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ABSTRACT This paper proposes a new triple-band monopole antenna based on Complementary Split
Ring Resonators (CSRR) perturbing the ground plane (GND). The antenna consists of an inverted-L-
shaped monopole fed by a modified microstrip line with two CSRRs cut out of the ground plane. The
operational bands are independently controlled by the CSRR unit cell parameters. In addition, the antenna
presents a dual-polarization performance (vertical polarization at 2.4 GHz band and horizontal polarization
at both 3.6 and 5.9 GHz bands). The designed antenna is fully planar and low profile avoiding the vias
with the ground plane and covering the WLAN, WiMAX, and IEEE 801.11p bands at 2.45, 3.6, and
5.8 GHz. A compact prototype (0.32λ0 × 0.32λ0 being λ0 is the wavelength corresponding to the lowest
resonance frequency) has been fabricated and measured showing good agreement between simulations and
measurements. The measured impedance bandwidths are 10% (2.38-2.63 GHz), 2.5% (3.54-3.63 GHz), and
20% (5.83-7.12 GHz) whereas the measured gains are 1.34, 0.68, and 2.65 dBi at 2.4, 3.6, and 5.9 GHz
respectively.

INDEX TERMS Complementary split ring resonators (CSRR), monopole antenna, triple-band, dual-
polarization, miniaturization.

I. INTRODUCTION
The increasing development of wireless communication sys-
tems such as WiMAX and WLAN requires the design of
multiband antennas able to operate in different frequency
bands. In addition to low profile and wide bandwidth, the
antennas should be compact to facilitate their integration
with other system components. Printed antennas are a good
solution that could fulfill the previous requirements.

Different approaches have been developed in the literature
to achieve multi-band property. The most conventional one
consists of only acting on the radiating element by insert-
ing conducting strips or etching slots to generate different
resonant frequencies [1]-[6]. However, the reported designs
either have relatively large dimensions or possess complex
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structures that can make obtaining the desired frequency a
very difficult task. In [6] embedding a set of V slots and slits
into an annular patch antenna helps to achieve a triple-band
antenna with dual-polarized performance. Despite its com-
pact size (0.35λ × 0.35λ), the proposed antenna showed
relatively narrow bandwidths. In [7], a T-shaped monopole
is loaded with a horizontal conducting branch for dual-band
radiation. But, the antenna has a large size in addition, the
two bands are not independently controlled. In [8], by loading
a main radiating patch with four sub patches a multiband
performance is achieved with independent frequency control.
However, the bands are narrowwhich is not suitable for appli-
cations that need more bandwidth. Parasitic elements have
also been used in [9], where T-shaped and Inverted-L strips
were placed on a microstrip antenna to achieve multi-band
performance but at a cost of a large ground plane and rela-
tively high profile. Another widely used approach [10]–[13]
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consists of loading the antenna with Split Ring Resonators
(SRR). In [10] and [11], a set of SRR cells were coupled
to a slot antenna to obtain multi-band performance but with
large dimensions and narrow bandwidth. The same idea was
used in [10] but with a dipole with a capacitive gap loaded
with via-less composite right/left-handed (CRLH) unit cells
to achieve multi-band operation. The CSRR has also been
used in [15], [16] for multiband performance in microstrip
antennas. However, etching the CSRR in the radiating ele-
ment decreases both, gain and efficiency. The CSRRs can also
be printed in the ground plane for multiband and broadband
performances [17]. Additionally, SRRs andCSRRs have been
widely used in the filtering antenna design in order to avoid
interferences between adjacent bands [18]–[19].

The second approach consists of jointly acting on the
ground plane, feeding line, and/or radiating element. In this
way, the addition of composite right/left-handed (CRLH)
unit cells to load the radiating elements has been pro-
posed to achieve multi-frequency performance with compact
size [20]–[22]. However, this structure needs bridges in the
coplanar feeding line and vias to the ground plane what
makes the manufacturing process much more complicated.
In [23], a triple-band monopole antenna was achieved by
loading the monopole with distributed CRLH lines. However,
the resultant radiation pattern is not monopolar within all
operating bands. Finally, in [24], a bulky 3-D miniaturized
monopole antenna was achieved. It consists of a vertical
monopole loaded with a CSRR plus multiple zeroth-order
resonator (ZOR) unit cells over the ground plane to achieve
multi-band performance with an independent tuning of the
frequencies band. However, the profile of the antenna is
relatively high (0.1λ) and the bandwidth is narrow.

