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ABSTRACT Wearable intelligent systems that recognize the daily activities of humans have significantly
contributed to many useful applications. However, in practical wearable applications, the target individuals
may have different body conditions and demands in terms of sensor wearing. Sensors may return different
information depending on their placement, which to some extent determines the quality of a recognition
system. Obtaining the optimal sensor positions with the highest recognition accuracy plays a significant role
in activity recognition design. To contribute to a flexible and user-friendly wearable sensor layout, this paper
designed a multistage and multiswarm discrete particle swarm optimization algorithm to explore the best
sensor combinations and accuracy trends corresponding to different requirements of sensor numbers. The
proposed optimization scheme is applied to investigate the influences that different numbers and placements
of wearable accelerometers have on an activity recognition system. Furthermore, to address the issue of
user preference regarding the sensor position, a relevant sensor layout can also be designed based on the
demands and physical condition of the subject. The proposed method can determine the best sensor position
(combinations) with lower computational cost for various activity recognition systems.

INDEX TERMS Motion recognition, optimal sensor placement, particle swarm optimization, wearable

accelerometer.

I. INTRODUCTION
The recognition of human activity has drawn much attention
from multiple disciplines and applied scenarios. The systems
used in this endeavor have enhanced people’s lives due to
their convenience and high performance in domains such as
health rehabilitation [4], injury prevention [5], and diagno-
sis [6], among others. Human activity recognition (HAR),
as the core technique to identify the human’s motion type,
is becoming a significant target of investigation [7]-[9]. The
activities of daily living, motions of rehabilitation exercises,
and other specific activities can all be designated as the
recognized goals to aid specific types of people in their daily
lives.

Based on the attributes and techniques of the devices these
systems employ, HAR systems can be simply divided into
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nonwearable and wearable types. The former normally uses a
camera and a deep learning network based on video streaming
to recognize the human body [10]. Privacy concerns and the
space limitations for locating the user are bottlenecks of this
technique, although it does generate remarkable recognition
results. To enable the subject to move in a wider range, based
on the inertial measurement unit (IMU), many studies have
been conducted to develop wearable HAR systems [11]-[13].
Both the handcrafted feature-based classifier and the deep
network exist to facilitate the development of a corresponding
system [14]-[16].

Since accelerometers can acquire information about the
physical features of human motion, investigations have con-
centrated on adopting wearable accelerometers for human
motion or gesture recognition [17]-[19]. Currently, increas-
ing attention in the HAR field has been focused on off-
the-shelf commercial electronic products embedded with
accelerometers, such as smartwatches, smartphones, etc.
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However, these types of systems only provide a limited
interface for users and require the devices to be attached to
designated locations on the body, such as the wrist or the
trouser pocket. In practical, the human body can be abstracted
into a multi-segment rigid body model, and various segments
of the body can present alterations of acceleration during
activities. So, when combined with clothing and accessories,
wearable sensors can be placed on the body in various posi-
tions from the head to the foot. Prior studies related to the
sensor positions normally concentrated on the position spe-
cific HAR system or the transfer learning cross the differ-
ent sensor position [20], [21]. Nevertheless, the examined
sensor positions still maintain the less number and fails to
generate the optimal sensor positions under the different
conditions.

From the perspective of human-computer interaction,
HAR combined with consumer electronics enhances conve-
nience and availability, while sensor placement considering
the practical requirements and physical condition of the user
is still necessary. For example, in some cases, the monitored
subject may be a patient with a specific disease or physical
condition such as lacking one or more limbs and thus unable
to wear the sensor on the established location [22]. For long-
term monitoring, a fixed location can also cause discomfort
to users. Considering the foregoing, a specific position on
the human body is not conducive for all subjects due to
the differences in demand. Moreover, a wearable system
with specific sensor types can only generate limited data
and provide scant robustness against placements on different
parts of the body. Even if a state-of-the-art deep network
is employed, the effect caused by the different positions of
the sensors cannot be eliminated [23]. Therefore, seeking a
favorable sensor position to improve the relevant recognition
accuracy as well as balance the recognition results and the
user’s conditions can be an effective compromise scheme.
This paper intends to evaluate all the possible obvious sensor
placements on the body and design an optimization scheme
to generate sensor layout with respect to best accuracy under
different scenarios. The main contributions of this work can
be summarized as follows:

1. A swarm intelligence-based algorithm has been devel-
oped for solving such sensor combinational optimization
problems with lower computational times.

2. The potential locations of wearable accelerometers on
the human body have all been examined using different
combinations and numbers of sensors to explore the best
sensor layout and the accuracy trend against different types
of activities.

3. A series of results based on specific positions of user
preference on the human body with different adopted sensor
numbers are presented.

Il. RELATED WORK

HAR systems are categorized according to the equipment
used and the various approaches, including the classifier
establishment, data processing, and fusion method [24].

VOLUME 9, 2021

Wearable systems have emerged from calculations of the
obvious variations of signals reflecting human motion. For
this type of system, the accelerometer has been widely uti-
lized for activity recognition and subsequent applications.
The accelerometer can be not only embedded in consumer
electronics to increase convenience but also specialized to
monitor specific people’s activity and conduct related appli-
cations [25], [26]. Most studies have been dedicated to
improving the existing classifier structure to fit more ubiqui-
tous devices and form a pervasive sensing system [27]-[29].
However, the single sensor used sometimes is not adequately
accurate. If more than one sensor is used, the selection of
the sensors’ positions needs to be considered. Optimal sensor
placement is an issue that has received extensive attention
in several domains. Given the limitations of the sensed sub-
jects, multiple quantities or multimodal sensors are generally
adopted to improve the performance of the perceiving system.
To find the global best sensor sites or layout, the most effec-
tive method is trying every possible combination, but this
carries high computational cost. Some heuristic optimization
and greedy algorithms have been utilized to optimize the sen-
sor layout. Blanloeuil et al. [30] adopted the particle swarm
optimization method to optimize the ultrasonic structural
health monitoring (SHM) system in a 2D coordinate. The
results demonstrated that with the optimization, the perfor-
mance of SHM can be enhanced to find more areas of defect.
Flynn and Todd [31] established the fitness function with
Bayesian approach between the sensor locations and the error
criterion in the detection system and employed a genetic
algorithm to optimize the sensor space. Mallardo et al. [32]
abstracted the optimization task into a discrete issue. They
defined the specific locations on the composite panels as the
sensors’ possible positions. An artificial neural network was
adopted to build the object functions using the genetic algo-
rithm to optimize the sensors’ location. Swarm intelligence
and an evolutionary algorithm have been designed to address
the sensor space optimization issue effectively and improve
performance.

