
Received November 20, 2021, accepted December 1, 2021, date of publication December 8, 2021,
date of current version December 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133894

Robust H∞ NLOS-Tolerant Localization Filter and
NLOS-Tolerant Remote Reference Tracking
Control of Mobile Robot in Wireless Sensor
Networks
BOR-SEN CHEN 1,2, (Life Fellow, IEEE), KAI-CHIH YANG 1, AND MIN-YEN LEE 1
1Department of Electrical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
2Department of Electrical Engineering, Yuan Ze University, Chung-Li 32003, Taiwan

Corresponding author: Bor-Sen Chen (bschen@ee.nthu.edu.tw)

This work was supported by the Ministry of Science and Technology of Taiwan under Grant MOST 108-2221-E-007-099-MY3.

ABSTRACT The need for accurate localization and robust reference tracking control of mobile robot using
wireless sensor networks (WSNs) under the non-line-of-sight (NLOS) situations have been widely needed
in diverse areas of industry. In order to overcome NLOS situations, a smoothing signal model is employed to
embed bias signals due toNLOS in the dynamic system of themobile robot to avoid the effect of NLOS on the
positioning and remote control of the mobile robot usingWSNs. In the study, a robust H∞ fuzzy localization
filter is developed to efficiently estimate the mobile robot pose (position and orientation) and bias signals due
to NLOS using the measurement of WSNs under NLOS situation, external disturbance and measurement
noise. Further, a robust H∞ fuzzy NLOS-tolerant localization filter-based remote control design is also
proposed for mobile robot system to track the desired trajectory for some purpose in the cluttered and
noisy indoor environment in WSN. The robust H∞ NLOS-tolerant fuzzy localization filter-based tracking
control design problems of mobile robot in WSN can be transformed to a corresponding linear matrix
inequalities (LMIs)-constrained optimization problem, which could be easily solved with the LMI toolbox
in Matlab. Finally, a simulation design example is provided to illustrate the design procedure and confirm
the performance of the proposed methods for the localization estimation and reference tracking control of
the mobile robot in WSN in comparison with the other method in an intelligent building.

INDEX TERMS Wireless sensor network (WSN), mobile robot, smoothing signal model, non-line-of-
sight (NLOS), NLOS-tolerant localization filter, remote control of mobile robot, H∞ fuzzy estimator-based
tracking control.

I. INTRODUTCTION
Indoor localization systems [1]–[7] for mobile robot local-
ization and reference tracking control are the problems of
estimating the mobile robot’s pose (location and orientation)
and then controlling the mobile robot at remote site [3]
to track a desired reference pose for a variety of purposes
in museums, factories or intelligent buildings. The conven-
tional indoormobile robot localization systems have typically
taken advantage of state estimators for accurate localization
in cluttered and noisy indoor environments [1]–[4]. Par-
ticularly, in order to overcome the impairment introduced
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by non-line-of-sight (NLOS) situations, more effort on the
accurate state estimation of the mobile robot is necessary
because NLOS-contaminated measures are less informative
at the position calculation if no prior information is available
[6], [8], [9].

Since the stochastic filter for the localization of the mobile
robot is an inherent nonlinear state estimator of the non-
linear stochastic mobile robot system, nonlinear filters such
as extended kalman filter and the particle filter (PF) have
been employed for localization in wireless sensor networks
(WSNs) [5]–[7]. Even the algorithms of the particle filters are
more transparent and simple than the extended kalman filters,
particle filters still fail in state estimation due to the loss of
diversity among the samples [13]–[15]. Therefore, several
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improved algorithms, such as mixture Monte Carlo localiza-
tion (MCL) [12], Markov ChainMonte Carlo (MCMC) infer-
ence [16], regularized particle filter (RPF) [17], combined
PF/KF [18] have been proposed by means of mitigating the
loss of sample diversity to overcome the drawback of sample
impoverishment problem. At present, there have been a large
number of preventative methods against sample impoverish-
ment and PF failure. However, we still need to propose an
effective and general remedy to cure a completely diverging
or failed PF.

In some indoor localization systems, the statistical charac-
teristics of external disturbances and measurement noises are
rarely known. In the last decades, H∞ robust filter has been
used to address the issue of unavailable external disturbances
and measurement noises, which their worst-case effects on
the filtering error to be efficiently attenuated. Therefore, the
H∞ robust filter has been widely used to estimate the signal
in the wireless communication systems [8], [9].

Recently, real-time indoor location systems (RTLs) of the
mobile robot using WSN have attracted users and designers
in the industry [7]. However, when using a PF to RTLs to
improve the accuracy of real-time localization, the computa-
tion time of PF becomes an issue. If a small number of parti-
cles is used by PF to save computation time, it will accelerate
sample impoverishment. To improve the reliability of particle
filter-based localization in WSNs, a hybrid particle/FIR filter
was proposed to recover the RPF from failure [7]. However,
it is still not easy to overcome the impairment introduced by
the NLOS situation.

In this study, a T-S fuzzy dynamic system in [24], [25] is
proposed to interpolate a set of local linear state dynamic
and output measurement systems to approximate the non-
linear state dynamic and nonlinear output measurement sys-
tem of mobile robot in the wireless sensor network. Further,
a smoothing signal model is employed to describe the bias
signal of NLOS and is embedded in the state vector of the
mobile robot system to avoid the impairment due to theNLOS
situation in the localization process of the mobile robot in
WSNs. Then a robust H∞ fuzzy localization filter (estimator)
is proposed to precisely estimate both the mobile robot pose
(position and orientation) and the NLOS signal under the
corruption of external disturbance and measurement noise.
We need to solve a set of linear matrix inequalities (LMIs)
with the help of the LMI toolbox in Matlab for the design of
a robust H∞ fuzzy NLOS-tolerant localization filter of the
mobile robot in WSNs under NLOS situations.

In general, a mobile robot is employed for a variety of
purposes in museums, factories, etc. Recently, how to control
these mobile robots to track some desired trajectories by
remote controllers through the wireless network has become
an important topic of networked control in future smart cities
[3], [19], [20]. Based on the estimated pose of a mobile
robot by the robust H∞ fuzzy NLOS-tolerant localization
filters, it is appealing that a robust H∞ fuzzy NLOS-tolerant
estimator-based control design can be also proposed for the
mobile robot in WSN to track a desired trajectory through

a remote networked controller via the wireless channel for
more practical applications to intelligent building in future
smart cities. In the indoor cluttered and noisy environment in
WSN, indoor wireless transmission of the control signal from
remote localization filter-based controller to the actuators
of the mobile robot is easy to lead to multiple paths and
NLOS. It is noted that when the signal transmits via the
wireless channel, the signal will be interfered indoor to induce
with some physical phenomena such as reflection, refraction
or shadowing which will result in multipath. In order to
model multiple paths, a dynamic event-triggered system with
a type-2 fuzzy variable at receiver in [33] and a randomly
varying local nonlinear model in [32] are carried out. How-
ever, in this study, multiple paths are regarded as random
interference and modeled as external random disturbances.
Thus, the impact of multiple paths can be merged in random
external disturbances. The NLOS is considered as the control
bias signal on the actuator and can be also described by a
smoothing signal model, which can be also embedded in the
system model of mobile robot. Therefore, a robust H∞ fuzzy
NLOS-tolerant localization filter (estimator) -based control
design is proposed for the mobile robot in WSNs to track the
desired trajectory for a variety of purposes in future smart
cities. At the same time, the pose of the mobile robot can be
estimated by localization filter to check whether the track-
ing control purpose is achieved despite external disturbance,
NLOS and measurement noise in the intelligent buildings,
museums or factories. We need to solve a set of filter and con-
trol gain-coupled LMIs by a two-step design procedure for the
fuzzy localization filter gains and control gains of robust H∞
fuzzy estimator-based remote controller of mobile robot in
WSNs under NLOS, external disturbance and measurement
noise.

