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ABSTRACT Recently, deep neural network (DNN) schemes based on big data-driven methods have been
successfully applied to image classification, communication, translation of language, speech recognition,
etc. However, more efforts are still needed to apply them to complex robust nonlinear filter design in signal
processing, especially for the robust nonlinear H∞ filter design for robust state estimation of nonlinear
stochastic signal system under uncertain external disturbance and output measurement noise. In general,
the design problem of robust nonlinear H∞ filter needs to solve a complex Hamilton-Jacobi-Isaacs equation
(HJIE), which is not easily solved analytically or numerically. Further, the robust nonlinear H∞ filter is
not easily designed by training DNN directly via conventional big data schemes. In this paper, a novel
robust H∞ HJIE-embedded DNN-based filter design is proposed as a co-design of H∞ filtering algorithm
and DNN learning algorithm for the robust state estimation of nonlinear stochastic signal systems with
external disturbance and output measurement noise. In the proposed robust H∞ DNN-based filter design,
we have proven that when the approximation error of HJIE by the trained DNN through Adam learning
algorithm approaches to 0, the HJIE-embedded DNN-based filter will approach the robust nonlinear H∞
filter of nonlinear stochastic signal system with uncertain external disturbance and output measurement
noise. Finally, a trajectory estimation problem of 3-D geometry incoming nonlinear stochastic missile system
by the proposed robust H∞ HJIE-embedded DNN-based filter scheme through the measurement by the
sensor of radar system with external disturbance and measurement noise is given to illustrate the design
procedure and validate its robust H∞ filtering performance when compared with the extended Kalman filter
and particle filter.

INDEX TERMS Deep neural network (DNN), robustH∞ filter, nonlinear stochastic signal system, extended
Kalman filter, particle filter, Hamilton-Jacobi Isaacs equation (HJIE), co-design of H∞ filtering, and deep
neural network learning.

I. INTRODUCTION
In the last decades, the robust H∞ filter has been widely
applied to the field of signal processing when the statis-
tical information of external disturbance and measurement
noise are unavailable and their worst-case effects on the
filtering error need to be efficiently attenuated. Therefore
the robust H∞ filter is always used to estimate the state or
detect the signal in the signal transmission systems corrupted
with uncertain external disturbance and randommeasurement
noise [1], [2]. In the linear stochastic signal systems, the
H∞ filter design needs to solve a Riccati-like equation or
a corresponding linear matrix inequality (LMI) for filter
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gain [3]. In many practical signal processings, stochastic
signal transmission systems always have nonlinear dynamic
behavior with uncertain external disturbance and output ran-
dom measurement noise [4]–[6]. However, nonlinear H∞
filter design problem for the state estimation of nonlinear
stochastic signal system needs to solve a highly nonlin-
ear filter-system state-coupled partial differential Hamilton-
Jacobi-Isaacs equation (HJIE), which can not be efficiently
solved at present [3], [7].

The conventional extended Kalman filter [8] and uncented
Kalman filter [9], which are based on the linearization at the
predicted state of previous stage, are not easily employed to
treat this nonlinear optimal filter design problem of nonlinear
stochastic signal system with uncertain external disturbance
and output measurement noise [10]. The reason is that their
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filtering performance will be degraded by the error propa-
gation due to iterative linearization and unknown statistics
of external disturbance and output measurement noise. The
particle filter (PF) [11], [12] is suitable for the filtering
design of nonlinear stochastic signal systemswith given noise
statistics but unsuitable for filtering design problem under
uncertain external disturbances and measurement noise with
unknown or uncertain statistics. In order to avoid solving a
complex nonlinear partial differential HJIE for the minmax
robust H∞ filter design of nonlinear stochastic signal sys-
tems, several interpolation methods such as fuzzy interpola-
tion method [13]–[15], global linearization method [16] and
gain scheduling method [17] have been employed to inter-
polate several local linearized systems to approximate the
nonlinear stochastic signal system with external disturbance
and measurement noise so that HJIE of robust nonlinear
H∞ filter design could be interpolated by a set of local
Riccati-like equations or a set of equivalent local linearmatrix
inequalities (LMIs).

For example, the T-S fuzzy interpolation method is used
to interpolate several local linearized systems by some
fuzzy bases to approximate nonlinear stochastic signal
system [13]–[15], [18]–[20]. Then a T-S fuzzy filter is
employed to interpolate these local linear filters by some
fuzzy bases to achieve robust nonlinear H∞ filtering per-
formance by solving the corresponding LMIs. Besides, the
global linearization scheme employs some smooth interpo-
lation functions to interpolate several local linearized sys-
tems at the vertices of the convex hull of polytope �

of all linearized systems of a nonlinear stochastic sig-
nal systems to approach the nonlinear stochastic signal
system [16], [21]. Then, a global linearization filter can
be designed by interpolating local linear filters by some
smooth functions through solving a set of LMIs to achieve
the robust H∞ filtering scheme [16], [20]–[21]. However,
these interpolation schemes need to solve a large number
of LMIs. For example, if n local linearized systems are inter-
polated to approximate a nonlinear stochastic signal system,
it needs to solve n2 LMIs for nonlinear robust H∞ filtering
design [13]–[15], [18]–[19]. Therefore, for a highly nonlinear
stochastic signal system, it will increase the design complex-
ity of nonlinear robust H∞ filter in the design procedure
and the computational complexity of robustH∞ interpolation
filter at every time step. Furthermore, these interpolation filter
design methods of local linearized systems are based on the
fact that the solution of HJIE is limited to the form of the
quadratic Lyapunov function V (x̃(t)) = x̃T (t)Px̃(t) for some
PT = P > 0, where x̃(t) denotes the filtering (estimating)
error. This will lead to a conservative solution of nonlin-
ear HJIE. Since the state x(t) of signal system is unavailable
and is to be estimated in the filter design problem, the inter-
polation functions need to base on the estimated state x̂(t),
it will increase the design difficulty and filtering accuracy,
especially at the begining of estimation when a large initial
estimation error.

In this study, as shown in Fig. 1, a robust H∞ deep
neural network (DNN)-based filter scheme is proposed as a
co-design of H∞ filter scheme and DNN learning algorithm
for the robust state estimation of nonlinear stochastic signal
system by solving ∂V (x̃(t))

∂ x̃(t) via the output of DNN for the H∞
filter gain k∗(x̂(t)) from HJIE directly. The design procedure
of H∞ DNN-based filter is divided into two phases, i.e.,
(i) off-line training phase and (ii) on-line operation phase.
In the off-line training phase, the proposed HJIE-embedded
DNN in Fig. 1 is to be trained by Adam learning algorithm

to output ∂V (x̃(t))
∂ x̃(t) at time t via solving HJIE of the nonlinear

robust H∞ filtering design problem, and ∂V (x̃(t))
∂ x̃(t) can be used

to produce H∞ filter gain k∗(x̂(t)), the worst-case external
disturbance v∗(t) and output measurement noise n∗(t) simul-
taneously for the next step off-line training as shown in Fig. 1.
However, the most difficulty to solve HJIE by training DNN

to output ∂V (x̃(t))
∂ x̃(t) is that HJIE is the function of x̂(t), x̃(t)

and x(t), where x(t) is unavailable and to be estimated.
Therefore, theH∞ filter gain k∗(x̂(t)), the worst-case external
disturbance v∗(t) and output measurement noise n∗(t) will be
sent to nonlinear stochastic signal system, Luenberger-type
filter and estimation error system to replace unavailable v(t)
and n(t) to generate y(t), x̂(t), x̃(t) and x(t) = x̂(t) + x̃(t),
respectively, for the next training step at time t in the off-
line training phase. The replacement of unavailable external
disturbance v(t) and measurement noise n(t) by the worst-
case v∗(t) and n∗(t) in the H∞ filtering scheme does not
influence on theH∞ filtering performance because the robust
H∞ filtering scheme is designed based on the worst-case
v∗(t) and n∗(t) instead of v(t) and n(t). After off-line training
phase of robust H∞ DNN-based filtering scheme, it will be
shifted to on-line operation phase of H∞ DNN-based filter
scheme. In the on-line operation phase, y(t) is generated by
real stochastic signal system with real v(t) and n(t). We have
proven that as the error ε(θ (t)) of solving HJIE approaches
to zero by training DNN through Adam learning algorithm,
the output of HJIE-embedded DNN will approach to ∂V (x̃(t))

∂ x̃(t)
of HJIE of the robust H∞ filtering strategy and the proposed
HJIE-embedded DNN-based filter will approach to the real
robust H∞ filter of nonlinear stochastic signal system. How-
ever, in practical applications, we will stop the Adam learning
algorithm in the training phase when the absolute HJIE error
|ε(θ (t))| ≤ δ for some precribed small positive value δ.

