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ABSTRACT Varying the rate of application of agronomic inputs generates many positive economic and
environmental impacts. Increasingly, technologies that enable variable rate application are becoming a
distinctive feature of precision agriculture. Nonetheless, a prerequisite, and crucial challenge, remains the
optimal and operational designation of distinct application zones for differing agronomic operations. Core
to this challenge is the conflation and fusion of diverse data sources ranging from satellite imagery to real-
time in-situ data from farms. At present, zones for variable rate application are often defined manually by
agronomists and farmers. This paper proposes a novel methodology for the automatic definition of zones
for variable rate application. This approach comprises multi-dimensional spatio-temporal data integration
methods, clustering-based data classification and a zone creation and representation procedure. In this
way, the harmonization of heterogeneous data sources, augmented with different clustering algorithms,
enable the delineation of management zones and subsequent construction of maps for potential variable
rate applications. Experimental results confirm the effectiveness and efficiency of the proposed approach.

INDEX TERMS Precision agriculture, variable rate application, clustering, data fusion.

I. INTRODUCTION

Precision agriculture is being continuously invigorated
through the adoption of advanced ICT technologies,
including the Internet of Things (IoT) [1], Cloud comput-
ing [2], 5G [3], data analytics, amongst others. Increas-
ingly, intelligent agricultural machinery can interact with
Cloud services in near real-time [4], interpreting contextual
information acquired from real-time mobile sensors and the
Global Navigation Satellite System (GNSS). Such interac-
tions enable on-demand intelligent services such as Variable
Rate Applications (VRA). Examples of such applications
include fertiliser, crop protection and growth regulator appli-
cation. Applying such products in a fine-grained manner
to zones within fields on an as-needed basis contributes
to yield improvement and cost-effectiveness while enabling
a more environmentally sustainable model of agriculture.
Fundamental to VRA is the need for a plan. Such a plan
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will align with farmer objectives and enable the automated
application of inputs according to the characteristics of the
point of application. For example, variable-rate seeding can
be used to help optimise crop canopy and yield potential
across the field. However, calculating how the seeding is
applied demands detailed consideration of a wide range of
factors by farmers or agronomists.

Effective VAR planning demands the resolution of two
issues in the first instance. Firstly, different spatio-temporal
traits from diverse data sources must be harmonised. On the
spatial scale, examples include point data, for example, his-
torical yields, or raster data, for example satellite imagery.
On the temporal scale, the data collection intervals could
range from hourly, for example, weather data, to daily,
monthly, or even yearly, for example, yield data in the latter
instance. A uniform spatio-temporal dimension for all data
is required. Secondly, application zones must be internally
coherent yet externally different. Thus the objectives for this
work are:
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1) How to integrate multi-dimensional spatio-temporal
data for consistent feature extraction?

2) How to classify the data for coherent zone creation
according to the different data features available?

3) How to define zones in an interoperable standard such
that they can be interpreted consistently for use by
diverse agricultural machinery?

The contribution of this paper is as follows.

1) A set of grid-based methods is defined by which
to integrate different kinds of data. These methods
include dense point data integration, sparse point data
integration, and raster data integration in the spatial
dimension. In the temporal dimension, the method is a
weighted mean value integration.

2) k-means clustering methods and Expectation Maxi-
mization (EM) clustering methods are harnessed to
group data; both clustering methods are compared
through experimentation.

3) An n-looking forward graph traverse method is defined
to generate the application zone. Zones are then cast as
standard geospatial polygon formats - GeoJSON and
Shapefile, thereby ensuring interoperability.

The remainder of this paper is organised as follows:
Section IT introduces some preliminary terms and definitions.
Section III proposes the grid-based integration methods for
different kinds of data. Section IV details the clustering
methods for data grouping. Section V presents the graph
traverse method for zone creation. Section VI presents a set
of experiments to test the effectiveness and efficiency of our
approach. Finally, Section VII considers some future research
directions and concludes the paper.

