IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 17, 2021, accepted December 6, 2021, date of publication December 10, 2021,

date of current version December 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3134256

A Real-Time Cache Side-Channel Attack Detection
System on RISC-V Out-of-Order Processor

ANH-TIEN LE “'2, (Graduate Student Member, IEEE),

TRONG-THUC HOANG '3, (Graduate Student Member, IEEE),
BA-ANH DAO 12, (Graduate Student Member, IEEE), AKIRA TSUKAMOTO 3,
KUNIYASU SUZAKI“3-4, (Member, IEEE), AND CONG-KHA PHAM !, (Member, IEEE)

! Department of Computer and Network Engineering, The University of Electro-Communications (UEC), Chofu, Tokyo 182-8585, Japan

2 Academy of Cryptography Techniques (ACT), Hanoi 12511, Vietnam

3National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
4Technology Research Association of Secure IoT Edge Application Based on RISC-V Open Architecture (TRASIO), Tokyo 101-0022, Japan

Corresponding author: Anh-Tien Le (leanhtien@vlsilab.ee.uec.ac.jp)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) under Project JPNP16007.

ABSTRACT Computer designers have included techniques such as speculative execution and caching to
optimize speed and performance. Unfortunately, they could be exploited by the recently discovered cache-
side channel attack, spectre. The purpose of this research is to resolve this problem on the open-source
RISC-V architecture. Previously, software mitigation techniques and hardware modifications have been
investigated on Intel or ARM system to address these issues. However, they are either difficult to implement
or have resulted in a significant loss of performance. This work presents a real-time detection approach for
cache side-channel attacks such as spectre on the RISC-V processor. By monitoring the CPU’s cache activity
with Hardware Performance Counters and analyzing the gathered data with a neural network, we extend
previous researches in the field of cache side-channel identification. Since cache side-channels frequently
result in a significantly altered cache usage pattern, the proposed multi-layer perceptron network can detect
an attack event with an accuracy greater than 99% in our test environment with low performance overhead.
This is the first time, to our knowledge, that a spectre attack on the RISC-V architecture has been detected
in run-time via hardware events and machine learning.

INDEX TERMS RISC-V, spectre, side-channel attack, machine learning, cache memory, hardware

performance counters, real-time, software, security.

I. INTRODUCTION

Micro-architectural analysis (MA) [1] has been introducing
a new area of side-channels attacks. Unlike attacks based
on analyzing theoretical cryptography algorithms, it suc-
cessfully exploits the affect of processor configuration on
the security of a cryptographic system. Micro-architectural
attacks could take advantage of the executed code inside the
device even if the attacker does not have complete posses-
sion of the physical machine and additional measurement
equipment. With modern computers implementing various
components to increase the execution performance, those
units become convenient targets for MA. Spectre attack is a
practical example in the era of micro-architectural analysis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li

Since 2018, the two most interesting vulnerabilities in
the processor security field have been spectre [2] and
meltdown [3]. They pose a threat to nearly every modern
processors. The early spectre variants were inspired by
cache timing and branch prediction. It broadens the scope
of micro-architectural analysis research by profiting on
a significant defect in the technology that implements
speculative execution. Spectre intentionally identifies a target
function that does not strictly adhere to a serialized in-order
process but executes speculatively. It exploits mispredictions
of speculative executions of those target functions to obtain
sensitive information about victims. Both Intel and ARM
processors are vulnerable to spectre-style attacks [4], [S].
This cache side-channel attack also targeted the open-source
RISC-V architecture [6], [7].

Because of the threats from spectre, many researchers
focus on finding the methodology to prevent this kind of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 9, 2021

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

164597

https://orcid.org/0000-0001-9052-4796
https://orcid.org/0000-0002-4078-0836
https://orcid.org/0000-0002-8761-6398
https://orcid.org/0000-0002-3339-7177
https://orcid.org/0000-0003-0912-0087
https://orcid.org/0000-0001-5255-4919
https://orcid.org/0000-0002-7542-4356

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

side-channel attack [8]. Mainly, the favoured approach
is modifying or strengthening the processor architecture
of the out-of-order processor. SafeSpec [9] holds specu-
lative refilled data for caches and translation look-aside
buffers(TLBs) in shadow or user-invisible structures. There-
fore, it could defence most attacks leaking through the i-
cache or the TLBs. Reference [10] proposed a low-frequency
re-configurable hardware for detecting cache side-channel
attacks. Even the developer of RISC-V Berkeley out-of-order
processor has improved the line-fill buffers to prevent the
attacker processes from learning speculated behaviours from
the L1 data-cache state in their newest version [11]. Some
methods provide a complete modification from software,
operating system (OS) to hardware to defence against
spectre attack. SpectreGuard [12] focuses on bound check
bypass attack type. It marks sensitive memory blocks by
OS/Library API. They also prevent secret dependent spec-
ulative execution by delaying a speculative memory access
instruction until the execution is safe. SpecCFI [13] prevents
speculative control-flow from being hijacked. Control-flow
integrity (CFI) information becomes commonly available
for modern processors by hardware CFI extensions. They
use the CFI data to apply CFI principles to limit illegal
control-flow during speculative execution. The majority
of the studies as mentioned above provide novel defence
mechanisms with minimal performance loss. However, they
necessitate complex customization of the previous proces-
sor’s architecture, which is quite challenging to implement.
Theoretically, some simple software-based methods have
also been studied. By preventing speculative execution
effects, fence and speculative load hardening (SLH) aim
to strengthen vulnerable code that a spectre attack could
exploit. These approaches, however, necessitate recompiling
the attacked program and result in significant performance
loss.

Given the limitations of software mitigation techniques,
it is critical to implement real-time detection techniques for
spectre attacks until these attacks are completely eliminated.
This can be accomplished by customizing the hardware of
forthcoming processors and developing a software mitigation
method that does not degrade performance. On the basis
of hardware performance counters and machine learning,
we provide real-time detection methodologies for spectre.
Our proposed detection technique is capable of detecting
attacker activities with high accuracy in environments
with particular RISC-V processors and not decreasing the
execution performance.

To identify harmful attacks statically, typical security
software scans suspect commands in binaries or traces in
system log files. However, spectre provides no evidence in
system event logs. As a result, static analysis is ineffective at
detecting spectre. A recent study has demonstrated that mal-
ware can be discovered utilizing dynamic micro-architectural
execution patterns gathered from current processors’ existing
hardware performance counter (HPC). This research [14]
describes a machine learning-based monitoring technique

164598

for detecting various micro-architecture side-channel attacks.
The proposed method involves monitoring low-level hard-
ware events via the Perf API in Linux operating system and
then by applying relevant machine learning models to obtain
data. CloudRadar [15] analyzes counter value to deploy the
cache side-channel detection on virtual machine OpenStack
cloud system. Miao Yu et al. presents an algorithm based on
hardware performance counter data for detecting code-reuse
attack such as Return Oriented Programming (ROP) [16].
NumChecker [17] detects malicious alterations to a system
call in the guest virtual machine by analyzing the number of
particular hardware events that occur during the execution
of the system call. There are also researches successfully
using HPCs to detect spectre on common processors,
especially Intel. Chiappetta et al. [18] develops a utility
called quickhpc which based on the information gathered by
Perf and PAPI tools. Mushtaq et al. [19] develops Nights-
Watch for detecting Prime+Probe attack using 12 differ-
ent machine learning models. Bazm et al. [20] uses Intel
Cache Monitoring Technology (CMT) to obtain performance
hardware counter for the same purpose. They create a
machine learning model using Gaussian anomaly detection
method. Cho et al. [21] benefits from Intel Performance
Counter Monitor (Intel PCM) and deep learning to detect
Flush+Reload, Prime+Probe and even Flush+Flush attack
scenarios. Reference [22] takes advantage of fully supported
Perf engine to obtain performance counter data on Intel
processors. They successfully detected spectre-v1 with high
accuracy above 90%. Reference [23] designed an edge-based
classifier and implemented it to validate the same approach
on x86 and ARM-based SoC prototype architectures.