The contributions of this paper are described as follows:
1) A novel HJIE-embedded DNN-based filter scheme is

proposed for the co-design ofH∞ filtering schemewith
DNN learning algorithm for the robust state estimation
of nonlinear stochastic signal system with uncertain
external disturbance and output measurement noise.
The worst-case external disturbance v∗(t) and output
measurement noise n∗(t) are employed in the off-line
training phase to replace v(t) and n(t) to generate output
y(t) by nonlinear signal model, x̂(t) by the filter model,
and x̃(t) by filter error model and x(t) = x̂(t)+ x̃(t) so
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FIGURE 1. The flow chart of robust H∞ HJIE-embedded DNN-based filter scheme of nonlinear stochastic signal system in off-line training phase.
It is a co-design of the conventional H∞ Luenberger-type filtering scheme and an HJIE-embedded DNN learning scheme to be trained via Adam
learning algorithm for the robust state estimation of nonlinear stochastic signal system in (1) with uncertain external disturbance and output
measurement noise. Since x(t) is unavailable in the off-line training phase, we need to embed an estimation error system in (4) to generate x̃(t) so
that we could obtain x(t) = x̃(t)+ x̂(t) for calculating A(x(t)), B(x(t)) and C(x(t)) in HJIE. Further x̃(t) is inputed into HJIE-embedded DNN to output
∂V (x̃(t))
∂ x̃(t) to generate the H∞ observer gain k∗(t), the worst-case external disturbance v∗(t) and measurement noise n∗(t) as well as to solve

HJIE = 0. If HJIE = ε(θk (t)) 6= 0, ε(θk (t)) is fedback to train DNN by Adam learning algorithm. In the off-line operation phase, if ε(θk (t))→ 0,
we show that the output of DNN approaches to ∂V (x̃(t))

∂ x̃(t) and we will shift to on-line operation phase. In the on-line operation phase, y (t) is
generated by real v (t) and n(t). In general, we do not need to train DNN in on-line operation phase. However, if

∣∣ε(θk (t))
∣∣ > δ for some prescribed

small value δ > 0. We could feedback ε(θk (t)) to train DNN in the on-line operation phase without influence on the H∞ filtering performance.

that the x(t)-x̂(t)-x̃(t)-coupled nonlinear HJIE could be
solved by HJIE-embedded DNN for H∞ DNN-based
filter design. Adam learning algorithm is employed
to efficiently train the weighting parameters of DNN

to output ∂V (x̃(t))
∂ x̃(t) to solve nonlinear partial differen-

tial HJIE directly for the robust H∞ filtering design
of nonlinear stochastic signal system. We also prove

that when the error of solving ∂V (x̃(t))
∂ x̃(t) from HJIE

approaches to 0 in the DNN training process, the pro-
posed HJIE-embedded DNN-based filter scheme can
approach to the robust H∞ filter design of nonlinear
stochastic signal systems.

2) Instead of solving V (x̃(t)) from HJIE of the robust
H∞ filter design of nonlinear stochastic signal sys-
tem in the conventional design methods, the proposed
HJIE-embedded DNN directly solves ∂V (x̃(t))

∂ x̃(t) from
HJIE to obtain the robust H∞ filter gain k∗(x̂(t))

directly, which can avoid the very difficult calculation
work of ∂V (x̃(t))

∂ x̃(t) from the numerical values of V (x̃(t))
and x̃(t) in the conventional design method.

3) The proposed robust H∞ DNN-based filtering scheme
can provide a co-design of H∞ filtering scheme and
deep learning algorithm to bridge the gap between the
traditional theoretical nonlinear robustH∞ filter theory
and recent pure big data-driven deep learning schemes
to facilitate the application of DNN schemes to treat the
complex nonlinear H∞ filter design problem in non-
linear stochastic signal systems to save much training
data and computation time of the conventional big data-
driven deep learning filter design method.

The remainder of this study is organized as follows:
In Section II, the problem description is given. The theoretical
robust H∞ filter gain and the worst-case external disturbance
and measurement noise are solved based on ∂V (x̃(t))

∂ x̃(t) of HJIE.
The robust H∞ HJIE-embedded DNN-based filter scheme is
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proposed through the Adam learning algorithm in Section III.
It is also shown that the proposed robust H∞ DNN-based
filter scheme will approach to theoretical robust H∞ filter
if the approximation error of HJIE approximated by DNN
via the off-line training through Adam learning algorithm
converges to 0. A simulation example of the state estimation
of incoming ballistic missile by the sensor of radar is given to
illustrate the design procedure and validate the performance
of proposed H∞ DNN-based filter is given in Section IV.
Finally, a conclusion is given in Section V.

Notation: Rn: The set of n-tuple real vectors. Rn×m: The
set of real n × m matrices. x(t) ∈ Rn, then ‖x(t)‖ =(∑n

i=1 x
2
i (t)

)1/2
=

(
xT (t)x(t)

)1/2
, where xT (t) denotes

the transpose of x(t). L2[0, tf ]: The set of n-tuple func-
tions with finite energy within [0, tf ], i.e., for x(t) ∈
L2[0, tf ],

∫ tf
0 ‖x(t)‖ dt =

∫ tf
0

(
xT (t)x(t)

)1/2 dt < ∞,

where tf denotes the terminal time. The Jacobian vector

and Hessian matrix of V (x(t)) are denoted as
(
∂V (x(t))
∂x(t)

)
,(

∂V (x(t))
∂x1(t)

, . . . ,
∂V (x(t))
∂xi(t)

, . . . ,
∂V (x(t))
∂xn(t)

)T
and

(
∂2V (x(t))
∂2x(t)

)
,

∂2V (x(t))
∂2x1(t)

· · ·
∂2V (x(t))
∂x1(t)∂xn(t)

...
. . .

...
∂2V (x(t))
∂xn(t)∂x1(t)

· · ·
∂2V (x(t))
∂2xn(t)

 , respectively. Ia denotes the

identity matrix with dimension a× a; 0a×b denotes the zero
matrix with dimension a× b.

II. PROBLEM DESCRIPTION
Consider the following nonlinear stochastic signal system

ẋ(t) = A(x(t))+ B(x(t))v(t)

y(t) = C(x(t))+ n(t) (1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the measure-
ment output, v(t) ∈ Rnv denotes the stochastic external dis-
turbance, and n(t) ∈ Rnn denotes the stochastic measurement
noise. The system functions A(x(t)), B(x(t)), and C(x(t)) are
nonlinear function of state vector x(t) which satisfy Lipschitz
condition.

Before the discussion of filter design of nonlinear stochas-
tic signal system in (1), the observability of nonlinear stochas-
tic signal system (i.e., the ability of observing x(t) from
output measurement y(t)) must be guaranteed at first. In gen-
eral, the observability criterion of nonlinear stochastic signal
system in (1) can not be expressed in a simple explicity
condition (e.g., rank condition or matrix equality in the linear
system). The following lemma is provided from [36] to test
the observability of nonlinear stochastic signal system in (1).
Lemma 1 (See [36]): Define the augmented vector Z (t) =

[yT (t), ẏT (t), ÿT (t), . . . , y(n)
T
(t)] and the corresponding

Hessian matrix Hz(x(t)) =
∂2z(t)
∂2x(t)

. Then the nonlinear
stochastic signal system in (1) is observable at the equilib-
rium point x(t) = 0 if there exists a constant ε > 0 and a
constant matrix T such that the absolute values of the leading
principal minors 11(x(t)), . . . ,1n(x(t)) of THz(x(t)) satisfy

the following conditions:

11(x(t)) ≥ ε
...

1n(x(t)) ≥ ε, ∀x(t)

where n is the dimension of x(t) and the principal minor
1i(x(t)) is the determinant of the matrix by deleting the last
n− i columns and rows of Hessian matrix THz(x(t)).

For the simplicity of design, we assume the nonlinear
stochastic signal system in (1) is observable (i.e., the observ-
able conditions in Lemma 1 are satisfied) and therefore
the following conventional Luenberger-type filter can be
employed to estimate the state of nonlinear stochastic signal
system in (1)

·

x̂(t) = A(x̂(t))+ k(x̂(t))(y(t)− ŷ(t))

ŷ(t) = C(x̂(t)) (2)

where x̂(t) is the estimated state and ŷ(t) is estimated mea-
surement output.

In the above Luenberger-type filter, we will design non-
linear filter gain k(x̂(t)) so that the estimate state x̂(t) could
approach to x(t) as possible despite the uncertain external
disturbance v(t) and measurement noise n(t) in (1).
Let us denote the estimation error as

x̃(t) = x(t)− x̂(t) (3)

Then the estimation error dynamic system is given as
follows:
·

x̃(t) = A(x(t))− A(x̂(t))+ B(x(t))v(t)

−k(x̂(t))(y(t)− ŷ(t))

= A(x(t))− A(x̂(t))− k(x̂(t))(C(x(t))− C(x̂(t)))

+B(x(t))v(t)− k(x̂(t))n(t) (4)

We assume the statistics of external disturbance v(t) and
measurement noise n(t) are unavailable and therefore non-
linear Luenberger-type filter design in (2) is employed to
treat the robust H∞ state estimation design problem of non-
linear stochastic signal system in (1) to efficiently elim-
inate the effect of uncertain v(t) and n(t) on the state
estimation.

The robust H∞ filter design of (2) for the nonlinear
stochastic signal system (1) is formulated as the following
minmax Nash stochastic game problem [3], [7]

min
k(x̂(t))

max
v(t),n(t)

E
∫ tf
0 x̃T (t)Qx̃(t)dt − V (x(0))

E
∫ tf
0 vT (t)v(t)+ nT (t)n(t)dt

≤ ρ (5)

where the symmetric weighting matrix Q = QT ≥ 0 is on
the estimation error x̃(t), the Lyapunov function V (x̃(0)) ∈
R1 denotes the energy of the initial estimation error in (4),
tf denotes the final time of state estimation and ρ denotes
the desired upper bound of filtering ability and E(·) denotes
the expectation operation. The physical meaning of robust
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H∞ filter design strategy in (5) is that the worst-case effect
of external disturbance v(t) ∈ L2[0, tf ] and measurement
noise n(t) ∈ L2[0, tf ] on the estimation error x̃(t) must
be minimized by the Luenberger-type filter in (2) from the
perspective of mean energy. In general, the initial Lyapunov
energy function V (x̃(0)) ≥ 0 in the numerator of (5) due to
the initial error x̃(0) must be extracted from the estimation
error energy within 0 ∼ tf because it is independent on
the design of H∞ filter. Further, the worst-case effect of
external disturbance v(t) and measurement noise n(t) on the
estimation error of robust H∞ filter must be equal to or less
than a prescribed attenuation level ρ from the perspective of
mean energy.
Theorem 1: The minmax robust H∞ filter design strat-

egy in (5) for nonlinear stochastic signal system in (1) and
Luenberger-type filter in (2) is solved by the following worst-
case v∗(t) and n∗(t) and H∞ filter gain k∗(x̂(t))

v∗(t) =
1
2ρ

BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
(6)

n∗(t) = −
1
2ρ

k∗T (x̂(t))
(
∂V (x̃(t))
∂ x̃(t)