FIGURE 1. Dense point data.

IIl. TERMINOLOGY

This section briefly considers three different kinds of data
synonymous with smart agriculture practice. A simple ini-
tial categorisation for data is that of point data and raster
data. Point data may be regarded as a tuple of a geographic
coordinate (GPS) and corresponding data values. Depend-
ing on the density of the points, point data can be further

VOLUME 9, 2021

categorised into dense point data or sparse point data. Raster
data is typified by data collected by wide-range scanning
devices such as satellite, radar or drones. In contrast to point
data, raster data consists of data values of a geographic area.
However, the quality and usefulness of such data depend upon
its resolution.

FIGURE 2. Sparse point data.

A. DENSE POINT DATA

Data with a distance interval of acquisition of less than N is
defined as dense point data. There is a minimum of two data
points located in any N x N grids. A typical example of dense
point data is yield map data. Yield data is recorded by a yield
monitor on a harvester when crops are being harvested. Each
point reflects the yield output of a particular area of the field.
Many benefits accrue from the correct use of yield maps.
Optimizing sustainable production has significant economic,
environmental and social impacts. Globally, food security is
increased. At the farm level, problems resulting from geo-
morphological conditions, for example, poor soil nutrients
and uneven water availability, may be quickly identified and
remedial strategies identified. Thus, a yield map may be
used as a key data feature for planning variable-rate seeding
and variable-rate fertiliser application. Figure 1 illustrates a
sample yield map. As can be seen, the yield map consists
of a set of densely distributed data points. The route of the
harvester is also visible.

B. SPARSE POINT DATA

In contrast to the dense point data, sparse point data refers
to data where the distance interval of acquisition is larger
than N. In this case, if N x N grids covered a field, some of
the grids will have zero data points covered. Soil’s electrical
conductivity (EC) is an example of such data. EC data
measures the electrical conductivity of the soil which is a key
indicator of soil health that can reflect the soil moisture, the
soil texture, and the content and utilisation of soil nutrients.
Thus, it can serve as a feature for guiding the variable-rate
fertiliser application and variable-rate seeding, among others.
Figure 2 illustrates a map of the EC data of a field. As can be
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seen, an EC data map consists of a set of sparsely distributed
data points.

C. RASTER DATA

Raster maps convey values for geographic areas. For exam-
ple, Normalized Difference Vegetation Index (NDVI) and
Green Chlorophyll Vegetation Index (GCVI) maps are two
commonly used images in smart agriculture. The NDVI is
calculated by NDVI = (NIR — Red)/(NIR + Red), while
NIR represents the band of near-infrared light and the Red
represents the band of red light. The GCVI is calculated by
GCVI = (NIR/Green) — 1, while Green represents the band
of green light. NDVI can be used in monitoring the crop
growth, while GCVI can be used to show the chlorophyll
intensity. Figure 3 and Figure 4 illustrate the NDVI and GCVI
of a field on 2018/05/09.

FIGURE 3. Raster data - NDVI (2018/05/09).

FIGURE 4. Raster data - GCVI (2018/05/09).

1ll. GRID-BASED SPATIO-TEMPORAL DATA
INTEGRATION

In considering the different spatial and temporal granularity
of archetypical agriculture data, a uniform grid can be adapted
that ensures the same spatio-temporal granularity across data
categories is now defined.
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N x N x T grids are harnessed to integrate the different
data categories; here, N represents the granularity of spa-
tial dimension, and T represents the granularity of the time
dimension. The grids are then applied to a target area, for
example, a field and the approximate data value for each grid
is calculated. For each category of data, a different calculation
is necessitated.

A. DENSE POINT DATA INTEGRATION

In a dense point data map, there are at least one or more data
points located in one grid. Here, the average value of the data
points located in the grid is used to approximate the value of
the grid. Equation (1) calculates the value of the grid:

1n
V=- P; 1
n; (1)

where P; represents the value of i point located within the
grid.

