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ABSTRACT Forests of Slovak Eastern Carpathians provide essential services to society ensuring human
well-being. Primeval forests that remained there untouched have exceptional value. Unsustainable logging
and climate change intensify forest disturbances and may cause substantial forest loss. The engagement
of remote sensing allows timely monitoring and prediction of negative consequences. The leaf area index
is selected from the other forest’s condition indicators to assess the forests’ quantity and disturbance. The
conceptual approach for risk assessment of forest disturbance is proposed. This approach uses multiscale
multi-temporal Earth observation data, such as synthetic aperture radar imagery and high-level satellite
data products. The output response of the forest’s condition was restored by multivariate regression with
radar backscattering coefficients, relative difference polarization index, and local incidence angle. The
low-resolution leaf area index pre-developed Copernicus data products make it possible to characterize the
forest’s condition without ground truth measurements. According to the elaborated methodology, a time
series of the leaf area index was mapped, and risks analysis was performed according to hazard functions.
A resulting risk’s gradations map is a good tool for future research and decision-making support in nature
management. The high spatial resolution of the output maps allows getting a more detailed assessment of
forest disturbance behavior.

INDEX TERMS Earth observation, forest disturbance, leaf area index, optical/radar imaging, relative
difference polarization index, risk assessment, Slovak Eastern Carpathians, time series analysis.

I. INTRODUCTION
Forests are an essential element of the biosphere that main-
tains its natural cycles and resilience. Providing both tangible
and intangible services to society, ranging from the produc-
tion of raw materials, climate and water flows regulation to
the protection of soils and biodiversity conservation, they
ensure human well-being [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefania Bonafoni .

In this respect, beech forests, typical in the Carpathians,
represent one of the most significant forest types of the
northern hemisphere Temperate Broadleaf Forest Biome [2].
They are also referred to as primary, virgin or ancient forests
that have developed for a long timewithout significant human
intervention [3]. Primeval forests are characterized by com-
plex vertical and horizontal structures, the features that are
usually missing or rare in managed or plantation forests [4].
That makes primeval forests highly valuable for support-
ing significant biodiversity [5], storing and sequestering
large amounts of carbon [6], and buffering microclimate [3].
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Since 2007, 10 protected areas with the Primeval Beech
Forests of Carpathians (Slovakia, Ukraine) have been on
UNESCO’s World Heritage List [7].

In Slovakia, as in many human-dominated regions, most
forests are currently managed, often with a tendency to lose
due to high demand for timber [7], [8]. Unsustainable logging
is considered the main threat for both managed and primeval
forests in the country [7], [9]. Forest disturbances, as well,
are sensitive to climate. However, the understanding of dis-
turbance dynamics in response to climatic changes remains
incomplete [10].

Forest disturbance is defined as a relatively discrete event
causing a change in the environment’s physical structure,
composition, and functional processes [11]. In forests, dis-
turbance can result from natural processes (wildfires, severe
windstorms, flooding, insect outbreaks, disease affections,
landslides, and avalanches) or human activity (land conver-
sion, logging, and mining). Also, forest disturbance has a
wide temporal range, from abrupt events to a chronic and
broad spatial extent, from large to small [12]. Usually, forest
disturbance is associated with a loss of aboveground biomass
and structure disruption [13].

Monitoring and control of forest structure are essential
tools for understanding disturbance processes as the drivers
of forest degradation [14], and thus are important for the
restoration of forests, especially reserved ones [15]. There
are different technologies based on Earth observation (EO)
data from passive or active sensors to monitor a forest canopy
structure [16], [17]. They are widely used in forest distur-
bance research [12], [18] and becoming more involved in
exploring the disturbance of primeval forests [4], [19]. Sig-
nificant advances in tracking changes in forest structure have
been associatedwith the free archive of Landsat imagery [20].
Distortions in canopy structure can be detected between pairs
of images (bi-temporal) as well as between time profiles
of imagery-derived indicators (temporal trajectories) [21].
Unlike the bi-temporal comparison indicating only whether
the change has occurred, time series algorithms utilize the
mass-processing of Landsat satellite imagery, capable of
detecting trends in forest disturbance and recovery [22], [23].
In these studies, forest disturbance mapping is based on opti-
cal remotely sensed imagery and employs different vegetation
indices to reveal the changes in canopy structure [14]. One of
these indices is Leaf Area Index (LAI) which we propose to
use in this study for the development of risk’s maps of forests.