However, for HAR systems based on wearable data, fewer
schemes have been investigated with respect to optimal sen-
sor placement. As the detected data from the wearable sensor
contain physical characteristics of the motion to some extent,
more sensor information will contribute to improved accu-
racy. In considering the characteristics of the system or the
classifier, blindly increasing the number of sensors does not
generate a good result. The inherent trade-off between the
amount of sampled data and the recognition result emerges
from this. Kunze and Lukowicz [33] presented an approach
to compensate for the effects of the different sensor place-
ments, namely, arranging the sensors in such a way as to
give adequate performance, given that different parts of
the human body contain different information regarding the
activity being conducted. Atallah et al. [11] investigated
optimal sensor placement for specific activities by means of
the k-Nearest Neighbor (KNN) classifier. They also assessed
the impact of selected features on classification results and
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presented the best features related to each activity of daily
living (ADL) group. Fourteen activities were examined and
divided into five groups by intensity of activity. For these
types of activity, different sensor positions generate different
levels of accuracy. The study investigated the influence of
a single sensor on daily activity recognition; however, the
option of involving more sensors to improve the accuracy
of the results was not discussed. Gjoreski and Gams [34]
developed an ADL recognition system using one to three
sensors on three different parts of the human body to rec-
ognize eight activities. However, only three potential loca-
tions are mentioned in their work, and only 69.8% accuracy
was obtained via a random forest classifier when only a
chest sensor was used. With two more sensors added, the
average prediction accuracy increased to 94.3%. Olgum and
Pentland [35] utilized the Hidden Markov Model (HMM) to
classify eight common human daily activities. Again, three
positions on the human body were considered. Using the
SVM classifier, Cleland et al. [36] proposed a more complete
work that employed six sensors placed on the human body,
and all possible combinations of the six sensors were tested.
They showed that the best single sensor location is on the
hip, generating 96.66% accuracy. They also indicated that
a two-sensor combination can provide reasonable results.
When they evaluated all possible sensor combinations, all
combinations achieved similar accuracy (differences were
within 1%). Although these studies varied the number of
sensors for measuring a specific activity, they demonstrate
little comparison of different sensor placements.

Sztyler and Stuckenschmidt [20] added the process of
predicting the on-body position of a wearable device before
executing HAR. They conducted subject-specific and cross-
subject validations, assuming the system could be used with
the labelled data and under the condition that the user could
not produce the training data. After comparing seven different
body parts, they recognized the waist as the most suitable
position. Additionally, Kurban and Yildirim [37] investigated
several classifiers with three common positions on the human
body. They used the HAR system to classify five simple
activities, and the chest was identified as the best sensor
placement.

Thus, various researchers have utilized different machine
learning models for HAR to study the influence of sensor
placement on accuracy. However, as stated in [20], the opti-
mal sensor placement depends on the recognized activities.
The factors affecting the system accuracy are complicated,
including the sensor position, the selected learning network,
and the method for processing the sampled data. It is mean-
ingless to evaluate the optimal sensor layout without the
specific HAR system and the recognized activities as the
premise. Based on these previous studies, this paper proposes
an optimization scheme to offer the best wearable sensor
layout to fit the user’s requirements. The designed scheme
is effective once the adopted HAR system and dataset are
determined. In contrast to other works, we expanded the
potential sensor placement over the whole body according to
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the human motion rigid-body model, and 17 different parts of
the human body were examined. Based on our HAR system
and dataset, the proposed optimization approach can generate
the optimal sensor layout for different numbers of sensors as
well as make recommendations for sensor placement under
particular sensor requirements.

Ill. WEARABLE ACCELEROMETER LAYOUT
OPTIMIZATION SCHEME

A. GREEDY APPROACH (COMBINATIONAL METHOD)

To investigate the optimal combination of sensors under dif-
ferent requirements of sensor numbers, we first considered
the greedy approach due to its lower computational times.
The greedy method merely generates the optimal solution
based on the current best solution. It requires first determining
the best position for a single sensor, Sqp1. To this end, the
acceleration data from 17 sensors were used to train and test
the model, and thus, the optimal sensor use could be identi-
fied. We subsequently combined Sqp1 with one of the remain-
ing 16 sensors in turn and compared the results to find the
best two-sensor combination, i.e., Sop1 + Sop2. The adopted
criterion is the maximum average accuracy of classification
for 10 different activities. Each test was executed three times,
and the average accuracy was calculated as the result. The
solution was derived based on the previous best solution, and
the result was normally the local optimal solution.

B. MULTISTAGE AND MULTISWARM DISCRETE PARTICLE
SWARM OPTIMIZATION (MSMS-DPSO)

The greedy method is likely to give a classification result
related to different numbers and positions of sensors. This
method trends toward accuracy, and the corresponding com-
putational complexity is relatively low. However, the results
obtained depend greatly on previous findings. Possible com-
binations other than those based on previous results are not
tested (e.g., testing the combination of two positions with
worse results). To avoid such issues, a heuristic global search-
ing algorithm can be adopted.