B. SPARSE POINT DATA INTEGRATION

A grid may contain one or more data points in a sparse point
data map, or perhaps no data point. If a grid has data point(s),
equation (1) is harnessed to calculate the value of the grid.
If a grid has no data point, the weighted average value of the
n closest data points to the grid centre is used to approximate
the value of the grid. This calculation is illustrated in (2):

Y WP
n—1

4 @)
where P; represents the value of i closest point, and W; rep-
resents the weight of P;.

Here the distance is used as the factor of the weight. Its
calculation is as follows (3):

Dis(P;, C)
YL, Dis(P;. C)

where Dis(A, B) represents points A and B’s physical
distance.

The basis for this calculation is that the value of this
category of data, as exemplified by EC and soil moisture,
is spatially continuous. However, this calculation may not be
applied to data for which there is no explicit spatial continuity.
In such cases, alternate weighting criteria would be used.

W =1 3

C. RASTER DATA INTEGRATION

A raster may be regarded as a small grid. Thus, a grid may
cover several rasters. The average value of the raster repre-
sents the value of the grid. The calculation is as (4):

_ er-lzl Dl' * S,’
2 i1 Si

where D; represents the value of raster i and S; represents the
area of the i" raster covered by the grid.

v “
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D. TEMPORAL INTEGRATION
If the interval between data collection iterations is smaller
than 7', there must be more than one data value in the time
grid. For example, the satellite image collection period is usu-
ally of the order of 2 or 3 days. If the time grid granularity is
set at 10 or 15 days, there would be typically 3-6 satellite data
instances of time grid data. The average value of such data is
calculated and averaged as the grid data. This integration is
formalised by (5).

Assume that there are n available data within the time range
[x,x 4+ T') and are represented as yy, .. ., ¥, the value of the
grid can be calculated by:

1 n
V== v ©)
i=1

Strategically, data integration is the pre-processing of all
the data needed to guide the variable rate application. The
net result is a four-dimensional data matrix M. The first
dimension is the data type, such as NDVI, EC, YieldMap,
etc. The second dimension is time. The third dimension is
longitude, and the fourth dimension is latitude.

IV. CLUSTERING-BASED DATA CLASSIFICATION

The application rate is informed by the value of different
data metrics. Thus, the metrics data must be classified into
different degrees before identifying the application rate and
the application zone. To complete this classification, the
following steps must be completed.

A. ATTRIBUTE SET PREPROCESSING

1) DIMENSION REDUCTION

Since all the data is integrated into a 4D matrix M, the
particular data or data combination needed for agronomic
operational decision-making must be a slice of M. This slice
is termed the attribute set A. For calculation convenience,
A is reduced into a two-dimensional matrix. To achieve this
reduction, the time dimension is removed and the two spatial
dimensions are serialised.

a: TIME DIMENSION REMOVAL

All the operations are related to a specified time range of
the data. As the time range is the temporal grid size of M, the
corresponding column data to M[:, j, :, :] is fetched. Now, the
attribute set becomes three-dimension.

b: SPATIAL DIMENSIONS SERIALIZATION

The spatial dimensions refer to latitude and longitude. n rep-
resents the column counts of latitude, and » and ¢ describe the
indices of the longitude and latitude dimension of M. Then
p =r *n+ cisused to serialise the spatial grid index. Thus
M'[:,:,pl = M[:,:, r, c]. The r and c can also be calculated
reversely by (6).

r=p/n
¢ = p%n (6)
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If the selected data types are in the set S, then the attribute
is represented by (7).

A= JM'li.j.p] ™

ieS

2) NORMALIZATION

The attribute set A can be treated as the subset of M. For each

data type, the statistical index of M; is used for normalisation

instead of A;. Z-score normalization is used to process each

kind of data. The normalized value is then calculated by (8).
= (®)

o

where x is the value of a grid, and u and o represent the mean
and standard deviation of M;. The normalized value range
is [—1,1].