Nevertheless, none of these has been confirmed on the
RISC-V processor because of the source nature of this
architecture. Common HPC utilities such as Perf or PAPI are
not fully supported on RISC-V architecture. Therefore, it is
currently challenging for recording hardware performance
value on RISC-V processor. We address the issue of detecting
cache-side channel attacks on RISC-V system precisely
and effectively in this study. The comparison of this work
to prior researches is presented in Table 1. We are not
relying on pre-existing tools, such as on earlier studies,
but are instead developing our own hardware performance
counter analysis tools. We present a technique for detecting
attacks that leverage hardware speculation, branch prediction,
and out-of-order execution. This validation would try to
mitigate both spectre-v1 and spectre-v2 which used common
cache timing attacks technique such as Flush+Reload and
Prime+Probe. Additionally, we implemented our own cross-
process spectre scenario and a variety of alternative spectre
implementation techniques to expand the test. Our detection
system would notify users of any of these threats. To identify
spectre, we monitor the translation look-aside buffer and
branch prediction related events pattern for all running
processes using hardware performance counters. After that,
we use machine learning models to identify malicious
events.

VOLUME 9, 2021

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

IEEE Access

TABLE 1. Comparison to related works.

Research Year Target Tool Performance counter Detection model

TOTAL_INSTRUCTIONS
TOTAL_CYCLE Correlation-based

[18] 2016 Tntel Perf & PAPI LLC_ACCESS Neural Network
LLC_MISS
TOTAL_INSTRUCTIONS . Lo .
TOTAL CYCLE Linear Discriminant Analysis

[19] 2018 Intel PAPI - Logistic Regression
CACHE_ACCESS S t Vector Machi
CACHE_MISS upport Vector Machine
LLC_MISS
LLC_REFERENCES .

[20] 2018 Intel Intel CMT iTLB_ MISS Gaussian
iTLB_ACCESS
CACHE_MISS .

[21] 2019 Intel Intel PCM RETIRET)_BR ANCH Single-layer perceptron
LLC_MISS Logistric Regression

[22] 2021 Intel Perf LLC_REFERENCES Support Vector Machine
BRANCHES Neural Network
BRANCH_MISPREDICTION cural Netwo
BRANCH_INSTRUCTIONS Support Vector Machine

[23] 2021 ARM & x86 ARM PMU & Perf L1_CACHE Ralr)lgom forest
SPECULATIVE_LOAD/STORE ’
INSTRUCTION_RETIRED Multi-layer perceptron

This work 2021 RISC-V Proposed tool TOTAL_CYCLE Logistic Regression

BRANCH_MISPREDICTION

iTLB_MISS

Support Vector Machine

The contributions of our work are three-fold:

1) We propose a detection system for spectre attacks using
hardware performance counters.

2) We find effective hardware performance counters for
the detection of spectre attacks and implement our
detection technique under realistic RISC-V system.

3) We implement practical RISC-V applications data-set
to gather hardware counters data. We provide exper-
imental results and discussion on detection accuracy
with different machine learning models.

Il. BACKGROUND KNOWLEDGE

A. BERKELEY OUT-OF-ORDER PROCESSOR

RISC-V has been developed in recent years as a new
instruction set architecture that is freely available under
open, non-restrictive licenses. It is intended to promote
computer architecture research and education and garner
assistance from significant enterprises, such as chip and
device manufacturers. The RISC-V ecosystem offers a new
level of innovation in processor architecture, which is
critical for achieving the required performance and power
efficiency improvements over the next decade. One of the
RISC-V’s benefits is its simplicity; it is far smaller than
other commercial general-purpose instruction set architec-
ture (ISAs) but retains considerable detail. Additionally,
it supports applications, operating system kernels, and
hardware implementations that use both 32-bit and 64-bit
address spaces. As a result, both in-order and out-of-order

VOLUME 9, 2021

processors based on the RISC-V instruction set have been
explored and constructed.

The out-of-order processor implements a dynamic
rescheduling mechanism that makes optimal use of the chip’s
resources in order to boost the computer’s performance. The
University of California, Berkeley, has been developing and
maintaining “Berkeley Out-of-Order Machine (BOOM)”,
an open-source synthesizable parameterized out-of-order
RISC-V processor [24].

The micro-architecture of the BOOM contains several
fundamentals that create an ideal environment for speculative
execution attacks. As an out-of-order processor, BOOM uses
the optimization method to achieve maximum utilization
of execution units available in a CPU. A processor hav-
ing out-of-order execution functionality does not wait for
the instructions to complete their execution in sequential
order. Preceding instructions start executing if all necessary
operands and functional units are available without waiting
for the previous instructions to complete their execution.
Regardless, visible effects persist from those erroneous steps
that side-channel attacks could exploit to obtain private
information. Correspondingly, the BOOM processor includes
some convenient characteristics for the spectre attack.

1) SPECULATIVE EXECUTION

Unlike out-of-order execution, speculation attempts to finish
subsequent computation; nonetheless, speculation is meant
to benefit programs in executing faster when the control
flow or data dependencies are uncertain. Probably the

164599

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

most significant sort of speculative execution is branch
prediction. Predicting whether a conditional or indirect
branch will occur is challenging because it could require
more time. If the prediction is true, retired instructions are
re-initialized; if the prediction is incorrect, a (theoretically)
re-misprediction, speculatively executed instruction is re-
initialized. The branch predictor unit (BCU) is a micro-
architecture component that permits speculative forecasting
of unconditional and conditional jumps, as well as function
return and return pathways.

2) CACHING

The term “implicit caching” refers to the caching of
memory resources, such as data or instructions that are
not immediately retrieved or accessed. Implicit caching
may occur in current processors as a result of “aggressive
prefetching, branch prediction, and TLB miss handling™.
For example, improperly predicted branching will result
in the fetching and execution of instructions, as well as
data memory reads and writes, that the program does not
intend. Spectre attack targets on cache effect of the out-of-
order processor to calculate the secret key from the target
procedure.

B. CACHE TIMING ATTACKS

By examining the time difference between cache hits and
cache misses, cache side-channels infer the victim’s memory
access habits. This attack approach is called cache-timing
attacked. When data is searched up in the cache but is not
discovered because the cache does not include the item being
sought, this is referred to as a cache miss. When a processor
searches for an item in a cache, the item is saved, and the
processor can satisfy the query, resulting in a performance
improvement. This is known as a cache hit. Prime+-Probe and
Flush+Reload are both standard approaches for observing
sensitive program execution trances left in the CPU caches.
They would monitor cache miss and hit events and analyze
them to interpret the target software’s sensitive information.
These techniques are significant components for performing
spectre attack.