A particle swarm optimization (PSO) algorithm as a type
of heuristic algorithm imitates the behavior of birds foraging.
The goal of the search is set as the best solution of the specific
fitness function. The PSO algorithm normally generates a
series of initial solutions within an N-dimensional space as
a random distribution of particles. Each particle is assessed
by the corresponding value of a specific fitness function,
i.e., its fitness value. The particle has its own velocity of
movement and position. With different forms of PSOs, each
discrete PSO (DPSO) normally requires that the position of
each particle should be an integer and not repeated in different
dimensions [45]-[49]. Such discrete problem optimizations
all follow the basic principle of updating the velocity of a
particle and combining with other algorithms to update the
position of the particle based on different problems.

For a DPSO algorithm, the velocity is updated by
formula (1), where i represents the current dimension.
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The equation for updating velocity consists of three parts:
a self part, an ““individual” part, and a ‘“‘social” part. The
self part is based on the previous velocity and is normally
multiplied by the weight w to control the degree to which the
previous velocity affects the current one. The “individual”
part enables the particle to be close to the best position
from its individual history, Ppest. The Gpegt 1s the core of the
“social” part, which is the best position among the history
of all particles. This part allows the particle to converge
on the overall best position. The coefficients r| and r, are
randomly produced from (0,1). ¢; and ¢, are operators of
the ““individual” part and the ““social” part, respectively. The
position is subsequently altered based on the new velocity of
a particle, as shown in formula (2).

. . . i ; p
V51+1 =w-Vv, +cir (P;m —x))+ czrz(sz —-x;) (1)

i 1 i
xn+1 =Xy + vn+1 (2)

As a swarm intelligence algorithm, PSO emphasizes the
randomness and convergence of the algorithm itself. The
randomness requires the position of the particle concerned
to be altered disorderly and freely. This is reflected in the
principles of generating and updating velocity (random oper-
ators rq and rp). For a convergence characteristic, it requires
all the particles involved to be able to converge to the best
position. Thereby, the “social” part of the velocity-updating
formula provides the direction for the other particles. During
the iteration period, all particles will “fly” to the global
best position Gpegt, updating their positions based on fitness
values. Thus, the characteristics of randomness and conver-
gence constantly guarantee that particles may converge to
find the best position. Relevant improvements from previous
studies may concern ways to update particle position, like
redefining the velocity operator, involving a sigmoid func-
tion, employing a hybrid searching algorithm, and so on.
Hence, in this case, the final goal is to figure out the best
optimal combinations among 17 sensor positions given the
number of sensors required. It is vital to ensure the particles’
movement and to avoid repetition in different dimensions.
Thus, the methods of updating velocity and position used
in this paper are not altered. We have designed a multistage
and multiswarm discrete PSO (MSMS-DPSO) algorithm for
optimal sensor combination searching. The dimensionality of
space established is related to the quantity of sensors used on
the human body. The relevant workflow of the MSMS-DPSO
is shown in Figure. 1.

The main process of the algorithm can be divided into two
periods: the first is intragroup optimization, and the second is
whole swarm optimization. During the first period, different
swarms carry out respective PSO optimization in their own
swarms. The global best position and local best position
are both defined within their group, and different swarms’
best positions do not affect each other. In this period, the
key point is to find the maximum fitness value by means
of optimization within various swarms. The position corre-
sponding to the maximum value among different swarms in
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FIGURE 1. Operation of designed optimization method.

each iteration needs to be recorded and updated as well. Once
any dimension’s position has been changed, the fitness value
is calculated and used to update the local best position and
the global best position. After the completion of intragroup
optimization, the beginning of the second optimization period
enables the selected particle to be the global best position
from each swarm in first stage. The global best position at
this moment is the optimal position among the global best
positions of all swarms at the last step of the previous stage.
In this period, both accelerating convergence and simulta-
neously testing other combinations are necessary, and the
fitness calculation is performed after the positions of one
particle in different dimensions have been all updated. The
velocity limitation is also extended to quicken the particle’s
movement.

However, before applying the velocity- and position-
updating formulas, the initial positions of all particles need to
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be considered seriously. The initial positions of the particles
could have a functional influence on the performance of
a PSO [45]. In our paper, the position of the first dimen-
sion is assigned to the odd position. Two border particles
(11,2,3...,N],[17,16,15...,17—N +1]) are also defined
to make sure the particle does not move out of bounds. These
numbers indicate the position of the corresponding sensor.
After the position of the first dimension has been specified,
the position numbers of the remaining dimensions are chosen
randomly and do not repeat the position of the first dimension.
The most important part of the optimization is the velocity
and position updating process. Unlike a typical PSO algo-
rithm, the velocity cannot simply be updated by formula.
It needs to ensure that the particle position is not repeated in
different dimensions and simultaneously ensure the ergodic-
ity of the particle. After calculating velocity and position from
equations (1) and (2), to obtain the discrete value, the calcu-
lated new position needs to be rounded using equation (3).

= [x;:m] ifx,;H — [x;:m] <05
" [l +1 i X, —[x,,,1>05

3

When xr/f+1 is equal to x;fill, a position repeat appears, and
the algorithm requires processing to ensure that no dimen-
sion’s position number is the same. When the new position
xr’f 1 of dimension 1 has been calculated, it is subsequently
checked against the positions of the other dimensions. If the
current dimension’s position x}’j 1 1s equal to any of the
positions of the remaining dimensions, its position num-
ber will decrease by 1, while convergence velocity v < 0
(as shown in Figure. 2.(a)). In addition, position limita-
tion is necessary and needs to be accounted for during
changes in position. The maximum position number is limited
to 17, while the minimum value is 1. The corresponding
implementation of MSMS-DPSO is shown in Algorithm 1

(see Appendix).