B. CLUSTERING

Clustering is the key step in partitioning a field into different
zones based on the attribute set A. Each row of A has n
attribute values (xp, x2, ..., x,). When clustering, different
attributes have different weights (wy, wa, ..., w,). Three dif-
ferent clustering methods are now considered, k-means and
two Expectation—-Maximization (EM) algorithms based on
different models.

1) k-MEANS CLUSTERING

Classical k-means partitions A into k clusters in which each
item belongs to the cluster with the nearest mean; thus,
within-cluster variances are minimised. In this case, all the
attributes have the same weights. Here, different weights are
set for different attributes. Then, it can be represented by (9).

k n
argSmin Z Z Z wj * (xj — ,u,-j)2 )

i=1 xe$; j=1

The calculation is as follows: First, randomly select k items
as the centroids of k groups. Then, divide all items into the
k groups according to the weighted distance and select the
centroid for each group. Repeat this process until all groups
do not change.

2) EM CLUSTERING

Expectation-maximization (EM) algorithm alternates
between two steps, the expectation (E) step and the max-
imisation (M) step. For clustering, EM uses probabilistic
models and estimates a set of parameters iteratively to reach
convergence. The probabilistic model is defined as a set of &
probability distributions, and each distribution corresponds to
one cluster. An item is assigned to a particular cluster based
on its membership probability. EM clustering follows three
steps: 1. Guess the initial parameters. 2. Iteratively refine the
parameters with E and M steps until convergence is reached.
3. Assign each item to the cluster with which it has the highest
membership possibility.
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Here, two different probabilistic models are harnessed -
Gaussian Mixture Model (GMM) and Variational Bayesian
Gaussian Mixture Model (VBGMM). GMM assumes all the
data points are generated from a mixture of k Gaussian distri-
butions with unknown parameters. It uses the maximum like-
lihood estimation method for parameter estimation. VBGMM
maximises a lower bound on model evidence instead of data
likelihood.

Unlike k-means and GMM, VBGMM is able to find the
optimal value for k. It can infer an approximate posterior
distribution over the parameters of a Gaussian mixture dis-
tribution by implementing the Dirichlet distribution model.

V. ZONE CREATION AND REPRESENTATION

Clustering methods used in the classification phase are geog-
raphy independent. The clustering results may be mapped
into a two-dimensional geocoded map using Equation (6).
This geocoded map, composed of N x N grids, is the min-
imum bounding rectangular area that covers an entire field.
A 2D array G represents the rectangle with lengths equal to
the rows and columns of the grids. The elements of G have
different values. Two kinds of elements exist in G, within-the-
field and out-of-the-field. As a result of clustering, elements
within the field have already been classified into different
clusters; their values range from 1 to k. Those elements out
of the field are set to —1. The initialization can be formalized
as (10), where P, . represents the grid of row r and column c,
and C, represents the x™ cluster.

-1, pP.¢lU C
Gi,j _ r,c ¢ Ux—] X (10)
X, Py € Cy

A. n-FORWARD DEPTH-FIRST SEARCH

A depth-first search merges all the adjacent grids within the
same cluster into a polygon. However, there may be many iso-
lated points in the map, resulting in excessively fragmented
zones. To address this issue, we proposed an n-forward depth-
first search algorithm (rn-DFS). n-DFS searches eight neigh-
bours clockwise to find grids within the same cluster. All the
searched grids are set to 0. For the up, down, left, and right
directions, n-DFS performs a look forward n operation which
means it not only checks the proximate grids but searches n
more grids in these four directions. If the m” (m < n) grid has
the searching value, the grids before it are also marked within
the same cluster. However, the n-looking forward process will
stop when meeting a 0 or —1.