)
(7)

k∗(x̂(t)) =
2ρ∥∥∥( ∂V (x̃(t))∂ x̃(t)

)∥∥∥2
(
∂V (x̃(t))
∂ x̃(t)

)
×(C(x(t))− C(x̂(t)))T (8)

where
(
∂V (x̃(t))
∂ x̃(t)

)
,
(
∂V (x̃(t))
∂ x̃1(t)

,
∂V (x̃(t))
∂ x̃2(t)

, · · ·,
∂V (x̃(t))
∂ x̃n(t)

)T
is the

solution of following nonlinear partial differential HJIE,

HJIE = x̃T (t)Qx̃(t)+
(
∂V (x̃(t))
∂ x̃(t)

)T
×(A(x(t))− A(x̂(t)))+

1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))

×BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
− ρ(C(x(t))− C(x̂(t)))T

×(C(x(t))− C(x̂(t))) = 0 (9)

and
∥∥∥( ∂V (x̃(t))∂ x̃(t)

)∥∥∥2 is defined as follows:
∥∥∥∥(∂V (x̃(t))∂ x̃(t)

)∥∥∥∥ ,
(

n∑
i=1

(
∂V (x̃(t))
∂ x̃i(t)

)2
) 1

2

i.e.,

∥∥∥∥(∂V (x̃(t))∂ x̃(t)

)∥∥∥∥2 = (∂V (x̃(t))∂ x̃(t)

)T (
∂V (x̃(t))
∂ x̃(t)

)
(10)

Proof: See Appendix A. �
Remark 1: From HJIE in (9), it needs to solve a complex

partial differential ∂V (x̃(t))
∂ x̃(t) from HJIE = 0, i.e., if the substi-

tution of the output ∂V (x̃(t))
∂ x̃(t) of DNN into HJIE in (9) can let

HJIE approach to zero, then DNN can solve HJIE and we can
use the ∂V (x̃(t))

∂ x̃(t) to generate the H∞ filter gain k∗(x̂(t)) and
the worst-case external disturbance v∗(t) and measurement
noise n∗(t). In the conventional interpolation methods

in [13]–[22], they assume the solution V (x̃(t)) of HJIE
in (9) is of the quadratic Lyapunov form V (x̃(t)) =
x̃T (t)Px̃(t) and nonlinear stochastic signal system can be
interpolated by a set of local linearized systems through
fuzzy interpolation method [13]–[15], global linearization
method [16] or gain scheduling method [17] so that we can
solve a set of Riccati-like algebraic equations for the filter
gain k∗(x̂(t)).
In general, it is very difficult at present to solve the nonlin-

ear partial differential HJIE in (9) analytically or numerically
for robustH∞ filter design in (8) for nonlinear stochastic sig-
nal system in (1) because HJIE in (9) is a nonlinear differen-
tial function of x(t), x̂(t) and x̃(t). Especially, while the state
vector x(t) is unavailable and only output measurement y(t) is
available in (1), it almost impossible to directly solve ∂V (x̃(t))

∂ x̃(t)
from HJIE due to the unavailable terms A(x(t)), B(x(t)) and
C(x(t)) of unavailable x(t) in (9) for H∞ filter design in (8)
by the conventional methods.
Remark 2: In the robust control design of nonlinear

stochastic system [33], the HJIE of H∞ control design prob-
lem is only the functional of x(t), which is assumed available
and can be measured directly. However, in the nonlinear H∞
filter design problem, x(t) is unavailable and needs to be esti-
mated from output measurement y(t). Further, the observer
gain k∗(t) in (8) also contains the term C(x(t)), which is
unavailable too. Therefore, more efforts are needed to directly
solve HJIE in (9) for the nonlinear H∞ filter design problem
because A(x(t)), B(x(t)) and C(x(t)) in HJIE are unavail-
able. In this study, to overcome this difficult, the estimation
error dynamic model in (4) is needed to be embedded with
Luenberger-type filter in H∞ HJIE-embedded DNN-based
filter scheme as shown in Fig. 1, but with unavailable v(t) and
n(t) being replaced by v∗(t) and n∗(t) in the off-line training
phase, respectively.

In the last decades, several approximation methods such
as gain schedule method [17], [21], global linearization
method [16] and fuzzy method [20] have been applied to
interpolate some local linear stochastic signal systems to
approximate nonlinear stochastic signal system in (1). In this
situation, the nonlinear stochastic signal system is approx-
imated by the following L local linear stochastic signal
systems

ẋ(t) =
L∑
i=1

hi(x̂(t))(Aix(t)+ Biv(t))

y(t) =
L∑
i=1

hi(x̂(t))(Cix(t)+ n(t)) (11)

where hi(x̂(t)) is the ith local interpolation function such
as fuzzy basis in fuzzy interpolation method [20], smooth
function in global linearization method [22] or smoothing
function in gain schedule method [17], Ai,Bi and Ci are
local linearized system parameters of the ith local linear
system.
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In this situation, the Luenberger-type filter in (2) is approx-
imated by the following form

·

x̂(t) =
L∑
i=1

L∑
j=1

hi(x̂(t))hj(x̂(t))(Aix̂(t)+ ki(y(t)− Cjx̂(t)))

(12)

and the estimation error dynamic equation in (4) can be
approximated by

·

x̃(t)=
L∑
i=1

L∑
j=1

hi(x̂(t))hj(x̂(t))(Ai − kiCj)x̃(t)+ Biv(t)− kin(t)

(13)

In this situation, the robust H∞ filter design strategy
in (5) for a local linear interpolation estimation error system
in (13) needs to solve a set of L2 Riccati-like algebraic equa-
tions [15]–[17], [20]–[22] for the design of filter gains k∗i ,
i = 1, · · · ,L in (12) if we assume the solution V (x̃(t)) in (9)
is of the quadratic Lyapunov form V (x̃(t)) = x̃T (t)Px̃(t).
If a system is very highly nonlinear, then a large number
of L local linear syatems in (11) are needed to be interpo-
lated to approximate the nonlinear stochastic signal system
in (1). Consequently, a much larger number of L2 Riccati-
like algebraic equations are also needed to be solved for k∗i ,
i = 1, · · · ,L of H∞ filter gains in (12), which will lead
to a design complexity. Further, a complex Luenberger-type
filter in (12) is needed to be computed at very time instant
for the estimation of x̂(t) if L becomes large. Further, the
limit selection of quadratic Lyapunov function V (x̃(t)) =
x̃T (t)Px̃(t) as the solution of HJIE in (9) can make the design
of robust H∞ filter more conservative and the approximation
error between (1) and (11) may also deteriorate the H∞
filtering performance.

Recently, some deep learning algorithms have been widely
used to learn some system behaviors by big data-driven
methods with successful application to image pattern clas-
sification [24], language translation [25] and speech recog-
nition [26] etc. Though these deep learning schemes may
have led to a very good result, they have to employ a very
large amount of experimental data for training deep neural
network. Further, the conventional DNN approaches can not
be applied to some specific filter design performance such as
the optimal H2 filtering performance and robust H∞ filtering
performance in nonlinear stochastic signal systems, which are
very important in signal processing designs. In the nonlin-
ear H2 and H∞ filter design, these exist a large number of
nonlinear stochastic system models in practical applications.
Further, we have accumulated many powerful theoretical
nonlinear filter results in the last decades. Even these nonlin-
ear models and theoretical results of nonlinear filter designs
are complicated and difficult to solve, they can be employed
to achieve as experts to train DNN to achieve nonlinear H∞
filter design with a large amount of training data and time
saving than the conventional big data-driven DNN learning
algorithm.

In this study, a novel method of DNN will be proposed to
directly solve ∂V (x̃(t))

∂ x̃(t) from the complex partial differential
HJIE in (9) for the H∞ filter gain k∗(x̂(t)) in (8). Since the
HJIE in (9) could guarantee the H∞ filtering performance
in (5), the proposed H∞ DNN-based filter could not only
efficiently attenuate the effect of external disturbance and
measurement noise on the state estimation error but also
significantly save a large amount of training data which are
needed in the conventional big data-driven DNN approaches.

In the off-line training phase of the proposed H∞
DNN-based filter scheme in Fig. 1, since v(t) and
n(t) are unavailable, y(t) is generated by nonlinear
stochastic signal system model with v(t) and n(t) being
replaced by the worst-case v∗(t) in (6) and n∗(t)
in (7). This does not influence on the H∞ filtering perfor-
mance because the H∞ filter gain k∗(x̂(t)) in (8) is designed
based on the worst-cast disturbance v∗(t) and noise n∗(t)
as shown in Theorem 1. In the on-line operation phase of
H∞ DNN-based filter scheme, y(t) is generated by the real
nonlinear stochastic signal system in (1) through the true
value v(t) and n(t).
Remark 3: In the previous works, in order to avoid solving

a complex nonlinear partial differential HJIE of the robust
H∞ filter of nonlinear stochastic signal systems, the T-S
fuzzy interpolation method in [19], [20], [22], the global
linearization method [16] and gain scheduling method [17]
have been employed to interpolate several local linearized
systems to approximate the nonlinear stochastic signal sys-
tem so that HJIE of robust nonlinear H∞ filter design could
be interpolated by a set of local Riccati-like equations or a set
of equivalent local LMIs under the assumption of quadratic
solution V (x̃(t)) = x̃T (t)Px̃(t) of HJIE, i.e., with different
interpolation methods to interpolate some local linearized
systems to approximate a nonlinear stochastic system so that
the nonlinear partial HJIE can be transformed to a set of
LMIs under the quadratic solution V (x̃(t)) = x̃T (t)Px̃(t),
which could be easily solved by LMI Toolbox in Matlab.
In this study, we focus on using DNN to directly sovle ∂V (x̃(t))

∂ x̃(t)
from the complex nonlinear partial differential HJIE in (9)
of H∞ filter design of nonlinear stochastic signal systems so
that DNN can output ∂V (x̃(t))

∂ x̃(t) to generate the H∞ filter gain
k∗(x̂(t)) directly instead of solving V (x̃(t)) = x̃T (t)Px̃(t) by
the interpolation schemes in the conventional design method.
In this case, we can not only avoid the difficult calculation
in solving HJIE but also save more training and computation
time.