LAI is considered to be superior to vegetation indices
since it is a three-dimensional parameter of the vegetation
canopy [24]. LAI is often used as a basic descriptor of local
vegetation structure for comparisons among systems [25].
LAI is one of the essential variables known to be critical
for observing and monitoring a given facet of the Earth
system (https://earthdata.nasa.gov/learn/backgrounders/
essential-variables). Nevertheless, LAI remains one of the
most difficult parameters to quantify properly due to its large
spatial and temporal variability.

Over the past two decades, several global LAI based prod-
ucts have been generated. LAI estimation algorithms provide
high (4-16 days) temporal and moderate (250 m - 7 km) spa-
tial resolution products from current satellite missions [26].
Among the main LAI products with spatial resolution up to
500m can be mentioned: 1) Moderate Resolution Imaging
Spectroradiometer (MODIS) Level 4, LAI 500 m product,
2) LAI 300mVersion 1 product by PROBA-V satellite system
provided by the Copernicus Global Land Service, and 3) the
LAI Collection 300mVersion 1.1 product, based on Sentinel-
3/OLCI data. These products have good precision and smooth
temporal profiles [27] but do not always provide full coverage
and good seasonal repeatability due to cloudiness.

Active remote sensing instruments (LiDAR in the visible/
NIR and SAR in the microwave) [12] are generally more
directly sensitive to forest canopy biomass (microwave)
and canopy height and vertical biomass distribution
(LiDAR and InSAR) than passive solar reflectance
instruments (multi- and hyperspectral optical sensors).
Nevertheless, active remote sensing techniques also have
shortcomings, like a cloud or smoke interference for LiDAR
or biomass saturation for radar [28], [29].

Most studies devoted to LAI mapping from C-band SAR
were conducted for boreal forests [30], [31]. The main data
sources in such cases were previous-generation SARs of
ERS and Envisat satellites. Novel Sentinel-1SAR data, pro-
vided by Copernicus Open Access Center, are increasingly
being used for both LAI [32] and forest disturbance map-
ping, including quantitative assessment of short-term forest
disturbance [33].

Due to the radio shadows occurring in radar surveys of
areas with complex terrain, applying topographical adjust-
ments for mountain forest LAI estimations has critical
importance [32].

In this study, we propose a new general approach to pro-
vide a risk assessment of forest disturbance based on mul-
tisource and multiscale EO data time series. The proposed
approach synthesizes three unified methodologies: multi-
scale remotely sensed data processing, multivariate regres-
sion analysis, and the time series risk trend extraction. Each
of the used methodologies in isolation is known and well
described [9], [12], [15], [20], [21], [28], [34]–[38], but
together they provide useful synergy for satellite risk map-
ping under the absence or insufficient amount of ground truth
data. Although risk assessment is quite successfully applied
for forest landscape degradation trends [34]–[38], risk analy-
sis of forest disturbance is still rare. In this study, the proposed
approach was applied to the primeval and managed forests of
Slovak Eastern Carpathians.

Using the proposed approach, we assessed the risk of
forest disturbance and visualized it by maps. Furthermore,
the approach ensured: (1) to explore the potential of using
well-verified LAI products of low spatial resolution and radar
satellite imagery of high resolution to estimate forest LAI in
the rugged terrain ofmountains; (2) to detect changes in forest
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canopy structure from LAI time series; (3) to introduce the
approach for risk assessment of forest disturbance.