IV. HUMAN ACTIVITY RECOGNITION SYSTEM DESIGN

A. EXPERIMENTAL SETUP

1) EXAMINED SENSOR POSITIONS

Considering the current positions of on-body consumer
devices, potential wearing locations on the body, and the
symmetry of the human body structure, devices were placed
at 17 different positions via bandages on the body, including
the head, chest, left shoulder, right shoulder, waist, left upper
arm, left forearm, right upper arm, right forearm, left hand,
right hand, left upper leg, left lower leg, left foot, right upper
leg, right lower leg, and right foot. These positions include
all possible active parts involved in daily activities and more
or less cover all potential locations of sensors in current
research [4]-[6]. We also listed the possible correspond-
ing practical sensor installation locations combined with
clothes, consumer electronics, and accessories according
to 17 different body parts, as shown in Table 1. Details
of the sensor locations on the human body are displayed
in Figure 1.
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TABLE 1. Selected sensor positions and corresponding practical locations.

Body part Practical senor location
Head Hair band/Glasses/Earphone
Chest Shirt pocket/Necklace/Bra
Shoulder Backpack straps
Upper arm Armband
Forearm Watch/Wristband
Waist Belt
Upper leg Trouser pocket
Lower leg Knee supporter
Foot Shoes

2) RECOGNIZED ACTIVITY

Ten different human daily activities were executed in the
experiment to ensure a more comprehensive range of testing
activities [12], [41], [42]. These activities can be divided
into three groups: static activities, transitional activities, and
dynamic activities (as shown in Table 2).

3) DEVICE

Acceleration information was obtained from a wearable IMU
device (Xsens MVN). The acceleration detected from a triax-
ial accelerometer in each unit was sampled at 60Hz.

4) DATASET
As the tested sensor positions cross the whole body and
there is no public dataset could satisfy the requirement of our
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TABLE 2. Completed activities in the experiment.

Type Activity
Static Standing, Lying
Dynamic Walking, Running, Going upstairs, Going
downstairs
Transitional Sitting-to-standing, Standing-to-sitting,

Squatting-to-standing, Standing-to-
squatting

experiment. We recorded the data for testing, which involved
10 subjects (5 males and 5 females) wearing 17 sensors on
their bodies. The subjects’ heights ranged from 160cm to
188cm, and the subjects were instructed to do the relevant
activities naturally.

5) PROCEDURE

The subjects were directed to perform static and dynamic
activities for durations of 90 seconds at a time and transitional
activities in sets of 15 repetitions. Data were recorded by the
XSens MVN capture system, which can reconstruct a human
model with visualization. This system can also perform anno-
tation of related activities.

B. DATA PROCESSING

Acceleration data from each axis was processed with seg-
mentation via a sliding window method. According to
Wang et al. [12], the length of the sliding window may
directly affect the results of ADL prediction, regardless of
the classifying methods chosen. Their study states that the
window size should be larger than 2.5s to obtain acceptable
accuracy. Therefore, the sliding window length in this work
was set at 4s with an overlap of 2s to ensure continuity of
motion.

C. CLASSIFIER

Considering the characteristics of the dataset used,
we adopted a classifier with handcrafted features.
Li et al. [42] evaluated different classifiers with the same
feature sets for HAR, and the best prediction result was shown
by SVM compared with the KNN, FNN, and DT classifiers.
SVM can map the data to high-dimensional space via a Kernel
function to discover a hyperplane to classify the dataset [43].
Hence, SVM with the radial basis kernel function (RBF) is
adopted in this paper to discriminate different human ADLs.

D. FEATURE EXTRACTION

Normally, a sampled acceleration signal can be used to derive
the orientation vector of acceleration [34]. Because the calcu-
lation of the orientation of acceleration is influenced by the
sensor placement, the features used in this research are inde-
pendent from the orientation vector but relate to statistical
characteristics and the energy of the signal. Features involved
in the human ADL recognition process are commonly divided
into time-domain features, frequency-domain features, and
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TABLE 3. Extracted features and descriptions for classification.

Type Descriptions
Time domain Mean, variance, standard variance, 75th
percentile, inter-percentile
Mean and median value of power
spectrum, Shannon entropy

Frequency
domain

time-frequency features [44]. Due to the significance of fea-
ture extraction, Atallah et al. [11] argued that the average
entropy of the acceleration signal could have a relatively high
ranking among 13 time-frequency features examined. More-
over, Preece et al. [44] also demonstrated that time-frequency
features do not present an advantage compared with time-
domain and frequency-domain features for the recognition of
eight activities. Therefore, this work utilizes time-domain and
frequency-domain features. The extracted features are listed
in Table 3. All features shown are calculated from the signal
of each axis.

V. EVALUATION AND RESULTS

With the approach introduced above applied for seeking an
optimal combination of sensors, this section will discuss the
relevant results from the experiment.

The evaluation can be divided into three parts, at the first
we evaluated the different sampling rate influence on the
optimal sensor positions by the combinational method, which
is able to figure out the basic trend of sensor number effect on
classification accuracy. Secondly, our MSMS-DPSO method
is evaluated. The baseline method is selected as the Dynamic
Programming. The baseline method related to finding the
global optimal position combinations, testing all the combi-
nations of a given number of sensors. We would test how close
the result from MSMS-DPSO to Dynamic programming and
the computational times. Finally, we provide the usage of our
method on deriving the optimal sensor positions according to
the user preference.