III. ROBUST H∞ HJIE-EMBEDDED DNN-BASED FILTER
VIA A CO-DESIGN OF H∞ FILTER SCHEME AND DEEP
LEARNING ALGORITHM
Due to the difficulty to directly solve ∂V (x̃(t))

∂ x̃(t) of HJIE in (9)
for the filter gain k∗(x̂(t)) in (8) by the conventional methods
for the design of Luenberger-type filter in (2) to achieve
minmax robust H∞ filter strategy in (5), DNN is proposed
to be trained to solve ∂V (x̃(t))

∂ x̃(t) of the HJIE in (9) for k∗(x̂(t)),
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FIGURE 2. HJIE-embedded DNN architecture with input x̃(t) to output
∂V (x̃(t))
∂ x̃(t) to solve HJIE in (9) after the training of Adam learning algorithm

in (14) and (15) based on the error of HJIE = ε(θk (t)).

v∗(t) and n∗(t) in (6)-(8). Since A(x(t)), B(x(t)) and C(x(t))
in HJIE need the information of x(t), which is unavailable
and to be estimated, to overcome this difficulty, we need
to synthesize x(t) by x(t) = x̂(t) + x̃(t). Therefore, both
Luenberger-type filter model in (2) and the estimation error
dynamic in (4) are needed to be embedded as shown in Fig. 1
to obtain x̂(t) and x̃(t), respectively. Therefore, the proposed
H∞ DNN-based filter can synthesize x(t) = x̂(t) + x̃(t) for
the calculation of A(x(t)), B(x(t)) and C(x(t)) for solving
HJIE in (9) as shown in the HJIE block of HJIE-embedded
DNN in Fig. 1. As shown in Fig. 2, the proposed HJIE-
embedded DNN architecture with input x̃(t) is trained by the
error ε(θk (t)) of solving HJIE = 0 to output ∂V (x̃(t))

∂ x̃(t) for H∞
filter gain k∗(x̂(t)). HJIE-embedded DNN in Fig. 2 consists
of an input layer, several hidden layers, an output layer and
an HJIE block. The neurons in hidden layers of DNN employ
LeakyReLU as the activation function [27], which is the same
as ReLU when input x̃(t) is positive and is not equal to
zero but a constant gradient when x̃(t) is negative. Therefore,
we have the advantage of ReLU and avoid the disadvantage
of dead ReLU when input x̃(t) is negative, i.e., LeakyReLU
operates as follows [37]:

q(x̃(t)) =

{
α1x̃(t) if x̃(t) > 0
α2x̃(t) if x̃(t) ≤ 0

where α1 and α2 are some constant with α1, α2 ∈ (0, 1).
In the off-line training phase, as shown in Fig. 1, we need

the nonlinear stochastic signal system model in (1) to
generate y(t) for Luenberger-type filter in (2) and the esti-
mation error dynamic system in (4). However external dis-
turbance v(t) and measurement noise n(t) are unavailable in
real nonlinear stochastic signal system in (1). In the robust
H∞ Luenberger-type filter design, the real external distur-
bance v(t) and measurement noise n(t) are not considered
directly but replaced by their worst-case v∗(t) and n∗(t) in
the design procedure from the minmax robust H∞ filtering
perspective. Therefore, we use v∗(t) in (6) and n∗(t) in (7) to
replace real v(t) and n(t), respectively, without the influence
on the estimation performance of robust H∞ filter. From the
flow chart of robust H∞ HJIE-embedded DNN-based filter
design in Fig. 1, x̃(t) from the filter estimation error system
in (4) is inputed to DNN to expect generating the desired

output ∂V (x̃(t))
∂ x̃(t) , which is to be used to produce v∗(t), n∗(t)

and k∗(x̂(t)) according to (6), (7) and (8) in Theorem 1,
respectively. Therefore, the nonlinear signal system model
in (1) with v∗(t), n∗(t) and u∗(t) = k∗(x̂(t)) is employed
to produce y(t) in (1). Luenberger-type filter in (2) can
produce x̂(t), and estimation error system in (4) can generate
x̃(t) in the off-line training process of DNN simultaneously.
The DNN output ∂V (x̃(t))

∂ x̃(t) is also sent to HJIE to check whether

the output ∂V (x̃(t))
∂ x̃(t) approaches to its true value by checking

HJIE = 0 or not in (9). If HJIE = ε(θk (t)) 6= 0, the error of
HJIE will be fedback to train the weighting parameters in the
hidden layers of DNN in Fig. 2 via Adam learning algorithm
to minimize the objective funtion ε2(θk (t)) as follows [28]:

θk (t) = θk−1(t)−
l√

v̂k (t)+ τ
m̂k (t), k = 1, · · · ,K (14)

where θk (t) is the weighting parameter vector in the hidden
layers of DNN which is to be trained for DNN to generate
the output ∂V (x̃(t))

∂ x̃(t) at time t . l is the learning rate and K is
the number of training steps at time t . The bias-corrected
estimator m̂k (t) and v̂k (t) are given as [28]

m̂k (t) =
mk (t)

1− λk1
, v̂k (t) =

vk (t)

1− λk2
(15)

where

mk (t) = λ1mk−1(t)+ (1− λ1)gk (t)

vk (t) = λ2vk−1(t)+ (1− λ2)g2k (t)

and gk (t) = ∂
∂θk (t)

√
1
M

∑M
ε2(θk (t)) is the gradient vector of

partial derivatives of objective function ε2(θk (t)) with respect
to θk (t) at the training step k at time t . M denotes the batch
size. λ1, λ2 ∈ [0, 1) in (15) are the degree of previous
impact influence on the current direction and can be specified
by the designer with the concept of momentum to avoid
being trapped in a local minimum and speed up the learning
rate [29]. λk1 and λk2 denote the kth power of λ1 and λ2,
respectively. τ in (14) is a small number to be used to prevent
the denominator from being zero. mk (t) and vk (t) in (15)
are the moving average of gradient and squared gradient at
time t . With v̂k (t) in (15), we can take the advantage of the
idea of adaptive learning rate, which is always large at the
beginning and small near the minimum. In (14) and (15),
the Adam learning algorithm can take both the advantages
of momentum and RMSProp [30] as an efficient parameter-
specific adaptive learning method with easy implementation
and great performance, one of the most popular learning
algorithm of neural networks of some optimization problems
recently.
Remark 4: Unlike the conventional big data-driven DNN,

with the help of nonlinear system model in (1), Luenberger-
type filter in (2), estimation error dynamic system in (4) and
HJIE of theoretical H∞ filter of nonlinear stochastic system
in (1), the proposed DNN-based filter scheme can converge
quickly by Adam learning algorithm scheme in (14) and (15).
The convergence of weighting parameter vector θk (t) of Adam
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learning algorithm in (14) and (15) has been proven in [31].
If the number of hidden neurons of DNN and the number K
of training steps is large enough, the updating weighting
parameter vector θk (t) in (14) and (15) can converge to a
globally optimal parameter vector at a linear convergent rate.

In the off-line training process of HJIE-embedded DNN
in Fig. 1, the output

(
∂V (x̃(t))
∂ x̃(t)

)
ε
of DNN is fed to HJIE to

calculate the error of HJIEε as follows:

HJIEε = x̃T (t)Qx̃(t)+
(
∂V (x̃(t))
∂ x̃(t)

)T
ε

×(A(x(t))− A(x̂(t)))+
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
ε

×B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
ε

−ρ(C(x(t))− C(x̂(t)))T (C(x(t))− C(x̂(t)))

= ε(θk (t)) (16)

where x(t) = x̂(t)+x̃(t) which are obtained fromLuenberger-
typeH∞ filter in (2) and the estimation error dynamic system
in (4), respectively.

The error of HJIE in (16) will be fedback to train DNN by
the Adam learning algorithm in (14) and (15). It is expected
to produce the precise ∂V (x̃(t))

∂ x̃(t) for H∞ filter gain k∗(x̂(t)) =
2ρ∥∥∥ ∂V (x̃(t))∂ x̃(t)

∥∥∥2
(
∂V (x̃(t))
∂ x̃(t)

)
(C(x(t))−C(x̂(t)))T in (8) and the worst-

case external disturbance v∗(t) = 1
2ρB

T (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
in (6) as well as the worst-case measurement noise n∗(t) =
1
2ρ k
∗(x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
in (7) after the off-line training phase.

When the error HJIEε = ε(θk (t)) of the embedded-HJIE
DNN approaches to 0 by the Adam learning algorithm, it can
be proven that the output

(
∂V (x̃(t))
∂ x̃(t)

)
ε
of DNN can approach

∂V (x̃(t))
∂ x̃(t) of HJIE in (9) by the following theorem.

Theorem 2: If ε(θk (t)) approaches to 0 in (16) by Adam
learning algorithm in (14) and (15), then

(
∂V (x̃(t))
∂ x̃(t)

)
ε
in

(16) will approach to ∂V (x̃(t))
∂ x̃(t) in (9) and HJIEε in (16) will

approach to HJIE in (9), i.e., the filter gain kε(x̂(t)) =
2ρ∥∥∥ ∂V (x̃(t))∂ x̃(t)

∥∥∥2
ε

(
∂V (x̃(t))
∂ x̃(t)

)
ε
(C(x(t))−C(x̂(t)))T based on the output(

∂V (x̃(t))
∂ x̃(t)

)
ε
of DNN of the HJIE-embedded DNN-based filter

in Fig. 1 will approach to the H∞ filter gain k∗(x̂(t)) in (8)
of the Theorem 1 for the Luenberger-type H∞ filter in (2) for
the nonlinear stochastic signal system in (1).