B. GRID MERGE AND STANDARDIZATION

In geospatial data, vectors composed of GPS coordinates
are essential to express geographical features by consider-
ing those features as geometrical shapes. Different types of
geometry describe various geographical features: point, line
and polygon. However, a grid is essentially a polygon with
four GPS coordinates. Fields were split into small grids for
data integration and grid values used as an elementary unit
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for clustering. However, there is much redundant information
when using grids to represent the clustering result.

To simplify information presentation, all grids are merged
within the same cluster into a polygon. Two benefits accrue
from this. First, adjacent grids have duplicated coordinates
which can be avoided in polygon representation. Second, the
polygon need only store the intersecting points, while grids
need to keep all vertices.

The standardised vector representations include inter alia
well-known text (WKT) and its binary equivalent well-known
binary (WKB), GeoJSON and Shapefile. To maintain consis-
tency of service delivery through RESTFul APIs, GeoJSON
is harnessed as the export format since it is JSON-based. The
structure is defined as Figure 5. The clustering result is repre-
sented as a FeatureCollection type, and each feature specifies
a cluster with both properties and multi-polygon geometry.
One can add further properties that can be recognised by
agricultural machinery to achieve the VRA.

"type":"FeatureCollection",
"features": |
{
"type":"Feature",
"properties":{
"average_yield":7.51
br

"geometry": {
"type":"MultiPolygon",
"coordinates": [

]

}
FIGURE 5. GeoJSON Structure.

VI. EXPERIMENTS

A. ENVIRONMENT SETUP

Real-world in-situ data (EC data and yield data) together
with satellite imagery were used to assess the feasibility
and reliability of the map generation method. EC data and
yield data are common to most arable farms; in this case,
it was sourced from a tillage farm in the South of England.
Open and freely available satellite imagery was acquired from
the Copernicus Sentinel mission. For this experiment, post-
processed satellite imagery was accessed through the Sentinel
Hub APIs [5].

The software stack consists of MongoDB v4.4.1 Commu-
nity, Python v3.9, Node.js v14.7, Docker v20.10.5 and related
libraries. MongoDB is used to address data storage, Python
3.9 is used as a vehicle for clustering and geographic data
processing, Node.js is accountable for service delivery with
RESTFul API, and Docker containers host all services. The
services are deployed on a server with 4 Intel Xeon Processor
(Skylake, IBRS) CPUs and 32GB memory.
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(a) 2013 Original

(e) 2015 Original

(c) 2014 Original

(k) 2018 Original

(d) 2014 Integrated

(i) 2017 Original (j) 2017 Integrated
FIGURE 6. Yield Map Data (Dense Data) Integration.
TABLE 1. Yield map clustering statistical information.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster S|
mean | 12.07597307 | 11.06742169 | 9.044257747 | 6.197204651 | 1.958473492
k-means var 0.127134425 | 0.149735022 | 0.460551989 | 1.103858465 | 1.240255526
count 908 808 306 166 191
mean | 11.83329336 | 10.61558353 | 8.58727914 | 5.481242613 | 1.903047132
GMM var 0.207315216 | 0.11704342 | 0.770160079 | 0.754811019 1.14954129
count 1367 388 331 107 186
mean | 11.66973615 | 9.81572856 | 7.491041579 | 2.287945989 0
VBGMM var 0.312524169 | 0.194410453 | 1.350342299 | 1.792100801 -
count 1626 261 272 220 0

Spatial granularity was set at 10 meters, meaning that the

B. DATA INTEGRATION

(1) 2018 Integrated

spatial grid size is 10 x 10. The temporal granularity is set to
bimonthly, meaning that there are two values for each month.
The first value covers from 1% to 15, while the second value
covers the remainder of the month.

Both point data and raster data must be integrated. However,
the raster data is inherently grid-based; hence it will not look
much different after integration. Point data integration is now
considered.
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FIGURE 7. Data Distribution of 2016 Yield Map.