A. INFLUENCES OF DIFFERENT POSITIONS AND
NUMBERS
1) STUDY WITH GREEDY APPROACH (COMBINATIONAL
METHOD) FOR DIFFERENT SAMPLING RATES
As introduced above, the greedy approach based on the
best sensor position from the previous time can be used to
generate the local optimal solution with less computational
time. Furthermore, we also down-sampled the acceleration
to validate a more practical situation and determined the
impact of sampling rate on the best position. The dataset of
60Hz, 30Hz, and 20Hz sampling frequency was examined,
and relevant results are shown in Table 4. Based on the results,
with decreasing sampling frequency, the accuracy increased.
However, the best positions and numbers of sensors were not
significantly altered.

In this experiment, we used the 10-fold cross validation
(CV) method to calculate the accuracy of mentioned sensor
positions. The training data and testing data are separated
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TABLE 4. The result of optimal combination method with different
sampling frequency.

TABLE 5. Parameter set for MSMS-DPSO during the testing.

Parameter Value
Sampling frequency . Swgrm size ?
No. Particles in each swarm 3
60Hz 30Hz 20Hz . . .
. . .. Dimensionality 2/3/4
Position Accura Position Accur Position Accur )
Inertial factor w 0.6
o e A Intragroup period: +1
1 Right 88.61 Right 92.48 Right 94.09 Velocity limitation viim Whole swarm period: +1.6
shoulder shoulder shoulder

2 + Waist 92.66
3 + Chest 94.14 + Chest 96.47
4 + Right 94.59 + Right 97.34
upper upper
arm arm
5 + Head 95.33 + Head 97.81

+ Waist 95.55 + Waist 96.77
+ Chest 97.31

+ Head 98.09

+ Left 98.17
forearm
+ Right 98.26

6 + Left 95.39 + Left 97.80

shoulder shoulder upper
arm
7 + Left 95.29 + Left 97.18 + Right 97.97
upper upper forearm
arm arm

independently and randomly with no overlapping for accu-
racy of calculation.

The results also show that the more sensors used for
each sampling rate, the greater the total classification accu-
racy. Nevertheless, when five or more sensors are used, the
increase in average classification accuracy is not obvious.
This may be due to the overfitting of the SVM classifier.
Also, in practical applications, it is more worthwhile for us to
concentrate on investigating the use of four or fewer sensors.
In this way, both actual application and the range of large
changes in accuracy are taken into account.

2) STUDY WITH MSMS-DPSO APPROACH FOR DIFFERENT
CLASSIFIERS

The MSMS-DPSO algorithm was only adopted to determine
the best solution when using two, three, or four sensors. The
parameters applied to the MSMS-DPSO algorithm in this
paper are listed in Table 5.

In this experiment, the compared objects are from two
points, the accuracy and computational times between our
method and baseline method. For the accuracy calculation,
to decrease the randomness of classification, the random
environment was set as the same. and the examined dataset
(including training and testing) was the same as well (the
training and testing dataset are divided by 75% and 25%
respectively). The computational times is the total number of
accuracy calculations during the iteration.

HAR systems are diverse according to designed objects
(i.e., recognized activities), adopted classifiers, data segmen-
tation lengths, etc. It cannot be said which classification
method has an absolute advantage among HAR systems.
As the application of our algorithm is for a certain HAR
system, it is necessary to validate the generalizability for
different classification methods for the same recognized task.
Therefore, we conducted an experiment that applied the
MSMS-DPSO to several different classification approaches.
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Intragroup period: 2

Individual factor ¢ Whole swarm period: 1

Social factor ¢z 2
r Randomly taken from in [-
1,1]
r Randomly taken from in [-
1,1]
Intragroup Maximum iteration times:
Stop period
condition N+l
Whole Converge to one position
swarm
period

Since we selected the SVM as the chief classifier for
our study, the compared methods are (a) Random Forest
(30 estimators), (b) baseline CNN classifier, (c) DNN+LSTM
from [1], and (d) DeepCNN [3]. Methods (c) and (d) main-
tained the network structure described in the original papers.
Method (b) is indicated as the baseline deep learning method,
which consists of a 16-feature map with 2 x 2 kernels and
Relu activation, a dropout layer with 0.1 rate, a 32-feature
map with 2 x 2 kernels and Relu activation, a dropout layer
with 0.2 rate, a flattened layer, a dense layer with 128 nodes
and Relu activation, a dropout layer with 0.5 rate, and finally,
a 10-node dense layer as output. The learning methods were
developed based on TensorFlow 2.1 within Python 3.6 and
GPU GTX 1080ti. The batch size and epoch were 30 and 20,
respectively, for all learning methods. To decrease the ran-
domness of classification, the random environment was set
as the same, and the examined dataset (including training and
validation) was the same as well. Additionally, the baseline
method related to finding the global optimal position com-
binations, testing all the combinations of a given number
of sensors, was executed to validate the results from the
MSMS-DPSO. Figure 4 illustrates the working process of
the MSMS-DPSO with three sensors as an example. The
corresponding experimental results are presented in Table 6
and Figure 5.

As Figure 5 (a) to (e) shows, the effect from different
classifiers is not significantly obvious for ADL recognition.
This has been reported by other works as well [3], [15]. For
example, in [3], the difference among the SVM and Ran-
dom Forest classifiers and the deep learning network is less
than 0.1%. This is mainly because the signal captured from
the accelerometer maintains limited channels, and the rec-
ognized activities are relatively simple. Therefore, the deep
learning-based classification method cannot extract more
obvious features to outperform artificial feature-based classi-
fiers, such as SVM and Random Forest. Because there were
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TABLE 6. Result of MSMS-DPSO method and comparison with all

combinations tested for different types of classifiers with the same data.
(M indicates the proposed MSMS-DPSO method, and A indicates the
testing all combinations, i.e., baseline method).