Proof: See Appendix B. �
Remark 5: (i) From Theorem 2 and Theorem 1, we could

see that the proposed HJIE-embedded DNN-based filter in
Fig. 1 will approach to the robust H∞ filter in (8) as ε(θk (t)) of
HJIE in (16) approaches to zero via Adam learning algorithm
in (14) and (15). However, in the practical filtering applica-
tions, we will stop the training phase and transfer into the
operation phase if |ε(θk (t))| ≤ δ for a small prescribed δ or
the training steps achieve a given number K in (14). In the

simulation example in the sequel, the number of training step
at each time t is given by K = 30. (ii) In this study, unlike
the conventional big data-driven DNN schemes, we could sig-
nificantly save a much amount of training data and training
time of HJIE-embedded DNN because the nonliner stochastic
signal system model in (1), Luenberger-type H∞ filter in (2),
the estimation error dynamic system in (4) and theoretical
H∞ filtering result HJIE in (9) are employed to generate the
necessary training data x̂(t), x̃(t) and x(t) = x̂(t)+x̃(t) in the
off-line training phase of H∞ HJIE-embedded DNN-based
filter in Fig. 1. Based on these training data generated by the
corresponding system models and the theoretical HJIE result
for the robust H∞ filtering strategy, the H∞ HJIE-embedded
DNN-based filter design becomes possible for solving the
very complex robust H∞ filter design problem of nonlinear
stochastic dynamic signal system in (1), unlike the most con-
ventional big data-driven DNN schemes to be trained only for
deciding yes or no (i.e., 0 or 1) in the conventional imaging
classification and speech recognition problems [23]–[27].

For the convenience of training and practical design,
the continuous nonlinear stochastic signal system in (1)
can be represented by the following nonlinear stochastic
sampling-data signal system as follows:

x(t +1t)− x(t)
1t

≈ A(x(t))+ B(x(t))v(t)

y(t) = C(x(t))+ n(t) (17)

or

x(t +1t) ≈ (x(t)+1tA(x(t)))+1tB(x(t))v(t)

y(t) = C(x(t))+ n(t) (18)

where 1t > 0 denotes the sampling time.
Similarly, the Luenberger-type filter in (2) and the estima-

tion error system in (4) are also represented by the following
nonlinear sample-data stochastic signal systems, respectively.

x̂(t +1t) = (x̂(t)+1tA(x̂(t)))+1tk(x̂(t))(y(t)− ŷ(t))

(19)

x̃(t +1t) = (x̃(t)+1tA(x(t))−1tA(x̂(t)))

−1tk(x̂(t))(C(x(t))− C(x̂(t)))

+1tB(x(t))v(t)−1tk(x̂(t))n(t) (20)

Then the flow chart of HJIE-embedded DNN-based H∞
filter design in Fig. 1 is modified in Fig. 3 as follows:

At t = 0 in the off-line training phase in Fig. 3, we ran-
domly select N sample vectors near the error x̃(0) at first and
then send them into DNN to expect to output

(
∂V (x̃(0))
∂ x̃(0)

)
ε
,

which is used to generate v∗(0), n∗(0) and k∗(x̂(0)) in (6)-(8)
and sent to calculate HJIEε = ε(θk (0)) in (16) to be fedback
to train the weighting parameters of hidden neurons in DNN
by Adam learning algorithm in (14) and (15). After finishing
K training processes in the off-line training phase, the output(
∂V (x̃(0))
∂ x̃(0)

)
ε
of DNN is used to produce v∗(0), n∗(0) and

k∗(x̂(0)) in (6 )-(8). With v∗(0), n∗(0) and k∗(x̂(0)), x̂(0), x̃(0)
and x(0) = x̂(0)+ x̃(0), we could compute y(0) from (1) and
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FIGURE 3. The flow chart of robust H∞ HJIE-embedded DNN-based filter scheme of nonlinear stochastic signal system in sample-data system
in (18). In the on-line operation phase, the well-trained HJIE-embedded DNN in off-line training phase is directly applied. In the on-line operation
the output y (t) is generated by real physical system in (1) with real external disturbance v (t) and measurement noise n(t). The other procedures are
similar to the off-line training phase. In general, the DNN training algorithm is closed in the on-line operation phase except ε(θk (t)) ≥ δ for a
prescribed small positive value δ.

generate x̂(1t) from (19) and x̃(1t) from (20) and x(1t) =
x̂(1t)+ x̃(1t).

At t = 1t , we randomly select N sample vectors near
the error x̃(1t) and then send them into DNN to output(
∂V (x̃(1t))
∂ x̃(1t)

)
ε
, which is used to generate v∗(1t), n∗(1t) and

k∗(x̂(1t)) in (6)-(8) and sent to calculateHJIEε = ε(θk (1t))
to feedback to train the weighting parameters of DNN by
Adam learning algorithm. After K training steps, the output(
∂V (x̃(1t))
∂ x̃(1t)

)
ε
of DNN is used to produce v∗(1t), n∗(1t) and

k∗(x̂(1t)) in (6)-(8). With v∗(1t), n∗(1t) and k∗(x̂(1t))
in (6)-(8), we could compute y(1t) and generate x̂(21t) from
(19) and x̃(21t) from (20) and x(21t) = x̂(21t)+ x̃(21t).

Sequentially, at t = tf , we also randomly select N sample
vectors near the error x̃(tf ) and then send them into DNN

to output
(
∂V (x̃(tf ))
∂ x̃(tf )

)
ε
, which is used to generate v∗(tf ),

n∗(tf ) and k∗(x̂(tf )) in (6)-(8) and sent to calculate HJIEε =
ε(θk (tf )) with the feedback of ε(θk (tf )) to train the weighting
parameters of DNN by Adam learning algorithm. After K
training steps, the output of training model is used to produce
v∗(tf ), n∗(tf ) and k∗(x̂(tf )) in (6)-(8). With v∗(tf ), n∗(tf ) and
k∗(x̂(tf )) in (6)-(8), we could generate x̂(tf +1t).

After we have finished the above HJIE-embedded DNN
training process of H∞ HJIE-embedded filter, we begin the
operation phase of DNN-based H∞ filter. In the on-line
operation phase as shown in Fig. 3, we do not need to use
the information of v∗(t) and n∗(t) generated by DNN but the
v(t) and n(t), which will occur themself in the real nonlinear
stochastic signal system in (1). Therefore, every time step,
we only need to input x̃(t) to DNN to output ∂V (x̃(t))

∂ x̃(t) to com-

pute filter gain k∗(x̂(t)) = 2ρ∥∥∥ ∂V (x̃(t))∂ x̃(t)

∥∥∥2
(
∂V (x̃(t))
∂ x̃(t)

)
(C(x(t)) −

C(x̂(t)))T for Luenberger-typeH∞ filter and estimation error
system. However, the training of DNN is necessary if the
absolute error |ε(θk (t))| ≥ δ for a prescribed small value δ.
Remark 6: For the off-line training processes, there are

some data processings usually being used before training
DNN such as normalization or standardization in the deep
learning [30]. If the error x̃(t) is so large that all the ran-
dom sample data will influence the training speed, we can
standardize all the sample data before sending them into
DNN. Hence, we can not only speed up the training speed but
also improve the estimation accuracy in the off-line training
phase.
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FIGURE 4. The 3-D geometry of incoming ballistic missile. x axis, y axis
and z axis denotes the downrange, offrange and attitude of ballistic
missile. The target of missile is set at the origin of the Cartesian
coordinate and the radar is located at

(
x, y, z

)
=

(
300,200,0

)
.

IV. SIMULATION EXAMPLE
After the robust H∞ HJIE-embedded DNN-based filter
design in Fig. 1 is proposed in the above sections for the
robust state estimation of the nonlinear stochastic signal sys-
tem in (1), in this section, a simulation example is given
to illustrate the design procedure based on Fig. 3 and to
validate the filtering performance of the proposed H∞ DNN-
based filter of nonlinear stochastic signal system. In this
study, an H∞ robust state estimation problem of incoming
ballistic missile by the measurement of radar system in Fig. 4
is given to confirm the robust state estimation performance
of the proposed H∞ HJIE-embedded DNN-based filtering
scheme when compared with the extended Kalman filter [8]
and particle filter [11].

Suppose an incoming ballistic missile will attack a target
at the origin of Cartesian coordinate and is measured by the
sensor of radar located at (x, y, z) = (300, 200, 0) . The
dynamic motion equation of incoming ballistic missile is
given as follows [20], [35]:

ẍ(t) =
−ρ(z(t))g

√
ẋ2(t)+ ẏ2(t)+ ż2(t)

2β
ẋ(t)

ÿ(t) =
−ρ(z(t))g

√
ẋ2(t)+ ẏ2(t)+ ż2(t)

2β
ẏ(t)

z̈(t) =
−ρ(z(t))g

√
ẋ2(t)+ ẏ2(t)+ ż2(t)

2β
ż(t)− g (21)

where x(t), y(t) and z(t) are the target-centered Cartesian
coordinates of the incoming ballistic missile, β is the ballistic
coefficient, g is the gravity constant, ρ(z(t)) is the density
of the atmosphere at the position of the incoming ballistic

missile and is defined as follows [20], [35]:

ρ(z(t)) =



ρhe−αhz(t), ρh = 1.75, αh = 1.49× 10−4,

if z(t) ≥ 9144 meters

ρle−αlz(t), ρl = 1.227, αl = 1.093× 10−4,

if z(t) < 9144 meters

Based on the state space dynamic model, the motion equa-
tions of incoming ballistic missile in (21) could be rewritten
as the following nonlinear dynamic equation

Ẋ (t) =



ẋ(t)

ẏ(t)

ż(t)

−ρ(z(t))g
√
ẋ2(t)+ ẏ2(t)+ ż2(t)

2β
ẋ(t)

−ρ(z(t))g
√
ẋ2(t)+ ẏ2(t)+ ż2(t)

2β
ẏ(t)

d −ρ(z(t))g
√
ẋ2(t)+ẏ2(t)+ż2(t)
2β ż(t)− g


= f (X (t)) (22)

where state vector is defined as

X (t) =


x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

 =

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


Remark 7: In order to avoid the symbol confusion between

the state vector x(t) of missile system in (1) and the coordinate
x(t), y(t) and z(t) of missile position, in the following, we use
X (t) to temporarily represent the state vector of missile sys-
tem until (26).