The contributions of this paper are described as follows:
(I) A smoothing signal model is employed to model the

bias signal of NLOS and is embedded in the state vector
of the mobile robot to avoid the corruption of NLOS in
the positing process of the mobile robot in WSNs. There-
fore, the impairment induced by the NLOS situation in the
WSN-based localization system of the mobile robot can be
overcome by the proposed robust H∞ NLOS-tolerant fuzzy
localization filter design.

(II) For more practical applications of WSNs, a robust
remote H∞ NLOS-tolerant fuzzy estimator-based reference
tracking control design is also proposed for guiding the
mobile robot to robustly track the desired trajectory for some
tasks in WSNs so that designers and users not only can take
advantage of robust state estimators for accurate localization
but also can achieve an accurate desired trajectory tracking
of mobile robot in WSNs for a variety of purposes inside
intelligent buildings, museums or factories in the cluttered
and noisy indoor environment, especially in NLOS situations.

(III) The robust H∞NLOS-tolerant fuzzy estimator-based
reference tracking control design problem is transformed to
a set of control and estimator gains-coupled bilinear matrix
inequalities (BMIs). A two-step design procedure is also
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FIGURE 1. 2-D schematic diagram of mobile robot in the WSN-based indoor localization system.
In the WSN-based indoor localization system, the four receivers can receive the wireless signal from
the tag attached to the mobile robot. A localization filter is employed to estimate the pose (position
and orientation) of mobile robot under external disturbance, measurement noise and NLOS
situation. The remote controller can transmit control signal u(t) to the actuator of mobile robot for
reference tracking control through wireless channel.

proposed for efficiently solving these fuzzy filter gains and
control gains by a corresponding LMIs-constrained opti-
mization method to achieve the optimal H∞ NLOS-tolerant
fuzzy estimator-based reference tracking control design of
the mobile robot in WSNs. This will significantly simplify
the design procedure of robust H∞ NLOS-tolerant fuzzy
estimator-based reference tracking control of the mobile
robot through WSN, which will be useful for practical appli-
cations through the localization facilities of WSN technology
inside an intelligent building in future smart cities.

The remainder of the paper is organized as follows: The
indoor localization system of the mobile robot using WSN
under NLOS situations is described in Section II. A smooth-
ing signal model is also introduced to describe bias signal
of NLOS to be embedded in the localization system of the
mobile robot. In Section III, an H∞ NLOS-tolerant fuzzy
localization filter is designed for the mobile robot in the
wireless sensor network. In Section IV, a robust H∞ NLOS-
tolerant fuzzy remote reference tracking control of the mobile
robot in the wireless sensor network is designed by using
a Luenberger-type observer-based controller. In Section V,

a simulation example of the localization filter-based reference
tracking control of the mobile robot using the wireless sensor
network inside an intelligent building is given to validate the
efficiency of position and tracking by the proposed method.
The conclusion is summarized in Section VI.

Notation: AT : the transpose of matrix A; A ≥ 0(A > 0):
symmetric positive semi-definite (definite) matrix; In: the
n by n identity matrix; l2[0, tT ] = {v(t) : RT

→ Rn
‖

(6tT
t=0v

T (t)v(t) <∞)}; eig(A) denotes the set of eigenvalues
of A; E(·) denotes the expectation of ·.

II. INDOOR LOCALIZATION SYSTEM USING WSN UNDER
NLOS SITUATIONS
In this section, an indoor localization system using a WSN
is introduced for positioning a mobile robot inside a building
like a factory or a museum. As shown in Fig.1, the indoor
localization system is connected by four receivers, a wireless
tag with a transmitter and a server computer. In the 2-D
schematic diagram of the WSN-based indoor localization
system in Fig.1 [7], a wireless tag attached to a mobile robot
could transmit wireless signals to four receivers installed
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at fixed positions with exactly known coordinates. In the
WSN-based indoor localization system, the four receivers can
receive the wireless signal from the tag attached to the mobile
robot. We suppose the receivers’ clocks are synchronized
via the line of clock synchronization. The time-of-arrival
(TOA) is measured by receivers of the WSN-based indoor
localization system to give the traveling time of wireless
signals from the transmitter to each of the receivers. Then the
TOA measurements are sent to a server computer of mobile
robot localization system to calculate the time-different-of-
arrival (TDOA) as follows [7]: z1(t)z2(t)

z3(t)

 = 1
c

 d1(t)− d2(t)d1(t)− d3(t)
d1(t)− d4(t)

 (1)

where z1(t), z2(t) and z3(t) denote the TDOA measurement
(input parameters which calculate the relative position of
the mobile robot by examining the difference in time from
three or more receivers) at the discrete-time t (in unit of
nanosecond); c is the speed of light; di(t), i = 1, 2, 3 are the
distances between the mobile robot at time t and the receivers
as shown in Fig.1 and are defined as follows

di(t) =
√
(x(t)− xi)2 + (y(t)− yi)2 (2)

where (x(t), y(t)) is the coordinate of the mobile robot local-
ization at time t and (xi, yi, i = 1, 2, 3, 4) are the fixed
coordinates of receivers.

The mobile robot pose could be described by the state
vector X (t) = [x(t), y(t), θ(t)]T , where x(t) and y(t) are
the coordinate on a 2-D plane in the WSN-based indoor
localization system and θ(t) is the heading angle of mobile
robot (i.e., θ(t) = tan−1( vy(t)vx (t)

)) as shown in Fig.1 [7]. The
discrete-timemotion ofmobile robot with velocity v(t), accel-
eration a(t), angular velocity w(t) and angular acceleration
α(t) is controlled for a variety of purposes through control
command u(t) = [1d(t) 1θ (t)]T , where 1d(t) = v(t)×1t
is the incremental distance (in meters) in sampling time 1t
and 1θ (t) = w(t)×1t is the incremental heading angle (in
degrees) in sampling time 1t . Therefore, the robot motion
in WSN-based indoor localization system can be described
as the following discrete-time dynamical model with external
disturbance [7]

x(t + 1) = x(t)+1d(t)× cos θ (t)+ v1(t)

y(t + 1) = y(t)+1d(t)× sin θ(t)+ v2(t)

θ(t + 1) = θ (t)+1θ (t)+ v3(t) (3)

where v1(t) = (1t)2 × α(t) × cos θ (t), v2(t) = (1t)2 ×
α(t) × sin θ (t), and v3(t) = (1t)2 × α(t) are incremental
velocity due to the acceleration α(t) of mobile robot in the
x-axis, y-axis and heading angle, respectively, which are
always unavailable, to be considered as an equivalent external
disturbance in WSN-based localization system. In general,
the indoor localization accuracy can be improved by equip-
ping the mobile robot with a fiber obit gyroscope (FOG) to
directly measure the heading θ (t) [7]. Thus, after 3 TDOA

measurements in (1), the fourth measurement is adopted as
follows:

z4(t) = θ (t) (4)