Classifier ~Me  Sensor Position Accuracy
4. Right shoulder 8. Left shoulder tho number
d
5 Risht Q 2 Waist + Chest 93.56%
upper arm | W | M 3 Waist + Chest + Right 94.57%
9. Left upper SVM Upper Arm
am 4 Waist + Chest + Head + 95.13%
A Right Upper Arm
2 Waist + Chest 93.56%
30~ 3 Waist + Chest + Right 94.57%
6. Right forearm| 10, Left forearm Upper Arm
. 4 Waist + Chest + Head + 95.13%
7. Right hand § /0 11. Left hand Right Upper Arm
‘ 2 Right shoulder + Left 94.10%
12. Right upper 15. Left upper M foot
k T leg Random 3 Right shoulder + Right 94.33%
i Forest hand + Left lower leg
4 Right Upper Arm + Left 94.78%
Shoulder +Left Hand +
13. Right lower 16. Left lower Ri ght Foot
- 2 Right shoulder + Left 94.10%
A foot
3 Waist + Chest + Left 94.67%
Hand
14, Right faot 17. Left foot 4 Waist + Chest + Left 94.89%
Hand + Right Lower Leg
2 Left Shoulder + Left Foot 91.49%
FIGURE 3. Locations for sensors worn on human body (with image of M 3 Chest + Right Shoulder + 91.97%
selected sensors). For generality, the Xsens sensors are attached to the . Left Foot
commonly worn placement of the human body, such as the wrist, middle CNN 4 Right shoulder + Left 92.97%
of thigh (as the pocket position), middle of forearm and so on. shoulder +Left Upper
Arm +Left Foot
2 Left Shoulder + Left Foot 91.49%
izl L A 3 Chest + Right Shoulder + 91.97%
100 ptimization process of 3-sensor combination Left Foot
Possible 4 Waist + Chest +Right 92.97%
maximum value 9 Converge Lower Leg +Left Foot
e k4 2 Right shoulder + Left 92.97%
i M foot
g 20 DNNLST 3 Right Upper Arm + Left 93.19%
3 M Shoulder + Right Foot
e [1] 4 Waist + Chest + Right 95.12%
g Shoulder + Left Foot
z 2 Right shoulder + Left 92.97%
60 A foot
3 Chest + Right Shoulder + 94.67%
Right Foot
s o0 o it 4 Waist + Chest + Right 95.12%
Iteration times Shoulder + Left Foot
2 Right Shoulder + Left 92.40%
FIGURE 4. Convergence process of MSMS-DPSO (3-sensor of SVM M Foot
classifier used as an example). DeepCNN 3 Head + Right Shoulder + 93.47%
[3] Left Foot
1 0,
no significant differences among several classifiers except 4 Eﬁiﬁ dlif ze;ﬁ;?]j OI\;VZfrt 95.23%
the baseline CNN, we still chose the SVM for subsequent Leg + Left Foot
analysis. N 2 Right Sh](;ul(ier + Left 92.40%
L . 00
In terms of optimization, Table 6 and Figure 5 (f) demon- 3 Head + Right Shoulder +  93.47%
strate that the MSMS-DPSO can calculate the “best” sen- Left Foot
sor placement and combination. For lower sensor numbers, 4 Waist + C?eSt + Head + 96.03%
Left Foot

like two sensors used, MSMS-DPSO can more successfully

find the global optimal positions compared with testing all

combinations. With higher sensor numbers, the task is more
challenging. In some cases, the result from the MSMS-DPSO
was not the so-called global best position. This is because of
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the restricted particle searching feasibility of DPSO, which
is prone to be trapped into the local optimum. Even so, the
accuracy difference between the MSMS-DPSO and baseline
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FIGURE 5. Test on different classification methods. (a) is SVM classifier; (b) is Random Forest
classifier; (c) is CNN; (d) is from [1]; (e) is from [3]. (f) is computational cost comparison (average
calculation from 5 tests with MSMS-DPSO). The proposed MSMS-DPSO method can utilize less
computational time to be close to the baseline method and the accuracy results of two methods are
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FIGURE 6. The confusion matrix of right shoulder sensor, right upper leg sensor, and right foot sensor.

methods is quite small (less than 1%). Because we stabilized
the random characteristic of the selected learning method
for algorithm comparison, different random characteristics
would influence the results slightly, which may cause some
differences between the results from the two methods. So, the
designed MSMS-DPSO can be shown to effectively deter-
mine the optimal sensor position. Compared with the all-
possible-combinations test, the computational time is lower,
especially when the required number of sensors is higher.

B. DISCUSSION OF SENSOR LAYOUT
1) SINGLE SENSOR USED AMONG THE DIFFERENT BODY
SEGMENTS

When using one accelerometer, the sensor placed on
the right shoulder expresses a relatively higher average
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classification accuracy. Furthermore, sensors on the lower
part of the human body normally result in worse accuracy,
especially on the foot. The results from the sensors located
behind the forearm (arms straight down naturally), except the
waist sensor, are all relatively lower.

For the three types of activities involved, the classifier can
provide different prediction results depending on the different
positions of the sensors. Figure 6 displays the confusion
matrix from the right shoulder, right upper leg, and right foot
when using one sensor. The results show that the average pre-
diction accuracy decreases as the sensor position moves down
the body. Figure 7 presents the F1 scores of each single type
of activity recognition corresponding to these three sensors.

Figures 6 and 7 together show that for static activity clas-
sification, there is no significant difference among the three
sensor positions. The main factor that causes a decrease in the
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Comparison of three single sensors

100
90
80 —
70

50
40
30
20

F1-score (%)

Static Dynamic Transistional

Activity Type

mRight shoulder ®Right upper leg Right foot

FIGURE 7. F1-score of the three single sensors related to three types of
activity.

rate of recognition is the variance of the other two kinds of
activity classification, especially dynamic activity classifica-
tion. Based on Figure 7, the signal from the right foot cannot
effectively discriminate between dynamic activities. In its
related confusion matrix, the trained classifier has a worse
capacity to classify the activities ““going upstairs” and *“going
downstairs.” The same situation also emerges for the right
upper leg sensor. For transitional activity recognition, none
of the three sensors has relatively good performance in clas-
sifying a reversible transitional activity. However, increasing
the number of sensors can improve the situation.