In this paper, a fully planar multi-band monopole antenna
is presented thanks to jointly working on the whole antenna:
radiating element and ground plane. In this way, the inclu-
sion of a pair of CSRRs in the microstrip feeding line will
constitute a defected ground plane and provide additional
horizontally polarized resonances. In comparison with pre-
viously stated works this antenna has a low profile and
shows large compactness and is easier to manufacture due
to its fully planar structure. The inclusion of the CSRRs
in the ground plane perturbs the current distribution in a
coherent way creating an in-phase current along the x-axis
at 3.6 and 5.9 GHz what contributes to the radiation. Con-
sequently, a triple-band independently controlled resonance
can be achieved by modifying the dimensions of the CSRRs
in the defected ground plane. Finally, the proposed antenna
provides a dual-polarized performance: vertical polarization
at 2.4 GHz associated with the vertical radiating element
and dual-band horizontal polarization at 3.6 and 5.9 GHz
associated with the perturbed GND.

The rest of the paper is organized as follows: Section II
presents the operation principle of the antenna and its design
process, current distribution, parametric study, and equivalent
circuit. The experimental results that validate the simulations
are shown in Section III. Section IV contains a conclusion.

FIGURE 1. Proposed tiple band antenna (a) top view (b) back view
(c) CSRR unit cell.

II. ANTENNA DESIGN
A. ANTENNA DESIGN
The proposed triple-band antenna geometry is shown in
Fig. 1. The antenna consists of two layers. The top layer
contains an inverted L-shape monopole designed to resonate
at 2.4 GHz. A forked-like microstrip feeding line has been
added to also consider the ground plane. Secondly, in the
bottom layer, two CSRRs cells with different sizes have been
etched out from a partial ground plane to achieve multi-
band performance. The two rings in the CSRRs keep the
same slot’s width and the gap at the end of the slot. The
only different dimensions are the external radius rex and rex1
which belongs to the small and large CSRR respectively as
shown in Fig. 1. It is important to emphasize that if it were
not for the forked feeding line the two CSRRs would not
be equally excited neither in amplitude nor in phase. This
feeding strategy allows the triple-band performance. We note
that such a microstrip feeding line is selected to solve the
problem of the beam tilt and gain decrease. This has been
shown in [17] where a meandered microstrip feeding line
was used for exciting two CSRR to obtain dual broadband
performance. Therefore, out-of-phase currents are excited at
a higher frequency band, which led to a great decrease of
the broadside gain. This feeding approach can be extended to
othermetamaterial unit cells such as rectangular CSRRwhere
the same radiation performances are obtained.

A further explanation of the way that the antenna works
can be given by splitting the design steps of the proposed
antenna. This is illustrated in Fig. 2 where all the design
steps are presented. Firstly, the single inverted L-shaped
monopole antenna denoted as Ant 0 refers to the conven-
tional basic antenna without CSRR loading. This inverted
L-shaped monopole provides the lowest working frequency,
in this case, 2.4 GHz, and is fed through a straight microstrip
line. This resonance is calculated when the length of the
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FIGURE 2. Design steps of the proposed antenna (a) Ant 0 (b) Ant 1
(c) Ant 2 (d) Prop Ant.

FIGURE 3. Simulated return loss for different antennas.

monopole (Lm+Lm1) is approximately λg/4 (λg guided wave-
length at 2.4 GHz) which corresponds to the fundamen-
tal mode of a conventional monopole antenna. Secondly,
the inclusion of the forked-like feeding line constitutes the
so-called Ant 1. This structure is designed to allow the pres-
ence of a tiny resonance at the highest desired frequency,
in this case in the 6 GHz band. Thirdly, the perturbed ground
plane (GND) is achieved through etching out one CSRR in
the GND. This structure is called Ant 2 and the CSRR is
designed to provide resonance at the intermediate WIMAX
band, in this case, 3.6 GHz as shown in Fig. 3. Finally, in order
to symmetrize the antenna and improve the performance at
the highest frequency, another CSRR has been etched out
at the other prong of the forked-like feeding line. This will
constitute the so-called Prop Ant and is shown in Fig. 2.
Moreover, it can be seen that not only does the inclusion
of the CSRR in the GND preserve the performance of the
base monopole but also improves the matching conditions
and enlarges its impedance bandwidth.

The fundamental mode of the CSRR unit cell is excited
when an axial electric field is applied [25]. Thus, two CSRR
unit cells with two different radii have been simulated as
shown in Fig. 4. From Fig. 4 (b), it can be seen that the

FIGURE 4. Simulation set up (a) CSRR unit cell (b) S12 of the two CSRRs.