Suppose that the incoming missile employs a guidance
control law

u(t) = fconX (t) = [−0.1x1(t)− x4(t),−0.1x2(t)− x5(t),

−0.08x3(t)− x6(t),−0.01x4(t),

−0.01x5(t),−0.01x6(t)]T

and suffers from stochastic external disturbance v(t) as
follows:

Ẋ (t) = f (X (t))+ fconX (t)+ B(X (t))v(t) (23)

Let Y (t) denote the sensor measurement of radar system
and n(t) denote the stochastic measurement noise of radar
sensor. Then the measurement equation of radar system is
given by

Y (t) = C(X (t))+ n(t) (24)

where C(X (t)) = [x1(t) − 300, x2(t) − 200, x3(t), x4(t),
x5(t), x6(t)]T .
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Then the nonlinear stochastic signal system of radar detec-
tion of incoming missile can be rewritten as follows:

Ẋ (t) = A(X (t))+ B(X (t))v(t)

Y (t) = C(X (t))+ n(t) (25)

where

A(X (t)) =



−0.1x1(t)
−0.1x2(t)
−0.08x3(t)

−ρ(x3(t))g
√
x24 (t)+ x

2
5 (t)+ x

2
6 (t)

2β
x4(t)

−0.01x4(t)
−ρ(x3(t))g

√
x24 (t)+x

2
5 (t)+x

2
6 (t)

2β x5(t)
−0.01x5(t)

−ρ(x3(t))g
√
x24 (t)+ x

2
5 (t)+ x

2
6 (t)

2β
x6(t)

−0.01x6(t)− g



,

B(X (t)) = [01×3 1 1 1]T

Based on the flow chart of H∞ HJIE-embedded
DNN-based filter scheme for radar detection of incoming
missile stochastic system in Fig. 3, for practical design, the
nonlinear stochastic radar detection system is modified to a
nonlinear stochastic sample-data signal system. Then from
(18) we obtain the following sample-data stochastic signal
system of radar detection of incoming missile system,

X (t +1t) = (X (t)+1tA(X (t)))+1tB(X (t))v(t)

Y (t) = C(X (t))+ n(t) (26)

where the sampling time 1t is 0.01s.
Suppose we want to design theH∞ HJIE-embedded DNN-

based filter in Fig. 3 for the sample-data radar detection
system in (26) to achieve the minmax H∞ state estimation
performance in (5) of incoming missile with a desired fil-
tering ability ρ = 0.03. According to Theorem 1, we need
to solve ∂V (x̃(t))

∂ x̃(t) of the following HJIE for Luenberger gain
k∗(x̂(t)) in (8) of robust H∞ Luenberger-type filter in (2),

HJIE = x̃T (t)Qx̃(t)+
(
∂V (x̃(t))
∂ x̃(t)

)T
×(A(x(t))− A(x̂(t)))+

1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))

×BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
− ρ(C(x(t))− C(x̂(t)))T

×(C(x(t))− C(x̂(t))) = 0 (27)

where x̂(t) and x̃(t) are obtained from Luenberger-type fil-
ter in (19) and the estimation error system in (20) of the
sample-data missile system in (26). In general, it is almost
impossible to directly solve V (x̃(t)) or ∂V (x̃(t))

∂ x̃(t) analytically or
numerically from the above HJIE for k∗(x̂(t)) in (8) since the
HJIE in (27) is a highly nonlinear partial differential equation

containing unavailable x(t), x̂(t) and x̃(t) which need to be
generated from their corresponding dynamic systems in (26),
(19) and (20), respectively. Therefore, the proposed robust
H∞ HJIE-embedded DNN-based filter design in Fig. 3 is
employed to solve ∂V (x̃(t))

∂ x̃(t) from HJIE in (27) for v∗(t), n∗(t)
and k∗(t) in (6), (7) and (8), respectively.

From the flow chart of H∞ HJIE-embedded DNN-based
filter scheme in Fig. 3, HJIE-embedded DNN is trained
off-line via Adam learning algorithm in (14) and (15) by the
error HJIEε = ε(θk (t)) in (16) to achieve HJIE = 0 in (27)
for DNN to output ∂V (x̃(t))

∂ x̃(t) . In this situation the robust H∞
filter gain k∗(x̂(t)), v∗(t) and n∗(t) can be obtained, which are
sent to nonlinear stochastic missile detection system in (26),
Luenberger-type filter in (19) and estimation error dynamic
system in (20) to generate the corresponding signals y(t), x̂(t)
and x̃(t) as well as x(t) = x̂(t)+ x̃(t) for the next step t +1t
of Adam training process as shown in Fig. 3.
Remark 8: At present, there exists no study to combine the

theoretical result of nonlinear H∞ filter and deep learning
algorithm to implement the H∞ deep neural network-based
filter of nonlinear signal systems. It is not easy to imple-
ment this co-design of nonlinear H∞ filtering algorithm and
DNN learning algorithm for the state estimation of nonlin-
ear stochastic signal system because the conventional deep
learning algorithms need lots of empirical data to train DNN
as image classifier or recognizer. Further, in the nonlinear
H∞ filter design, we need to solve HJIE, which is a function
of the state x(t) of nonlinear stochastic system. However, the
real state x(t) is unavailable, so we could not train the DNN
model directly. We need filter model to generate x̂(t) and
estimation error model to generate x̃(t). Therefore, we could
obtain x(t) = x̂(t) + x̃(t) for solving HJIE. Further, since
external disturbance v(t) and measurement noise n(t) are
unavailable. Therefore, it is very difficult to generate y(t) by
signal system model in (1) and estimation error model in (4)
to generate x̃(t). Therefore, we use the worst-case v∗(t) in (6)
and n∗(t) in (7) to replace v(t) and n(t) for signal system
model in (1) to generate y(t) for filter model in (2) to generate
x̂(t), and estimation error dynamic system in (4) to generate
x̃(t) and therefore x(t) = x̂(t) + x̃(t) for HJIE for training
DNN by Adam learning algorithm at each time t in the off-line
training phase. In addition, in order to train DNN by x̃(t) to
output ∂V (x̃(t))

∂ x̃(t) for solving HJIE for filter gain k∗(x̂(t)) in (8),

v∗(t) in (6) and n∗(t) in (7), an HJIE block is embedded in
the DNN structure to approach to our desired output ∂V (x̃(t))

∂ x̃(t) .

Therefore, we can use the output of DNN to produce the filter
gain k∗(x̂(t)), the worst-case external disturbance v∗(t) and
measurement noise n∗(t) as shown in Fig. 1.

In this example, the architecture of DNN in Fig. 2 contains
input layer, four hidden layers, one HJIE layer and output
layer. The input layer consists of 6 inputs, four hidden layers
consist of 256, 128, 32 and 6 hidden neural units sequentially
which can be regarded as the concept of data compression.
We want to train DNN to fit the nonlinear function ∂V (x̃(t))

∂ x̃(t) of
HJIE for H∞ filter gain k∗(x̂(t)) through the fewer and fewer
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hidden neurals in each hidden layer sequentially. Further, if
the learning rate l in (14) is assumed to be too large at the
beginning, the gradient may be trapped in the local minimum,
otherwise, the training speed will be too slow. The parameters
λ1, λ2 in Adam learning algorithm in Eq. (15) can also repre-
sent the impact in current direction from previous direction to
avoid trapping in the local minimum and speed up the learn-
ing rate. These parameters can not be assumed to be small due
to the important information in the previous direction. Finally,
these parameters l, λ1, λ2 and τ in Adam learning algorithm
in (14) and (15) are selected as 0.001, 0.9, 0.999 and 10−7.
The number of training steps and batch size are K =

30, M = 800, and the number of random sample data
is N = 2000 as the number of training inputs. In the
H∞ filtering design strategy of the radar detection system
in (5), the weighting matrix Q and ρ in (5) are specified
as Q = 10−5I6 and ρ = 0.03, respectively. The sam-
pling time 1t used in this example is 0.01s. The exter-
nal disturbance v(t) and measurement noise n(t) are both
assumed to be Gaussian random noise of 20N (0, 1). After
H∞ DNN-based filter being trained by Adam learning algo-
rithm, the trajectory x1(t), · · · , x6(t) of the incoming mis-
sile in (25) is simulated with the initial condition X (0) =
[150000, 210000, 120000,−2500,−2500,−2500]T .
Remark 9: In the real application withDNNmethod, at the

beginning of off-line training phase, we need to randomly
select the initial training data near the error x̃(t) which will
significantly affect the training performance. If the domain is
limited by the random selection in the off-line training phase,
the state x(t) = x̂(t)+ x̃(t) may be far from the training data
during the on-line operation phase. Hence, it will limit the
domain of

(
∂V (x̃(t))
∂ x̃(t)

)
ε
to approach to the real ∂V (x̃(t))

∂ x̃(t) of HJIE.
In this situation, the error ε(θk (t)) will be larger than a small
prescribed δ, (i.e., | ε(θk (t))| > δ) so that we need to start
on Adam learning algorithm again for updating weighting
parameters of DNN or change the method of random selec-
tions to train the weighting parameters of DNN again.
Remark 10: In this simulation, we have tested three dif-

ferent numbers of training data with 2000, 20000 and
200000 initial conditions, respectively. The largest one needs
more computation time than others. However, the error of
DNN in 2000 initial conditions and 20000 initial conditions
are almost the same in the training performance. Further,
when the number of hidden layers with 2000 training inputs
exceeds 4, the error of DNN will not decrease anymore due to
the overfitting in the DNN. To avoid this overfitting problem,
more initial conditions as training inputs are required and
will increase the computation time, i.e., there is a tradeoff
between the loss and the computation time. Finally, we select
4 hidden layers and 2000 initial conditions as training inputs
in our simulation.
Remark 11: For the weightingmatrix Q of robust H∞ filter

design strategy in (5), if the estimation error x̃i(t) in the ith
state is more significant for our incoming ballistic missile
simulation, then we will set a larger parameter in the term
(i, i) of Q. In contrast, the less parameter in the term (j, j) of

FIGURE 5. The downrange, offrange and vertical velocities and their
corresponding estimations by the proposed H∞ HJIE-embedded
DNN-based filter and other comparison methods. The blue line is the real
velocity of the incoming ballistic missile and the red line is the velocity of
the proposed H∞ HJIE-embedded DNN-based filter. The green and yellow
lines are the velocities of the extended Kalman filter in [8] and particle
filter in [11], respectively, in comparison.