Therefore, combining 3 TDOA measurements in (1) with
the heading angle in (4), the measurement vector of the
WSN-based indoor localization system is contracted as
Z (t) = [z1(t) z2(t) z3(t) z4(t)]T . Then the state dynamic
equation and output measurement equation of WSN-based
indoor localization system of mobile robot in the cluttered
and noisy indoor environment is given as [7]

x(t+1) = x(t)+1d(t)× cos θ(t)+ v1(t)

y(t + 1) = y(t)+1d(t)× sin θ (t)+ v2(t)

θ (t + 1) = θ(t)+1θ (t)+ v3(t)

z1(t) =
1
c
(
√
(x(t)− x1)2 + (y(t)− y1)2

−

√
(x(t)−x2)2 + (y(t)− y2)2)+ n1(t)+ s1(t)

z2(t) =
1
c
(
√
(x(t)− x1)2 + (y(t)− y1)2

−

√
(x(t)−x3)2 + (y(t)− y3)2)+ n2(t)+s2(t)

z3(t) =
1
c
(
√
(x(t)− x1)2 + (y(t)− y1)2

−

√
(x(t)−x4)2 + (y(t)− y4)2)+ n3(t)+s3(t)

z4(t) = θ (t)+ n4(t) (5)

where n1(t), n2(t), n3(t) and n4(t) denote the measurement
noises in the output measurements z1(t), z2(t), z3(t) and z4(t),
respectively. s1(t), s2(t) and s3(t) represent the sensor bias
signals due to the NLOS of 4 sensors of the indoor localiza-
tion system. Now, let us define the state vector X (t), control
input u(t) and output measurement Z (t) as follows:

X (t) =

 x(t)y(t)
θ (t)

 , Z (t) =


z1(t)
z2(t)
z3(t)
z4(t)


u(t) =

[
u1(t)
u2(t)

]
=

[
1d(t)
1θ (t)

]
Then the state dynamic equation and output measure equa-

tion of WSN-based indoor localization system of the mobile
robot in (5) can be represented by the following nonlinear
dynamic state space system

X (t + 1) = X (t)+ B(X (t))u(t)+ v(t)

Z (t) = C(X (t))+ n(t)+ Ds(t) (6)

where

B(x(t)) =

 cos θ (t) 0
sin θ (t) 0

0 1

 , D =


1 0 0
0 1 0
0 0 1
0 0 0


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v(t)=

 v1(t)v2(t)
v3(t)

 , s(t) =

 s1(t)s2(t)
s3(t)

 , n(t) =


n1(t)
n2(t)
n3(t)
n4(t)



C(X (t)) =



1
c (
√
(x(t)− x1)2 + (y(t)− y1)2

−

√
(x(t)− x2)2 + (y(t)− y2)2)

1
c (
√
(x(t)− x1)2 + (y(t)− y1)2

−

√
(x(t)− x3)2 + (y(t)− y3)2)

1
c (
√
(x(t)− x1)2 + (y(t)− y1)2

−

√
(x(t)− x4)2 + (y(t)− y4)2)

θ (t)


In this study, wewill propose a NLOS-tolerant fuzzy localiza-
tion filter design based on TDOA and the heading angle (i.e.
the measurement of Z (t) in (6)) to precisely estimate the state
X (t) (including position and heading angle) of mobile robot
in WSN under external disturbance, measurement noise and
NLOS situation in indoor cluttered and noisy environment.
After a precise state estimation is achieved, a robust NLOS-
tolerant remote fuzzy control u(t) is also developed at a
remote site for the mobile robot via the wireless channel to
track the desired reference pose (i.e, position and heading
angle) for some purpose. However, it is well known that
when the NLOS condition presents, it will introduce a bias
signal s(t) to induce the greatest impairment to the state
estimation of mobile robot in (6) from output measurement
Z (t). Unlike the conventional methods [1]–[10] to mitigate
the NLOS impact on positioning, this study will introduce a
smoothing model for NLOS and then embed it in the system
state model in (6). In this situation, the impact of NLOS on
the positioning can be avoided to achieve precise localization
of the mobile robot in the wireless sensor network. In general,
the traditional filter can not estimate the sensor bias signal s(t)
directly. In order to estimate X (t) and s(t) in the WSN-based
localization system of the mobile robot in (6) via wireless
sensor network, the following smoothing signal model of
sensor bias signal s(t) due to NLOS is proposed as follows:


s(t + 1)
s(t)
...

s(t − d + 1)

 =


a0I3 · · · · · · · · · ad I3

I3 03×3
...

03×3 I3
. . .

...
...

. . .
. . .

...

03×3 · · · 03×3 I3 03×3



×



s(t)
s(t − 1)

...

...

s(t − d)

+


I3
03×3
...
...

03×3


×(s(t + 1)−

d∑
i=0

ais(t − i)) (7)

which can be represent by

S(t + 1) = AsS(t)+Mss̃(t + 1) (8)

where

S(t) =


s(t)

s(t − 1)
...

s(t − d)

 , Ms =


I3

03×3
...

03×3



As =



a0I3 · · · · · · · · · ad I3

I3 03×3
...

03×3 I3
. . .

...
...

. . .
. . .

...

03×3 · · · 03×3 I3 03×3


and s̃(t + 1) = s(t + 1) −

∑d
i=0 ais(t − i) denotes the

extrapolation error of s(t+1), where ŝ(t+1) =
∑d

i=0 ais(t−i)
is the extrapolation from s(t−d), . . . , s(t) to s(t+1) with the
extrapolation coefficients{ai}di=0. Some notations about the
smoothing model in (8) are given as follows:

(I) Since the bias signal s(t + 1) is more related to s(t),
the extrapolation coefficients should be satisfied with ai >
ai−1 > 0 for i = 1, . . . , d . Furthermore, in order to avoid
over-extrapolation, the condition

∑d
i=0 ai = 1 should be

satisfied.
(II) The smoothing signal model in (7) or (8) can be

regarded as an improved kalman fixed-lag smoothing model
for estimating the sensor bias signal s(t) and its delays
s(t − 1), . . . , s(t − d). However, in the traditional kalman
fixed-lag smoothing model [21], a0 = a1 = . . . = ad =
0 and s̃(t+1) = s(t+1) in (8), which will significantly deteri-
orate the estimation performance. In the proposed smoothing
signal model in (7) and (8), we have considered the extrap-
olation of s(t + 1) =

∑d
i=0 ais(t − i) + s̃(t + 1) to improve

the observability of signal model and hence the estimation
accuracy of sensor bias signal.

III. H∞ NLOS-TOLERANT FUZZY LOCALIZATION FILTER
DESIGN FOR MOBILE ROBOT IN WIRELESS SENSOR
NETWORK SYSTEM
In this section, based on the nonlinear dynamic system of
mobile robot in WSN in (6) and the smoothing signal model
in (8), we want to estimate the state (pose) of the mobile
robot by the measurement Z (t) via wireless sensor network.
However, the dynamic state equation and measurement equa-
tions in (6) are highly nonlinear. For the convenience of
localization filter design, the nonlinear localization system
of the mobile robot in WSN in (6) can be described by the
T-S fuzzy system [24]- [26]. The ith rule of T-S model for
nonlinear localization system of mobile robot in (6) is of the
following form [26]

System Rule i :

If ε1(t) is Fi1, and, . . . , εg(t) is Fig, i = 1, . . . , J
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FIGURE 2. Block diagram of NLOS-tolerant localization and reference tracking control of
indoor mobile robot in WSN.