(a) Original (b) Integrated

FIGURE 8. EC Data (Sparse Data) Integration.

(a) Integrated (b) k-means (n = 1)

(¢)GMM (n = 1) (d) VBGMM (n = 1)

FIGURE 9. NDVI clustering with different algorithms.

The Dense Point Data Integration (1) method is harnessed
to integrate six years of yield map data for the same field.
Figure 6 visualises both the original data and integrated data.
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The field was planted with winter wheat for three years,
then beans for one year (years 2014 and 2018) for crop
rotation purposes. Since the average yield of beans is less than
winter wheat, the legends of 2014 and 2018 are from O to 8§,
while others are from 0 to 16. It can be observed that the
integration method preserves the original data features and
distributions very well. There are a few white grids in some
edge areas where the value is 0. These grids have minimal
overlap within the field and no original data located within
them. However, more white grids occur in non-edge areas
in the year 2015. This might be a data collection issue, for
example, a faulty yield monitoring sensor but more data is
needed to infer the actual reason.

Data distribution for 2016 is evidently visible across the
figures. Figure 7 illustrates the result. The x-axis displays
the data value range, and the y-axis represents the percent-
age of a value range. From this figure, it can be seen that
the data distribution trend after integration is pretty much
as the original. The percentage of the greatest concentra-
tion range [10, 12] changes from 53.9% to 50.9% and the
second greatest concentration range [12, 14] changes from
19.6% to 24.7%. Although there is a slight shift in data
distribution, the overall trend is pretty much similar with the
largest change less than 5%.

In assessing sparse data integration, soil EC is utilised.
Figure 8 illustrates a comparison of original data and inte-
grated data. The selected data set is the shallow measurement
(30 centimetres) of EC. This data was produced in 2013,
and there are no subsequent measurements available for the
field under consideration. As can be seen from the colour
change, the weighted average value calculation (2) is reliable
in integrating sparse data.

C. CLUSTERING

This section assesses the effectiveness of the clustering and
n-DFS methods. The experiments are based on a yield map
data set from 2016 and a corresponding satellite NDVI image
of 2016/07/06. The number of clusters is set to 5, which
means k = 5. Firstly, the k-means, GMM and VBGMM are
applied to the NDVI image with n = 1. Secondly, the three
algorithms are applied separately to the yield data set, and
different n values of n of 0, 1, and 2 are used. Descriptive
statistics for each resultant cluster - mean value, variance, and
items count, were captured for each clustering algorithms.

1) NDVI CLUSTERING
Figure 9 illustrates the integrated NDVI image for before
harvest (2016/07/06) and the clustering results of the three
different algorithms. Figure 9(a) shows the integrated image
with the yield map of 2016. A high correlation between
satellite images and crop growth is clearly visible. Note that
the value range of this NDVI image is between 0.46 (red) and
0.75 (blue).

Figure 9(b) shows the k-means clustering result,
Figure 9(c) shows the GMM clustering result, and Figure 9(d)
shows the VBGMM clustering result. The experimental
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(a) k-means(n = 0)

(b) k-means(n = 1)

(c) k-means(n = 2)

(d) GMM(n = 0)

(e) GMM(n = 1)

() GMM(n = 2)

(g) VBGMM(n = 0)

(h) VBGMM(n = 1)

(i) VBGMM(n = 2)

FIGURE 10. Yield map clustering with k-means, GMM and VBGMM algorithms and n.

results show some differences between the three algorithms.
However, all three algorithms can recognise the visible dif-
ferences. For example, the red area is almost the same in all
three figures.