Q if we consider the estimation error x̃j(t) in the jth state is
insignificant. In this simulation, we consider the estimation
error in each element as equal importance with Q = 10−5I6
in the incoming ballistic missile.

Based on the proposed H∞ HJIE-embedded DNN-based
filter, the location and the velocity of the incoming ballistic
missile system and their corresponding estimations are shown
in Fig. 5 and Fig. 6, respectively. From the simulation results
in Fig. 5 and Fig. 6, although the state estimation of incoming
missile has a transient response in the beginning, we can
see that it still achieves the robust H∞ filtering performance
under the effect of the uncertain external disturbance and
measurement noise. The real H∞ state estimation perfor-
mance of the incoming missile by the proposed robust H∞
DNN-based filter is calculated as follows:∫ 70

0 x̃T (t)Qx̃(t)dt − V (x̃(0))∫ 70
0

(
vT (t)v(t)+ nT (t)n(t)

)
dt
≈ 0.012 ≤ 0.03

It is seen that the proposed HJIE-embedded DNN filter
scheme in Fig. 1 could achieve the prescribed H∞ filter-
ing performance to efficiently attenuate the effect of ran-
dom external disturbance and measurement noise. Obviously,
the filtering performance of the proposed robust H∞ HJIE-
embedded DNN filter is better than the prescribed ρ =
0.03. The reason is that the H∞ filter is designed based on
minimizing the effect of the worst-case external disturbance
v∗(t) in (6) and the worst-case measurement noise n∗(t) in (7),
which may not exist in the real situation. However, in this
simulation, we use v(t) and n(t) of stochastic process of
20N (0, 1) as external disturbance and measurement noise,
respectively, which are not the worst-case v∗(t) and n∗(t).
From the simulation results in Fig. 5 and Fig. 6, it is seen that
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FIGURE 6. The downrange, offrange and vertical trajectories and their
corresponding estimations by the proposed H∞ HJIE-embedded
DNN-based filter and other comparison methods. The blue line is the real
trajectory of the incoming ballistic missile and the red line is the
trajectory of the proposed H∞ HJIE-embedded DNN-bsaed filter. The
green and yellow lines are the trajectories of the extended Kalman filter
in [8] and particle filter in [11], respectively, in comparison. Obviously, the
estimation performance of extended Kalman filter is very poor in the
trajectory estimation of incoming ballistic missile. The mean error and
standard deviation (µ, σ ) in the trajectory estimation of H∞ DNN-based
filter and particle filter at the estimation of x(t), y (t) and z(t) are given as
follows: H∞ DNN-based filter :(−11.11, 1.32), (−11.11, 1.32), (−38.78,
3.61), and particle filter :(7.25, 10.51), (−59.42, 21.86), (11.79, 11.75).
Obviously, particle filter has a good mean trajectory estimation
performance but with a very large random fluctuation, which is not
suitable for the high precise and robust trajectory estimation of incoming
missile.

the extended Kalman filter has a poor trajectory estimation
performance of incoming missile and the particle filter has a
goodmean trajectory estimation but with a large randomfluc-
tuation at every time step of estimation because its estimation
is based on the condition probability of state x(t) under mea-
surement y(t). Comparingwith the results of extentedKalman
filter with exact statistical knowledge of v(t) and n(t) [8]
and particle filter with exact statistical knowledge of v(t) and
n(t) [11] in Fig. 5 and Fig. 6 for the trajectory estimation
of incoming missile, we found that the proposed robust H∞
HJIE-embedded DNN-based filter without the knowledge of
external disturbance and measurement noise has better esti-
mation performance than the conventional extented Kalman
filter and particle filter for nonlinear stochastic signal systems
with exact covariance matrices of external disturbance and
measurement noise.
Remark 12: In the filter design field at present, there exists

no study to use the conventional big data-driven DNNmethod
to deal with this nonlinear filter design problem due to the
unavailable empirical data for training DNN. In general,
the conventional DNN is based on the input/output empirical
data pairs to train the weighting parameters of hidden layers
in DNN by optimizer. However, in the nonlinear H∞ filter
design problem, x(t) is unavailable and needs to be esti-
mated from output measurement y(t). Therefore, we can not

compare with the conventional big data-driven DNN method
in nonlinear H∞ filter design. Instead, we show the two
nonlinear filtering methods of extended Kalman filter and
particle filter to compare the filtering performance with the
proposed robust H∞ HJIE-embedded DNN filter.
In the extended Kalman filter [8], at every time step,

we need to update the linearization of the nonlinear func-
tions A(x(t)),B(x(t)) and C(x(t)) of nonlinear stochastic sig-
nal system in (1), update the estimation error covariance
prediction for state prediction and then update the filtering
error covariance for state estimation (filtering). There are
a large amount of computations to be performed at every
time step. If the stochastic signal system is highly non-
linear, the linearization error will propagate to the subse-
quent step. Further, if the covariance matrices of v(t) and
n(t) are unknown or uncertain, it will deteriorate the per-
formance of extended Kalman filter. For the particle filter
design [11], we need to predict the conditional probability
of state x(t) with the observation according to P(xt |y1:t−1) =∫
dxt−1

P(xt |xt−1)P(xt−1|y1:t−1)dxt−1 where y1:t−1 denotes the
partial observations y1, . . . , yt−1, and update the filtering
of particle filter according to the conditional probability
P(xt |y1:t ) =

P(yt |xt )P(xt |y1:t−1)
P(yt |y1:t−1)

. Further, we still need to update
the importance distribution for particle filter. There are a lot
of complicated computations in every step of particle filter.
However, in the proposed robust H∞ HJIE-embedded DNN-
based filter scheme, after the HJIE-embedded DNN has been
trained by Adam learning algorithm in the off-line training
phase, the proposed H∞ DNN-based filter could perform
with a quite good trajectory estimation performance in the
incoming missile detection system without the knowledge
of external disturbance and measurement noise. The better
filtering performance of the proposed method lies in: (i) The
proposed H∞ DNN-based filter is based on the global non-
linear solution V (x̃(t)) of HJIE while the conventional design
in extended Kalman filter [8], particle filter [11] are limited
to the quadratic solution V (x̃(t)) = x̃T (t)Px̃(t). (ii) The
nonlinear H∞ filter could efficiently attenuate the effect of
uncertain external disturbance and measurement noise on the
state estimation performance. (iii) The DNN could univer-
sally approximate any nonlinear function like ∂V (x̃(t))

∂ x̃(t) forH∞
filter gain k∗(x̂(t)) after an efficient training algorithm like
Adam learning algorithm.

V. CONCLUSION
In this paper, in order to overcome the complexity and diffi-
culty in the design of robust H∞ filter of nonlinear stochastic
signal systems with uncertain external disturbance and mea-
surement noise, an HJIE-embedded DNN-based filter design
in Fig. 1 is proposed to employ artificial neural network to
directly solve HJIE of H∞ filtering design via deep learning
algorithm to simplify the robust nonlinear H∞ filter design.
Based on system model, filter model and estimation error
model, we could generate x̂(t), x̃(t) and x(t) = x̂(t)+ x̃(t) to
train DNN to solve ∂V (x̃(t))

∂ x̃(t) of x(t)-x̂(t)-x̃(t)-coupled partial
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differential HJIE by Adam learning algorithm by HJIE error
ε(θk (t)) for H∞ filter gain k∗(x̂(t)), the worst-case external
disturbance v∗(t) and measurement noise n∗(t). Therefore,
with the help of system model and theoretical nonlinear H∞
filtering result of HJIE, DNN is not only the conventional
big data-driven classification and recognition schemes but
also a system model-based H∞ filtering scheme in nonlin-
ear stochastic signal system with external disturbance and
measurement noise. By the proposed nonlinear H∞ DNN-
based filter scheme, which can be considered as a co-design
of H∞ filtering scheme and DNN learning algorithm, we can
save a large amount of training data and training time
of DNN in the off-line training phase for the H∞ HJIE-
embedded DNN-based filter design of nonlinear stochastic
signal systems. Therefore, the proposed DNN-based filter
scheme could achieve the robust H∞ filter performance of
nonlinear stochastic signal system in (1) by solving HJIE
in (9) directly, which is very difficult to solve analytically
and numerically through conventional methods at present.
We have also proven that when HJIE error of H∞ filter
approaches to 0, the proposed DNN-based filter scheme can
approach to the theoretical H∞ filter performance. For the
practical design, an H∞ HJIE-embedded DNN-based filter
scheme is also proposed for sample-data nonlinear stochastic
signal system in Fig. 3. Since the HJIE-embedded DNN
could solve the more general nonlinear solution V (x(t)) of
HJIE than the conventional quadratic optimal filters with
the special quadratic solution V (x(t)) = xT (t)Px(t), the
proposedH∞ DNN-based filter could achieve a quite well fil-
tering performance in the trajectory estimation performance
of missile detection system by radar when compared with
extended Kalman filter and particle filter. In future work,
for more practical application, the proposed H∞ DNN-based
filter design will be extended to the DNN-based H∞ state
estimator-based output feedback reference tracking control of
nonlinear stochastic signal system under external disturbance
and output measurement noise.