Then

X (t + 1) = X (t)+ Biu(t)+ v(t)

Z (t) = CiX (t)+ n(t)+ Ds(t) (9)

where the matrices Bi and Ci are local system matrices with
appropriate dimension, ε(t) = [ε1(t), . . . , εg(t)] are the
premise variables assumed to be measurable. Fi1, . . . ,Fig are
fuzzy sets, g is the number of premise variables and J is the
number of system rules. We assume (I3,Ci) are observable
for i = 1, . . . , J . Then the T-S fuzzy system in (9) for mobile
robot localization via wireless sensor network can be inferred
as follows [26]:

X (t + 1) =
J∑
i=1

αi(ε(t))[X (t)+ Biu(t)+ v(t)]

Z (t) =
J∑
i=1

αi(ε(t))[CiX (t)+ n(t)+ Ds(t)] (10)

where ε(t) = [ε1(t), . . . , εg(t)], αi(ε(t)) = 5
g
j=1Fij(ε(t)),

and αi(εj(t)) =
αi(ε(t))∑J
i=1 αi(ε(t))

, with 0 ≤ αi(εj(t)) ≤ 1 and∑J
i=1 αi(ε(t)) = 1.
The physical meaning of T-S fuzzy WSN-based indoor

localization system of mobile robot in (10) is that the non-
linear WSN-based indoor localization system of the mobile
robot in (6) can be represented by the interpolation of J
linearized systems through J fuzzy smoothing functions
αi(ε(t)), i = 1, . . . , J .

For the convenience of estimating the state vector X (t) and
sensor bias signal s(t) due to NLOS in wireless sensor net-
work simultaneously, the smoothing signal model (8) of S(t)
is embedded as an internal model of T-S fuzzy mobile robot
localization system in (10) as the following fuzzy augmented
localization system

X̄ (t + 1) =
J∑
i=1

αi(ε(t))[ĀX̄ (t)+ B̄iu(t)+ H̄ v̄(t)]

Z (t) =
J∑
i=1

αi(ε(t))[C̄iX̄ (t)+ n(t)] (11)

where

X̄ (t) =
[
S(t)
X (t)

]
, v̄(t) =

[
s̃(t + 1)
v(t)

]
, H̄ =

[
Ms 0
0 I3

]
Ā =

[
As 0
0 I3

]
, B̄i =

[
0
Bi

]
, C̄i =

[
DMT

s Ci
]

Since the bias signal S(t) due to NLOS is embedded in
X̄ (t), when estimating X̄ (t) by localization filter, we can not
only accurately estimate both mobile robot pose X (t) and the
bias signal S(t) due to NLOS but also avoid the corruption of
bias signal S(t) due to NLOS in the estimation process. After
the sensor bias signal of NLOS S(t) is embedded in the aug-
mented T-S fuzzy mobile robot localization system in (11),
a T-S fuzzy estimator will be designed to estimate X̄ (t) for
estimating mobile robot state X (t) and sensor bias signal
S(t) from the measurement Z (t) via wireless sensor network.
Before the design of the localization filter (estimator), the
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observability of augmented T-S fuzzy mobile robot localiza-
tion system in (11) is discussed as follows:
Lemma 1: For T-S fuzzy mobile robot localization sys-

tem,if J local fuzzy systems in (9) or (10) are observable, i.e.

rank
[
zI3 − I3
Ci

]
= 3, ∀z ∈ eig(I3), i = 1, . . . , J (12)

and the following conditions hold

eig(As) ∩ eig(I3) = φ

rank
[
zI3(d+1) − As

DMT
s

]
= 3(d + 1), ∀z ∈ eig(As) (13)

then T-S fuzzy augmented mobile robot localization system
in (11) is observable

Proof: see Appendix A �
The rank conditions in (12) and (13) imply the sensor bias

signal s(t) in (10) is observable from the output measurement
Z (t) in wireless sensor network. In the augmented T-S fuzzy
WSN-based localization system of the mobile robot in (11),
the sensor bias signal s(t) is embedded in the augmented state
X̄ (t) and therefore its corruption to state X (t) is avoided. i.e.
the effect of bias signal s(t) of NLOS on the state estimate can
be avoided in the mobile robot localization process in WSN.
After the observability of T-S fuzzy augmented WSN-based
localization system of mobile robot in (11) is guaranteed by
Lemma 1, the following fuzzy estimator (filter) is employed
for state (pose) estimation of mobile robot in wireless sensor
network:

Localization filter (estimator) Rule i :

If εi(t) is Fi1, and, . . . , εg(t) is Fig
Then̂̄X (t + 1) = Ā ̂̄X (t)+ B̄iu(t)+ L̄i(Z (t)− Ẑ (t))
Ẑ (t) = C̄î̄X (t) (14)

where ̂̄X (t) is the estimation of X̄ (t) in (11) and {L̄i}Ji=1 are
the localization filter gains to be designed. Then the fuzzy
Luenberger-type localization filter in (14) to estimate X̄ (t)
from output measurement in wireless sensor network in (11)
is inferred as follows [25], [26]:̂̄X (t + 1)

=

J∑
i=1

αi(ε(t))

×

J∑
j=1

αj(ε(t))(Ā ̂̄X (t)+ B̄iu(t)+ L̄i(Z (t)− C̄ĵ̄X (t)))
(15)

In the conventional localization filters [1]- [10] without
using the smoothing signal model of sensor bias signal in (8),
it is not easy to estimate sensor bias signal of NLOS in
WSN. Therefore, the sensor bias signal will deteriorate the
state (pose) estimation of the mobile robot. The proposed
smoothing signal model of sensor bias signal S(t) due to
NLOS is embedded in the augmented state in (11) to avoid

its influence on the estimation of X (t), i.e. ̂̄X (t) by the
fuzzy localization filter in (15) is NLOS-tolerant localization.
In this way, we could exactly reconstruct the pose X (t) and
bias signal S(t) by the conventional T-S fuzzy Luenberger-
type localization filter in (15) easily and efficiently for
NLOS-tolerant control of mobile robot via wireless sensor
network in the following section.

In the T-S fuzzy augmented system in (11), since v̄(t) and
n(t) are still unavailable, their effect on the estimation of state
and sensor bias signal (i.e., X̄ (t)) by T-S fuzzy localization fil-
ter in (15) should be considered from the worst-case perspec-
tive, i.e., for all possible finite-energy v̄(t) and n(t). Therefore,
the following robust H∞ estimation strategy is employed for
the fuzzy localization filter in (15), i.e. to specify the fuzzy
filter gains {L̄i}Ji=1 in (15) to achieve the following robust H∞
NLOS-tolerant estimation performance for some prescribed
ρ.

E
∑tT

t=0(X̄ (t)−
̂̄X (t))TQ(X̄ (t)− ̂̄X (t))

E
∑tT

t=0

[
v̄T (t) nT (t)

]
×

[
v̄(t)
n(t)

] ≤ ρ ,

∀v̄(t), n(t) ∈ l2[0, tT ] (16)

where ρ > 0 denotes the attenuation level of v̄(t) and n(t),
tT denotes the terminal time, Q is the weighting matrix on
estimation error and E(·) denotes the expectation of ·.
The physical meaning of H∞ NLOS-tolerant localization

filtering strategy in (16) is that the effect of all possible finite-
energy external disturbance v̄(t) and measurement noise n(t)
on the estimation error X̄ (t)− ̂̄X (t) must be less than or equal
to a prescribed attenuation level ρ from the expected energy
perspective. In general, ρ is selected to be less than 1 in
order to efficiently attenuate the effect of v̄(t) and n(t) on the
estimation performance.