2) YIELD MAP CLUSTERING

Figure 10 displays the clustering results of yield map data
of 2016, and Table 1 shows the corresponding statistical
information. Comparison is possible between these clustering
results with Figure 6(g) and Figure 6(h) since they are all
based on the same data set. From Figure 10, it can be seen
that even though different clustering algorithms give differ-
ent results, significant differences are clearly distinguishable
from each other. In comparison with the other two algorithms,
the k-means provides more details. The cluster item count
data in Table 1 shows that the k-means tends to distinguish
maximum values from the majorities, while VBGMM is on
the opposite end of this continuum and the GMM is situated
between the approaches. From Table 1, it can be seen that
cluster 1 has the mean values of 12.08, 11.83 and 11.67

VOLUME 9, 2021

separately, and items’ counts are 908, 1367 and 1626, and
cluster 2 has the mean values of 11.07, 10.61 and 9.81 sepa-
rately, and items’ counts are 808, 388, 261.

Reflecting upon the figures, the k-means clusters are more
dispersed, and the VBGMM clusters are very concentrated.
Note that the VBGMM only returns four groups and one
empty group when the k is set to 5. From the perspective
of variance, GMM is relatively concentrated. Its minimum
variance is 0.21, and the maximum variance is 1.15. In com-
parison, k-means’ minimum variance is 0.13, and maximum
variance is 1.24, while VBGMM’s minimum variance is
0.31 and maximum variance is 1.79. However, we cannot
generally tell which one is better since it may be suitable for
different situations. The correlation of algorithms to suitable
situations will form the basis of future work.

One can also obverse the affection of n in zone generation
from Figure 10. The purpose of 7 is to reduce isolated points,
thereby improving adaptation for use in VRA. From the
figures, the isolated points reduce as n increases. However,
the search sequence of clusters can affect the result.
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(a) k:—means(r; =1)

FIGURE 11. Mixture data clustering with different algorithms.

Conclusions can be inferred from the Figures: 1) n =
2 obtained the best result when using k-means clustering.
If n is less than two, excessive fragmentation rendering the
resultant map unusable in agricultural machinery may result.
2) When n = 1, an acceptable result using GMM clustering
is obtained. 3) A value of n = 0 is good enough for VBGMM
clustering, but a larger value may cause a loss of edge details.

D. MIXTURE DATA CLUSTERING
As discussed in Section II, both yield map and satellite image
could guide variable-rate seeding and variable-rate fertilising.
Besides, NDVI can also inform the variable-rate application
of many products, such as pesticides and growth regulators.
However, other data such as topology and weather also affect
these operations. Thus more comprehensive data is needed
for each VRA activity.

Here, a combination of yield data and NDVI data form
a basis for clustering. Both the satellite imagery and the
yield map are considered correlated data. Satellite data can
be used to estimate yield. The closer the acquisition time
of the satellite image is to the actual harvest date, the more
accurate the prediction of yield. Under normal circumstances,
the weight matrix will differ according to the different growth
stages. However, in this case, the satellite image was cap-
tured on the 6th July 2016 when the crop was approach-
ing maturity. Thus, equal weights are set for both datasets.
In zone merging, the n is set to 1. The clustering results
are illustrated in Figure 11. From this figure, it can be seen
that the three clustering algorithms have very similar results,
indicating that a mixture of data may help in eliminating data
bias.

Comparing to Figure 10 and Figure 11, it is concluded that
a mixed-use of correlated data could improve the clustering
reliability and stability in VRA. This is easily understood
when it is considered that sensor data usually exhibit mea-
surement errors. Such errors can be reduced by multiple
measures according to statistical theory. Even in cases where
sensors can only measure once, a judicious mixed-use of dif-
ferent sensor data can serve as an effective proxy for multiple
measurements.
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(b) GMM(n = 1)

(c) VBGMM(’;I =1

VII. RELATED WORK

Precision agriculture is widely envisaged as a key applica-
tion scenario of the Internet of Things (IoT) going forward
[6], [7]. Moreover, increased integration with other advanced
ICT technologies such as artificial intelligence and Cloud-
enabled weather services will also become a popular
trend [8]-[11]. Progress has been made in smart farm and
VRA technologies, such as smart irrigation [12] and smart
fertilizer [13]. However, those works emphasise the impor-
tance of sensors but with single sources of data.

