge heuristic”’. At the final
stage, if there are any, the vertices that do not belong to any
sub-tours are also merged in the same way.

According to the paper [42], the time complexity of the
concave hull generation for N vertices is dominated by the
term O(N log N). However, we generated hulls one after
another removing the vertices that are already used in the
previous hulls. The number of iterations (number of rings)
depends on the geometric positions of the vertices. If we use k
for the necessary number of iterations (generating k rings) to
exhaust all the vertices up to two vertices for ring generation,
then the time complexity of the construction phase becomes
O(kN log N). For the second phase which is the merging
phase, again the time complexity depends on the number of
the rings generated in the previous phase and on the number
of the vertices on these rings. However, assuming a linear
search, O(N), for the nearest vertex, the time complexity
of the merging phase is bounded by O(cN?), where c is a
constant value 0 < ¢ < 1. If more than one ring is created
then each iteration of the second phase passes a fraction of the
total N vertices, but never all of them since, for each vertex
merging, the nearest vertex selection search considers only
the previous ring vertices but not all of the vertices. Basically,

VOLUME 9, 2021

pr76 - 76 Vertices (cities)

gl @ L]

| ®0 DD @

_ [) 7L 75 [} o35) ®®

8 e ® d D ® 9 ?
o0 29 D

8
8

000 0 a5 @ @ g% @ @ ¢®

o0 DD ®d

4000

2000
[}
®
[}
®
[~}
[}

0 5000 10000 15000 20000
x-coordinate

FIGURE 7. “pr76” TSPLIB dataset.

every time there are more than one ring, a fraction of the all
vertices will be on the merged ring (O(rN), 0 < r < 1) and
other fractions will be on other rings (O((1 — r) x N), 0 <
(1—r) < 1). For the merging, every inner ring vertex is paired
with a vertex on the ring merged so far (O((r — r2N), 0 <
r < 1). We can think of the worst-case in which two rings are
created and each having % vertices (r = %). Then, for each
of the inner vertices, the other outmost ring vertices will be
checked. This gives us roughly (’)(NTZ) processing. As aresult,
in the worst case, the algorithm is bounded by the merging
phase with time complexity of O(N?). The merging phase
can be further optimised computationally if we use a type of
data structure that restricts the search to a specific region or
radius. Instead of linear search some kind of priority queue
like ““minheap” can be used for an effective minimum search
with O(logN) time complexity cost (for insertion). So, the
proposed algorithm can offer O(N log N) time complexity.

The performance of the algorithm is assessed against
similar TSP heuristics and the results are tabulated in
Section (III-D). The proposed TSP algorithm is generally
fast. We observed that it is better than the other similar TSP
heuristics in all the metrics we studied when the “cities” are
in a big (1000+ vertices) regular square or triangular grid.
For a better understanding of the working of the proposed
algorithm, we presented several graph plots that show the
various running stages of the algorithm.

Figure 7 shows the standard TSPLIB dataset “pr76”
(http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/pr76.tsp)
with 76 vertices labeled with red colour.

Figure 8 shows the generated 2 “rings” by concave hull
with different colors. The vertices are numbered with the
standard TSPLIB numbers (blue, on top of the vertices) and
also with the ring-specific numbers (black, on the vertices).
The outer ring with pink colour is the first ring and the inner
ring with green colour is the second ring.

Figure 9 and 10 show the process of merging the first and
the last point from the second ring respectively.

In Figure 9 vertex number 20, the first vertex of the second
ring is paired with the vertex number 5 (ring 1 vertex 19,
coloured with blue) of the merged (the first) ring. The next
vertex in the merge buffer is vertex number 9 (ring 2 ver-
tex 2) which is coloured with red. In the last merging round

164077

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

pr76 - 2 Rings

12000

j S Y S
<
&
.
& Le
“ &

wHoy il
o

10000

2000

0 5000 10000 15000 20000
x-coordinate

FIGURE 8. Rings generated by concave hull for pr76.

pr76 - Merging ring: 2 pt: 1- Blue: Merged. Red: Next to be merged

¢ ¥ : @8 8

- FE) @8
%3 ¥ 88y PrE R 538
g % & ¥ B & v
o 6y 3% T 8
g
8 o 1921 5 42 5 o4
H by b b gy b 8 iy & 9 8
g8
82 - %8 88

4000

3

e
%
G
85
82

2000

P 46 69
7 3
ﬁ‘ré B

o 5000 10000 15000 20000
x-coordinate

FIGURE 9. Merging the first point from the second ring. The next ring
marked with red colour.

pr76 - Merging ring: 2 pt: 8 - Blue: Merged. Red: Next to be merged

gl & , “ s e 8.
8 @4 -3 8
p .
B3 prEEED # @85 538
g B & # i B & &
s 28 %8 88
8
g . s P Py !
g by 6 o 3Oy 8 8 gy 8 8 g9
g8
§8 - W -8
8
g Bé Ty %
16 09 575 6
s ® g & § @]
8 @ & &
i%'/ﬁ 7_‘0

o 5000 10000 15000 20000
x-coordinate

FIGURE 10. Merging the last point from the second ring.

vertex number 19 (the last vertex of the second ring) is
merged to vertex number 31 which was previously merged
to ring 1 (Figure 10). Figure 11 shows the final “merged
ring” (the approximate tour from the proposed algorithm) in
green colour. The 3-edge heuristic worked well for the vertex
chain 6-9-10-5. However, the vertex chain 29-31-19-30 was
not a very cost-efficient path. Lightweight post-processing
can be carried out to improve such paths. The optimum tour
is 1-76-75-2-3-4-5-6-...-24-25-21-22-23-1, which is marked
with a dashed line.

C. THE PROPOSED RED-GREY PATH HEURISTIC
Assuming that the drone does not do charging on the boats,
after the rescue operation it should have enough energy to

164078

pr76 - Final merged ring. AR = (115790/108159.4) =1.07

s| & . 8
g w4 8 e 2
L B a6y CR
5 5 @ i] &
. au 6 W "
by b b iy e 8 458 8 g
i b B (2] \ Ao
& " by
i 109 5 1
g i i@ & & ¥
g1 & 4 8
fie %

0 5000 10000 15000 20000
x-coordinate

FIGURE 11. The final merged ring and the optimum tour for pr76.

reach any CS. Otherwise, the mission can not continue and the
drone can not return to the BS. The drone can safely return
to any CS that is in the 50% of its range of any boat. The
optimum CS configuration guarantees that any boat anywhere
can be reached in this way. Any “‘edge” between any boat and
any CS that is less than or equal to half of the drone range is
called “grey edge”. The drone can safely go, rescue the boat,
and come back to the CS or go to another CS. Every boat
is guaranteed to have at least one grey edge in the CS grid.
If there is an edge greater than half of the drone range but
less than the drone range is called “‘red edge”. The drone can
go and rescue the boat but can not return on the red edges.
However, in some situations, the combination of “red-grey”’
edges can make the rescue operation possible if the sum of
their lengths is less than or equal to the drone range. We call
such an edge pair “good red-grey path”. These conditions
related to drone range are explained in Figure 12.

In Figure 13 the situation of “good red-grey path” is
depicted.

The red-grey path edges are dynamically added to the
graph structure as the boats make rescue calls. This red-
GreySP heuristic is a general heuristic that can be integrated
into any optimum path-finding algorithm like Shortest Path
and A", After the good red and grey edges are added to
the graph structure, the path-finding algorithm can just find
the optimum path to the boat. However, whether the final
destination of the path is a boat or the CS after the grey edge
should be considered for the next traversal. If the red edge
is used the drone should find and use the grey edge to reach
the nearest CS. If it gives a shorter path, the drone can use a
red edge after the grey edge. But the red edge should end up
ata CS.

Assuming that the boats can ask for rescue at any point on
the grid with equal probability, we can present an analysis
on the frequency of having such a red-grey edge pair. This
analysis can justify the importance of using such a heuris-
tic and can verify the effectiveness of the grid coverage.
Figures 14a and 14b helps us to understand the analysis
focused on the triangular and square regions among different
CS grid configurations. The CSs are at the vertices of the
triangles and squares. The circles represent the rescue region
of the drone from the CSs. Any point in the circle of the

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

Rescue region

Half of the
drone flight range

(a) Conditions for rescuing a boat.

Pair of “Good Red-Gray” edges
Tot Distance < Drone range

Rescue Zone or

Gray Zone for
Gray Edges

Charging
Station
Red Zone for

Red Edges

R = Drone range | 2

(b) Red-gray edges relative to the boat position.

FIGURE 12. Rescue conditions and red-grey edges.

The green path can be the
shortest rescue path since:

TotalDist < Drone Range
65+30 = 95 < 100)!
Drone Range = 100

The drone can not return
using this red edge since:
TotalDist > Drone Range
65+65 =130 > 100

This gray edge helps
drone to find shorter
rescue path

in case of time
critical tasks.

Charging Stations

FIGURE 13. The good red-grey path making the rescue possible.

associated CS has a grey edge leading to it from the station.
Outside of the circle points are connected with the “red”
edge to the associated CS. The green areas represent the
locus of the rescue points with “good red-grey paths” (the
sum of distance is less than or equal to drone range) pairs.
The red regions represent the locus of the ‘““bad red-grey”
edges (when a total distance is greater than the drone range).
The probability of having a good red-grey path is simply the
ratio between the green area and the total area of the (red +
green). A point sampling is carried out in the triangular and

VOLUME 9, 2021

Rescue Region
in 0.5*drone range

Charging
Stations

At least one good
red and gray edge

(a) The triangular CS grid.

T N e

Rescue Region
in 0.5*drone range

N\

Charging
Stations

At least one good
red and gray edge

(b) The square CS grid.