The paper is structured as follows. Section II introduced
the investigated area and its specifics. The main steps of the
proposed approach are considered in section III. The data
for risk evaluation and the methods (algorithms) for high
resolution and risk evaluation are discussed in section III
too. Section IV shows the map of forest disturbance risk.
The evaluation and analysis of the proposed approach are
discussed in section V.

II. STUDY AREA
The study area is in northeastern Slovakia and belongs to
the Eastern Carpathians (Fig.1, upper panel). This area is
of particular concern for disturbance assessment as a rec-
ognized biodiversity hotspot within the European temperate
zone [2], [19]. The beech forests added to UNESCO’s World
Heritage List are situated here in strictly protected nature
reserves [7]. Poloniny National Park and Vihorlat Protected
Landscape Area contain nearly homogenous, largely mon-
odominant mature beech forests and the tallest and largest
European beech specimens in the world. The hillsides of
Eastern Carpathians, 500–1221m.a.s.l., are home to primeval
beech forests of all developmental stages [39].

We identified the forest cover of the area of interest
(Fig.1, lower panel) based on the European forest area
map at 100m spatial resolution covering EEA39 in 2015
(https://discomap.eea.europa.eu). The virgin forest inven-
tory data set provided by the European Environmental
Agency [40] and the profile for Ancient and Primeval Beech
Forests of the Carpathians and Other Regions of Europe from
the World Database of Protected Areas [41] was used to
distinguish the distribution of primeval beech stands.

However, as for some other components of the World
Heritage site, in Slovakia, high demand for timber remains
the main negative driver of forest disturbances. The Poloniny
National Park was under serious pressure from unsustainable
logging at 93%of its area, as the expert mission of the Council
of Europe stated [7].

The application of the developed approach to the analy-
sis of primeval and managed forests in the Slovak Eastern
Carpathians, we also address the questions:

• What is the rate of forest disturbance risk within the
primeval forests in the Slovak Eastern Carpathians?

• How does the rate of forest disturbance risk vary across
the primeval and managed forests?

• Do Protected Areas (PAs) influence the rates of forest
disturbance?

III. APPROACH FOR RISK ASSESSMENT OF FOREST
DISTURBANCE
A. APPROACH CONCEPTION
There are many methods for multiresolution data process-
ing, ranging from the most straightforward interpolation to
logical reallocation of spectra for multispectral data [42] or

FIGURE 1. Location of the study area and the distribution of primeval
beech forests within the protected areas according to the World Database
on Protected Areas (WDPA).

subpixel superresolution for dual polarisation radar data [43].
In this study, a non-trivial task was posed–to map LAI by
high-resolution dual polarisation radar data without ground
truth measurements. In this case, the remotely sensed veri-
fication data are needed, but available ones are only of low
resolution, as the introduction says. That means that to solve
the problem that occurred, it is necessary to: a) develop a
technique for the multiresolution data fusion of both radar
imaging and LAI product, b) improve a previously used
method for LAI acquisition using dual polarisation radar data,
c) adapt the elaborated methodology to risk analysis.

The approach for forest disturbance risk assessment based
on the time series of multisource and multiscale EO data is
described by the Fig. 2 flowchart.

All processing operations are subdivided into four groups:
physiogeographic analysis to determine the processing
parameters for a particular study area; statistical analysis
for quantitative calibration of radar data processing; direct
processing of radar data; and, finally, risk mapping.