Let us denote the estimation error of the fuzzy localization
filter as

ē(t) = X̄ (t)− ̂̄X (t) (17)

then from (11) and (15) we get the following estimation error
equation

ē(t + 1) =
J∑
i=1

αi(ε(t))
J∑
j=1

αj(ε(t))(Āi − L̄iC̄j)ē(t)

+[ H̄ −L̄i ]
[
v̄(t)
n(t)

]
(18)

According to the estimation error equation in (18), the H∞
NLOS-tolerant estimation (localization) strategy in (16) can
be represented by

E
∑tT

t=0 ē
T (t)Q ē(t)

E
∑tT

t=0

[
v̄T (t) nT (t)

] [ v̄(t)
n(t)

] ≤ ρ,
∀

[
v̄(t)
n(t)

]
∈ l2[0, tT ] (19)
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The H∞ NLOS-tolerant filtering strategy in (19) is
assumed with the zero initial condition of the estimation
error equation in (18),i.e., ē(0) = 0. If the initial condition
ē(0) 6= 0, then the effect of the initial condition should be
extracted from the H∞ NLOS-tolerant estimation strategy
in (16). In this case, the robust H∞NLOS-tolerant estimation
strategy in (19) should be modified in the following [23][27]

E
∑tT

t=0 ē
T (t)Q ē(t)− ēT (0)P ē(0)

E
∑tT

t=0

[
v̄T (t) nT (t)

] [ v̄(t)
n(t)

] ≤ ρ,

∀

[
v̄(t)
n(t)

]
∈ l2[0, tT ] (20)

for some positive symmetric definite matrix P = PT > 0.
Before we continue the further analysis and design of the

robust H∞NLOS-tolerant localization filter for mobile robot
in wireless sensor network, the following Schur complement
is necessary.
Lemma 2: (Schur complement [29] ): For a symmetric

matrix A, a matrix B and an invertible symmetric C, the
following statements are equivalent[

A BT

B C

]
< 0 <=> C < 0 and A− BTC−1B < 0 (21)

Then the H∞ fuzzy NLOS-tolerant localization filter in
(15) for mobile robot in wireless sensor network is designed
as follows:
Theorem 1: If we can specify a positive matrix P = PT >

0 and the matrices {Ȳi}Ji=1 such that the following LMIs hold
Q− P 0 0 ĀTi P− C̄

T
j Ȳ

T
i

0 −ρI 0 H̄TP
0 0 −ρI −Ȳi

PĀi − ȲiC̄j PH̄ −Ȳi −P

 ≤ 0,

i, j = 1, . . . , J
(22)

then the fuzzy localization filter with {L̄i = P−1Ȳi}Ji=1
in (15) can achieve the robust H∞ NLOS-tolerant estimation
performance in (19) or (20).

Proof: : see Appendix B. �

Remark 1: The computational complexity of the proposed
H∞ NLOS-tolerant fuzzy localization filter design is pro-
portional to O(ξ6J ), where ξ = 2(3 + 3(d + 1)) is the
order of the Lyapunov function matrix P in (22) [22], J is
the number of fuzzy local linearized models of mobile robot
localization system in (11). The computational complexity of
the proposed method is dependent on the number of fuzzy
rules. Besides, the computational complexity of the particle
filter design is proportional to O(ζN 2) [38], where ζ is
the dimension of the state vector and N is the number of
particles. However, when the number of particles decreases,
it will cause sample impoverishment and fail of achieving
precise estimation. Nevertheless, adopting fewer fuzzy rules

will reduce the computational time and reach a lower com-
putational complexity of H∞ fuzzy localization filter but only
with a moderate decay of estimation performance because
these fuzzy approximation errors can be considered as one
kind of external disturbance and be efficient attenuated by
the proposed H∞ fuzzy localization filter.
According to Theorem 1, we could solve the LMIs in (22)

for P and Ȳi with a prescribed attenuation ρ for the H∞
NLOS-tolerant estimation strategy in (19) and then obtain
the filter gains {L̄i = P−1Ȳi}Ji=1 for the fuzzy localization
filter in (15). Furthermore, if we want to design the optimal
H∞ NLOS-tolerant fuzzy localization filter with a minimum
attenuation level ρ∗ in (19) to optimally attenuate the effect
of v̄(t) and n(t) on the localization accuracy, then we need to
solve the following LMI-constrained optimization problem

ρ∗ = min
P>0,Ȳ1...ȲJ

ρ

subject to LMIs in (22) (23)

which could be solved by decreasing ρ until there exists no
solution P > 0 of LMIs, in (22).
Remark 2: The LMIs-constrained optimization problem in

(23) could be easily solved by decreasing ρ until no P >

0 exists in LMIs in (22). The solutions of P > 0, Ȳ1 . . . ȲJ
in LMIs in (22) can be obtained with help of the LMI toolbox
in Matlab.
Based on the above analysis, the designs procedure of

robust H∞ NLOS-tolerant fuzzy localization filter design of
mobile robot in WSN is given as follows:
(I) Construct state dynamic equation and output measure-

ment equation of WSN-based localization system of mobile
robot with NLOS in WSN in (6).
(II) Construct a smoothing signal model in (8) for NLOS

information s(t).
(III) Construct fuzzy augmented WSN-based localization

system in (11) and its fuzzy localization filter in (15) of mobile
robot in WSN.
(IV) Solve ρ∗and Ȳ ∗1 , . . . Ȳ

∗
J from the LMIs-constrained

optimization problem problem in (23) for the optimal H∞
fuzzy localization filter gains {L̄∗i = P

∗
−1Ȳ ∗i }

J
i=1 in (15) to

estimate ̂̄X (t) = [ŜT (t) X̂T (t)]T .

IV. ROBUST H∞ NLOS-TOLERANT REMOTE FUZZY
REFERENCE TRACKING CONTROL DESIGN OF MOBILE
ROBOT IN WIRELESS SENSOR NETWORK
After the robust localization detection of mobile robot in
WSN is finished by the proposed H∞ localization filter in
the above section, we still need to design H∞NLOS-tolerant
fuzzy estimator-based remote control for mobile robot in
WSN through wireless communication to track the desired
trajectory Xr (t) for some task as shown in Fig.1. When trans-
mitting a control signal from the remote controller through
the wireless channel to control actuator of indoor mobile
robot, there also exists NLOS at the down-link sensor of
mobile robot. In this situation, the nonlinear dynamic state
space system of mobile robot in WSN in (6) should be
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modified as

X (t + 1) = X (t)+ B(X (t))(u(t)+ f (t))+ v(t)

Z (t) = C(X (t))+ n(t)+ Ds(t) (24)

where f (t) ∈ R2×1denotes actuator bias signal of mobile
robot due to NLOS in wireless transmission of control signals
from remote controller. Since f (t) will deteriorate the state
estimation and control of mobile robot, a smoothing signal
model like (8) is employed as follows

F(t + 1) = Af F(t)+Mf f̃ (t) (25)

where

Af =



b0I2 · · · · · · · · · bd I2

I2
. . . 02×2

02×2 I2
. . .