2) MORE THAN ONE SENSOR USED EVALUATED WITH
OPTIMAL LAYOUT

Figure 8 shows the confusion matrix of two-, three- and
four-sensor optimal combinations found by the MSMS-
DPSO algorithm. The F1 scores for respective types of activ-
ity for different numbers of sensors used is also presented
in Figure 8. With many more sensors used, the most obvi-
ous improvement related to the prediction of results is the
classification of transitional activities. The F1 score of this
type of activity increases from 73.31% (one sensor used)
to 88.49% (four sensors used). For dynamic activities, the
F1 score of only one sensor used on the right shoulder is
92.04%, while a four-sensor combination raises the score
to 97.65%. For these two kinds of activity, increasing the
number of sensors contributes to a better performance for the
SVM classifier. However, a continual increase in the number
of sensors does not generate a significant improvement. For
static activities, the right shoulder sensor used alone can
offer an adequate classification accuracy of 96.98%. For four
sensors used, the highest accuracy achieved is 98.79%. So,
compared with identifying the two other types of activities,
varying the number of sensors does not significantly improve
the classifier’s performance for static activities.

These results provide the basic information for human
ADL recognition using an accelerometer. Among 17 dif-
ferent positions on the human body, using accelerometers
on the upper body with the SVM classifier provides an
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acceptable result. For recognizing static activity, any location
for accelerometers can produce an adequate classification
result. However, signals from lower body sensors generally
have less ability to identify the actions of going upstairs
and downstairs as well as transitional activities. If a better
result is required, especially for the recognition of transitional
activities, increasing the number of sensors can be a favorable
solution.

3) SENSOR LAYOUT BASED ON USER PREFERENCE

As mentioned before, one important factor of applying the
HAR system to individuals is where the wearable sensor
should be worn. The selection of sensor position not only
determines the prediction performance of the system but also
depends on the user’s actual physical situation. For prac-
tical application, we proposed that considering the user’s
demand and preference for sensor positions is significant.
Thus, we examined several sensor combinations based on the
specific positions on the body that fit the user’s demand and
conditions.

To present the usage of our method to satisfy different
user conditions, we investigated user preferences for the
placement of wearable devices using an online questionnaire.
There were 100 respondents (50 male and 50 female) aged
between 20 and 60 involved in the online survey. The involved
participants number is common from the related commu-
nity [2], [50]. The results are shown in Figure. 10.

Although different people have different demands for
wearable sensor position, more than half of people prefer to
wear the sensor on the wrist. Also, some would like to keep
the device on the head or glasses. Via the proposed MSMS-
DPSO algorithm, we can examine several combinations with
specific user-preferred positions as the fixed positions. The
relevant results are shown in Table 7.

VI. DISCUSSION

According to the results, sensors on the upper body show
better performance in detecting a series of human ADL,
especially the waist, chest, head, and shoulder. As Figure 10
shows, the waist is given the highest ranking, which is con-
sistent with the work of [20]. However, in our work, we con-
tributed to the generation of more sensor layouts when the
designated sensor placement is ineffective due to the physical
condition or preference of the user.

When more sensors are adopted to increase the accuracy
of the results, the best results come from combining the waist
sensor, chest sensor, head sensor, shoulder sensor, and upper
arm sensor. Nevertheless, we found no notable improvement
in accuracy when the number of sensors used exceeded two.
This is similar to Cleland’s results [7], but their work did not
consider transitional activity. Additionally, with increasing
number of sensors, the most significant improvement is seen
for dynamic and transitional activity, especially the latter. But
for static activity, one sensor can provide acceptable classifi-
cation results. Compared with the related literature, our work
is relatively more comprehensive, using 17 accelerometers
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FIGURE 10. The investigation of user preference for wearable device.

placed on different locations of the human body to investigate
the effect of various numbers and positions of sensors on
classification performance.

As sensor position has been given close attention,
many researchers have investigated the influence of sen-
sor position on the performance of an HAR system from
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various vantage points, such as exploring the best posi-
tion [11], [33], validating different classifiers [20], [37],
testing sensor numbers [36], and examining the position-
specific classifier [20], [21]. However, based on not only
previous investigation results but also the findings of this
paper, the optimal sensor placement depends on the specific
HAR system as well as recognized activities. The discussed
optimal sensor placement is supposed to be under certain
conditions. In contrast to concentrating on the study of a
recognition algorithm, focusing on sensor position ultimately
aims to leave the sensor selection in the hands of the end user
and maintain the user-to-sensor interaction in such wearable
HAR systems. Thus, the optimization perspective proposed
in this paper not only aims to investigate which part of the
human body is most suitable for accelerometer placement but
also intends to combine the user’s preferences and demands
to produce a flexible sensor layout scheme. Not limited to
the conclusions obtained from previous works, this paper
expands the examined positions of wearable sensors based on
the rigid body model and the symmetry of the human body.
The optimization scheme developed has the general ability
to fit different HAR systems and offer different optimal
solutions.

However, there are still some limitations and shortages
in this research. Because the paper concentrated more on
the optimization scheme, only some simple activities were
selected. While, to better sever more people, more types
of activities could be considered, such as context-aware
activities in daily life. Furthermore, although we proposed
the searching algorithm based on DPSO for addressing
relevant sensor selection issues, the slow operating speed
only allows this algorithm to be applied in an offline sce-
nario. Using a rapid optimization algorithm is more likely
to allow the related sensor selection system to be utilized
in online optimization scenarios, allowing for more appli-
cations. Moreover, the survey of user’s preference can be
recognized as only a preliminary result. We considered the
other works and merely conducted a small range investigation
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TABLE 7. Result with specific positions.