FIGURE 5. The current distribution of the proposed antenna: on the
monopole (left) and ground plane (right) at (a) 2.4 GHz (b) 3.6 GHz
(c) 5.9 GHz.

two resonances agree well with the obtained results in Fig. 3
where the two CSRRs are inserted below the feeding line.

Concerning the radiation mechanism, it can be seen that
the high frequencies (3.6 and 5.9 GHz) are not any longer
due to the monopole effect but to the perturbed ground plane.
Then, despite of providing vertical polarization the final triple
frequency antenna will provide two horizontal polarizations
associated with the perturbed GND and one vertical polar-
ization associated with the folded monopole. The resulting
antenna covers the standard IEEE 802.11p. It can also be
noted that the fundamental and higher modes of themonopole
have been slightly shifted down due to the capacitive effect
between the monopole itself and the loaded CSRR.

To gain more insight into the radiation mechanism of the
proposed antenna, the current distribution at each resonant
frequency is being analyzed through a full-wave simulation
with CST. The designed frequencies are 2.4 G, 3.6, and
5.9 GHz respectively. Fig. 5 (a)-(c) shows the current distri-
bution at the previous frequencies. At 2.4 GHz, we can see
that the current distribution on the inverted L shape is similar
to that of the reference monopole antenna (Ant 0). For the
sake of conciseness, the current distribution at 2.4 GHz of the
reference antenna (Ant 0) is not presented. The presence of
the CSRR in the perturbed GND causes to appear two out of
phase currents along with the GND. These currents are then
canceled out and do not contribute to the overall radiation
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TABLE 1. Optimized dimensions of the proposed antenna.

resulting in a vertically polarized E field. At 3.6 GHz, the
radiation mechanism is somewhat different since the currents
on the vertical monopole are very small and are canceled out
due to its out-of-phase distribution. Then, the large currents
surrounding the left CSRR (the CSRR with large dimension)
induce a net in-phase current distribution along the edge of
the ground plane along the x-axis. This yields to somewhat
dipole-like radiation oriented along the x-axis. This fact will
be demonstrated in the next section by giving the radiation
pattern. Finally, at the highest frequency band, the current
distribution on the vertical monopole produces a notch just at
the middle of the monopole what yields to a tiny higher-order
vertical mode as can be appreciated around 7.8 GHz. In addi-
tion to that, the presence of the large current distribution
surrounding the small CSRRs (the one on the right) induces
a horizontal current along the x-axis resulting in a dipole-like
radiation pattern. It is also seen that these currents along the
horizontal edge of the ground plane contribute to the radiation
since they are in phase as can be seen in Fig. 5 (c). One of
the advantages of this proposed antenna is that it exhibits an
independent control of the resonance frequencies. In order to
demonstrate this characteristic, a parametric study of some
key parameters will be shown in the next subsection.

B. SIMULATED ANTENNA: PARAMETRIC STUDY AND
EQUIVALENT CIRCUIT
The proposed antenna has been designed and printed on
a thin Rogers with a dielectric constant of 2.2, loss
tangent 0.0009, and thickness h=0.787 mm. The design
parameters can be found in Fig. 1 and have been chosen to
achieve a multifrequency antenna working at 2.4, 3.6, and
5.9 GHz. Table 1 provides the dimensions of all the design
parameters.

Once the design has been done, a parametric study of the
most critical parameters has been undertaken. As the triple
frequency performance is greatly associated with the CSRR,
the outer radii of the CSRRs will be studied. Fig. 6 (a) illus-
trates the effect of the outer radius of the large CSRR on the
return losses of the proposed antenna. As rex1 increases, the
second resonance at 3.6 GHz shifts down toward lower fre-
quencies while other resonances remain almost unchanged.
We can see another resonance at around 7.5 GHz which
behaves like the previous one. This resonance is associated
to the higher mode of the CSRR. A fine optimization of this
resonancemay lead to broadeningmore the highest frequency
band.

Fig. 6 (b) shows that the outer radius of the small CSRR,
rex , mostly affects the upper band. It is seen that the first

FIGURE 6. The simulated return loss of the proposed antenna for
different (a) rex1 (b) rex values.

FIGURE 7. Effect of CSRR dimensions on the second resonance frequency
(a) rex (b) wc and d.

resonance shifts down to lower frequencies with increasing
rex , while the second resonance shifts up to higher frequen-
cies. This provides the ability to achieve different working
bands just by controlling the outer radius of the CSRRs. These
results reveal that the two resonances could be separately
tuned without affecting the first one that can be easily con-
trolled by the inverted L monopole.