FIGURE 14. The prob. of having a “good red-grey path” (the green region)
in different CS grid types.

square regions. Then for each sampled point, the type of the
point and the edge distances to vertices are analyzed.

On Tables 1 and 2 point statistics are presented for triangu-
lar and square grids respectively. Small letters “b” and “g”
represent bad and good respectively, whereas capital “R” is
for Red and “G” is for Grey. “1gR+1G+1bR” means the
point that is connected to vertices with 1 good Red edge,
1 Grey edge, and 1 bad Red edge. The total number of points
marked with “(*)” gives the total number of points with at
least one good red-grey edge pair. The probability of having
at least one good red-grey path is the ratio between the total
number of points with at least one good red-grey edge pair

164079

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

TABLE 1. Point statistics for triangular grid. 69483 points are sampled.

| Point Type | N | Prob. |

3bR 0]0
1G+2bR 00
2G+1bR 15171 | 0.218
3G 5 | 0.00007
()1gR+2G 68 | 0.00098
(*)1gR+1G+1bR 14428 | 0.208
(2gR+1G 39811 | 0.573

TABLE 2. Point statistics for square grid. 160801 points are sampled.

| Point Type | N | Prob. |

4bR 0]0
1G+3bR 00
2G+2bR 29452 | 0.183
3G+1bR 64 | 0.0004
4G 5 | 0.00003
()1G+3gR 736 | 0.0046
(*)2G+2gR 00
(*)IG+2eR+1bR || 66752 | 0.415
(*3G+1gR 64 | 0.0004
(*)2G+1gR+1bR || 63728 | 0.396
(*)1G+1gR+2bR 00

and the total number of points. For the triangular CS grid,
sampling with 69483 points gives us 0.78 and for the square
CS grid, sampling with 160801 points gives us 0.82. This
means for each rescue call, about 78% of the time for the
triangular grid and about 82% of the time for the square grid,
we can have a good red-grey edge pair that can give us a better
shortest path for the mission. Because of the rounding and
choice for considering boundary conditions with equality or
without equality (when comparing the distances), the num-
bers in Tables 1 and 2 contains some errors.

After finding the probability of having a red-grey edge pair
we need to find out the probability of benefiting from this
heuristic. For this, the direction of the drone and the direction
of the red-grey path should be aligned in a special way in
order to benefit from this heuristic. If the drone meets the
grey edge first, it will just save the boat and return to BS
via that grey edge. But, if the drone meets the red edge first,
it will utilize the red-grey path with savings and return to
BS. Figure 15 summarizes all possible directions drone can
approach the red-grey edge pair and the outcome of these
directions for the triangular grid. A similar analysis can be
made for the square grid. Now we can estimate the probability
of benefiting from the redGreySP heuristic by using data from
Tables 1 and 2. Firstly, we should have a “good direction”
(gD in Equations 1 and 2) for the boat in which there is a
good red-grey path. For the triangular grid Figure 15 suggests
that we can have % probability to choose a direction for

164080

Green edge = 0.866 * Drone Range
Gray edge < 0.5 * Drone Range
Red edge > 0.5 * Drone Range
Green edge < Red + Gray

Good red + gray < Drone Range
Bad red + gray > Drone Range

If the red edge is good
there is a saving

Just use the
gray edge

If the red edge is good
there is a saving

FIGURE 15. The coming direction of the drone towards a “good red-grey
path” in the triangular CS grid.

TABLE 3. Edge statistics for triangular grid. 208449 (3 edges *
69483 points) edges are sampled.

| Edges || N | Prob. | Min | Max | Avg |
gRG 94118 | 0.68 0.866 | 1 0.914
bRG 44838 | 0.32 1 1253 | 1
All-RG || 138956 | 1 0.866 | 1.253 | 0.968
gR 94118 | 045 0.502 | 0.866 | 0.652
bR 29599 | 0.14 0.502 | 0.779 | 0.677
All-R 123717 | 0.59 0.502 | 0.866 | 0.658
G 54307 | 0.26 0 0.496 | 0.271
bG 30425 | 0.15 0.364 | 0.502 | 0.448
All-G 84732 | 0.41 0 0.502 | 0.334
All]| 208449 | 1.00 [0 | 0.866 | 0.527 |

the drone in the case of the triangular grid when we have a
single good Red edge (1gR). In Equation 1 the probability of
benefiting from the red-grey path is given as 0.45. Similar
to the triangular grid case, for the square grid the drone
can approach the good red-grey edge pair from one of the
4 directions. In Equation 2 the probability of benefiting from
the red-grey path is given as 0.31.

P(Benefitryi) = P(1gR) x P(gD) + P(2gR) x P(gD) (1)
= 0.21 x 0.333 + 0.57 x 0.666 = 0.45
P(Benefits,) = P(1gR) x P(gD) + P(2gR) x P(gD)
+P(3gR) x P(gD) 2)
= 0.3964 x 0.25 4+ 0.415 x 0.5
4+0.0046 x 0.75 = 0.31

Finally, we need to know the actual savings from this
heuristic. For this we need to consider the edge statistics given
on Tables 3 and 4.

The edge length metrics on these tables are normalized
according to the drone range. On tables, “gG” (good Grey)
refers to the grey edges that can be part of any red-grey
edge pair and “bG” (bad Grey) edge type refers to the grey
edges that can not be part of any red-grey edge pair. In short,
if a pairing (total edge distance less than nor equal to Drone
Range) is possible, both red and grey edges become ““good™.

The actual savings depends on the path length, the number
of boats that can be saved in a single tour, and other factors.
However, for the actual savings, we can analyze the last part

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

TABLE 4. Edge statistics for square grid. 643204 (4 edges *
160801 points) edges are sampled.

| Edges || N | Prob. [Min [Max [Avg |
gRG 199504 | 0.35 0.707 | 1 0.839
bRG 376064 | 0.65 1 1.366 | 1.075
All-RG || 575568 | 1 0.707 | 1.366 | 0.993
gR 199504 | 0.45 0.502 |1 0.608
bR 189448 | 0.14 0.502 | 0.999 | 0.749
All-R 388952 | 0.59 0.502 | 1 0.677
¢G 131280 | 0.26 0 0.498 | 0.254
bG 122972 | 0.15 0.251 | 0.502 | 0.419
All-G 254252 | 0.41 0 0.502 | 0.334
Al [[643204 [100 [0 [1 [0541 |

of the rescue path and present actual figures. The first column,
gRG (good Red-Grey Pair), of Table 3 suggests that when
we have a good red-grey edge pair, the average total length
is about 0.914 units (times the Drone Range in the case of
a triangular grid). This edge pair can save us from using
an edge between CSs which has a distance of 0.866 unit
and a grey edge which has an average length of 0.334 units.
In total the length of this path is 0.866 4 0.334 = 1.2 unit.
Assuming that we use a “good grey” edge which has an
average length of 0.271 units, the total length with an edge
between CSs becomes 0.866 + 0.271 = 1.137 units. So we
need 1.137 units to reach the boat without using any red
edge. With the red-grey edge pair, we can reach the boat in
0.652 units by using the red edge. Here the saving in reaching
the boat is about 43%. If we consider the fact that we need
to take the grey edge every time we take the red edge then
the saving becomes about 19.3% with a 0.914 unit path. This
saving is for the last edges of the path. This case is shown
in Figure 16.

To find out the actual saving amount for the square grid
configuration, Figure 17 shows an example scenario in which
the comparison can be seen between the regular shortest path
and the shortest path with the redGreySP heuristics.

The average length of the “Good Red-Grey Pair” (gRG)
is listed as 0.839 units on Table 4. This edge pair can save
us from using the diagonal edge between CSs which has a
distance of 1 unit and a grey edge which has an average length
of 0.334 units. In total the length of this path is 2 x 0.71 4
0.334 = 1.754 units. Assuming that we use a “good grey”’
edge which has an average length of 0.254 units, the total
length of the path becomes 2 x 0.71 + 0.254 = 1.674 units.
So we need 1.674 units to reach the boat without using any
red edge. With the red-grey edge pair, we can reach the boat in
0.608 units by using the red edge. Here the saving in reaching
the boat is about 64%. If we consider the fact that we need
to take the grey edge every time we take the red edge then
the saving becomes about 50% with a 0.839 unit path. This
saving is for the last edges of the path. This case is shown
in Figure 17.

VOLUME 9, 2021

Edge - AVG Length
Good Red - 0.652 unit

Good Gray - 0.271 unit Difference for the
Good Red-Gray Path - 0.914 unit Iast‘edge

0.866 /

Red-gray shortest path
One way: 0.652 unit - 43% shorter
With return: 0.914 unit — 20% shorter

Shortest path with return
0.866 + 0.271 = 1.137 unit

Shortest path (only Gray) with return
2*(0.864 + 0.862 + 0.225) = 3.902 unit

Overall savings from RG over G

T

0X03 @ VX038

(b) Example savings from red-grey edge heuristic in triangular grid.

FIGURE 16. Savings from red-grey edge heuristic for Triangular CS grid
configuration.

TABLE 5. Theoretical comparison of triangular and square grid
CS configuration.

Savings | Savings | Mission Area

3 Prob. of having Prob. of using
Grid type ANEEPROIIES || e sty v || @ G ey i | ey || e per CS

Triangular 2.06 0.78 0.45 43% 20% 1.30
Square 2.07 0.82 0.31 52% 33% 0.5

The other comparison that should be made is the cov-
erage effectiveness of the CS grid configurations. For this,
we investigated the area per CS ratios and presented analysis
in Figures 18a and Figure 18b by taking the limits when the
number of vertices approaches infinity.