Processing beginswith exploring descriptive, cartographic,
regulatory, and other materials available for the study area.
The investigations focused on the phenology of the dom-
inated tree species facilitate the determination of the time
interval for EO data collection. For eliminating the seasonal
impact on the structural changes in the canopies, the data
should be collected at the peak of vegetation when more than
90% of leaves have final shape and size but do not start to
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FIGURE 2. The conceptual approach for assessing and mapping risks of
forest disturbances using low-resolution LAI and high-resolution radar
data.

change their color. During this phenological phase, as a rule,
LAI values reach their maximum and remain consistently
high. It is important to note that, in mountain areas, phe-
nological phases start with a delay due to gaining altitude.
Therefore, we chose the DOY (day of the year) in the middle
of the mentioned phase to specify the interval. A week before
and a week after this DOY constitutes the interval during that
EO data should be collected. As a result, time intervals for
obtaining data are determined, and the risk model is formal-
ized. The stability of the time interval of image acquisition
contributes to obtaining LAI values, which depend only on
external (environmental or human-induced) impact but do not
depend on the current phenological phase.

Next, the co-registration of high-resolution radar data and
low-resolution reference LAI data is performed. The novelty
consists of unique task-orientated geostatistical sampling to
stack the different-scale images described in section B into
a joint high-resolution grid. This know-how involves re-
projecting a low-resolution pixel grid into a higher resolution
image and averaging one’s pixel values within a regular spa-
tial pattern of each low-resolution cell selected for training
sample construction.

After catching statistical samples, we determine derived
multivariate regression coefficients. Previously, in [32], sim-
ple non-linear regression was used. In this study, additional
multiple regressors are engaged to increase the model’s
reliability and accuracy. Additional drivers, such as dual-
polarization backscattering coefficients and local incidence
angle, described in more detail in section C, were considered.
Another tricky hack – the non-linear transformations of input
variables, was applied to compensate for the strong nonlinear-
ity of the intact model; in other words, multivariate regression
was pre-linearized.

The restored multivariate regression is applied to multi-
temporal radar data for the entire study area, resulting in a
time series of high-resolution LAI maps. The formed time
series allows extracting the spatial distribution of risk trends
and thereby obtaining the final risk map.

Thus, the proposed approach contains the following ele-
ments of novelty: a particular technique for multiresolution
imagery handling; improved multivariate regression model
with heuristic pre-linearization of predictors for LAI restora-
tion by dual polarisation radar data; risk mapping, adapted to
the pixel-wise trends extraction of LAI, as an indicator of the
forest vegetation condition.

B. HIGH-RESOLUTION LAI ESTIMATION
The leaf area index (LAI) was chosen as a crucial indicator
to quantify the vegetation condition within the study area.

Now several long-term global LAI data products are
known, including European ones [26]. The primary limitation
of such products is insufficient spatial resolution. This limi-
tation is quite substantial in vegetation mapping inside some
small areas as the natural reserves of Slovakia. Another essen-
tial requirement for input data products in risk assessment
with a time series is good seasonal repeatability, obtaining
data at strictly defined time intervals. Optical remote sens-
ing data products, due to the almost always present cloudi-
ness, do not satisfy such requirements, as a rule. Therefore,
we chose the Sentinel-1 remote sensing radar system for the
LAI mapping within the study area, which provides the nec-
essary spatial resolution and the repeatability of imaging [44].

There are plenty of models known for the LAI estimation
by synthetic radar imaging: physically determined, semi-
empirical and statistical [45], [46]. For our task, a regression
approach was used. The backscattering coefficients in both
polarizations – σ 0

VV and σ 0
VH , the relative difference polariza-

tion index (RDPI) rτ [32], and the local incidence angle θl ,
taking into account the terrain geometry, were determined
as regressors. The reference data for multivariate regres-
sion restoration were extracted from the 30-days composite
PROBA-V LAI V1 product at 300 m resolution [27].

The complex non-linear behavior of the LAI (σ 0
VV , σ

0
VH ,

rτ , θl) dependence forces to perform a regression analysis in
two stages: first, the non-linear transformation of the original
regressors, and second – the restoration of multivariate linear
regression [47].
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The following non-linear transformations of input regres-
sors have been applied:

1

th (σ 0
VV + 1)

,
1

th (σ 0
VH + 1)

,
1

ln3(r2τ + 1)
, sin3 θl (1)

As a result, the coefficient of determination R2 = 0.68 and
root mean square error (RMSE) = 0.7139 were achieved.
This accuracy of multivariate regression seems quite accept-
able for practice since the basic PROBA-V LAI product
RMSE ranges from 0.52 [48] up to 1.21 [49].