It is worth noting that other applications such as WLAN
2.4/5.2/5.8 GHz can be easily obtained by changing the
CSRR parameters: outer radius rex , strip width d, and slot
width wc as shown in Fig. 7.We note that when one parameter
is changed the others are kept at their optimized values. It is
seen that when rex increases from 3.3 to 4.4 mm the frequency
is shifted from 5.2 to 3.45 GHz (Fig. 7 (a)). This is due to the
decrease of the equivalent capacitance of CSRR Ccsrr since it
can be modeled as an LC resonator tank as shown in Fig. 8.
On the other hand, wc and d have similar behavior over the
frequency band but in an opposite way (Fig. 7(b)). Increasing
d decreases the equivalent inductance of CSRR Lcsrr while
increasing wc decreases the capacitance Ccsrr leading to a
shift of frequency to higher values. This is consistent with
the theoretical analysis reported in [25].

In order to have a more accurate control on all the res-
onance frequencies of the triple-band antenna, an equiva-
lent circuit based on lumped elements has been proposed.
The equivalent circuit is composed of four resonant circuits
and their corresponding couplings between them. According
to [25] two CSRRs have been modeled as shown in Fig. 8.
Therefore a CSRR unit cell can be modeled as two L and C
parallel circuit. First, a capacitor and an inductor, Cf and Lf ,
are needed to model the microstrip feeding line. Secondly,
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FIGURE 8. Equivalent circuit model of the proposed loaded monopole.

TABLE 2. Optimized values of the proposed circuit.

four resonant parallel circuits are placed to model the CSRRs
in the ground plane and the two resonant frequencies of the
monopole. Then, the resonance frequency of the CSRR at
3.6 GHz is modeled with Ccsrr2, Rcsrr2, Lcsrr2 elements for
the lowest resonant frequency, and Ccsrr1, Rcsrr1, Lcsrr1 for
the highest resonance frequency of the CSRR at 5.8 GHz.
In addition to that, two other resonators associated to the
monopole have been also modeled as Clow, Llow, Rlow and
Chigh, Lhigh, Rhigh respectively. Finally, the coupling between
CSRR cells with the feeding line is realized through Cc1,
Ll1, Cc2, and Ll2. Another two inductors, L1 and L2, have
been added to take into account the joint between the feeding
lines and the monopole for the lowest and highest frequencies
respectively. It is important to note that the resonance fre-
quencies associated with the two CSRRs are mainly affected
by the capacitive coupling between the fork-like feeding line
and CSRRs. Therefore, the resonance frequency is given by:

fr = 1/2π
√
Lcssrr (Ccsrr + Cc) (1)

This results in the following resonances of 5.6 and 3.9
GHz for CSRR1 and CSRR2 respectively, which are slightly
shifted from the simulated results shown in Fig. 10 due to the
effect of the rest of the circuit. The optimized parameters of
the circuit model are given in table 2.

The results of the equivalent circuit, CST MW solver, and
measurements are depicted in Fig. 10. A good agreement can
be seen between all of them.

III. SIMULATED AND MEASURED RESULTS
To experimentally validate the performances of the proposed
antenna, a prototype has been fabricated based on the opti-
mized values given in Table 1. The manufactured prototype
can be seen in Fig. 9. Fig. 10 shows the simulated and
measured results of the return loss versus frequency of the
proposed tri-band antenna. A good agreement is observed, the
small discrepancy can be attributed to fabrication errors and

FIGURE 9. Fabricated prototype of the proposed antenna (a) top view
(b) back view.

FIGURE 10. Simulated and measured return loss of the proposed antenna.

measurement conditions. The measured -10 dB bandwidth is
about 250MHz (2.38-2.63 GHz) for the first resonance which
covers 2.4/2.5 GHz WLAN and WiMAX operation bands,
90 MHz (3.54-3.63 GHz) for the middle resonance
which covers a part of the 3.5 GHz WiMAX band and
1.29 GHz (5.83-7.12 GHz) for the upper resonant fre-
quency covering the requirement of IEEE 802.11p standard
(5.850-5.925 GHz). The measurement setup of the radiation
pattern is shown in Fig. 11 (a). The simulated and mea-
sured radiation patterns of the proposed antenna at each
resonant frequency are given in Fig. 12. A good agreement
has also been achieved except for some discrepancies that
may be attributed to the measurement conditions. We note
that the presence of the unavoidable metallic holder behind
the antenna causes to appear some ripples in the radiation
pattern. Thus, an absorbing material has been added between
the antenna and the holder to isolate them and avoid such
ripples. It is important to note that due to the presence of
the absorber the measurements have only been taken in the
range ±90◦ since the back radiations are absorbed and
suppressed.