The triangle grid limit approaches 2 triangular areas
per CS while the square grid approach value of 1 square
area per CS. Considering the analysis we have presented
above and assuming drone range as a unit of measure-
ment for distances, triangular grid without “blind spots”
(Figure 4) gives 2 times the area of the triangle = /3 %
%0.866> = 1.30 unit’> per CS. On the other hand,
the square grid without “blind spots”(Figure 4b) gives
Area of the square = 0.712 = 0.5 unit> per CS. This
means a triangular grid can cover 2.6 times more area with
the same number of CSs. In other words, a triangular grid
needs fewer CSs for the same mission region.

On Table 5 we have summarized our findings for both
CS deployment configurations. The “AVG SP from BS”, the
average length of any path from BS to any CS in the grid,

164081

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

Edge - AVG Length

Good Red - 0.608 unit

Good Gray - 0.254 unit

Good Red-Gray Path - 0.839 unit

Shortest path with return
1+ 0.254 = 1.254 unit

Red-gray shortest path
One way:

0.608 unit - 52% shorter
With return:

0.839 unit - 33% shorter

DroneRange
1 unit

(a) Theoretical savings from red-grey edge heuristic in square grid.

Shortest path (only Gray) with return
2 *(0.994 + 0.701 + 0.445) = 4.28 unit

@

Overall savings from RG over G
100 * (4.28 - 3.978) | 4.28 = 7.02%

(b) Example savings from red-grey edge heuristic in square grid.

FIGURE 17. Savings from red-grey edge heuristic for Square CS grid
configuration.

is given in drone range units. This path length is specific
to the CS grid configurations shown in Figure 5. While the
square grid deployment can provide a better probability of
savings and a better amount of savings from the redGreySP
heuristics, the number of CSs necessary for the mission is
higher compared to the triangular grid. This trade-off should
be considered in the CS deployment phase of the rescue
mission. In Table 5 the columns Savings 1-way and Savings
Return represent savings just for the last two edges of the
optimised path shown in Figures 16a and in 17a.

In Algorithm 3 the pseudo-code is given for the proposed
shortest path algorithm combined with the red-grey heuristic
method.

The algorithm is given the optimum boat rescue per-
mutation from the proposed TSP heuristic presented in
Algorithm 2 as an input along with the graph representa-
tion of the BS, CS grid, and boats. This graph is dynami-
cally augmented with red and grey edges according to the
positions and rescue order of boats. The algorithm returns
the optimum rescue tour that starts from the BS and ends on
the BS after rescuing boats with the help of the CS grid. The
algorithm augments the graph data structure dynamically and
temporarily with the start and end boats (consecutive boats
on the TSP tour) along with the incident red and grey edges
when it tries to find the shortest path between these boats.
As the red-grey heuristic is designed to be an “‘add-on” to
any generic shortest path algorithm, this augmenting scheme

164082

Adding 3,4,5,... vertices
grows the area by
3,5,7,... triangles

Vertices Triangles
3 1
6 4

2
3 10 9
4 15 16

1
N (N#)(N+2)12 N2

Triangles per vertex limit:
. N? _
o (NN +2))

Adding 5,7,9,... vertices
Grows the area by 3,5,7,...
squares

Vertices Squares
1

> — 9% 41 4
2 9 4
3 16 9
4 25 16

N (N+12 N2

Squares per vertex limit:

2
lim N1
Nw (N+1)

(b) The ratio of squares per CS for the square grid.

FIGURE 18. The ratio of unit area per CS for the triangular and square
grid.

ensures that the shortest path algorithm follows the order of
the boats suggested by the TSP heuristic algorithm. Several
functions used in the algorithm are self-explanatory. The
“E()” and “V()” functions are helper functions that return
edges and vertices given the structures respectively. The
“findAdjacentGoodGreyCS()” is the function that returns
the CS that can be paired with the “red edge” so that the
total length of them will not exceed the drone range. The
“redAndgreyEdges()”” return incident red and grey edges
given the vertex id of the boat. The “asVertex()” function
creates a vertex instance given the boat id.

D. EXPERIMENTAL RESULTS AND DISCUSSIONS

We designed simulations and benchmarks to assess vari-
ous performance characteristics of the proposed heuristics.
In the simulations, a full rescue operation is simulated in
which the drone leaves the BS, rescues boats and returns
to the BS. In each simulation, the optimum rescue tour is
estimated and the measurements are made by considering
various performance metrics. The simulations are carried
out on both triangular and square grid configurations by
considering small scale datasets (less than 1000 vertices).

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

Algorithm 3 The Proposed Red-Grey Shortest Path
Algorithm (redGreySP) in Pseudo Code

Inputl: > BoatPerm: The approximate TSP tour of boats, (Bj ...By)
Input2: > Grid: Graph of BS, CSs and boats, G(V, E)
Output: < RescueTour: The optimum rescue tour, (Vy ... Vg)
From BS to the first boat:
: RescueTour <— NULL
Dynamically augment Grid with the related boats
. E(Grid) < E(Grid) + redAndgreyEdges(B1)
: V(Grid) < V(Grid) + asVertex(B])
. SP < shortestPath(Grid, src=BS, dst=B1)
. if colour(lastEdge(SP)) == “red”) then
appendEdge(SP) < E(findAdjacentGoodGreyCS(B1))
appendVertex(SP) < V(findAdjacentGoodGreyCS(B1))
. end if
. RescueTour «<— RescueTour + SP
: BoatPerm < BoatPerm - B|
Dynamically de-augment Grid with the related boats
This is to force the rescue order as in the BoatPerm
11: E(Grid) < E(Grid) - redAndgreyEdges(B)
12: V(Grid) < V(Grid) - asVertex(B)

—_

SO U E W

From the first boat to the last boat:
13: if lastVertex(RescueTour)) == BS) then
14: Return(RescueTour)
15: else
16: prevBoat < B
17: while (BoatPerm # NULL) do

18: nextBoat < getNext(BoatPerm)

Dynamically augment Grid with the related boats
19: E(Grid) < E(Grid) + redAndgreyEdges(prevBoat)
20: V(Grid) < V(Grid) + asVertex(prevBoat)
21: E(Grid) < E(Grid) + redAndgreyEdges(nextBoat)
22: V(Grid) < V(Grid) + asVertex(nextBoat)
23: SP <« shortestPath(Grid, src=lastVertex(RescueTour), dst=nextBoat)
24: if colour(lastEdge(SP)) == “red”) then
25: appendEdge(SP) « E(findAdjacentGoodGreyCS(nextBoat))
26: appendVertex(SP) < V(findAdjacentGoodGreyCS(nextBoat))
27: end if
28: RescueTour < RescueTour + SP
29: BoatPerm < BoatPerm - nextBoat

Dynamically de-augment Grid with the related boats
30: E(Grid) <« E(Grid) - redAndgreyEdges(prevBoat)
31: V(Grid) <« V(Grid) - asVertex(prevBoat)
32: E(Grid) < E(Grid) - redAndgreyEdges(nextBoat)
33: V(Grid) < V(Grid) - asVertex(nextBoat)
34: prevBoat < nextBoat
35: end while
36: end if

From the last boat to the BS:
37: if lastVertex(RescueTour)) == BS) then
38: Return(RescueTour)
39: else
40: SP < shortestPath(Grid, src=lastVertex(RescueTour), dst=BS)
41: RescueTour < RescueTour + SP
42: end if
43: Return(RescueTour)

These datasets consist of different numbers (20, 40, 60,
80, and 100 boats) of randomly generated boats for
rescuing. For each simulation, we considered pathfind-
ing with redGreySP heuristic and pathfinding only with
a grey edge. Several standard TSP heuristics are also
considered for finding the best order of boats for res-
cuing for each simulation. Each TSP heuristic is sim-
ulated 20 times by considering red-grey and only grey
edge versions. For the simulations, we considered the
real-life mission region we have presented in Section III-A
in Figure 5. In the simulations, we wanted to see how much
improvement the proposed ‘“‘redGreySP”’ can offer for each
metric we considered compared to the base case method
which was pathfinding with only grey edges.

VOLUME 9, 2021

TABLE 6. Big (1000+ vertices) datasets used in the benchmarks.

Dataset Properties # Vertices Link to obtain
myLattice-25x40-1000 25x40 Regular grid 1000 https://github.com/kk- 1/boat-rescue
myLattice-50x40-2000 50x40 Regular grid 2000 https://github.com/kk- 1/boat-rescue
myLattice-50x60-3000 50x60 Regular grid 3000 https://github.com/kk- 1/boat-rescue
myRNDLattice-29x46-1000 29x46 Irregular grid (25% removal) 1000 https://github.com/kk- 1/boat-rescue
myRNDLattice-58x46-2000 58x46 Trregular grid (25% removal) 2000 https://github.com/kk- 1/boat-re:
myRNDLattice-58x69-3000 58x69 Irregular grid (25% removal) 3000 hitps://github.com/kk- 1/boat-rescue
myHexLattice-25x40-1000 25x40 Regular hex grid 1000 Titps://github.com/kk- 1/boat-rescue
myHexLattice-50x40-2000 50x40 Regular hex grid 2000 https://github.com/kk- 1/boat-rescue
myHexLattice-50x60-3000 50x60 Regular hex grid 3000 https://github.com/kk- 1/boat-rescue

myRNDHexLattice-29x46-1000 29x46 Irregular hex grid (25% removal) 1000
myRNDHexLattice-58x46-2000 58x46 Irregular hex grid (25% removal) 2000
myRNDHexLattice-58x69-3000 58x69 Irregular hex grid (25% removal) 3000

https://github.com/kk- 1/boat-rescue
https://github.com/kk- 1/boat-rescue
https://github.com/kk- 1/boat-rescue

The tentative benchmarks and simulations showed us that
the selected TSP heuristics did not perform very much dif-
ferently (the t-test did not show any significant statistical
difference) from each other for small datasets in which about
100 or fewer vertices (boats) were used. For this reason, the
proposed TSP heuristic, “concaveTSP”’, is benchmarked sep-
arately against other standard TSP heuristic algorithms using
similar heuristic techniques, with bigger datasets (10004
vertices). It performs better than the other similar heuristics
as the number of vertices increases and as the regularity
(grid-like geometry) of the vertex configuration increases.
These aspects of the concaveTSP heuristic make it a good
candidate for delivery (so many vertices) and rescue opera-
tions (sub-optimal but fast response is desired). However, the
concaveTSP heuristic can be improved by considering more
elaborate insertion and sub-tour (path) optimisation. While
the proposed redGreySP heuristic gives savings (tour cost)
independent of the selected TSP heuristic, the selection of the
TSP heuristic becomes important for a big number of vertices.