1) FLUSH+RELOAD ATTACK

The Flush4-Reload attack approach [25] is based on observ-
ing how the processor’s memory behaves while programs
are executed. When the CPU requires already cached data
(cache hit), the performance is significantly faster than when
the CPU must reach main memory to retrieve the data.
To execute the Flush+Reload approach, the adversary must
share particular physical memory pages with the victim.
Often, the Flush+Reload assault is presented in three stages.
To begin, the adversary clears the shared memory address
from the memory cache. It is the L1 cache in the BOOM
core in our suggested environment. The spy then waits for
the victim function to execute to gain access to the sensitive
data. Finally, it reloads to determine which piece loads faster
than the rest. As a result, it is the final element accessed

164600

by the victim process, which contains the value that the
attacker wishes to retrieve. Because most security systems
rely on conditional and branch instructions to authenticate
authorization to access sensitive data, this type of attack could
endanger a wide number of programs that store sensitive user
data. This technique has the advantages of being less noisy
and maintaining a high accuracy.

2) PRIME-+PROBE ATTACK

The prerequisite condition for performing a Flush+Reload
attack is that the malware must share particular phys-
ical memory pages with the target. In comparison,
Prime+-Probe [26] is another popular cache-timing attack
strategy that does not require the victim to share memory
pages. At its most basic level, the attacker begins by
completely priming the cache sets which they want to monitor
with a well-chosen eviction set. When the victim generates
memory references, its accesses act as a substitute for some
of the attacker’s cache lines. The attacker can then re-visit
the eviction set; if this access results in a cache miss, the
adversary can determine that the victim has accessed that
cache set, resulting in the replacement of his data. The most
widely used way for carrying out a prime and probe attack is
systematically accessing all cache lines in the same cache
set from the eviction set while timing the overall access
time. This approach, priming and probing, are combined
into a single access pattern, allowing for efficient monitoring
of a single cache set. Despite the fact that the attacker
does not need to share a memory with the victim, this
strategy produces more noisy and inaccurate results than the
Flush+Reload approach.

C. HARDWARE PERFORMANCE COUNTERS

Modern processors are integrated hardware counters that
measure specific events occurring at the machine level,
such as the number of cycles and instructions executed by
an application, its corresponding cache memory behaviour,
and off-chip memory procedure. While the information
collected by performance counters are frequently simple,
when combined properly, it could present a useful report
about a system’s activity and therefore serve as a valuable
debugging mechanism. Typically, performance counters on
the hardware are used to verify and improve the performance
of the software. The first step in optimizing a program is to
ascertain its performance on the target system. Similar count-
ing capabilities are provided by different computer processor
manufacturers, such as Performance Counter Monitor (PCM)
in Intel processor and Performance Monitoring Unit (PMU)
in ARM processor.

HPC metrics may be obtained via a simple command-
line interface using profiling programs such as Perf. Perf is
integrated within Linux operating system to be a performance
analyzing tool. It supports both Intel and ARM processor. Perf
can be read in one of two ways: through counting or through
sampling. At the conclusion of a counting mode program, the
occurrences of events are simply collected and reported on

VOLUME 9, 2021

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

IEEE Access

standard output. It performs sampling on numerous metrics
based on the occurrence of a certain number of events.
Unfortunately, RISC-V is currently not fully supported with
a thorough performance counter monitor tool such as Perf.
As a result, assessing HPC on a RISC-V machine would be
challenging.

D. NEURAL NETWORKS

Artificial Intelligence (Al) has made tremendous strides in
recent decades, progressing from object recognition and
detection algorithms to software and hardware with amazing
execution capabilities. Artificial neural networks (ANNs)
are machine learning models inspired by the human brain’s
structure. Because neural networks excel at recognizing
patterns in large amounts of data, they have been shown to be
extremely effective at performing classification challenges.
Classification’s objective is to specify the category to which a
given input belongs. When detecting spectre attacks, the input
is collected HPC data from several processes, and the output
is classified as benign or malicious.

Numerous artificial neurons are arranged in multiple layers
to form neural networks. Each neuron has a value and is
connected to neurons in the subsequent layer via weighted
connections. A feed-forward network is the simplest network
architecture. The feed-forward network depicted has an input
and output layer as well as hidden layers. Each node in
the output layer is represent the probabilities of the input
belong to the corresponding category. To forecast a value, the
network takes inputs from the input layer, feeds them to the
hidden layer, and then outputs the prediction at the output
layer. The projected category is the output node with the
highest value. The layers in this example are fully connected,
i.e, each neuron in one layer is connected to every neuron in
the preceding layer. To forecast a value given an input, each
neuron adds the weighted values obtained from all connected
neurons in the previous layer and then sends the result through
an activation function.

The activation function of a node in artificial neural
networks determines the output of that node given input or
group of inputs. Normally, the activation function returns
a value in the range of O to 1. There are some activation
functions frequently considered for usage in hidden layers;
they are as follows: Rectified Linear Activation (ReLU),
Logistic (Sigmoid) and Hyperbolic Tangent (Tanh). The
activation function’s objective is to introduce non-linearity
into a neuron’s output. Each neural connection’s weight must
be adjusted to determine the optimal mapping between input
and output values.

lIl. PRELIMINARIES
A. TARGETED DEVICE
In this work, we used an out-of-order RISC-V processor
as in Table 2. The system consisted of a Berkeley out-
of-order processor, BOOM. The processor implemented
the RV64GC extension instruction set, which contains

VOLUME 9, 2021

TABLE 2. Processor configuration.

BOOM
iTLB 1 set, 32-entry
dTLB 1 set, 8-entry
I-Cache block size: 64B, size: 16384B
D-Cache | block size: 64B, size: 16384B

Integer, Multiplication, Atomic, Floating Point, Double, and
Compress instructions. The implementation procedure was
generated using the rocket-chip generator [27], [28]. The
BOOM core is a 64-bit two-wide configuration, which means
that we can write up to two instructions into the “issue
queue” in the processor pipeline.

We prepared and tested the experimental environment by
practical degrees, from software simulation using Verilator
to implementing it on a physical FPGA, which is the closest
thing to a real RISC-V chip. The used FPGA is the Xilinx
Virtex-7 VC707 FPGA board. The VC707 board provides
a hardware environment for evaluating processor design.
It comes with 1GB of DDR3 SODIMM memory, a PCI
Express®) interface, and two UART interfaces. On FPGA, the
processor is booted into a light Linux operating system. This
processor is then used to experiment with the spectre attack
replication and to develop the real-time detection system.

B. CACHE SIDE-CHANNEL ATTACK

As BOOM contains some appropriate fundamentals for
speculative execution attacks. We have re-implemented the
first two variants of the spectre attack: bound check bypass
attack and branch target injection attack. After that, we also
developed a new cross-process scenario of spectre on the
RISC-V platform. These cache side-channel attacks would
then experiment on the proposed processor. The attack’s goal
is to obtain sensitive information stored in a memory region
that only the victim program can access. We assume that the
adversary could execute any programs or processes that he
developed on the host machine. The purpose is to replicate
the spectre’s problem in RISC-V system before verifying the
proposed detection method. Additionally, when replicating
the spectre attacks on RISC-V environment, we have also
tried different parameters (e.g. training round...) to find out
which minimum conditions for the attacker to exploit the
system successfully. Those conditions are also applied when
we verify our detection system.

In the spectre-vl, Bound Check Bypass, the conditional
branch becomes the target, often called a spectre gadget.
Typically, the condition branch would be executed in
sequential order. The inside code block normally only be
executed after the condition, for example, x < size is
examined. However, for the processor containing speculation
execution, like the proposed processor, the system would try
to predict the result of the conditional check, which could be
true most of the time. Then the private information of the

164601

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

92
90 oo e o o o
e 00 & 08B *0
88 e o) e @ oo o 0o e o ee e o o
o [1] ® e o000 L N] [L] L N ® o L __J ® o0
f 86 Wee o ® e oo e e) smsm @
:j [N] ® LN _J ® - [] ® oD o0 0 0 o0 @
34 ee [& [B B e eom® oo o ° sm®me o
_\% L N] o ¢ ® 00000 O 000 SOoNe S0 We ¢ 0o Ll _J
%82 [X X} e o o ssomO®™S oo o o o . o oo
= |] [I N1 J o o o O [L] - L] * e @ L]] L J
80 L
78 5
\.
76
0 50 100 150 200 250
ASCIl Value
FIGURE 1. Cache access time of 256 ASCII values.

function victim (){
if (x < a_size)
data a[x];

}

LISTING 1. Spectre gadget.

inside code block could be loaded into the memory before
the examination of the condition in the bound check.