Figure 12 (a) and (b) present the radiation pattern of the
proposed antenna at 2.4 GHz. As it was previously expected
in Fig. 5 (a) the antenna exhibits omnidirectional and bidi-
rectional radiations in XZ and YZ planes respectively which
are consistent with the radiation of a conventional monopole
antenna in which the y-directed currents are the main con-
tributors to the radiation. The cross-polarization level at
the broadside direction is lower than -15 dB. At 3.6 GHz
the antenna provides an orthogonal polarization to the one
obtained at 2.4 GHz as shown in Fig. 12 (c) and (d). In this
case, the antenna exhibits omnidirectional and bidirectional
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FIGURE 11. Measurement setup of (a) radiation pattern (b) radiation
efficiency.

FIGURE 12. Simulated and measured radiation pattern in the planes
(a) XZ and (b) YZ at 3.6 GHz (c) XZ (d) YZ at 3.6 GHz (e) XZ (f) YZ at
5.9 GHz.

radiations inYZ andXZ planes respectivelywhichmeans that
the radiation is due to the in-phase x-directed currents in the
ground plane as shown in Fig. 5 (b). The currents along the
y-axis in the monopole contribute to the cross-polarization.
The cross-polarization level is lower than −12 dB at the
broadside direction. At 5.9 GHz, the radiation pattern is
similar to the one obtained at 3.6 GHz as can be observed in
Fig. 12 (e) and (f), with a cross-polarization difference larger
than −15 dB at the broadside direction.

The radiation efficiency was measured using the Wheeler
cap method [28]. The Wheeler cap is a rectangular cavity
with dimensions 20×20×14 cm3. With this size, the corre-
sponding resonance frequency of the cap is 1.06 GHz which
is below the operating frequency bands of our antenna. The
position of the antenna inside the Wheeler cap is in the

FIGURE 13. Measured and simulated (a) radiation efficiency
(b) broadside gain.

TABLE 3. Comparison with recent works.

middle and is presented in Fig. 11 (b). The method consists
of two main measures. The first one measures the S11 of the
proposed antenna in a free space environment. The second
one measures the antenna when enclosed in the Wheeler cap
so that any radiation can be eliminated. The measured and
simulated radiation efficiency over the frequency is shown in
Fig. 13 (a). The measurements show an efficiency of 90%,
64%, and 93% at 2.4, 3.6, and 5.9GHz respectively which
well agree with the simulated ones (98%, 75%, and 97%).

The estimated measured gain based on the measured
efficiency and the simulated directivity is calculated using
equation 2

Gestimated = Dsimulated ∗ ηmeasured (2)

Based on that, the estimated measured gain and simulated
gain as a function of frequency are shown in Fig. 13 (b).

VOLUME 9, 2021 164297



A. El Yousfi et al.: Miniaturized Triple-Band and Dual-Polarized Monopole Antenna Based on CSRR Perturbed GND

It is clearly seen that the estimated measured gain is 1.34,
0.68, and 2.65 dBi at 2.4, 3.6, and 5.9 GHz respectively which
agree well with the simulated results 1.78, 1.28, and 4.13 dBi
at the same operating frequencies.

A comparison between the proposed antenna and some
recent works is given in Table 3. The designs in [26] and [27]
present high gain at the operating frequencies but at the cost
of large size and narrow bandwidths which may limit their
application. References [7] and [29] are single structures only
based on strip loading but with large size and single polariza-
tion. Finally, references [20] and [21] have dual LP with a
small horizontal size but with vias and bridges that make its
profile higher and more complex than the one presented here.

From this comparison, it is concluded that the proposed
antenna presents the lowest and most simple profile with dual
linear polarization characteristic (LP) and good bandwidth.

IV. CONCLUSION
A novel tri-band antenna based on CSRR loading is stud-
ied. By etching out two CSRRs in the ground plane of an
inverted L-shaped monopole and modifying the geometry of
the feeding line the antenna can cover three working bands for
WLAN, WiMAX, and IEEE 802.11p applications. Addition-
ally, the CSRRs allow independent control of the obtained
frequency bands. The simulated results have been verified
through measurements of a fabricated antenna prototype. The
proposed antenna exhibits good radiation performance in
terms of gain, efficiency, and radiation patterns. Furthermore,
having a low profile, compact size, and simple structure for
ease of implementation with other devices. The proposed
antenna could be suitable for modern wireless communica-
tion systems.
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