In Table 6 details for these big datasets are listed.

The proposed TSP heuristic is a hybrid of the standard
TSP insertion heuristic and k-Opt TSP heuristic. While the
concaveTSP uses the nearest vertex insertion heuristic during
the concave-hull merging stage, at the same time it performs
“k-opt” (k = 2) type path heuristic. For this reason,
we selected the “farthest insertion” (FI) and ““2-Opt” heuris-
tics. The ““farthest insertion” heuristic is regarded as the best
insertion heuristic in [35] producing better tours compared
to the nearest insertion, cheapest insertion, and the nearest
neighbour. The “‘nearest neighbour’’ (NN) heuristic was cho-
sen with the idea that it can produce tours with the lowest
AWD values. If the lesser cost edges are added to any tour
earlier than the other edges, this can decrease the AWD of
the tour. However, the “‘nearest neighbour” heuristic by doing
this sometimes introduces risks of not being able to find lesser
cost edges as it goes further and increases the AWD of the
tour so much for returning to the starting vertex. We wanted
to research this in the benchmarks.

The HW/SW specifications of the system that benchmarks
and simulations were carried out are as follows:

« AMD RyzenTM ThreadripperTM 3960X, 24C/48T CPU

« 128 GB 3200MHz DDR4 RAM

« openSUSE Tumbleweed 64-bit Linux with kernel 5.14.6

o Rversion 4.1.1 (2021-08-10) - “Kick Things™

To explain the metrics we used for the performance assess-
ment, we tried to give a mathematical formalization of them
in the following paragraphs. The TSP tour (or rescue tour)

164083

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

FIGURE 19. The TSP on a graph with 8 vertices.

that is presented in Figure 19, t = (V1,..., Vg), can be an
example for the metrics we explained below.

Vertices can be instances of CSs or boats. The first vertex

can be regarded as the BS.

o Tour cost: The total “tour cost” is the sum of all
the edge distances. The cost (Euclidean edge distance)
between vertices V; and V; can be given as d;; =
Euclidean Distance(V;, V;). Here V; is the starting vertex
(BS in our case study) of the tour. The tour cost (cyclical)
can be given with the following equation 3 below:

N-1
Tour Cost(t) = Z diiv1y +dw, 3)
i=1
The TSP tour cost is rotation and direction invariant. The
total cost of the tour does not change regardless of the
starting vertex and the travelling direction. This cost is
in the interest of the drone’s party.

o Running time: It is the amount of CPU time consumed
by the algorithm or the simulation. We measured it in
seconds.

o AWD: Another cost that can be estimated for the TSP
tour is the Average Waiting Time (AWT), which is in the
interest of the boats’ party. We assumed that the speed
of the drone is constant over the tour. For simplicity,
we ignore the “service time” for vertices and just con-
sider the distance instead of time. Average total distances
from the starting vertex (V7, it is the BS) to the other
vertices can be considered an alternative measure for the
AWT if we want to generalize this type of cost for per-
formance evaluation of the algorithms on the same TSP.
We used AWD instead of AWT. AWD is independent of
the speed and specific to the tour. However, AWD is a
rotation and direction-dependent measure. The value of
AWD not only depends on the starting vertex but also on
the direction of the travel. Since the problem involves
finding a tour, the drone should return to the BS after
the rescue mission. In this sense, the “cyclical AWD” is
estimated. The cyclical AWD of tour t which is given in
the equation 4 below:

N j-1
cyclical AWD(7) = N(Z > diirn +dwv.ny)
j=2 =l

=

“

164084

For the ‘“non-cyclical AWD” the return to the
first/starting vertex is not important. However, in some
cases, the TSP algorithms (Nearest Neighbor type) use
heuristics that the path they follow goes so much further
away from the starting vertex that the last tour-closing
edge introduces a significant cost for the overall tour
cost. The “cyclical AWD” is such a metric that consid-
ers this penalty. On the other hand, if the only important
thing is the time or distance that all the vertices are
served except the starting vertex (depot), then the use
of “non-cyclical AWD” should be considered, which is
formulated in the equation 5.
1 N j-1
non cyclical AWD(7) = m(z Z diiiv1y)
j=2 i=1
)

As we said, the AWD is “rotation and direction sen-
sitive”. The same tour can give different AWD values
depending on the starting vertex and on the direction.
If the tour has long edges to the earlier vertices on its
way, as these long edges will be summed over and over
again for all the paths to other vertices, this type of tour
will have a longer AWD value. In this sense, the “AWD
optimum’” tour should try to visit “closer” vertices first
to get a smaller AWD value. This is similar to the *““short-
est service/seek time first”” (SSTF) disk scheduling algo-
rithm. In the opposite case, when the farthest vertex is
visited first, the “convoy effect” increases the AWD so
much. The optimum tour starting from a specific vertex
does not necessarily give the min AWD. The AWD is a
novel metric we proposed and measured. It is important
in multi-party multi-objective optimisation problems.
Number of Chargings: In the framework, the BS is also
a CS. We assumed that the drone every time visits any CS
charges its battery. In this sense, the number of chargings
is the number of CSs drone visits on its way. This can be
given by the equation 6.

N
. 1if V;is CS
NChargings(z) = Z { 0 othérwise } ©)

i=1

Savings: In order to see improvements that the red-grey
path heuristic offers, the savings for each metric we
explained above are calculated. Basically, we calcu-
lated the percentage of the improvements (Metricg —
Metricgg) from the red-grey path heuristic (Metricgg)
over the base case of using only the grey edges
(Metricg). The negative savings mean loss. This can be
given by the equation 7.

100 x (MetricG — Metricgg)
Metricg

Savings%(Metric) =
@)

The tour costs and AWD is in meters for the simula-
tions. However, for the big dataset benchmarks, they are in

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

TABLE 7. Simulation results for triangular and square grid. Savings are
for Red-Grey heuristics over only Grey edge usage. 20 boats randomly
generated for 20 simulations. Results are in the form of

mean =+ standard deviation.

TABLE 10. Simulation results for triangular and square grid. Savings are
for Red-Grey heuristics over only Grey edge usage. 80 boats randomly
generated for 20 simulations. Results are in the form of

mean =+ standard deviation.

Grid | Metric concaveTSP FI NN 2-OPT Grid | Metric concave TSP FI NN 2-OPT
RG Cost 452221.4 + 45194.8 428986 + 44761.8 472358.8 + 44207.8 469513.4 + 543524 RG Cost 1193873.4 + 72509.5 11737112 + 65385.8 1269457.7 = 91281.2 1207666.7 + 74836.9
G Cost 548381.874 & 512182 5243303 £ 42431.6 5789613 + 56157.4 5564311 + 42991.8 G Cost 1435808.0 = 76420.3 1406063.3 £ 103009.1 15213d8.4 £ 90490.4 1452633.4 + 85168.4
Cost Saving % 17.5 + 3.5 182 + 4.6 18 + 8.3 155 £ 8.2 Cost Saving % 168 £ 2.3 164 £ 38 16.5 + 3.6 16.8 + 3.4
RG Time 0.138 £ 0.016 0.13 £ 0.017 0.132 £ 0.021 0.128 £ 0.018 RG Time 0.602 = 0.024 0597 = 0.059 0579 £ 0016 0599 £ 0.057

| G Time 0.115 + 0.017 0.111 + 0.015 0.106 + 0.014 0.115 + 0.025 i | G Time 0.545 + 0.012 054 = 0.021 0546 + 0.045 0531 £ 0013
Time Saving % 2225+ 226 219 + 247 2255 +25.8 -15.7 + 26.0 Time Saving % 105 + 4.1 5105 + 114 -6.6 + 7.6 -13.0 £ 114
RG AWD 229580.6 & 20556.8 212353.0 £ 274754 226095.7 £ 27345.6 228387.2 & 337543 RG AWD 586966.9 + 20048.0 584999.6 + 292498 629485.6 + 497289 599470.5 + 41282.2
G AWD 260659.2 + 30823.6 250167.3 £ 25706.1 268733.7 + 27410.8 2645142 + 24029.2 G AWD 701345.6 + 36936.2 6848084 + 53810.1 7367459 + 429026 707968.4 + 43998.6
AWD Saving % 151+76 134+ 116 AWD Saving % 164 + 2.6 144 + 7.4 153 + 3.3
RG NCharging 264 £ 27 R332 RG NCharging 832 +24 887 £33 843 £ 2.0
G NCharging 35625 374126 G NCharging 1045 +3.7 109.5 + 4.0 105.8 + 3.8
NCharging Saving % 260 + 54 BT L15 NCharging Saving % _ 20.4 + 2.4 189 + 3.1 202 + 3.0
RG Cost 4337957 £ 41318.6 413666.8 & 393583 4742357 & 464870 452063.7 - 424983 RG Cost 1087114.7 + 41665.8 1079338.9 + 411203 1202759.3 £ 62191.1 1113741.6 + 53598.5
G Cost 484250.594 + 456103 4635203 + 45947.6 5030223 + 560432 487495.8 + 44167.4 G Cost 1204612.8 + 532854 1202933.5 4 45489.3 12‘)44If‘.3 + 63389.2 1251674.3 + 75083.5
Cost Saving % 104 =28 106 + 5.4 54467 71+ 56 Cost Saving % 9.7 + 2.7 102 + 29 6.7 +52 10.8 + 5.0

g

RG Time 0.134 £ 0015 0127 £ 0012 0.135 £ 0.019 0.15T £ 0052 RG Time 0.627 + 0.032 0.614 = 0.02 0.624 + 0.06 0.616 £ 0.021
G Time 0.124 + 0.017 0.12 + 0.021 0.113 + 0.015 0.109 + 0.011 sq G Time 0.575 + 0.021 0.579 + 0.061 0.596 + 0.077 0.563 + 0.019