...
...

. . .
. . .

...

02×2 · · · 02×2 I2 02×2



F(t) =


f (t)
f (t − 1)
...

f (t − d)

 Mf =


I2
02×2
...

02×2


and f̃ (t) = f (t+1)−

∑d
i=0 bif (t−i) denotes the extrapolation

error with the extrapolation coefficients{bi ≥ 0}di=0.
Based on the T-S fuzzy model of (24) and the augmented

T-S fuzzy system in (11), we get the following T-S fuzzy aug-
mented system ofmobile robot with the embedded smoothing
signal models of F(t) and S(t) due to NLOS situations at
sensor and actuator of (24) in WSN,

X̄ (t + 1) =
J∑
i=1

αi(ε(t))(ĀiX̄ (t)+ B̄iu(t)+ H̄ v̄(t))

Z (t) =
J∑
i=1

αi(ε(t))(C̄iX̄ (t)+ N̄ v̄(t)) (26)

where

X̄ (t) =

F(t)S(t)
X (t)

 , v̄(t) =

f̃ (t + 1)
s̃(t + 1)
v(t)
n(t)

 , B̄i =
 0

0
Bi


C̄i = [ 0 DMT

s Ci ], N̄ = [ 0 0 0 I ]

Āi =

 Af 0 0
0 As 0

BiMT
f 0 I3

 , H̄=

Mf 0 0 0
0 Ms 0 0
0 0 I3 0


Before the design of T-S fuzzy estimator-based remote

control of mobile robot system in wireless sensor network
in Fig. 1, the observability of the fuzzy augmented system
in (26) is discussed as follows:
Lemma 3: For the T-S fuzzy augmented system in (26),

if the local fuzzy system matrices (I3,Ci), i = 1, . . . , J are

observable, i.e.

rank
[
zI3 − I3
Ci

]
= 3, ∀z ∈ eig(I3), i = 1, . . . , J (27)

and

eig(I3) ∩ eig(Af ) = φ, eig(Af ) ∩ (As) = φ,

eig(I3) ∩ eig(As) = φ (28)

col
[
−BiMT

f
0

]
∩

[
zI3 − I3
Ci

]
= φ,

∀z ∈ eig(Af ), i = 1, . . . , J (29)

and

rank
[
zI2(d+1) − Af
−BiMT

f

]
= 2(d + 1),

∀z ∈ eig(Af ), i = 1, . . . , J (30)

rank
[
zI3(d+1) − As

DMT
s

]
= 3(d + 1), ∀z ∈ eig(As) (31)

then T-S fuzzy augmented system in (26) is observable, i.e.
(Āi, C̄i) i = 1, . . . , J are observable.

Proof: Similar to the proof in Lemma 1. �
Based on the fuzzy estimator in (15), the following remote

T-S fuzzy estimator-based reference tracking control law is
employed for the augmented fuzzy system of mobile robot
in (26) to track the desired reference X̄r (t) via wireless com-
munication,

̂̄X (t + 1) =
J∑
i=1

αi(ε(t))(Āî̄X (t)+ B̄iu(t)
+L̄i(Z (t)− Ẑ (t)))

u(t) =
J∑
j=1

αj(ε(t))K̄j(̂̄X (t)− X̄r (t)) (32)

where Ẑ (t) =
∑J

i=1 αi(ε(t))C̄i
̂̄X and X̄r (t) = [0T 0T XTr (t)]

T

is the desired trajectory of X̄ (t) = [FT (t) ST (t) XT (t)]T ,
i.e., the desired trajectory of F(t) and S(t) are both 0 and the
desired trajectory of X (t) is Xr (t).
Based on the estimated state ̂̄X (t) and X̄r (t) in (32), the

T-S fuzzy remote control u(t) is employed to control the state
X (t) of the mobile robot to track the desired trajectory Xr (t)
for some task through wireless communication.
In this study, the T-S fuzzy estimator-based control u(t)

in (32) is employed for the state X (t) of the mobile system
in (24) to track the desired trajectory Xr (t) which is specified
by the following reference model

Xr (t + 1) = ArXr (t)+ Brr(t) (33)

where Ar is specified to characterize the transient state of
Xr (t) and Br can scale the magnitude of Xr (t).
As Xr (t) in (33) approaches steady state, i.e. Xr (t + 1) =

Xr (t) as t increases, we get

Xr (t) = (I − Ar )−1Brr(t) (34)
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If we specify Br = I −Ar in (33), then we get Xr (t) = r(t)
at the steady state. In this situation, if the desired trajectory
of mobile robot is specified as r(t) in (33) beforehand, then
Xr (t) will approach the desired trajectory r(t) of mobile robot
after a transient time. Therefore, based on the referencemodel
in (33) with Br = I −Ar , we only need to specify the desired
trajectory of mobile robot as follows

r(t) =

 xd (t)yd (t)
θd (t)

 (35)

where xd (t), yd (t) and θd (t) are the desired trajectory speci-
fied by the designer for a mobile robot for some task in the
wireless sensor network.

In addition, since the augmented state X̄ (t) in (26) includes
X (t), F(t) and S(t), in order to be consistent in the dimension
of X̄r (t) in u(t) in (32), the reference tracking control in (33)
should be augmented as follows:

X̄r (t + 1) = Ār X̄r (t)+ B̄r r̄(t) (36)

where X̄r (t) = [0T 0T XTr (t)]
T , Ār = diag(0 0 Ar ) and r̄(t) =

[0T 0T rT (t)]T

Based on the above analysis, the following H∞ NLOS-
tolerant fuzzy estimator-based reference tracking control
strategy is employed for NLOS-tolerant remote reference
tracking control of mobile robot system in wireless sensor
network

E
∑tT

t=0(X̄ (t)− X̄r (t))
T Q̄1(X̄ (t)− X̄r (t))

+(X̄ (t)− ̂̄X (t))T Q̄2(X̄ (t)− ̂̄X (t))+ u(t)TRu(t)
E
∑tT

t=0(v̄
T (t)v̄(t)+ r̄(t)T r̄(t))

≤ ρ

∀v̄(t), r̄(t) ∈ l2[0, tT ] (37)

where Q̄1 ≥ 0 denotes the weighting matrix on the reference
tracking error, Q̄2 ≥ 0 denotes the weighting matrix on the
estimator error of localization filter and R ≥ 0 denotes the
weighting matrix on control effort. In general, the weighting
matrix Q̄2 must be larger than Q̄1 because a precise state esti-
mation will lead to a precise estimator-based control. Since
v̄(t) and r̄(t) are unavailable for the control designer, their
worst-cast effect on estimation error and tracking error should
be considered in the H∞ observer-based tracking control
strategy in (37).