Specific Optimal combination F1-Score
Position Static Dynamic  Transi
tional
2 + Chest 97.09% 96.46% 84.86%
Waist 3 + Chest + Right 98.07% 97.12% 86.26%
Upper arm
4 +Head + Chest + 98.52% 97.55% 88.11%
Right Upper Arm
2 +Waist 97.09% 96.46% 84.86%
Chest 3 + Waist + Right 98.07% 97.12% 86.26%
Upper Arm
4 +Head + Chest + 98.52% 97.55% 88.11%
Right Upper Arm
2 +Waist 97.04% 96.09% 82.52%
Head 3 + Waist + Chest 98.30% 97.68% 85.93%
+Head + Chest + 98.52% 97.55% 88.11%
Right Upper Arm
2 +Waist 97.58% 95.77% 82.83%
Shoulder 3 +Waist + Head 98.68% 96.85% 85.37%
®) 4 +Waist+Chest  99.07%  97.05%  86.56%
+Right Upper Arm
2 + Chest 98.02% 95.05% 79.21%
Upper +Waist + Chest 98.07% 97.12% 86.26%
Am®) 4 jHead+ Chest+  98.52%  97.55%  88.11%
Right Upper Arm
2 +Right Shoulder 96.16% 93.67% 77.37%
Forearm +Waist +Head 97.91% 95.09% 83.48%
(R) 4 +Head + Right 98.03% 95.61% 82.33%
Shoulder + Left
Upper Arm
Upper 2 + Right Shoulder ~ 97.09% 84.37% 81.31%
leg (R) +Waist + Head ~ 98.12%  86.99%  86.28%
4 +Waist +Chest + 98.89% 85.64% 87.73%
Head
Lower 2 + Right Shoulder  97.42% 81.95% 80.28%
leg 3 +Waist + Head 97.75% 83.54% 86.15%
®) 4 +Waist +Chest+  98.63%  87.78%  86.62%
Head
Foot 2 + Right Shoulder  99.28% 60.28% 78.43%
(R) 3 + Right Shoulder  98.96% 64.46% 83.69%
4 +Waist + Head 99.57% 68.10% 86.23%

(100 participants) to acquire the user’s preference. It is
believed that the results will be more convincing with the
increase of participant’s diversity. While the focus of this
study is related to the optimal sensor position derivation,
we used the results from survey to demonstrate that the
user’s conditions are different and proposed method can be
employed to output the optimal sensor positions according to
the user’s conditions.

VIl. CONCLUSION AND FUTURE WORK

This paper studied the impact of the number and placement
of accelerometers on human daily activity recognition. Two
methods, the greedy approach and the developed MSMS-
DPSO, were proposed to investigate the issue of sensor layout
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Algorithm 1 . Implementation of MSMS-DPSO

Input: Swarm number: Swarm; Particles in each swarm: Particle;
Dimension number N ; Current position x; Local best position Pb;
Global best position Gb;

Output: Best position Gb and its fitness value

1: Set parameters of velocity updating formula;

2: 1) Initialization

3: Velocity randomly assigned between [—1,1]

4: {x} [2] <« Particle position initialization algorithm
5: {Pb} and {Gb} < Fitness calculation

6 2): Intragroup Optimization

7: while no stop condition satisfied do

8: for i =0 to Swarm * Particle *N do

9: if x[k] not equal to Gb[k] then

10: v’; 41 < Velocity updating and set &1 as limitation
11: x;,]fi_1<—x:f 1&vﬁ

12: Non-repetition algorithm and position limitation;
13: {Pb} and {Gb} <« Fitness calculation

14:  endif

15: end for

16:end while

17: 3) Whole Swarm Optimization

18: {x} < {Pb}; {Pb} < {Gb}; Gb<—max{Gb};
19 while no stop condition satisfied do

20: for i = 0 to Swarm *N do

21: if x[k] not equal to Gb[k] then

22: v, 1 <« V]i:locity llipdating and set 1.6 as limitation
. /)
230 xlg e x &Y,

24:  Non-repetition algo-;ilthm and position limitation;
25: end if

26: if position has been altered then

27:  {Pb} and {Gb} < Fitness calculation

28: end if

29: end for

30: end while

on the body. The results from these methods reveal that
with an increase in the number of sensors used, the average
prediction accuracy can be effectively improved, particu-
larly when the number increases from one to two. A subtle
improvement in accuracy is seen when the sensor number is
higher than four. The proposed MSMS-DPSO optimization
scheme can be used to produce the best sensor layout based on
specific positions as a premise for accommodating different
user demands. The designed system aims to maintain the
user’s selection regarding sensor placement and keeps the
interface between the HAR system and user to generate a
more individualized pervasive sensing system.

Based on the results, different body segments generate
different levels of accuracy in HAR response, and upper and
lower body sensors show significant variance in dynamic
and transitional activity recognition. With more sensors used,
classification performance in terms of transitional activity
effectively improves. If the recognized activities basically
consist of static and dynamic activities, two sensors can
produce acceptable results. A sensor placed on the upper body
(waist, chest, head, shoulder, upper arm, in order of relative
performance) maintains an increasing prediction ability in
various types of activity recognition.
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The optimization scheme helps the HAR obtain a more
flexible sensor position interface to realize the personaliza-
tion of the user, such as some training cases for patients [51].
To better push forward the method result of this study, the next
step is likely to keep on building an lightweight system fusing
the optimization scheme to better support the HAR system
design, and also consider more factor in the design period
besides the user’s preference, like the sensor weight and
cost, which is going to seek a multi-dimensional optimiza-
tion scheme to benefit the decision making in the wearable
HAR systems [52].

APPENDIXS
See Algorithm 1.
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