54| Time Saving % 105 £ 210 40 208 2124193 400 £ 301 R S £ T 500158 £ s I 50151 & T
RG AWD 212517.9 + 24600.3 206507.0 + 27921.9 239400.5 + 298272 227244.7 + 31700.8 G AWD 58920{)‘9 + 28054.9 584540.6 + ;1146.8 616422.4 T 3484i S 607477.8 + 7348'”’5
G AWD 2276553 + 23861.4 2196902 & 26102.8 232338 £ 25767.3 228410.8 + 24335.6) o - - -

: o AWD Saving % 8.2 + 3.9 7.8 +42 05+78 94 +72

AWD Saving % 6.6+ 6.8 5.9 4 7.094 4.1 % 16.6 05+ 9.6 RG NCharging DAL R RN 900 £ 29 N
RG NCharging 28+25 266+ 19 28626 G NCharging 973 + 4.0 97 + 4.0 1027 = 4.0 100.4 + 49
G NCharging 352£3.1 338+32 352+£27 NCharging Saving % 152 + 3.6 145 + 34 123+ 41 16.1 + 42
NCharging Saving % 20.2 + 3.7 212 + 54 18.7 + 5.0

TABLE 8. Simulation results for triangular and square grid. Savings are
for Red-Grey heuristics over only Grey edge usage. 40 boats randomly
generated for 20 simulations. Results are in the form of

mean =+ standard deviation.

Grid | Metric concave TSP FI NN 2-OPT
RG Cost 720751.6 + 45793.7 691249.3 + 42099.4 | 790136.0 + 594328 = 721864.5 + 50161.6
G Cost 872883.2 + 62339.7 840797.8 + 66965.2 932849.2 + 80359.5 885781.1 + 57051.8
Cost Saving % 174 £23 17.6 + 3.1 15.0 £+ 6.6 184 + 44
RG Time 0.286 + 0.027 0.293 + 0.066 0.262 + 0.027 0.284 + 0.082

Tri G Time 0.233 + 0.014 0.236 + 0.024 0.24 £+ 0.023 0.232 £+ 0.021
Time Saving % -23.7 £ 16.6 -26.1 £ 36.2 -10.7 + 20.8 -24.8 £ 434
RG AWD 355812.2 + 28430.5 335152.0 £ 18936.2 | 392548.8 £ 52073.8 353986.5 + 25156.5
G AWD 423383.2 + 33027.5 409855.1 + 32340.7 4417020 + 37025.5 426331.5 + 28120.4
AWD Saving % 158 £5 18.0 + 4.9 11.1 £9.5 169 + 5.0
RG NCharging 456 £2.5 444 £23 49.8 + 3.1 45.8 £ 2.0
G NCharging 60.5 £ 3.8 58.8 £ 3.0 64.0 £ 4.5 614 +£29
NCharging Saving % 24.5 + 3.2 24.4 £ 34 219 £ 6.8 253 £ 4.1
RG Cost 674039.5 £ 44620.1 648563.9 + 47506.8 | 726830.7 £ 62542.1 = 672992.2 + 41647.4
G Cost 752414.9 + 45426.4 723336.2 + 41700.1 806233.0 + 65459.6 760135.2 + 38325.9

Cost Saving % 104 + 3.0 103 + 4.2 9.7+ 5.6 113 +£62
RG Time 0.283 £+ 0.025 0.284 + 0.076 0.28 + 0.021 0.261 = 0.016

s G Time 0.271 + 0.083 0.244 + 0.022 0.255 + 0.08 0.248 + 0.021

1 Time Saving % 9.4 +21.3 -17.8 + 37.9 -154 +22.1 -6.2 4+ 13.5

RG AWD 338778.0 £ 25650.2 323931.2 + 26247.0 | 366110.5 £ 44705.3 329932.0 + 31020.0
G AWD 364926.3 + 24261.6 347338.3 + 23588.8 385326.7 + 37316.1 366898.4 + 18717.9
AWD Saving % 7.0 £ 58 6.6 + 7.5 4.6 + 11.7 9.9 + 9.6
RG NCharging 462 + 1.9 45 +£25 49.7 £32 46.0 £+ 2.1
G NCharging 5717 £ 3.1 558 £28 60.6 + 3.4 578 £28
NCharging Saving % 19.8 + 4.5 193 £ 4.9 179 £5.1 204 £58

TABLE 9. Simulation results for triangular and square grid. Savings are
for Red-Grey heuristics over only Grey edge usage. 60 boats randomly
generated for 20 simulations. Results are in the form of

mean + standard deviation.

Grid | Metric concaveTSP FI NN 2-OPT
RG Cost 920434.6 + 32296.1 901084.1 + 39776.9 1014695.3 + 48015.6 947449.5 + 47647.7
G Cost 1122678.6 + 54088.8 1109086.4 + 58758.0 1223358.7 + 73658.9 11482554 + 47218.4
Cost Saving % 179 £ 2.3 18.7 £ 32 16.9 + 48 174 £ 39
RG Time 0.427 £ 0.02 0.429 + 0.012 0.421 + 0.019 0.431 + 0.074

TH G Time 0.4 £ 0.07 0.382 + 0.025 0.374 + 0.023 0.388 + 0.068
Time Saving % -85 £ 11.8 -12.5 + 6.5 -12.8 + 6.8 -13.2 + 234
RG AWD 455620.9 + 231943 447833.4 £ 25049.2 503701.6 4+ 46465.3 464278.8 + 31067.5
G AWD 547482.7 + 32740.8 539610.8 + 30919.0 583976.3 + 40899.3 548870.2 + 33839.5
AWD Saving % 16.7 + 3.7 16.9 + 48 13.3 £ 105 153 £55
RG NCharging 62.8 £+ 2.1 624 £ 1.8 69.2 £+ 2.4 647 £29
G NCharging 81.4 +32 80.6 £ 3.6 87.3 + 4.4 82.8 + 3.0
NCharging Saving % 22.8 + 3.2 22.5 +39 20.5 + 3.6 21.8 +£3.1
RG Cost 864874.0 + 411743 852019.4 £ 39644.0 966629.2 + 54690.3 892968.7 + 57206.6
G Cost 977309.5 + 521238 953718.8 + 58872.9 1052405.6 + 61678.2 988270.3 £ 61886.8
Cost Saving % 114 +24 105 £ 4.1 8.0 £ 5.6 9.5 +54
RG Time 0.445 + 0.024 0.428 + 0.019 0.429 + 0.021 0.456 + 0.097

Sq G Time 0.427 + 0.064 0.395 + 0.02 0.403 + 0.077 0.392 + 0.022
Time Saving % -5.5 £102 -8.6 £ 6.2 -8.5 £ 12.6 -17.0 £ 27.1
RG AWD 4282309 + 25205.0 424685.0 & 25096.3 | 491356.2 £ 34682.3 = 445149.7 + 30371.0
G AWD 470800.3 + 28575.7 463554.5 + 31222.1 501983.1 + 38491.1 473394.2 + 32971.8
AWD Saving % 8.9 +4.5 8.1 £6.3 1.8 £ 7.8 57+74
RG NCharging 634 + 1.7 628 + 1.7 69.8 &+ 3.2 649 +£27
G NCharging 78 4+ 25 759 + 3.2 81.8 + 3.8 78.0 + 3.2
NCharging Saving % 18.6 & 3.5 172 £ 38 14.6 £ 4.2 16.6 £ 4.0

pixel units. The TSP heuristic used in the path-finding frame-
work is very important. The savings can be big with the
redGreySP heuristic. But if the TSP heuristic does not output
a good tour in a reasonable time the savings will not be
profitable to the system, as there can be a shorter tour giving
overall lesser tour cost.

VOLUME 9, 2021

TABLE 11. Simulation results for triangular and square grid. Savings are
for Red-Grey heuristics over only Grey edge usage. 100 boats randomly
generated for 20 simulations. Results are in the form of

mean =+ standard deviation.