In this attack, the adversary points to the address space
of the victim function and reads the victim data in the
conditional branches. The condition branch in the victim
function would be run and trained repeatedly. Then, during
the attack round, the attacker gives a value to the victim that
fails the bounds check in the victim. The cache effect would
appear, and the attacker would use the Flush+Reload [25]
method to achieve the secret value. In each attack round,
the target is to achieve one secret byte. The secret value
could be 256 different results that correspond to the ASCII
table’s 256 values. The value will be collected as a guess
for the secret byte if its access time is less than the number
of cycles required to reach the cache hit threshold and
other 255 values. For example, in Figure 1, the value 83
corresponding to character ’S’ has the lowest cache access
time after performing the attack, so ’S’ is the secret byte.

In variant 2 of the spectre attack, Branch Target Injection,
the attacker targets the branch target buffet to guide the
transient execution to a misprediction branch target. Direct
branches happen when the destination of the branch can be
known from the address declared in the instruction. Indirect
branches, on the other hand, happen when the destination
of the branch is not contained in the instruction itself.
During run-time, the indirect branch predictor would look
up the Branch History Buffer for the branching history to
predict the destination of the function and immediately start

164602

to speculative execute the function. The adversary could
find a program similar to the target program to manipulate
indirect branch predictor. Returning to the attack scenario,
after (mis)training the indirect branch predictor, this attack
exploits the jalr instruction which uses speculative execution
to predict the destination. Therefore, during the attack round,
the jalr jumps to the private function instead of the other
function. Therefore, the sensitive data is loaded and could be
achieved by Flush+Reload similar to variant 1.

Most previous spectre proof-of-concept demonstrations,
particularly on RISC-V, used the same-process or same-
address-space scenario [2], [4]. To further the spectre research
on the RISC-V platform, we proposed a cross-process scheme
that separates the adversary and victim. Assume that the
attacker does not have administrative privileges but has the
ability to execute any code on the machine (controlled by
the untrusted host). The attacker attempts to obtain data from
another process. In particular, the victim would play as a
server, and the attacker is a remote client. To leak data,
an attacker must send specially controlled inputs to the target,
which are then forwarded to a spectre-vulnerable function.
The attacker must first map the target binary into its own
address space (for example, using mmap()). The attacker will
then share all read-only and non-dirty pages with the victim
as in Figure 2.

The attacker must then locate two memory locations
in the victim binary that satisfy the requirements of the
Flush+-Reload technique:

1) The offset in the operand file used to perform the
spectre condition to flush it. For instance, in the bound
check bypass scenario, this would be the offset of
a_size. This is used to force the CPU to rely on the
Pattern History Table (PHT), as the adversary has to
fetch the operand from DRAM before resolving it.

VOLUME 9, 2021

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

IEEE Access

Victim DRAM Attacker

Shared array

rodata___ |-

Shared array Shared array

secret

. secret

FIGURE 2. Mapping to victim binary & shared buffer.

2) The offset in the read-only/non-dirty memory location
file is used to leak the read bytes in a spectre attack.
This would be the offset of the victim’s shared array

with the attacker.
After this, the attacker will compute the virtual addresses

for both memory locations in its own address space by
simply adding the offsets to the address to which the binary
was mapped. The attacker now recognizes that the target
physically resides at those two addresses. The adversary then
flushes the memory location used to store the bytes leaked
from the cache hierarchy. Because the leak will occur in this
zone, it is crucial to keep it clean to prevent false positives.
After that, valid inputs would be sent to the victim to train,
conditioning the PHT to accept valid values. Before sending
the attack input, the attacker must flush the value used
to compute from the cache hierarchy. A spectre-vulnerable
conditional jump will initiate the leak. Otherwise, the value
will almost certainly be cached, and the CPU will avoid
performing speculative execution on the target state. The
attacker can then trigger the spectre attack by sending a rogue
input that speculatively reads and caches the secret. Finally,
to retrieve the hidden byte, the adversary must determine the
access time to the shared memory location where it is stored.
The real value of the secret is decided by the index that has
the fastest access time.

C. PREVIOUS SOFTWARE MITIGATION APPROACH

Prior hardware-based solutions on defending against spectre
required complex customization on hardware with time-
consuming effort. Software-based mitigation is used as a
simple and quick patch for this problem. There is some
basic method that focuses on strengthening spectre target
on victim application to prevent these kinds of cache side-
channel attack.

VOLUME 9, 2021

1) FENCE INSTRUCTION
To cope with the spectre variants vl and v2, both Intel and
AMD have introduced microcode update patches that present
new fence instruction [29]. This instruction would insert a
memory barrier to prevent speculative execution in proper
places. Before the previous instruction is executed, the latter
instruction will be stopped from executing speculatively.
The RISC-V ISA contains a relaxed memory model, with
the fence instruction used to establish ordering constraints.
To prevent the cache attack on the RISC-V processor, we have
inserted the fence instruction into the victim function to
prevent speculative execution from happening. This allows
the program to protect the private key from being faulty-
loaded into the memory and stop the adversary. The fence
instruction could be used in both Bound Check Bypass
and Branch Target Injection scenarios to defend against
spectre.

2) SPECULATIVE LOAD HARDENING

Despite preventing the spectre, the fence instruction has
entirely blocked the speculative mechanizes and significantly
decreased the system’s performance. Speculative load hard-
ening (SLH) [30] proposed a sufficient approach, especially
with the conditional branch. SLH assured that the program
would load a safe constant instead of user-controlled data
in the misspeculated execution. To enable SLH to work,
platforms need to provide a sufficient set of instructions for
tracking and masking that are not subject to prediction. Using
a global predicate state predicate_state, which is all-ones if a
misprediction has occurred, or all-zeroes if one has not. The
effect is that an address can never be caused to point to a user-
controlled secret via misprediction. Because in the event of
misprediction, no variables will be user-controlled at all, and
no sensitive information could be exploited by spectre.

3) VALIDATING SOFTWARE MITIGATION

METHODS ON RISC-V

We have re-compiled the victim program in the spectre
scenario and tested the above mitigation methods to validate
the proposed defence mechanism in the RISC-V processor.
The experiment was done on the VC707 FPGA board
with the proposed RISC-V processor, which was previously
vulnerable to the spectre attack. The software-based shield
will be able to stop spectre attacks from targeting vulnerable
code.

Though these software-based defence mechanisms proved
that they could be implemented on RISC-V and could stop
the spectre attack, they require recompiling the program with
a trade-off in significant performance loss. Figure 3 checked
the performance of a function containing a ‘“‘spectre gadget”
conditional branch. We executed the function in a loop in
which each iteration contains nine times of normal run and
one time that the attacker tries to exploit the function. Here,
normally the function takes about 210 cycles for execution,
but when we apply the fence mitigation method, the

164603

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

2%

270

250

230

Number of cycles

210

1%

290

280

270

260

250

240

230

Number of cycles

220

210

290

280

270

260

250

240

Number of cycles

200

190

normal run
i\

10 20
attack run

20

30 40 50 60 70 80 90 100

Number of execution

(a) Normal execution.