APPENDIX A
PROOF OF THEOREM 1
Since the selection of v(t) and n(t) is independent on
the specification of filter gain k(x̂(t)) in (5), the minmax
Nash game problem is equivalent to the following minmax
problem [33], [34]

min
k(x̂(t))

max
v(t),n(t)

E
{∫ tf

0

(
x̃T (t)Qx̃(t)− ρvT (t)v(t)

−ρnT (t)n(t)
)
dt
}
≤ EV (x̃(0)) (A1)

Let us denote

J = min
k(x̂(t))

max
v(t),n(t)

E
{∫ tf

0

(
x̃T (t)Qx̃(t)− ρvT (t)v(t)

−ρnT (t)n(t)
)
dt
}

(A2)

Then the robust H∞ filter design problem needs to solve
the minmax problem in (A2) at first and then the result J must
be less than or equal to EV (x̃(0)).
By chain rule, we get

∂V (x̃(t))
∂t

=

(
∂V (x̃(t))
∂ x̃(t)

)T ·
x̃(t) (A3)

Integrating both sides of (A3) from 0 to tf , we get∫ tf

0

(
−
∂V (x̃(t))
∂t

+

(
∂V (x̃(t))
∂ x̃(t)

)T ·
x̃(t)

)
dt = 0 (A4)

or

V (x̃(0))− V (x̃(tf ))+
∫ tf

0

(
∂V (x̃(t))
∂ x̃(t)

)T ·
x̃(t)dt = 0 (A5)

Substituting (A5) into (A2), we get

J = min
k(x̂(t))

max
v(t),n(t)

E{V (x̃(0))− V (x̃(tf ))

+

∫ tf

0
(x̃T (t)Qx̃(t)+

(
∂V (x̃(t))
∂ x̃(t)

)T ·
x̃(t)− ρvT (t)v(t)

− ρnT (t)n(t))dt} (A6)

Then, by substituting (4) into (A6), we get

J = min
k(x̂(t))

max
v(t),n(t)

E{V (x̃(0))− V (x̃(tf ))

+

∫ tf

0
(x̃T (t)Qx̃(t)+

(
∂V (x̃(t))
∂ x̃(t)

)T
(A(x(t))− A(x̂(t))

+ B(x(t))v(t)− k(x̂(t))(C(x(t))− C(x̂(t)))

− k(x̂(t))n(t))− ρvT (t)v(t)− ρnT (t)n(t))dt} (A7)

and (A7) can be written as following compact form

J = min
k(x̂(t))

max
v(t),n(t)

E{V (x̃(0))− V (x̃(tf ))

+

∫ tf

0
(x̃T (t)Qx̃(t)+

(
∂V (x̃(t))
∂ x̃(t)

)T
(A(x(t))− A(x̂(t)))

+

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))v(t)−

(
∂V (x̃(t))
∂ x̃(t)

)T
k(x̂(t))

× (C(x(t))− C(x̂(t)))−
(
∂V (x̃(t))
∂ x̃(t)

)T
k(x̂(t))n(t))

− ρvT (t)v(t)− ρnT (t)n(t))dt} (A8)

By completing square technique of v(t) and n(t), we get

J = min
k(x̂(t))

max
v(t),n(t)

E{V (x̃(0))− V (x̃(tf ))

+

∫ tf

0
(x̃T (t)Qx̃(t)+

(
∂V (x̃(t))
∂ x̃(t)

)T
(A(x(t))− A(x̂(t)))

−
1
ρ
(ρv(t)−

1
2
BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)T

× (ρv(t)−
1
2
BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)
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+
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
−

1
ρ
(ρn(t)+

1
2
kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)T

× (ρn(t)+
1
2
kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)

+
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
k(x̂(t))kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
−

(
∂V (x̃(t))
∂ x̃(t)

)T
k(x̂(t))(C(x(t))− C(x̂(t))))dt} (A9)

By completing square techniques of k(x̂(t)), we get

J = min
k(x̂(t))

max
v(t),n(t)

E{V (x̃(0))− V (x̃(tf ))

+

∫ tf

0
(x̃T (t)Qx̃(t)+

(
∂V (x̃(t))
∂ x̃(t)

)T
(A(x(t))− A(x̂(t)))

+
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
−

1
ρ
(ρv(t)−

1
2
BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)T

× (ρv(t)−
1
2
BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)

−
1
ρ
(ρn(t)+

1
2
kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)T

× (ρn(t)+
1
2
kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)

+ ρ(
1
2ρ

kT (x̂(t))
(
∂V (x̃(t))
∂ x̃(t)

)
− (C(x(t))− C(x̂(t))))T

× (
1
2ρ

kT (x̂(t))
(
∂V (x̃(t))
∂ x̃(t)

)
− (C(x(t))− C(x̂(t))))

− ρ(C(x(t))− C(x̂(t)))T (C(x(t))

− C(x̂(t))))dt} (A10)

By the HJIE in (9), we get

J = min
k(x̂(t))

max
v(t),n(t)

E{V (x̃(0))− V (x̃(tf ))

+

∫ tf

0
(ρ(

1
2ρ

kT (x̂(t))
(
∂V (x̃(t))
∂ x̃(t)

)
− (C(x(t))− C(x̂(t)))T (

1
2ρ

kT (x̂(t))
(
∂V (x̃(t))
∂ x̃(t)

)
− (C(x(t))− C(x̂(t))))−

1
ρ
(ρv(t)−

1
2
BT (x(t))

×

(
∂V (x̃(t))
∂ x̃(t)

)
)T (ρv(t)−

1
2
BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)

−
1
ρ
(ρn(t)+

1
2
kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
)T

× (ρn(t)+
1
2
kT (x̂(t))

(
∂V (x̃(t))
∂ x̃(t)

)
))dt} (A11)

Then we obtain the worst-case v∗(t) and n∗(t) as well as
the optimal H∞ filter gain k∗(x̂(t)) in (6)-(8) and

J = E
{
V (x̃(0))− V (x̃(tf ))

}
≤ EV (x̃(0))

which satisfies with (A1). Q.E.D.

APPENDIX B
PROOF OF THEOREM 2
Suppose there exists an error function e(x̃(t)) between(
∂V (x̃(t))
∂ x̃(t)

)
ε
of HJIEε in (16) and ∂V (x̃(t))

∂ x̃(t) of HJIE in (9) as
follows (

∂V (x̃(t))
∂ x̃(t)

)
ε

=
∂V (x̃(t))
∂ x̃(t)

+ e(x̃(t)) (B1)

By the fact HJIE = 0 in (9), from (16)

ε(θk (t))

=HJIEε − HJIE

=

((
∂V (x̃(t))
∂ x̃(t)

)T
ε

−

(
∂V (x̃(t))
∂ x̃(t)

)T)
× (A(x(t))− A(x̂(t)))

+
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
ε

B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
ε

−
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))BT (x(t))

(
∂V (x̃(t))
∂ x̃(t)

)
(B2)

Substituting (B1) into (B2), we get

ε(θk (t)) =eT (x̃(t))(A(x(t))− A(x̂(t)))

+
1
4ρ

eT (x̃(t))B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)

+
1
4ρ

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))BT (x(t))e(x̃(t))

+
1
4ρ

eT (x̃(t))B(x(t))BT (x(t))e(x̃(t)) (B3)

By the symmetry of

eT (x̃(t))B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
=

(
∂V (x̃(t))
∂ x̃(t)

)T
B(x(t))BT (x(t))e(x̃(t)) (B4)

Then ε(θk (t)) in (B3) becomes

ε(θk (t)) =eT (x̃(t))(A(x(t))− A(x̂(t)))

+
1
2ρ

eT (x̃(t))B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
+

1
4ρ

eT (x̃(t))B(x(t))BT (x(t))e(x̃(t))
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= eT (x̃(t))[(A(x(t))− A(x̂(t)))

+
1
2ρ

B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
+

1
4ρ

B(x(t))BT (x(t))e(x̃(t))] (B5)

As ε(θk (t))→ 0, then

eT (x̃(t))[(A(x(t))− A(x̂(t)))

+
1
2ρ

B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
+

1
4ρ

B(x(t))BT (x(t))e(x̃(t))]→ 0 (B6)

Since the term in [·] in the above equation is different from
HJIE = 0, i.e.,

(A(x(t))− A(x̂(t)))+
1
2ρ

B(x(t))BT (x(t))
(
∂V (x̃(t))
∂ x̃(t)

)
+

1
4ρ

B(x(t))BT (x(t))e(x̃(t)) 6= HJIE = 0

it will be not equal to zero for all x(t), x̂(t) and x̃(t). There-
fore, from (B6) we can conclude that e(x̃(t)) → 0 as
ε(θk (t)) → 0. From (B1), it implies that

(
∂V (x̃(t))
∂ x̃(t)

)
ε
→

∂V (x̃(t))
∂ x̃(t) as ε(θk (t)) → 0 in the Adam learning algorithm.

From HJIEε in (16) and HJIE in (9), it is seen that HJIEε →
HJIE as ε(θk (t)) → 0. According to Theorem 1, the filter
gain kε(x̂(t)) = 2ρ∥∥∥ ∂V (x̃(t))∂ x̃(t)

∥∥∥2
ε

(
∂V (x̃(t))
∂ x̃(t)

)
ε
(C(x(t)) − C(x̂(t)))T

based on the output
(
∂V (x̃(t))
∂ x̃(t)

)
ε
of DNN of HJIE-embedded

DNN-based filter in Fig. 1 will approach to theH∞ filter gain
k∗(x̂(t)) in (8) of the Luenberger-type H∞ filter in (2) for the
nonlinear stochastic signal system in (1). Q.E.D.
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