C. RISK ANALYSIS
Risk assessment is essential for forest disturbance trends
analysis [34]–[38]. According to a study [50], [51], the
concept of risk differs depending on the application area.
It should be defined as a set of triplets, which are the sequence
of undesirable events leading to damage, the associated prob-
ability, and the consequence. In general, risk conception is
considered as a measure of an existing or a potential source
of damage or hazard. Thus, the concept of risk includes
the uncertainty of the occurrence of hazard [50]. In [50],
risk R is defined as:

R = x · p, (2)

where x and p denote a given hazard or its frequency and the
probability of receiving such hazard or other hazard evalua-
tion, for example, frequency.

When considering complex systems must be accounted for
the fact that typically more than one undesirable event exists,
and all hazards must be considered integrally. From the point
of view of risk assessment, a forest landscape can be inter-
preted as a complex system with many hazard factors. One
possible way to indicate the damage to the forest landscape
is the evaluation of LAI, an indicator of canopy structure and
density, which changes (reduction) in time is considered as a
risk in terms of the theoretical background of risk assessment.
The LAI can be evaluated based on images from the low-
resolution LAI and high-resolution radar data. The data in
the form of images are analyzed and evaluated by pixels of
images. Therefore, the proposed method for the risk of forest
disturbance is developed to analyze image pixels in which the
LAI is evaluated.

According to the definition of risk (2), forest disturbance
is interpreted as a hazard, and the LAI can evaluate
the hazard in a time series of multisource and multi-
scale EO data. The risk of forest landscape degradation
is evaluated by the measure (p in (2)) discovered by the
LAI changes. Therefore, this measure is calculated for
pixel s because we implement an analysis by the EO data.
Let us suppose that the LAI in pixel s in time i is indicated
and denoted as Qsi. The measure of the LAI change, in this
case, is computed as:

hsi = (Qsi − Qs(i−1))/(Qmax1t) (3)

and

hsi = (Qsi − Qs(i−1))/(Qaver 1t), (4)

where Qmax and Qaver are maximal and average LAI in time
interval 1t .

The measures (3) and (4) in risk assessment are known
as the hazard function [51]. The forest disturbance is eval-
uated depending on the hazard function value. Two specific
coefficients are computed based on the hazard function and
calculated as:

K =
T∑
i=1

hsi (5)

and

KT = hsT − hs(T−1). (6)

The first of these coefficients allows evaluating the behav-
ior of the LAI hazard: the higher the value of this coeffi-
cient, the lower the hazard of the forest disturbance. The
coefficient K is applied to evaluate the hazard in a time inter-
val from 1 to T , where T is interpreted as the last evaluated
time. The second coefficient KT discovered the hazard in the
last period only.

The problem of forest disturbance and preparation of risk
maps caused the same definition gradations of risk, which
can be visualized in the map. Therefore, the risk evaluation
is introduced in the form of four risk gradations that are
computed depending on the values of coefficients K and KT :
• R3 is the high risk of the degradation if K < 0 and
KT < KT−1:

T∑
i=1

hsi < 0 and (hsT − hs(T−1)) < (hs(T−1) − hs(T−2));

• R2 is the existential risk of the degradation if K < 0 and
KT ≥ KT−1:

T∑
i=1

hsi < 0 and (hsT − hs(T−1)) ≥ (hs(T−1) − hs(T−2));

• R1 is the potential risk of the degradation if K ≥ 0 and
KT < KT−1:

T∑
i=1

hsi ≥ 0 and (hsT − hs(T−1)) < (hs(T−1) − hs(T−2));

• R0 is no risk of the degradation ifK ≥ 0 andKT ≥ KT−1:

T∑
i=1

hsi ≥ 0 and (hsT − hs(T−1)) ≥ (hs(T−1) − hs(T−2)).