30 40 50 60 70 80 0 100

Number of execution

(b) Mitigation using fence technique.

30 40 50 60 70 - S0

Number of execution

(c) Mitigation using index masking.

FIGURE 3. Performance of a function with/without software-based defense mechanisms.

execution time could increase by about 15%~43%. Similarly, the average performance overhead is about 10%~38%.
when using index masking or speculative load hardening, Therefore, we need to suggest a different solution that is still

164604

VOLUME 9, 2021

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

IEEE Access

63 0
mcycle

TABLE 3. RISC-V default hardware performance counter value.

64
(a) Machine cycle counter.

31 0
| mcycleh ‘
32

(b) Upper 32 bits of machine cycle counter in RISC-V 32-bit

FIGURE 4. Example of RISC-V counter.

simple as those software methods but without increasing the
performance overhead.

D. RISC-V HARDWARE PERFORMANCE MONITOR

While Intel and ARM offer proprietary performance mon-
itoring solutions that allow software developers to get the
most out of their hardware, RISC-V is still reliant on
custom/vendor-specific solutions, with no complete support
for common performance monitoring software tools such
PAPI or Oprofile. RISC-V, in particular, is also still not fully
supported by the Linux kernel monitoring tool Perf.

In the first RISC-V privileged specification, the ISA
implemented three fixed counters: Time, Cycle, and Retired
Instructions (instret). The corresponding machine Control
and Status Register (CSR) are mcycle, mtime, minstret. This
installation enabled baseline performance monitoring of a
RISC-V implementation, calculating the average number of
instructions for each clock cycle. The counter, for example,
mcycle has 64 bits value on RISC-V 32-bit, 64-bit and
128-bits system as in Figure 4. On RISC 32-bit system, the
value of mcycle would be only the low 32 bits. On the other
hand, the bits at the position 63 to 32 could be read by the
counter mcycleh.

Currently, RISC-V ISA specification [31] supports for 32
performance monitor registers in total. The Hardware Per-
formance Monitor (HPM) counters, numbered hpmcounter3
to hpmcounter31 as in Table 3. The first three counters are
still time, cycle and instret. Those HPCs can be individually
modified by setting an event identification in the associated
hpmevent registers, a set of XLEN-bit registers.

For now, the RISC-V HPM has been substantially simple
and not fully supported by standard performance analysis
tools such as Perf. Despite this, the RISC-V HPM standard is
a versatile general performance monitoring solution, and its
open-source nature provides a high degree of implementation
flexibility. Given the RISC-V privileged specification condi-
tion, we developed our custom monitor system to record the
performance counter on the out-of-order RISC-V processor
BOOM. This method would be used as a quick and effective
solution for the spectre problems in the RISC-V processor
before a complex hardware-based method is presented.

To provide access to the counters of the processor, we need
to be able to access the chosen CSRs. Therefore, the
programmer would have the ability to directly read the setting
or counter values using the RISC-V ISA’s software structures.
For developing the RISC-V spectre detection system, we need

VOLUME 9, 2021

Counter Event

Counter parameter

Cycle mcycle

Time mtime
Instructions Retired minstret
Exception taken mhpmcounter3
Integer Load instruction retired mhpmcounter4
Integer Store instruction retired mhpmcounter5
Atomic memory operation retired mhpmcounter6
System instruction retired mhpmcounter7
Integer arithmetic instruction retired mhpmcounter8
Conditional branch retired mhpmcounter9

JAL instruction retired

mhpmcounter10

JALR instruction retired

mhpmcounter]1

Integer multiplication instruction retired

mhpmcounter12

Integer division instruction retired mhpmcounter13
Floating-point load & store instructions retired mhpmcounter14
Floating-point other instructions retired mhpmcounter15
Load-use interlock mhpmcounter16
Long-latency interlock mhpmcounter17
CSR read interlock mhpmcounter18
Instruction cache/ITIM busy mhpmcounter19
Data cache/DTIM busy mhpmcounter20
Branch direction misprediction mhpmcounter2
Branch/jump target misprediction mhpmcounter22
Pipeline flush from CSR write mhpmcounter23
Pipeline flush from other event mhpmcounter24
Integer multiplication interlock mhpmcounter25
Floating-point interlock mhpmcounter26
Instruction cache miss mhpmcounter27
Data cache miss or memory-mapped I/O access | mhpmcounter28
Data cache writeback mhpmcounter29
Instruction TLB miss mhpmcounter30
Data TLB miss mhpmcounter3 [

to encounter three parts as in Figure 5. As illustrated, we have
to configure from processor configuration to Linux kernel to
take advantage of the current RISC-V ISA for our detection
system.

To begin, we must incorporate the appropriate counter
into the CPU setup. As BOOM is a highly customizable
open-source project, we can conveniently add or remove
desired Hardware Performance Events (HPEs) by modifying
the event set and specific events in the project’s Scala code.

Second, the Linux kernel needs to be modified as well.
To initialize the required performance counter, we change
the machine initialization process configuration during the
operating system boot phase. Additionally, there is a single
32-bit counter enable register mcounteren. Each bit in this
register is associated with one of the 32 event counters
discussed previously. This register solely regulates the
counter registers’ visibility and allows the user to view
the HPC value. Additionally, we must match the events to
the counters. Each mhpmevent# would correspond to a unique
counter register.

Finally, a utility has been developed to read the counter
value from software level and analyze the data.

IV. PROPOSED DESIGN

A. DETECTION PROCEDURE

The BOOM processor runs a light Linux operating system
on an FPGA as in Figure 6. As a result, we could create

164605

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

: CPU

Monitor
utility Machine
CSRs
Sampling Counter Counter
i sampling i configuration | (Hardware
Dlsplay data PI(-muxl < » |Perfomance

Analyzing erne < > Monitor

FIGURE 5. HPM Monitor software structure.

Hardware performance counter
Dataset (csv)

Neural
Networks

Linux
Logging
Spectre module
] Detection |
Benignapps || "o [f

P
V2 \ocated under LCO

FIGURE 6. System model.

a real-time monitor to retrieve the hardware performance
counter and detect a cache side-channel attack. The services
would run in the system’s background. We ensure that each
test case executes only sample applications and the logging
service on the core. Additionally, we created an idle test
case in which only the logging service was executed for
the dataset. Our detecting procedure is divided into three

stages:
e Collecting Data Sets: We profile spectre and other

benign processes in Attack and Non-Attack scenarios
during this phase. At a sampling rate of 100ms,
we collect performance counter values. The system
would execute only one sample application and the
logging service during each sampling period to exclude
noise. We independently monitor appropriate hardware
counters (mentioned in section III.D) for profiling,
directly relevant to distinguishing benign programs from
malicious processes. The collected dataset was saved in
a .csv file.

o Detection Model Training: We train the machine models
employed in the spectre detection technique during the
detection model training phase. We use a data set of
20,000 samples to train the machine learning models.
We blended data samples from benign and malicious

164606

Trained model

FPGA VC707

processes and trained the models on labelled data.
As we develop the neural network model using C, the
model could be trained on either a regular Intel or
ARM processor or our proposed RISC-V system, which
contains a RISC-V GNU toolchain.

o Profiling at Runtime: We connected the trained model to
the monitor services. At runtime, we monitor hardware
events. We also choose a sampling time interval of
100ms to incur the slightest detection overhead. Also,
because this phrase uses a pre-trained model, it would be
an immediate computation. Therefore, the attack could
be detected within around 100ms. When the system
detects a cache side-channel attack, the services notify
the user.