The physical meaning of H∞ NLOS-tolerant fuzzy
estimator-based tracking control strategy of mobile robot in
WSN in (37) is that the effect of v̄(t) and r̄(t)in (37) on
the quadratic reference tracking error X̄ (t) − X̄r (t) of the
desired trajectory X̄r (t) in (36) and the state estimation error
ē(t) = X̄ (t) − ̂̄X (t) of the augmented state X̄ (t) in (26) must
be less than ρ from the mean energy perspective.
Let us denote

_
Q̄ =

 Q̄1 −Q̄1 0
−Q̄1 Q̄1 0
0 0 Q̄2

 , _
X̄ (t) =

 X̄ (t)
X̄r (t)
ē(t)

 (38)

where the state estimation error ē(t) = X̄ (t)−̂̄X (t) is obtained
by

ē(t + 1) =
J∑
i=1

J∑
j=1

αi(ε(t))αj(ε(t))(Āi − L̄iC̄j)ē(t)

+(H̄ − L̄iN̄ )v̄(t) (39)

Then, the H∞NLOS-tolerant fuzzy estimator-based refer-
ence tracking control strategy of mobile robot inWSN in (37)
could be simply represented by

E
∑tT

t=0

_
X̄
T
(t)

_
Q̄

_
X̄ (t)+ u(t)TRu(t)

E
∑tT

t=0

_
v̄
T
(t)

_
v̄(t)

≤ ρ,

∀
_
v̄(t) ≤ l2[0, tT ] (40)

where u(t) = 6J
j=1αj(ε(t))K̄j[I -I -I ]

_
X̄ (t),

_
X̄ (t) and

_
v̄(t) are

the state vector and external disturbance of the following T-S
fuzzy augmented system

_
X̄ (t + 1) =

J∑
i=1

J∑
j=1

αi(ε(t))αj(ε(t))(
_
Āij

_
X̄ (t)+

_
H̄ ij

_
v̄(t))

(41)

where
_
Āij and

_
H̄ ij are defined as

_
Āij =

 Āi + B̄iK̄j −B̄iK̄j −B̄iK̄j
0 Ar 0
0 0 Āi − L̄iC̄j

 ,
_
H̄ ij =

 H̄ 0
0 B̄r

H̄ − L̄iN̄ 0

 , _
v̄(t) =

[
v̄(t)
r(t)

]
i.e. the H∞ NLOS-tolerant fuzzy estimator-based reference
tracking control design problem in (37) of the mobile robot
in (26) and (32) in WSN is reduced to an equivalent sim-
plified H∞ stabilization design problem in (40) of the aug-
mented T-S fuzzy system in (41). This will significantly sim-
plify the design procedure of the H∞ NLOS-tolerant fuzzy
estimator-based reference tracking control design problem of
the mobile robot in WSN.

In the H∞ NLOS-tolerant fuzzy estimator-based H∞ ref-
erence tracking control strategy in (40), we assume

_
X̄ (0) = 0.

If the initial condition
_
X̄ (0) 6= 0, the effect of initial condi-

tion should be extracted from H∞ estimator-based reference
tracking control strategy as follows[24][27]:

E
∑tT

t=0

_
X̄
T
(t)

_
Q̄

_
X̄ (t)+ u(t)TRu(t)−

_
X̄
T
(0)

_
P̄

_
X̄ (0)

E
∑tT

t=0

_
v̄
T
(t)

_
v̄(t)

≤ ρ

(42)

For some
_
P̄
T
=

_
P̄ > 0.

Theorem 2: If we can specify a positive symmetric matrix_
P̄ > 0, fuzzy control gains {K̄j}Jj=1 and observer gains {L̄i}

J
i=1

in (32) such that the following matrix inequalities hold
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
_
Ā
T

ij

_
P̄
_
Āij −

_
P̄+

_
Q̄

+[I -I -I ]T K̄T
j RK̄j[I -I -I ]

_
Ā
T

ij

_
P̄

_
H̄ ij

_
H̄
T

ij

_
P̄
_
Āij

_
H̄
T

ij

_
P̄

_
H̄ ij − ρI


≤ 0, i, j = 1, . . . , J (43)

then the H∞NLOS-tolerant fuzzy estimator-based reference
tracking control strategy in (37) or (40) for mobile robot
system in WSN in (24) can be achieved.

Proof: see Appendix C �
Let us denote the Lyapunov (energy) function of 3 dynamic

systems in (26), (36) and (39) as the following quadratic
functions:

V (
_
x̄(t)) = V1(X̄ (t))+ V2(X̄r (t))+ V3(ē(t))

= X̄T (t)P1X̄ (t)+ X̄Tr (t)P2
_
X̄ r (t)+ ēT (t)P3ē(t)

=
[
X̄T (t) X̄Tr (t) ē

T (t)
]P1 0 0

0 P2 0
0 0 P3

 X̄ (t)
X̄r (t)
ē(t)


=

_
X̄
T
(t)

_
P̄

_
X̄ (t) (44)

i.e.,
_
P̄ = diag[P1 P2 P3], where P1 > 0, P2 > 0 and P3 > 0.

Substituting
_
Āij,

_
H̄ ij in (41) and

_
P̄ in (44) into (43),

we obtain the following bilinear matrix inequalities (BMIs)
511 512
∗ 522
∗ ∗

∗ ∗

∗ ∗

513 514
523 524
533 534
∗ 544
∗ ∗

0
525
0
0
555

 ≤ 0, i, j = 1, . . . , J (45)

in which 511 = (Āi + B̄iK̄j)TP1(Āi + B̄iK̄j) − P1 + Q̄1 +

K̄T
j RK̄j,512 =−(Āi+ B̄iK̄j)TP1B̄iK̄j− Q̄1− K̄T

j RK̄j,513 =

−(Āi + B̄iK̄j)TP1B̄iK̄j − K̄T
j RK̄j, 514 = (Āi + B̄iK̄j)TP1H̄ ,

522 = (B̄iK̄j)TP1(B̄iK̄j) + ĀTr P2Ār − P2 + Q̄1 + K̄T
j RK̄j,

523 = (B̄iK̄j)TP1(B̄iK̄j) + K̄T
j RK̄j, 524 = −(B̄iK̄j)TP1H̄ ,

525 = ĀTr P2B̄r ,533 = (B̄iK̄j)TP1(B̄iK̄j)− P3 + Q̄2 + (Āi −
L̄iC̄j)TP3(Āi − L̄iC̄j)+ K̄T

j RK̄j, 534 = (Āi − L̄iC̄j)TP3(H̄ −
L̄iN̄ )−(B̄iK̄j)TP1H̄ ,544 = H̄TP1H̄+(H̄T

−N̄T L̄Ti )P3(H̄−
L̄iN̄ )− ρI , 555 = B̄Tr P2B̄r − ρI
In general, it is still not easy to solve the above BMIs for

fuzzy control gains {K̄j}Jj=1 and estimator gains {L̄i}Ji=1 in (32)
for the T-S fuzzy estimator-based reference tracking control
of mobile robot system in WSN simultaneously. A two-step
procedure is proposed to solveP1,P2,P3, {K̄j}Jj=1 and {L̄i}

J
i=1

from the above matrix inequalities.
Two-step design procedure of robust H∞ fuzzy estimator-

based tracking remote control of the mobile robot in wireless
sensor network:
Step 1: Since the necessary condition for the matrix

inequalities in (45) is that all diagonal terms must be less
than or equal to 0, we consider the first diagonal term to solve
{K̄j}Jj=1 and P1 > 0 first, i.e.,

(Āi + B̄iK̄j)TP1(Āi + B̄iK̄j)− P1 + Q̄1 + K̄T
j RK̄j ≤ 0

(46)

Let W−11 = P1 and employ Schur complement in
Lemma 2, then (46) is equivalent to[

−W−11 + Q̄1 + K̄T
j RK̄j Ā

T
i + K̄

T
j B̄

T
i

Āi + B̄iK̄j −W1

]
≤ 0 (47)

Perform
[
W1 0
0 I

]
to both sides of (47) and let Ȳj = K̄jW1,

then we get[
−W1 +W1Q̄1W1 + Ȳ Tj RȲj W1ĀTi + Ȳ

T
j B̄

T
i

ĀiW1 + B̄iȲj −W1

]
≤ 0,

i, j = 1, . . . , J (48)

By Schur complement in Lemma 2 again, BMIs in (48) are
equivalent to the following LMIs,

−W1 Ȳ Tj W1Q
1/2
1 (ĀiW1 + B̄iȲj)T

Ȳj −R−1 0 0
Q1/2
1 W1 0 −I 0

ĀiW1 + B̄iȲj 0 0 −W1


≤ 0, i, j = 1, . . . , J (49)

After solving W1 and {Ȳj}Jj=1 from LMIs in (49), we can
obtain fuzzy control gains {K̄j = ȲjW

−1
1 }

J
j=1.