Based on the equations described above, the R3 risk
decreases LAI over the entire study and the last time interval.
The R2 risk indicates a damaging increase in LAI over the
entire study interval but positive over the last two years. The
R1 risk marks a positive trend in LAI over the entire study
interval but indicates degradation in recent years. The R0 risk
indicates a trend of increasing LAI both for the whole time
and for the last couple of years.
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FIGURE 3. The map of forest disturbance risk within the study area. The forest cover is delineated using the CLC2018 dataset. The risk of forest
disturbance is referred to four gradations: R3 is the high risk, R2 is the existential risk, R1 is the potential risk, and R0 is no risk.

IV. RESULTS
A. EARTH OBSERVATION DATA
After mandatory registration, Copernicus Open Access Cen-
ter (previously known as Sentinels Scientific Data Hub)
provides full and free access to all Sentinel-1, Sentinel-2,
and Sentinel-3 satellite products. The resource has a carto-
graphic web interface and a developed search system, choos-
ing, ordering, and receiving Copernicus information products
(https://scihub.copernicus.eu/dhus/).

The data were collected for the two-week interval with
the 165 DOY in the middle. It was specified considering the
European beech phenology dominated in the Slovak Eastern
Carpathians [52], [53].

Sentinel-1 ground range detected (GRD) Level-1 process-
ing products were used to perform the study, which are
focused radar images with coherent accumulation and pro-
jection procedures to the earth’s surface using the Ellipsoid
model.

LAI 300 m Version 1 product by PROBA-V satellite sys-
tem was downloaded from the Copernicus Global Land Ser-
vice that provides bio-geophysical products of the global land
surface. These products are almost 9-month temporal com-
position adapted to ensure an approximate (10-day) estimate
and consistent estimates in real-time until the consolidated
value is reached (Table 1).

B. HIGH-RESOLUTION LAI TIME SERIES
Using the processed radar images (Table 1) and regres-
sion (1), according to the data flow in Fig. 2, a time series
was obtained, consisting of seven spatial distributions of LAI
in the study area. The spatial resolution of the LAI maps

TABLE 1. List of used remote data and their characteristics.

is similar to the resolution of the used Sentinel-1 imagery
and equal to 10 m. These high-resolution LAI temporal maps
formed the input data set for further risk analysis.

C. RISK MAP
The proposed approach for forest disturbance risk assess-
ment based on the time series of multisource and multiscale
EO data has been used to develop map of forest distur-
bance risk of Slovak Eastern Carpathians (see section II).
The developed map of forest disturbance risk is shown in
Fig. 3. Fig. 4 shows the distribution of forest disturbance
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FIGURE 4. The fragment of the resultant map for the Vihorlat Protected Landscape Area includes the World Heritage site with primeval beech
forests.

risk within the Vihorlat Protected Landscape Area, including
the World Heritage site with primeval beech forests. These
maps have been developed by using the CORINE Land Cover
dataset updated for 2018 (https://land.copernicus.eu/pan-
european/corine-land-cover/clc2018). The CORINE Land
Cover dataset consists of an inventory of land cover in 44
classes. Themaps in Fig.3 and Fig.4 have some of themwhich
are indicated in the legend. Among them, the forest-related
classes are marked by four additional colors depending on
the risk of disturbance.

Themaps in Fig.3 and Fig.4 have one legend and each pixel
of these maps for forest presents one of the four gradations
of risk of the forest disturbance assessed from the trend of
LAI changes revealing the reduction or recovery of the forest
structure and density. The spatial resolution of the obtained
map enables one to investigate in detail the distribution of
forest disturbance risk within different forest conservation
sites, from sizable protected landscape areas to small, even
point sites with primeval forests.