Grid | Metric concave TSP FI NN 2-OPT
RG Cost 1396244.1 + 59737.2 1382759.1 + 49286.5 = 1495121.1 + 58477.8 1411860.7 + 60752.0
G Cost 1661578.8 + 85371.8 1623590.9 + 88023. 1740390.5 + 108055.0 1682288.9 + 60739.8
Cost Saving % 159 £22 147 £ 34 13.9 + 4.1 16.0 + 3.0
RG Time 0.774 £ 0.071 0.77 £ 0.08 0.733 £ 0.014 0.747 + 0.02

Tri G Time 0.721 £ 0.078 0.698 + 0.012 0.693 + 0.012 0.696 + 0.011
Time Saving % -84 4 147 -104 £ 13.0 -5.8 £23 <75 +£32
RG AWD 694099.1 + 30895.1 691196.4 + 266854 7382224 + 48601.1 7143259 + 423785
G AWD 813660.4 + 42993.1 792946.9 + 47939.9 827134.7 + 46929.7 821965.4 + 33998.7
AWD Saving % 14.6 + 3.1 126 + 45 105 + 7.7 13.1 +42
RG NCharging 101.7 £ 22 101.4 £ 2.0 109 + 25 103.1 +£ 2.6
G NCharging 1252 + 4.008 1+42 129.6 + 4.8 1262 + 3.2
NCharging Saving % 18.7 + 2.8 175 £ 2.8 158 + 3.3 183 £22
RG Cost 1323625.9 + 47004.3 1308544.6 + 36527.9 | 1433151.1 £ 72536.7 1332355.1 + 49288.4
G Cost 1453297.1 + 66877.8 1436964.1 £ 63498.9 1545871.9 + 68780.6 1475904.1 + 47047.5
Cost Saving % 89 +22 8.8 £33 7.2 £3.6 9.7 £35
RG Time 0.792 £ 0.029 0.832 13 0.784 + 0.034 0.777 + 0.023

sq G Time 0.758 £ 0.025 0.741 032 0.742 + 0.028 0.74 £ 0.033
Time Saving % -4.6 + 3.8 -12.6 £19.2 -58 £ 54 -5 447
RG AWD 638603.1 + 241263 653044.7 + 25061.3 | 722387.9 £ 517188 | 662079.8 + 380940
G AWD 712229.3 + 35801.1 702810.9 + 31125.1 738183.7 + 31901.1 717612.3 + 26269.5
AWD Saving % 74 +£32 7.0 £ 3.1 2.1 £69 77+ 54
RG NCharging 1023 £ 1.5 1020 £ 1.4 109.4 + 3.6 103.6 + 2.1
G NCharging 118.1 + 44 1169 + 4.4 123.0 £+ 4.3 1192 4 36
NCharging Saving % 13.3 + 3.1 127 + 28 109 + 32 130 £ 28

The simulation results are summarized in tables
below (7, 8, 9, 10, and 11) by finding the averages and
standard deviations of 20 simulations. While the tables list
detailed numerical results for each simulation and for each
number of boats, figures (20a, 20b, 21a, 21b, 22a, 22b, 23a,
and 23b) are provided to show the trend line across varying
boat numbers. The standard deviations are also listed along
with the averages to show the dispersion of the samples. The
pairwise statistically significant differences of the averages
are tested with the t-test. In tables, averages that are sta-
tistically different from all the others are marked with grey
colour. The tour cost savings from the redGreySP is in the
range of 10-17 % when we consider both types of CS grid
configurations. This is regardless of the TSP heuristic that is
utilized. The differences between triangular and square grids
suggest that the tour cost savings depend on the type of grid.
A triangular CS grid is better in this sense. However, the tour
cost is higher in the case of the triangular CS grid. In general,
the triangular CS grid provides higher savings for the red-grey
heuristic over only the grey edge method. But, the tour cost,
AWD, and the number of chargings are also higher. On the
other hand, the triangular CS grid uses a fewer number of CSs.
In Table 12 comparisons are presented for each performance

164085

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

Algo 2-OPT + concaveTSP = FI NN
0.8

0.6

Runtime

0.2

20 40 80 100

60
Number of Boats
(a) AVG Runtimes for triangular grid.

FIGURE 20. AVG Runtimes in seconds from 20 sims.

Algo 2-OPT + concaveTSP = FI NN

1500000

1200000

Cost

900000

600000 /

20 40 80 100

60
Number of Boats
(a) AVG Tour Cost for triangular grid.

FIGURE 21. AVG Tour Cost in meters from 20 sims.

Algo 2-OPT + concaveTSP = FI NN

6e+05

AWD

4e+05

2e+05

20 40 80 100

60
Number of Boats
(a) AVG AWD for triangular grid.

FIGURE 22. AVG AWD in meters from 20 sims.

metrics according to the simulation results for different CS
grid configurations.

In Figures 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b
tabular data is presented as plots for triangular and square
grids. In these plots, only the algorithms that utilized the
red-grey heuristic is considered. Both tables and plots suggest
that all the algorithms more or less have similar performance,
except for the Nearest Neighbor algorithm in some cases.

164086

Algo 2-OPT + concaveTSP = FI NN

0.8

0.6

Runtime

0.2 /

20 40 80 100

60
Number of Boats
(b) AVG Runtimes for square grid.

Algo 2-OPT + concaveTSP = FI| NN

1200000-

-
s
8 900000-

600000- /

20 40 80 100

60
Number of Boats

(b) AVG Tour Cost for square grid.

Algo 2-OPT #+ concaveTSP = FI| NN

7e+05
6e+05

o 5e+05-

AW

4e+05
3e+05

2e+05
20 40 60
Number of Boats

(b) AVG AWD for square grid.

For the big dataset benchmarks, pairwise t-tests verified
statistically significant differences for each metric. The best
results for each metric and dataset are marked with green
colour. The results from Tables 13, 14, and 15 suggest that the
proposed concaveTSP heuristic is very competitive compared
to other TSP heuristics. In general, it gives faster results
with a close margin when we consider tour costs. Espe-
cially in a regular hexagonal grid, the proposed algorithm

VOLUME 9, 2021

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

Algo 2-OPT + concaveTSP = FI| NN

@
S

NCharging
s

40-

20 40 80 100

60
Number of Boats
(a) AVG Number of Chargings for triangular grid.

FIGURE 23. AVG Number of Chargings from 20 sims.

TABLE 12. Comparison of triangular and square grid CS configuration
according to simulations (Red-grey heuristic from
Tables 7, 8, 9, 10, and 11).

Metric | Tri Grid Sq Grid |
Tour Cost Higher Lower

Tour Cost Savings% Higher Lower

AWD Higher Lower

AWD Savings % Higher Lower

Chargings Not much difference | Not much difference
Chargings Savings % Higher Lower

Number of CSs Lower (24) Higher (30)

TABLE 13. Benchmark results for approximate TSP tour costs in units.

Dataset concaveTSP FI NN 2-Opt
myLattice-25x40-1000 10437.0 10622.7 12225.1 10864.0
myLattice-50x40-2000 20576.3 21256.0 24264.8 21571.5

myLattice-50x60-3000 30601.7 318777 363963 32275.8
myRNDLattice-29x46-1000 13545.6 113245 131229 11597.9
myRNDLattice-58x46-2000 28001.3 22720.8 26033.6 23181.4
myRNDLattice-58x69-3000 427772 341295 38661.3 34664.3
myHexLattice-25x40-1000 104552 10494.8 12280.5 10730.5
myHexLattice-50x40-2000 20439.9 20534.8 213649 20863.0
myHexLattice-50x60-3000 30667.5 308159 31839.5 31193.8
myRNDHexLattice-29x46-1000 122559 110925 12798.8 11233.1
myRNDHexLattice-58x46-2000 23334.8 216958 245203 21858.7
myRNDHexLattice-58x69-3000 354949 32452.0 36658.8 325823

TABLE 14. Benchmark results for running time in seconds.

Dataset concaveTSP FI NN 2-Opt
myLattice-25x40-1000 0279 3.088 0.060 2.063
myLattice-50x40-2000 0.644 20307 0.176 31.207
myLattice-50x60-3000 0988 67.366 0.360 153.377
myRNDLattice-29x46-1000 0241 3.093 0.063 2213
myRNDLattice-58x46-2000 0.527 20298 0.169 32.087
myRNDLattice-58x69-3000 0.858 67.522 0.365 164.172
myHexLattice-25x40-1000 0.078 3.072 0.063 2.191
myHexLattice-50x40-2000 0.117 20378 0.189 36.102
myHexLattice-50x60-3000 0.147 68.024 0.388 160.825
myRNDHexLattice-29x46-1000 0.152 3.072 0.052 2.305
myRNDHexLattice-58x46-2000 0273 21.087 0.182 36.376
myRNDHexLattice-58x69-3000 0.448 69.281 0.353 185.657

gives the best results in every metric we considered in the
benchmarks.

VOLUME 9, 2021

AIgo 2-OPT + concaveTSP = FI NN

)
S

NCharging

40

20 40 80 100

60
Number of Boats
(b) AVG Number of Chargings for square grid.

TABLE 15. Benchmark results for approximate TSP tour AWD
(from vertex 1) costs in units.

Dataset concaveTSP FI NN 2-Opt
myLattice-25x40-1000 5300.1 5320.5 59483 54404
myLattice-50x40-2000 10395.3 10632.3 12007.0 10810.2
myLattice-50x60-3000 15389.2 15953.1 18339.8 16139.2
myRNDLattice-29x46-1000 68632 5668.0 6575.0 5810.1
myRNDLattice-58x46-2000 13972.7 11363.8 130103 116153
myRNDLattice-58x69-3000 21385.0 17064.1 19581.6 17348.2
myHexLattice-25x40-1000 5229.7 52542 6203.6 53804
myHexLattice-50x40-2000 10225.1 10274.0 10819.5 10469.0
myHexLattice-50x60-3000 15341.0 154152 161029 15631.5
myRNDHexLattice-29x46-1000 6257.2 55523 6501.7 56222
myRNDHexLattice-58x46-2000 114779 10856.9 12388.4 10930.5
myRNDHexLattice-58x69-3000 177824 162252 18310.3 16295.5

For the big datasets instead of simulations, we have just
benchmarked the TSP heuristic part of the framework as we
wanted to see the performance of TSP heuristics under big
datasets. Here the reader should note that the redGreySP
savings happen between paths from one boat to another.
In this sense, for the same TSP heuristic used in the frame-
work, the number of boats does not affect the saving per-
centage performance of the overall framework. This can be
seen from small dataset result tables below (7, 8, 9, 10,
and 11). Looking at the “Cost saving” rows this claim can
be verified. In Tables 13, 14, and 15 custom datasets are
used to benchmark algorithms with big number of vertices
(10004). In delivery operations, the number of vertices can
be much bigger than the rescue operations. These datasets
although do not represent real-life delivery configurations
can be useful for comparison purposes. We had two goals
for creating these custom datasets. The first goal was to see
how the proposed TSP heuristics perform with bigger datasets
compared to other heuristics since for small datasets there
were no big statistically significant differences. The second
goal was based on our observation during trial simulations
that the proposed TSP heuristic performed better then the
other heuristics in the regular geometric layout of the vertices.
To test these we created regular and hexagonal lattice layouts
with varying sizes in TSPLIB format. These lattices are also

164087

IEEE Access

K. L. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

deformed by randomly removing 25% of the vertices from
the regular layout. The datasets and the detailed results can
be downloaded from https://github.com/kk-1/boat-rescue.