B. HARDWARE PERFORMANCE COUNTER AS FEATURES

As described in Section III-B, most attackers use spectre in
one of two ways. In the first variation, the attacker mis-trains
branch instructions to speculatively execute unprivileged
instructions, whereas, in the second variant, the attacker
targets the indirect branch. Based on the features selection
criteria, we choose performance counters linked to both

VOLUME 9, 2021

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

IEEE Access

5000000

Test program executed
4500000

N

4000000

L

3500000
=DD0000D
2500000

2000000

Counter value

1500000

1000000

500000

o
1 51 101

Spectre vl

AES demo

151 201 251

Execution time (100ms/sample)

FIGURE 7. Branch misprediction counter.

120000
100000
80000

60000

Counter value

40000

20000

Spectre v2

Coremark

Idle tasks

101 151

Execution time (100ms/sample)

FIGURE 8. Instruction TLB miss counter.

variants of spectre attacks, which are Branch misprediction
and iTLB miss.

To validate our selected counter, we proposed experiment
that compared the differences in counter’s value when
the spectre attack was performed to the value when the
usual program was executed as shown in Figure 7 and 8.
As illustrated in the Figure 7, the branch misprediction
counter increases significantly when spectre-vl occurs in
comparison to performing a standard AES calculation. The
Figure 8 shows how the instruction TLB miss counter
changes over time. The three scenarios depict the execution of
spectre-v2, coremark, and idle jobs, respectively. Obviously,
the value of spectre-v2 is significantly greater than the values
in the other two cases. As a result, these two counters are a
good match for identifying spectre attack events.

In addition to TLB and branch-related events, we choose
the total number of Retired instruction events and cycle
because it demonstrates the workload that a particular process
places on the CPU to generate related cache misses, cache
accesses, and branch miss predictions. Because the spectre
attack consists of a shorter loop that conducts branch
mispredictions and cache accesses regularly. Spectre attacks

VOLUME 9, 2021

TABLE 4. Selected counter event.

Counter Event RISC-V Counter parameter
Cycle mcycle

Instructions Retired minstret
Branch misprediction | mhpmcounter21
TLB miss mhpmcounter30

are likely to have a more significant rate of cache misses and
branch mispredictions in relation with the total number of
executed instructions than other benign processes. Table 4
shows four counters used for detecting cache side-channel
attacks in RISC-V.

C. MULTILAYER PERCEPTRON NETWORK

When it comes to classification tasks, artificial neural net-
works have proven to be extremely effective. Classification’s
purpose is to specify which category a given input belongs to.
In the case of detecting spectre attacks, the input is collected
HPC data from several processes, and the output is divided
into two categories: benign and dangerous. It is feasible to
reliably classify complex data without manually constructed

164607

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

500
450
400

Execution cycle
o]
(%3
=

200 300

Number of Iterator

=With Spectre monitor
FIGURE 9. Execution time of with/without detection system.

features due to neural networks’ ability to learn nonlinear
relations of the input set.

Because our dataset contains solely labeled counter values,
a simple neutral network is sufficient for developing an
appropriate detection model. As a result, we choose a multi-
layer perceptron network implementation. The multi-layer
perceptron was formerly thought to provide a nonlinear
mapping between an input vector and its associated output
vector. It commonly provides high performance on detection
system [32]. Its advantage is that it maintains the same
accuracy ratio even when the dataset is smaller.

This neural network comprises four input neurons, one for
each of the four HPCs collected. It has three fully linked
hidden layers with 3, 5, and 7 neurons each and one output
neuron. The output neuron uses a Rectified Linear activation
function as in listing 2 because it is easier to train and
commonly give a better performance. While we experimented
with several network designs, this one produced the best
results with our data set without triggering over-fitting.

f(x) = max(0,x)

LISTING 2. Rectified linear activation function (ReLU).

V. EXPERIMENT SETUP AND RESULTS

A. DATA COLLECTION

To train the supervised learning model, we created a data
set comprised of HPC data collected from various benign
processes and malicious spectre implementations. These
data points are classified as either benign or malicious.
Instead of accumulating readings from the entire CPU,
we employ performance counters attached to each process.
This separation enables the model to classify each process
as benign or malicious. Based on the neural network’s
predictions, a detection system can then take action per
process. For example, the system can notify the user when an
application behaves suspiciously or kill a malicious process.

164608

Without Spectre monitor

TABLE 5. Process dataset.

Type Program Number of sample
Bound Check Bypass 1980

Indirect Branch Injection 1723

Malicious | spectre cross-process 2150
Prime+probe attack [35] 1684
spectre-image [36] 2614

Idle tasks 2992

Auto (basic math, bitcount, gsort...) 1545

Benign Network (dijkstra...) 1600
Security (blowfish, aes, sha...) 2048

Coremark 1904

To obtain performance counter data, we create an
HPCs monitor. We take the measurement every 100ms to
avoid degrading the performance too much. We implement
and compile our own RISC-V application dataset, which
includes five spectre attack scenarios, benchmark processes
Mibench [33] and Coremark [34]. The total number of
samples collected is around 20.000 records as specified in
Table 5.

B. PERFORMANCE OVERHEAD

We perform experiments with a sampling rate of 100ms
to extract performance counter values. Increasing sampling
rate increase the detection speed. However, it will increase
the detection overhead. Our detection mechanism offers
collecting samples at a suitable frequency for being able
to detect cache side-channel attacks relatively early with
minimal performance overhead.

To validate the performance, we benchmark the victim
program in two scenarios: with and without the detection
system running. We run the scenario 300 times and compare
the average execution time of two different scenarios.
As illustrated in Figure 9, there would be only a little
difference in the execution time of the target application in
the two scenarios. The average overhead for performance is
only 2.25 percent.

VOLUME 9, 2021

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

IEEE Access

True label

- 0.4

0.2

Predicted label

Fig. 10. Confusion matrix (normalize over the true (rows)).

TABLE 6. False prediction results.

Type Program

Bound Check Bypass

Indirect Branch Injection
spectre cross-process
Prime-+probe attack
spectre-image

Idle tasks

Auto (basic math, bitcount, gsort...)
Network (dijkstra...)

Security (blowfish, aes, sha...)
Coremark

False prediction (%)

=

Malicious

Benign

=
ola oo o| o of | o ©

C. DETECTION RESULTS

We collected data to measure the performance of our
detection system neural network after training it with the
data set described in Section III.C. We split up 20% of our
data set that was not used for training to validate our trained
network with data that has not been used. Figure 10 shows
the results of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) (FN). While the
accuracy is very high, there are still a few false positives
and false negatives. We have detailed the results to determine
which samples were incorrectly predicted as in Table 6. The
false positives happen because their sample is from both
a cross-process attack set and a stand-alone sample from
the victim process. As for the false negatives, which are
mispredicted benign processes as an attack, are samples from
the cryptography algorithm calculation process, as our attacks
normally target cryptography operations.

Due to dataset limitations, we also validate the proposed
neutral network using k-fold cross-validation to ensure
accuracy. The k-fold cross-validation approach is a widely
used technique for assessing the performance of a machine
learning algorithm on a limited dataset. We simulate our case

VOLUME 9, 2021

TABLE 7. Detection results comparison between different model.