V. DISCUSSION
Therefore, the proposed approach enables assessing forest
disturbance risk based on the time series of LAI PROBA-V
LAI V1 product at 300 m resolution and Sentinel-1 C-band

SARGRD product at 10 m resolution. Moreover, considering
the capacity of radar surveying, it is possible to provide such
an assessment for the mountain forests.

The obtained results reveal three main advantages of the
proposed approach. The first one is the spatial resolution of
the final map that makes it possible to detail the distribution
of the assessed risk of forest disturbance for protected areas
different in size, even the smallest one. The approach to
LAI estimation suggested in the approach provides a ten-fold
refinement of resultant LAI maps compared to the original
PROBA-V LAI V1 product. Thus, the obtained results also
demonstrate a good potential of a joint using well-verified
LAI products of low spatial resolution and radar satellite
imagery of high resolution to estimate forest LAI in the
rugged terrain of mountains.

The second one is to ensure the continuity of LAI measure-
ments, which are obtained at strictly defined time intervals.
That ensures the data completeness for identifying forest
structure LAI-based changes and significantly affects the
accuracy of the subsequent risk assessment. Like the first one,
this advantage rises from the use of Sentinel-1 SAR data.

The third one is the significantminimization of LAI ground
measurements. Practically, there is no direct need for such
measurements for the suggested approach to LAI estimation
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FIGURE 5. According to the CORINE classification, the percentage
distribution of forest disturbance risks across reserves to their area and
throughout the study area includes forests.

due to using the PROBA-V LAI V1 product with good pre-
cision [21]. Nevertheless, it should be emphasized that LAI
ground measurements, forest ground observation, and inven-
tory data are critical for validating the proposed approach and
further interpreting the obtained results.

The main achievement of the proposed approach refers to
the definition of the four gradations of evaluated risk depend-
ing on the observed changes of forest structure both over the
entire study time interval and over the last time interval. Two
transitional gradations between the high absolute risk and
almost total absence of risk contribute to a comprehensive
view of forest disturbance processes.

The results of applying the proposed approach give the
answers to the questions posed at the beginning. Thus, after
conducting the study, we analyzed the main results collected
from the risk map, such as the percentage distribution of
forest disturbance risks throughout the study area as well
as distribution throughout the biggest reserved territories:
Poloniny National Park, Vihorlat, and East Carpathians Pro-
tected Landscape Areas (Fig.5).

There is no substantial difference in the rate of forest
disturbance risk across the primeval and managed forests.
Although, risk absence (R0) and positive trend over the entire
study interval (R1) are predictably higher in the protected
areas. The predominance of the existential risk (R2), espe-
cially in managed forests, indicates a negative trend for forest
disturbance over the entire study interval, but positive over
the last two years, probably, may be attributed to a decrease
in logging intensity in these recent years. Experts connect
forest disturbance’s high risk (R3) in protected areas with
unsustainable logging [7].

VI. CONCLUSION
Thus, the proposed approach for risk assessment of forest
disturbance based on time series of multisource and mul-
tiscale EO data has demonstrated promising results. It can
be recommended to analytics and decision-makers in forest
management and conservation.

The proposed approach also can be extended to other
regions of mountain forests in Slovakia. It also can be
recommended for implementation in other countries where
the primeval forests have remained (https://whc.unesco.org/
en/list/1133/). Slightly modified, it also can be applied
to risk the assessment of forest disturbance of the
lowlands.

It is worth directing future research at the involvement
of data on forest ground observation to validate the pro-
posed approach and proper interpretation of the obtained
results. Also, the primary regression model used for LAI
determining needs to be elaborated and expanded to pro-
vide a more correct and reliable tracing of all factors affect-
ing radar backscattering. Moreover, further implementing
the proposed approach as a web service [54] is highly
advisable.
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