Grisso et al. [14] see VRA as an essential tool of preci-
sion farming, and they summarised the VRA methods and
systems in their work. Later work [15], [16] demonstrates
that VRA can result in environmental and economic ben-
efits. Zhang et al. [17] developed a web-based tool called
ZoneMAP to map zones according to satellite images or user
input data for VRA.

Yield mapping is an increasingly important tool for smart
agriculture, enabling consideration of both quality and quan-
tity of harvests [18]. However, capturing accurate yield data is
fraught with difficulty. Yield monitors mounted on harvesters
may be inaccurate due to calibration errors; for example,
cut-width, lag-time, and header settings may be incorrectly
specified [19]. Sensor drift is also a potential source of error.
A variety of approaches have been proposed to improve the
accuracy of yield maps. Combining in-situ sensor data from
the harvester with Earth Observation (EO) data has been pro-
posed [20]. Data may be cleaned using software, either man-
ually or through the use of automated filters [21]. Such filters
might incorporate approaches for identifying and removing
outlier data [22]. The approach outlined in this research is
holistic in that it can be harnessed to conflate diverse data
sources such that potential causes of yield variation within
a particular field might be better understood, and thereby
remedied.

Clustering is fundamental in many data-driven applica-
tion domains [23]. However, there are many different kinds
of clustering algorithms that can be divided into different
catalogues, partitioning-based, hierarchical-based, density-
based, grid-based and model-based [24]. All the algorithms
have advantages and disadvantages and may be suitable
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for different situations. Rodriguez ef al. [25] performed a
systematic comparison of 9 well-known clustering methods
with artificial normally distributed data. However, the data
used for VRA is complicated, and we cannot expect one
clustering method can do everything well, hence three dif-
ferent clustering algorithms were considered in this paper as
baselines.

This research introduces a novel data integration frame-
work that can integrate different data into a common gran-
ularity thus making it possible to opportunistically consume
different datasets when clustering. Benefits from utilising
standardized information exchange formats accrue enabling
the viewing of zone partitions on a suite of smart devices
such as smart phones or VR/AR devices [26]. Moreover, the
zone map can be seamlessly interpreted by VRA-enabled
machinery.

VIIl. CONCLUSION

VRA is a crucial dimension of precision agriculture as it
allows an on-demand application of agricultural inputs to a
specific management zone in a farm or field, resulting in
sustainable economic and environmental practices. Automat-
ically identifying application zones based on heterogeneous
data is the foundation of effective VRA implementation but
certain challenges must be first overcome. The first is to
harmonise multi-dimensional spatio-temporal data for con-
sistent feature extraction, and the second is to classify the
data for coherent zone creation according to the different
data features available. This research proposed novel grid-
based methods by which to integrate dense point data, sparse
point data, and raster data in spatial and temporal dimen-
sions to resolve the data harmonization problem. A suite of
real-world datasets are harnessed to validate the data inte-
gration methods. Statistical analyses indicate that the dif-
ference between original data and integrated data is less
than 5%. To address the second challenge, this research
proposed a clustering-based data classification method and
an n-looking forward graph traverse method for coherent
zone creation. Experimental results indicate different n set-
tings benefit different clustering algorithms, and a mixture
of correlation data could improve the clustering reliability
and stability. Finally, this research employed internationally
accepted, open, standardized information representations that
enable interoperability with compatible agriculture machin-
ery. Real-world, heterogeneous data was used throughout
thus confirming the efficacy and efficiency of the proposed
approach.

Zone creation is only the first step towards achieving
automatic decision making for VRA, however. The next
step is to identify effective strategies for identifying appro-
priate application implementation rates. Such rates will
obviously depend upon operations being planned — seed-
ing, fertilizer, and so forth. Machine learning techniques
offer significant potential. Other potential applications
for management zone identification will be further
investigated.
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