Model Accuracy (%) | FP(%) | FN(%)
MLP (this work) 99.61 0.27 0.12
LogisticRegression | 99.04 0.74 0.22
SVC 94.19 5.7 0.11
Linear SVC 94.83 5.1 0.07

using leave-one-out cross-validation (LOOCV), a computa-
tionally expensive cross-validation version with k=N and N
equaling the total number of examples in the training dataset.
For each sample in the training set, an example is provided
to be used as the test evaluation dataset on its own. The
mean classification accuracy for various k values may then
be compared to the mean classification result for the same
dataset obtained using LOOCV. Figure 11 shows a line plot
comparing the mean accuracy scores to the LOOCV result,
with the min and max of each result distribution indicated
by error bars. The results indicate that for this model on
this dataset, most k values scenarios under-perform when
compared to the ideal case. The average accuracy of cross-
validation method is nearly 99.6%.

Table 7 shows experimental results of cache side-channel
detection using four machine learning models. We have also
implemented and trained our dataset on Logistic Regression
and Support Vector Machine models. The work is done
using python and scikit-learn library. The results show that
our proposed multi-layer perceptron recorded the highest
accuracy. Logistic Regression could also use as a suitable for
analyzing the performance counter value.

We also compare our results with prior researches in
Table 8. With our proposed tool and neural network model,
we could still keep the high accuracy on detecting cache

164609

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

1.000 A

0.998 -

0.994

0.992 A

0.990 4

Accuracy results

0.988 A

0.986 A

0.984 4

0.996 H” T..- 200090006005, 0006%00

15 20 25 30
k value

Fig. 11. Mean accuracy for cross-validation k-values. (Blue: Each case error bar, Red: Ideal case

result).

TABLE 8. Results comparison with prior researches.

Research Target Tools Accuracy
[18] Intel Perf & PAPI Fl1-score: 0.98
[19] Intel PAPI 95-99%

[20] Intel Intel CMT Fl-score: 0.67
[21] Intel Intel PCM 95%

[22] Intel Perf 90-99%

[23] ARM & x86 ARM PMU & Perf 99%

This work ~ RISC-V Proposed tool 94-99.61%

F1-score: 0.9961

side-channel attacks on RISC-V processors as other studies
on Intel or ARM processor use pre-existing tools.

VI. RESEARCH LIMITATIONS AND FURTHER DISCUSSION
While our detection service has an excellent detection rate,
it does not address harmful processes once they are found.
They would only notify the user when an attack occurred.
However, we may increase the viability of detection services
by coupling them with an application that manages these
harmful processes. To solve these challenges of wrongly
detection cases, our detection service forwards the id of
processes that are expected to be harmful to an application
that determines what to do with them. Instead of terminating
the process, one possibility is to pause it and pass the
decision to the user. This would ensure that no processes are
terminated as a result of incorrect prediction in the event of FP
or FN. While it is the role of a mitigation strategy to manage
the findings of a detection service, combining mitigation and
detection techniques can result in improved detection results
and a reduction in FP and FN.

Additionally, due to the limitations of RISC-V hardware
performance tools, we struggle on conducting a thorough

164610

analysis of the effect of cache side-channel attacks on other
performance counters. We believe that by combining the
characteristics of each counter provided by the RISC-V
architecture, the system could identify more types of cache
attacks in addition to the spectre attacks stated above.

VIi. CONCLUSION

This paper proposes monitoring micro-architectural feature
deviations to detect spectre attacks, which exploit vulner-
abilities in modern processors hardware design such as
speculative execution and cache side channels. On the
RISC-V architecture, we implement a run-time detection
system for spectre attacks. The characteristics are derived
from various RISC-V applications’ hardware performance
counters values, both malicious and benign. The experimental
results of a trained multi-layer perceptron classifier show
a good detection accuracy of more than 99%. Also, the
performance overhead is only 2%, which is the same with
other hardware mitigation methods. Because comprehensive
spectre mitigation is difficult, it is now more practical to
detect such attacks directly and in real-time. We believe
that our presented detection system will detect other spectre
variants and any other attack that exploits branch predictors,
out-of-order execution, and cache-based side-channel attacks
on the RISC-V architecture.

REFERENCES

[11 O. Acigmez and C. C. K. Ko¢, Microarchitectural Attacks
Countermeasures. Boston, MA, USA: Springer, 2009, pp.475-504,
doi: 10.1007/978-0-387-71817-0_18.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ““Spectre
attacks: Exploiting speculative execution,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1-19.

VOLUME 9, 2021

http://dx.doi.org/10.1007/978-0-387-71817-0_18

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, [23] R. Oshana, M. A. Thornton, E. C. Larson, and X. Roumegue, ‘“Real-time
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, edge processing detection of malicious attacks using machine learning and
“Meltdown: Reading kernel memory from user space,” in Proc. 27th processor core events,” in Proc. IEEE Int. Syst. Conf. (SysCon), Apr. 2021,
USENIX Conf. Secur. Symp., 2018, pp. 973-990. pp. 1-8.

[4] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, [24] K. Asanovic, D. A. Patterson, and C. Celio, “The Berkeley out-of-order
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic machine (BOOM): An industry-competitive, synthesizable, parameterized
evaluation of transient execution attacks and defenses,” in RISC-V processor,” Dept. EECS, Univ. California, Berkeley, CA, USA,
Proc. 28th USENIX Secur. Symp. (USENIX Security), Santa Tech. Rep. UCB/EECS-2015-167, 2015.

Clara, CA, USA, Aug. 2019, pp.249-266. [Online]. Available: [25] Y. Yarom and K. E. Falkner, “FLUSH+RELOAD: A high resolution, low
https://www.usenix.org/conference/usenixsecurity 1 9/presentation/canella noise, L3 cache side-channel attack,” in Proc. USENIX Secur. Symp.,2014,

[5] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache pp. 719-732.
side-channel information leakage from the secure world on arm devices,” [26] D. Wang, Z. Qian, N. Abu-Ghazaleh, and S. V. Krishnamurthy, “PAPP:
TACR Cryptol. ePrint Arch., Tech. Rep. 2016/980, 2016. Prefetcher-aware prime and probe side-channel attack,” in Proc. 56th

[6] A.-T. Le, B.-A. Dao, K. Suzaki, and C.-K. Pham, “Experiment on Annu. Design Autom. Conf., Jun. 2019, pp. 1-6.
replication of side channel attack via cache of RISC-V Berkeley out-of- [27] C. Duran, T.-T. Hoang, A. Tsukamoto, K. Suzaki, and C.-K. Pham,
order machine (BOOM) implemented on FPGA,” in Proc. 4th Workshop “Tee boot procedure with crypto-accelerators in RISC-V processors,” in
Comput. Architecture Res. RISC-V, 2020, pp. 1-4. Proc. 4th Workshop Comput. Archit. Res. (RISC-V), Virtual Workshop,

[7] A.Gonzalez, “Replicating and mitigating spectre attacks on a open source May 2020.

RISC-V microarchitecture,” in Proc. 3rd Workshop Comput. Archit. Res. (28] T.-T. Hoang, C. Duran, A. Tsukamoto, K. Suzaki, and C.-K. Pham,
(RISC-V), Phoenix, AZ, USA, Jun. 2019. “Cryptographic accelerators for trusted execution environment in RISC-

[8] C.Suand Q.Zeng, “Survey of CPU cache-based side-channel attacks: Sys- V processors,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020,
tematic analysis, security models, and countermeasures,” Secur. Commun. pp. 14.