IV. CONCLUSION AND FUTURE WORKS

We tried to address a very specific instance of a novel problem
of optimised pathfinding in general drone-based operations
assisted with an optimised CS grid. Namely, we consid-
ered the ‘“‘single drone-multiple entities” case, which is an
instance of the classical TSP. We tried to highlight the synergy
between the regularity of the proposed optimised CS grid and
the proposed heuristics.

The optimised CS grid provides complete coverage of the
mission region with the min number of CSs and without any
blind-spot. In Section III-D we listed the trade-offs associated
with the CS grid configurations we studied.

The proposed redGreySP heuristic depends on the CS grid
configuration and provides savings for the tour cost.

The proposed concaveTSP heuristic is not the best TSP
heuristic but it is a fast approximation heuristic. It offered
a good synergy between insertion heuristic and 2-Opt like
sub-tour improvement heuristic.

The novelties and contributions of our current work can be
listed as follows:

o Proposal of a novel framework that consists of the
generic region coverage method with CSs and the opti-
mum pathfinding for the entities in the covered region.

« Proposal of novel CS grid configurations for optimum
coverage of the mission region with the minimum num-
ber of CSs and without “blind spots” (points in the
mission region where the drone can not reach).

e Proposal of a new and flexible geometry-based
paradigm, “‘concaveTSP”, that can be integrated with
various existing and new heuristics for the TSP heuristic
algorithms.

« Proposal of a novel add-on type heuristic, “redGreySP”’,
for a generic shortest path algorithm that exploits the
geometric regularities of the proposed CS grid.

Currently, the redGreySP heuristic is designed as an add-on
for any generic shortest path algorithm. In this sense, there
can be some trade-offs. As future work, we can suggest
integrating it fully and creating a special shortest path
algorithm. This algorithm should work with dynamic data
structures.

The “jumps” from one boat to another are not included in
our study for simplicity. For this, we considered augmenting
the graph data structures with “yellow” edges to represent
possible jumps among boats that are very close to each other.
This may happen in the regions bounded by multiple CSs.
However, this scheme introduces another A/P-Hard problem,
namely ‘“bin-packing”. The algorithm should see the yellow
edge distances as “weights” and should try to fit them into
“bins” as large as ““drone range”’. The min number of “‘bins”
should be found for an energy-optimised path.

Multiple drones from single/multiple BS cases can be
studied. They are special Vehicular Routing Problem (VRP)

164088

cases. For the multiple BS case, we can offer the Voronoi
Tessellation method used in the study [43] for dividing the
large mission region into smaller regions based on the BS
positions. By using this division scheme the drone-based
delivery or rescue operations can be done in parallel over each
sub-region.

REFERENCES

[1] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fugaha, Z. Dou, E. Almaita,
I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, ‘“Unmanned
aerial vehicles (UAVs): A survey on civil applications and key
research challenges,” IEEE Access, vol. 7, pp. 48572-48634, 2019, doi:
10.1109/ACCESS.2019.2909530.

[2] Dronelife. (2021). A Drone Battery That Charges in 5 Minutes.
Dronlife News. Accessed: Jan. 4, 2021. [Online]. Available: https://
dronelife.com/2020/08/01/a-drone-battery-that-charges-in-5-minutes/

[3] K. L. Kilic and L. Mostarda, “Optimum path finding framework for
drone assisted boat rescue missions,” in Advanced Information Networking
and Applications, L. Barolli, I. Woungang, and T. Enokido, Eds. Cham,
Switzerland: Springer, 2021, pp. 219-231, doi: 10.1007/978-3-030-75078-
7_23.

[4] R.M.Karp, ‘“‘Reducibility among combinatorial problems,” in Proc. Symp.
Complex. Comput. Comput. Complex. Comput. Comput., R. E. Miller,
J. W. Thatcher, and J. D. Bohlinger, Eds. Boston, MA, USA: Springer,
Mar. 1972, pp. 85-103, doi: 10.1007/978-1-4684-2001-2_9.

[5] S.Khuller, A. Malekian, and J. Mestre, “To fill or not to fill: The gas station

problem,” ACM Trans. Algorithms, vol. 7, no. 3, pp. 1-16, Jul. 2011, doi:

10.1145/1978782.1978791.

Marinei. (2020). The Growing Role for Aerial Drones in the Mar-

itime Industry. Marinei News. Accessed: Dec. 29, 2020. [Online]. Avail-

able: https://www.marine-i.co.U.K./news/article/80/the-growing-role-for-
aerial-drones-in-the-maritime-industry

[7] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, ‘“Multipurpose
UAV for search and rescue operations in mountain avalanche events,”
Geomatics, Natural Hazards Risk, vol. 8, no. 1, pp. 18-33, Jan. 2017, doi:
10.1080/19475705.2016.1238852.

[8] Y.Karaca, M. Cicek, O. Tatli, A. Sahin, S. Pasli, M. F. Beser, and S. Turedi,
“The potential use of unmanned aircraft systems (drones) in mountain
search and rescue operations,” Amer. J. Emergency Med., vol. 36, no. 4,
pp. 583-588, Apr. 2018, doi: 10.1016/j.ajem.2017.09.025.

[9] J.N.McRae, C.J. Gay, B. M. Nielsen, and A. P. Hunt, “Using an unmanned
aircraft system (Drone) to conduct a complex high altitude search and
rescue operation: A case study,” Wilderness Environ. Med., vol. 30, no. 3,
pp. 287-290, Sep. 2019, doi: 10.1016/j.wem.2019.03.004.

[10] B. Mishra, D. Garg, P. Narang, and V. Mishra, ‘“Drone-surveillance
for search and rescue in natural disaster,” Comput. Commun., vol. 156,
pp. 1-10, Apr. 2020, doi: 10.1016/j.comcom.2020.03.012.

[11] A. Claesson, S. Schierbeck, J. Hollenberg, S. Forsberg, P. Nordberg,
M. Ringh, M. Olausson, A. Jansson, and A. Nord, “The use of drones and a
machine-learning model for recognition of simulated drowning victims—
A feasibility study,” Resuscitation, vol. 156, pp. 196-201, Nov. 2020, doi:
10.1016/j.resuscitation.2020.09.022.

[12] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and
design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91,
pp. 99-131, May 2017, doi: 10.1016/j.paerosci.2017.04.003.

[13] K. Kuru, “Planning the future of smart cities with swarms of
fully autonomous unmanned aerial vehicles using a novel frame-
work,” IEEE Access, vol. 9, pp.6571-6595, 2021, doi: 10.1109/
ACCESS.2020.3049094.

[14] B. Galkin, J. Kibilda, and L. A. DaSilva, “UAVs as mobile infrastruc-
ture: Addressing battery lifetime,” IEEE Commun. Mag., vol. 57, no. 6,
pp. 132-137, Jun. 2019, doi: 10.1109/MCOM.2019.1800545.

[15] C. H. Choi, H. J. Jang, S. G. Lim, H. C. Lim, S. H. Cho, and I. Gaponov,
“Automatic wireless drone charging station creating essential environment
for continuous drone operation,” in Proc. Int. Conf. Control, Autom. Inf.
Sci. (ICCAIS), Oct. 2016, pp. 132-136, doi: 10.1109/iccais.2016.7822448.

[16] S. Yin, Y. Zhao, and L. Li, “Resource allocation and basestation
placement in cellular networks with wireless powered UAVs,” IEEE
Trans. Veh. Technol., vol. 68, no. 1, pp. 1050-1055, Jan. 2019, doi:
10.1109/TVT.2018.2883093.

[6

VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2019.2909530
http://dx.doi.org/10.1007/978-3-030-75078-7_23
http://dx.doi.org/10.1007/978-3-030-75078-7_23
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1145/1978782.1978791
http://dx.doi.org/10.1080/19475705.2016.1238852
http://dx.doi.org/10.1016/j.ajem.2017.09.025
http://dx.doi.org/10.1016/j.wem.2019.03.004
http://dx.doi.org/10.1016/j.comcom.2020.03.012
http://dx.doi.org/10.1016/j.resuscitation.2020.09.022
http://dx.doi.org/10.1016/j.paerosci.2017.04.003
http://dx.doi.org/10.1109/ACCESS.2020.3049094
http://dx.doi.org/10.1109/ACCESS.2020.3049094
http://dx.doi.org/10.1109/MCOM.2019.1800545
http://dx.doi.org/10.1109/iccais.2016.7822448
http://dx.doi.org/10.1109/TVT.2018.2883093

K. 1. Kilic, L. Mostarda: Heuristic Drone Pathfinding Over Optimized CS Grid

IEEE Access

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. Ouyang, Y. Che, J. Xu, and K. Wu, “Throughput maximization for
laser-powered UAV wireless communication systems,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), May 2018, pp. 1-6, doi:
10.1109/ICCW.2018.8403572.

B. Michini, T. Toksoz, J. Redding, M. Michini, J. How, M. Vavrina,
and J. Vian, “Automated battery swap and recharge to enable persistent
UAV missions,” in Proc. Infotech Aerospace, Mar. 2011, p. 1405, doi:
10.2514/6.2011-1405.