Netw., vol. 2021, pp. 1-15, Jun. 2021, doi: 10.1155/2021/5559552. [29] Intel Analysis of Speculative Execution Side Channels, Intel,

[9] K.N.Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, Mountain View, CA, USA, 2018.
and N. Abu-Ghazaleh, “SafeSpec: Banishing the spectre of a meltdown [30] C. Carruth. (2019). Speculative Load Hardening. [Online]. Available:
with leakage-free speculation,” in Proc. 56th Annu. Design Automat. https://llvm.org/docs/SpeculativeL.oadHardening. html
Conf., Jun. 2019, pp. 1-6. [31] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and

[10] Y. Mao, V. Migliore, and V. Nicomette, “REHAD: Using low-frequency K. Asanovic. The RISC-V Instruction Set Manual Volume
reconfigurable hardware for cache side-channel attacks detection,” in II: Privileged Architecture Version 1.9. EECS Department,
Proc. IEEE Eur. Symp. Secur. Privacy Workshops (EuroS&PW), Sep. 2020, University of California, Berkeley. Jul. 2016. [Online]. Available:
pp. 704-709. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-

[11] J.Zhao, “Sonicboom: The 3rd generation Berkeley out-of-order machine,” 129.html
in Proc. 4th Workshop Comput. Archit. Res. (RISC-V), Virtual Workshop, [32] L Ahmad, M. Basheri, M. J. Igbal, and A. Raheem, ‘‘Performance com-
May 2020. parison of support vector machine, random forest, and extreme learning

[12] J.Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient data-centric machine for intrusion detection,” IEEE Access, vol. 6, pp. 33789-33795,
defense mechanism against spectre attacks,” in Proc. 56th Annu. Design 2018.

Automat. Conf., ser. DAC *19. New York, NY, USA, 2019, pp. 1-6, doi: [33] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
10.1145/3316781.3317914. “Mibench: A free, commercially representative embedded benchmark

[13] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload Characterization
N. Abu-Ghazaleh, “SpecCFI: Mitigating spectre attacks using CFI (WWC-4), Dec. 2001, pp. 3-14.
informed speculation,” in Proc. IEEE Symp. Secur. Privacy (SP), [34] S. Gal-On and M. Levy, “Exploring coremark a benchmark
May 2020, pp. 39-53. maximizing simplicity and efficacy,” Embedded Microprocessor

[14] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya. Perfor- Benchmark Consortium, USA, Tech. Rep., 2012. [Online]. Available:
mance Counters to Rescue: A Machine Learning Based Safeguard Against https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
Micro-Architectural Side-Channel-Attacks. Cryptology ePrint Archive, (35] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and Spec-
Report 2017/564, 2017. [Online]. Available: https://ia.ct/2017/564 trePrime: Automatically-synthesized attacks exploiting invalidation-based

[15] T.Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-channel coherence protocols,” 2018, arXiv:1802.03802.
attack detection system in clouds,” in Proc. 19th Int. Symp. RAID. Paris, (36] S. Yadav. (2020). SPECTRE ATTACK Variant I on Images. [Online].
France: Springer, 2016. Available: https://github.com/yadav-sachin/spectre-attack-image

[16] M. Yu, B. Halak, and M. Zwolinski, “Using hardware performance
counters to detect control hijacking attacks,” in Proc. IEEE 4th Int. ANH-TIEN LE (Graduate Student Member, IEEE)
Verification Secur. Workshop (IVSW), Jul. 2019, pp. 1-6. received the M.S. degree in information sys-

[17] X. Wang and R. Karri, “Reusing hardware performance counters to tems from the Hanoi University of Science and
detect and identify kernel control-flow modifying rootkits,” IEEE Trans. Technology, Vietnam, in 2019. He is currently
Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 3, pp. 485-498, pursuing the Ph.D. degree in information and net-
Aug. 2016. work engineering with The University of Electro-

[18] M. Chiz}ppetta, E. Savas, and‘C. Yilmaz, “Real time detection of cache- Communications (UEC), Tokyo, Japan. He is also
based side-channel attacks using hardware performance counters,” Appl. a Lecturer with the Academy of Cryptography
Soft Comput., vol. 49, pp. 1162-1174, Dec. 2016. Techniques (ACT), Hanoi, Vietnam.

[19] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and
G. Gogniat, “NIGHTs-WATCH: A cache-based side-channel intrusion
detector using'ha.rdware performance countf)rs,” in Proc. 7th Int. Workshop TRONG-THUC HOANG (Graduate Student
Hardw. Archttectural.Support Secur. Privacy, New York, NY, USA, Member, IEEE) received the B.Sc. degree in
Jun. 2018, pp. 1-8, doi: 10.1145/3214292.3214293. electronics and telecommunications and the M.S

[20] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud, . . K R .
“Cache-based side-channel attacks detection through Intel cach i- degree in microelectronics from the University

gh Intel cache moni

torine technol nd hardwar forman nters.” in Proc. 3rd Int of Science, Vietnam National University, Ho Chi
g technology and hardware performance counters, oc.

Conf. Fog Mobile Edge Comput. (FMEC), 2018, pp. 7-12. Minh City, Vietnam, in 2012 and 2017, respec-

[21] J. Cho, T. Kim, T. Kim, and Y. Shin, “Real-time detection on cache side Flv.elyA He 18 currently pursuing the Ph.D. degree
channel attacks using performance counter monitor,” in Proc. Int. Conf. in information and network engineering with The
Inf. Commun. Technol. Converg. (ICTC), 2019, pp. 175-177. ' University of Electro-Communications (UEC),

[22] C. Li and J.-L. Gaudiot, “Detecting spectre attacks using hardware ' Tokyo, Japan. He is also a Research Assistant

performance counters,” IEEE Trans. Comput., early access, May 21, 2021,
doi: 10.1109/TC.2021.3082471.

VOLUME 9, 2021

with the National Institute of Advanced Industrial Science and Technology
(AIST), Tokyo.

164611

http://dx.doi.org/10.1155/2021/5559552
http://dx.doi.org/10.1145/3316781.3317914
http://dx.doi.org/10.1145/3214292.3214293
http://dx.doi.org/10.1109/TC.2021.3082471

IEEE Access

A-T. Le et al.: Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order Processor

164612

BA-ANH DAO (Graduate Student Member,
IEEE) received the B.Sc. degree in electronics
and telecommunications and the M.S. degree in
microelectronics from the Hanoi University of
Science and Technology, Hanoi, Vietnam, in 2014
and 2019, respectively. He is currently pursuing
the Ph.D. degree in information and network
engineering with The University of Electro-
Communications (UEC), Tokyo, Japan. He is
also a Research Assistant with the Academy of
Cryptography Techniques (ACT), Hanoi.

AKIRA TSUKAMOTO received the M.S. degree
in computer science from Columbia University,
New York, NY, USA. He currently works with the
National Institute of Advanced Industrial Science
and Technology (AIST). He has worked on
products based on Cell/B.E. and ARM. His main
research interests include software engineering on
a network, operating systems and system security,
and he is enthusiastic regarding any kind of
technical development.

KUNIYASU SUZAKI (Member, IEEE) received
the B.E. and M.E. degrees in computer science
from the Tokyo University of Agriculture and
Technology and the Ph.D. degree in computer
science from The University of Tokyo, Tokyo,
Japan. He is currently a Senior Researcher with the
National Institute of Advanced Industrial Science
and Technology (AIST) and a Researcher with the
Technology Research Association of Secure IoT
Edge Applications Based on the RISC-V Open

Archltecture (TRASIO) His research interests include security on CPUs,
operating systems, and hypervisors.

CONG-KHA PHAM (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electronics
engineering from Sophia University, Tokyo, Japan.
He is currently a Professor with the Department
of Computer and Network Engineering, The Uni-
versity of Electro-Communications (UEC), Tokyo.
His research interests include the design of analog
and digital systems using integrated circuits.

VOLUME 9, 2021