H. Huang and A. V. Savkin, “A method of optimized deployment of
charging stations for drone delivery,” IEEE Trans. Transport. Electrific.,
vol. 6, no. 2, pp. 510-518, Jun. 2020, doi: 10.1109/TTE.2020.2988149.
H. Huang and A. V. Savkin, “Optimal deployment of charging stations
for aerial surveillance by UAVs with the assistance of public trans-
portation vehicles,” Sensors, vol. 21, no. 16, p. 5320, Aug. 2021, doi:
10.3390/521165320.

K. Sundar and S. Rathinam, “Algorithms for routing an unmanned aerial
vehicle in the presence of refueling depots,” IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 1, pp. 287-294, Jan. 2014, doi: 10.1109/TASE.2013.2279544.
P. Maini and P. B. Sujit, “On cooperation between a fuel constrained
UAV and a refueling UGV for large scale mapping applications,” in Proc.
Int. Conf. Unmanned Aircr. Syst. (ICUAS), Jun. 2015, pp. 1370-1377, doi:
10.1109/ICUAS.2015.7152432.

C. C. Murray and A. G. Chu, “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery,” Transp.
Res. C, Emerg. Technol., vol. 54, pp.86-109, May 2015, doi:
10.1016/j.trc.2015.03.005.

R. G. Mbiadou Saleu, L. Deroussi, D. Feillet, N. Grangeon, and A. Quilliot,
“An iterative two-step heuristic for the parallel drone scheduling traveling
salesman problem,” Networks, vol. 72, no. 4, pp. 459474, Dec. 2018, doi:
10.1002/net.21846.

I. Khoufi, A. Laouiti, and C. Adjih, “A survey of recent extended
variants of the traveling salesman and vehicle routing problems for
unmanned aerial vehicles,” Drones, vol. 3, no. 3, p. 66, Aug. 2019, doi:
10.3390/drones3030066.

R. G. M. Saleu, L. Deroussi, D. Feillet, N. Grangeon, and A. Quilliot, “The
parallel drone scheduling problem with multiple drones and vehicles,” Eur.
J. Oper: Res., Sep. 2021, doi: 10.1016/j.ejor.2021.08.014.

R. Roberti and M. Ruthmair, “Exact methods for the traveling salesman
problem with drone,” Transp. Sci., vol. 55, no. 2, pp. 315-335, Mar. 2021,
doi: 10.1287/trsc.2020.1017.

S. A. Vasquez, G. Angulo, and M. A. Klapp, “An exact solution method
for the TSP with drone based on decomposition,” Comput. Oper. Res.,
vol. 127, Mar. 2021, Art. no. 105127, doi: 10.1016/j.cor.2020.105127.

T. Lust and J. Teghem, “The multiobjective traveling salesman problem:
A survey and a new approach,” in Advances in Multi-Objective Nature
Inspired Computing, C. A. C. Coello, C. Dhaenens, and L. Jourdan, Eds.
Berlin, Germany: Springer, 2010, pp. 119-141, doi: 10.1007/978-3-642-
11218-8_6.

S. Lianshuan and L. Zengyan, “An improved Pareto genetic algorithm for
multi-objective TSP, in Proc. 5th Int. Conf. Natural Comput., vol. 4, 2009,
pp. 585-588, doi: 10.1109/ICNC.2009.510.

X. Guo, M. Ji, Z. Zhao, D. Wen, and W. Zhang, “‘Global path planning and
multi-objective path control for unmanned surface vehicle based on modi-
fied particle swarm optimization (PSO) algorithm,” Ocean Eng., vol. 216,
Nov. 2020, Art. no. 107693, doi: 10.1016/j.oceaneng.2020.107693.

M. M. Flood, “The traveling-salesman problem,” Oper: Res., vol. 4, no. 1,
pp. 61-75, 1956. [Online]. Available: http://www.jstor.org/stable/167517
G. A. Croes, “A method for solving traveling-salesman problems,”
Oper. Res., vol. 6, no. 6, pp. 791-812, Dec. 1958. [Online]. Available:
http://www.jstor.org/stable/167074

M. Jiinger, G. Reinelt, and G. Rinaldi, “The traveling salesman problem,”
in Network Models (Handbooks in Operations Research and Manage-
ment Science), vol. 7, M. O. Ball, T. L. Magnanti, C. L. Monma, and
G. L. Nemhauser, Eds. Amsterdam, The Netherlands: Elsevier, 1995, ch. 4,
pp. 225-330, doi: 10.1016/S0927-0507(05)80121-5.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An analysis of several
heuristics for the traveling salesman problem,” in Fundamental Prob-
lems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz,
S. S. Ravi and S. K. Shukla, Eds. Dordrecht, The Netherlands: Springer,
2009, pp. 45-69, doi: 10.1007/978-1-4020-9688-4_3.

A. Galton and M. Duckham, “What is the region occupied by a set of
points?” in Geographic Information Science, M. Raubal, H. J. Miller,
A. U. Frank, and M. F. Goodchild, Eds. Berlin, Germany: Springer, 2006,
pp. 81-98, doi: 10.1007/11863939_6.

VOLUME 9, 2021

[37] M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient generation
of simple polygons for characterizing the shape of a set of points in the
plane,” Pattern Recognit., vol. 41, no. 10, pp. 3224-3236, Oct. 2008, doi:
10.1016/j.patcog.2008.03.023.

[38] V.G.Deineko and G. J. Woeginger, ‘“The convex-hull-and-k-line travelling
salesman problem,” Inf. Process. Lett., vol. 59, no. 6, pp. 295-301, 1996,
doi: 10.1016/0020-0190(96)00125-1.

[39] J. Jones and A. Adamatzky, “Computation of the travelling salesman
problem by a shrinking blob,” Natural Comput., vol. 13, no. 1, pp. 1-16,
Mar. 2014, doi: 10.1007/s11047-013-9401-x.

[40] A. Moreira and M.-Y. Santos, “Concave hull: A k-nearest neighbours
approach for the computation of the region occupied by a set of points,” in
Proc. Int. Conf. Comput. Graph. Theory Appl. (GRAPP), 2007, pp. 61-68.

[41] J. Gombin, R. Vaidyanathan, and V. Agafonkin. (2020). Concaveman:
A Very Fast 2D Concave Hull Algorithm, R Package Version 1.1.0.
[Online]. Available: https://CRAN.R-project.org/package=concaveman

[42] J.-S. Park and S.-J. Oh, “A new concave hull algorithm and concaveness
measure for n-dimensional datasets,” J. Inf. Sci. Eng., vol. 29, no. 2, pp.
379-392, 2013.

[43] K. L. Kilic, O. Gemikonakli, and L. Mostarda, ‘“Voronoi tesselation-
based load-balanced multi-objective priority-based heuristic optimisation
for multi-cell region coverage with UAVS,” Int. J. Web Grid Services,
vol. 17, no. 2, pp. 152-178, 2021, doi: 10.1504/ITWGS.2021.114574.

KEMAL IHSAN KILIC received the M.Sc. degrees
in computer science from the University of
Maryland, College Park, in 1998, and in sustain-
able environment and energy systems from Middle
East Technical University, North Cyprus Campus,
in 2018. He is currently pursuing the Ph.D. degree
with the Computer Science Division, University of
Camerino. His research interests include computer
vision, image processing, machine learning, and
wireless sensor networks.

LEONARDO MOSTARDA (Member, IEEE)
received the Ph.D. degree from the Computer
Science Department, University of L Aquila,
in 2006. He cooperated with the European Space
Agency (ESA) on the CUSPIS FP6 Project to
design and implement novel security protocols
and secure geo tags. In 2007, he was a Research
Associate with the Distributed System and Policy
Group, Department of Computing, Imperial Col-
lege London, where he was working on the UBI-
VAL EPRC Project in cooperation with Cambridge, Oxford, Birmingham,
and UCL for building a novel middleware to support the programming of
body sensor networks. In 2010, he was a Senior Lecturer with the Depart-
ment of Distributed Systems and Networking, Middlesex University. He is
currently an Associate Professor with Department of Computer Science,
Camerino University, Italy, and the CEO of Bilancio CO, Zero. His main
research activities include the area of wireless sensor networks, middleware,
security, and various aspect of distributed systems.

164089

http://dx.doi.org/10.1109/ICCW.2018.8403572
http://dx.doi.org/10.2514/6.2011-1405
http://dx.doi.org/10.1109/TTE.2020.2988149
http://dx.doi.org/10.3390/s21165320
http://dx.doi.org/10.1109/TASE.2013.2279544
http://dx.doi.org/10.1109/ICUAS.2015.7152432
http://dx.doi.org/10.1016/j.trc.2015.03.005
http://dx.doi.org/10.1002/net.21846
http://dx.doi.org/10.3390/drones3030066
http://dx.doi.org/10.1016/j.ejor.2021.08.014
http://dx.doi.org/10.1287/trsc.2020.1017
http://dx.doi.org/10.1016/j.cor.2020.105127
http://dx.doi.org/10.1007/978-3-642-11218-8_6
http://dx.doi.org/10.1007/978-3-642-11218-8_6
http://dx.doi.org/10.1109/ICNC.2009.510
http://dx.doi.org/10.1016/j.oceaneng.2020.107693
http://dx.doi.org/10.1016/S0927-0507(05)80121-5
http://dx.doi.org/10.1007/978-1-4020-9688-4_3
http://dx.doi.org/10.1007/11863939_6
http://dx.doi.org/10.1016/j.patcog.2008.03.023
http://dx.doi.org/10.1016/0020-0190(96)00125-1
http://dx.doi.org/10.1007/s11047-013-9401-x
http://dx.doi.org/10.1504/IJWGS.2021.114574