Step 2: Further, substituting these solutions P1 = W−11
and {K̄j}Jj=1 into matrix inequalities in (45), it is still not easy
to transform BMIs in (45) to LMIs because coupling terms
(Āi − L̄iC̄j)TP3(H̄ − L̄iN̄ ) and (H̄T

− N̄T L̄Ti )P3(Āi − L̄iC̄j)
in the off-diagonal lines. Under the concept of completing of
squares method, i.e., ATB + BTA ≤ αATA + α−1BTB for
α > 0 [27], the following inequalities hold

ēT (t)(Āi − L̄iC̄j)TP3(H̄ − L̄iN̄ )v(t)

+v̄T (t)(H̄ − L̄iN̄ )P3(Āi − L̄iC̄j)ē(t)

≤ ēT (t)(Āi − L̄iC̄j)TP3(Āi − L̄iC̄j)e(t)

+v̄T (t)(H̄ − L̄iN̄ )P3(H̄ − L̄iN̄ )T v̄(t) (50)

for any signal vectors ē(t) and v̄(t).
Then, to decouple the terms (Āi− L̄iC̄j)TP3(Āi− L̄iC̄j) and

(H̄ − L̄iN̄ )TP3(H̄ − L̄iN̄ ) in the third and forth terms in (50),
respectively, the following matrix inequalities are proposed
by introducing stack variable {R̄ij, S̄ij}Ji,j=1 as follows:

(Āi − L̄iC̄j)TP3(Āi − L̄iC̄j) ≤ R̄ij (51)

(H̄ − L̄iN̄ )TP3(H̄ − L̄iN̄ ) ≤ S̄ij (52)

which are equivalent to[
−R̄ij ĀTi P̄3 − C̄jM̄

T
i

P̄3Āi − M̄iC̄j −P3

]
≤ 0 (53)[

−S̄ij HTP3 − N̄T M̄T
i

P3H̄ − M̄iN̄ −P3

]
≤ 0 (54)

respectively, where M̄i = P3L̄i or L̄i = P−13 M̄i.
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By (50),(51) and (52), the BMIs in (45) become the fol-
lowings

511 512
∗ 522
∗ ∗

∗ ∗

∗ ∗

513 514
523 524
533 534
∗ 544
∗ ∗

0
525
0
0
555

 ≤ 0, i, j = 1, . . . , J (55)

in which 511 = (Āi + B̄iK̄j)TP1(Āi + B̄iK̄j) − P1 + Q̄1 +

K̄T
j RK̄j,512 =−(Āi+ B̄iK̄j)TP1B̄iK̄j− Q̄1− K̄T

j RK̄j,513 =

−(Āi + B̄iK̄j)TP1B̄iK̄j − K̄T
j RK̄j, 514 = (Āi + B̄iK̄j)TP1H̄ ,

522 = (B̄iK̄j)TP1(B̄iK̄j) + ĀTr P2Ār − P2 + Q̄1 + K̄T
j RK̄j,

523 = (B̄iK̄j)TP1(B̄iK̄j) + K̄T
j RK̄j, 524 = −(B̄iK̄j)TP1H̄ ,

525 = ĀTr P2B̄r ,533 = (B̄iK̄j)TP1(B̄iK̄j)−P3+ Q̄2+ 2R̄ij+
K̄T
j RK̄j, 534 = −(B̄iK̄j)TP1H̄ , 544 = H̄TP1H̄ + 2S̄ij − ρI ,
555 = B̄Tr P2B̄r − ρI .
By solving (53), (54) and (55) for P2,P3 and M̄i, simul-

taneously, the fuzzy observer gains {L̄i = P−13 M̄i}
J
i=1 could

be obtained. Therefore, in step 1, we could obtain {K̄j}Jj=1
and in step 2 we could obtain fuzzy estimator gains {L̄i}Ji=1
in (32) to achieve the H∞ estimator-based reference tracking
control strategy in (37) of mobile robot system in wireless
sensor network. In order to solve BMIs in (45) for H∞ fuzzy
estimator-based controller in (32), the above two-step design
procedure is proposed. In step 1, we propose to solve equiv-
alent LMIs in (49) for the first diagonal term of BMIs in (45)
to obtain fuzzy control gains {K̄j}Jj=1. In the second step,
we employed the decoupling technique (50), the relaxing
technique in (51) and (52) to transform BMIs in (45) to LMIs
in (53), (54) and (55) to solve fuzzy estimator gain {L̄i}Ji=1.
Remark 3: For the fuzzy-model-based (FMB) control,

the membership-function-independent (MFI) strategy is
employed when analyzing the stability conditions. In this
case, we drop the membership functions in the design proce-
dure during the calculation of the stability analysis. However,
it will increase the conservatism because fewer number of
stability conditions and decision variables (information) are
taken into consideration. Recently, several researchers have
focused on the membership-function-dependent (MFD) strat-
egy when faced with stability analysis problems. It has been
known that the MFD strategy will bring more information
through the bound of slack matrices or approximation errors
of the membership function during the stability analysis,
resulting in more relaxed stability conditions. However, the
MFD method needs more experiences for choosing the infor-
mation of membership functions with regard to the stability
conditions in the system. Once the information does not in the
interval of membership functions, the computational demand
on finding a feasible solution to the stability conditions will
increase. Although the MFI method is more conservative,
it could guarantee the asymptotical stability and find feasible
solutions easily.
Remark 4: To reduce the conservatism of the membership-

function-independent (MFI) strategy, the selection of oper-
ation points and fuzzy If-Then rules model in (9) becomes

an important issue. Obviously, if a lot of local linearized
systems are used to interpolate the mobile robot system, the
number of matrix inequalities in (54) will increase and the
corresponding feasibility will be reduced. Therefore, there
is a trade-off between the number of If-Then rules for the
T-S fuzzy model in (9) and the feasible solvability of matrix
inequalities in (54).
Similar to the optimal H∞ fuzzy localization filter design

problem in (23), the optimal H∞ fuzzy estimator-based ref-
erence tracking control of mobile robot system in wireless
sensor network based on the proposed two-step design can be
formulated as the following LMIs-constrained optimization
problem.

ρ∗ = min ρ

W1 > 0, Ȳj,P2 > 0,P3 > 0, M̄j

subject to (49), (53), (54)and(55) (56)

The LMIs-constrained optimization problem in (56) could
be easily solved by decreasing ρ until there exists noW1 > 0,
P2 > 0, P3 > 0 in LMIs in (49), (53), (54) and (55) with the
help of LMI toolbox in Matlab.
Therefore we summarize the design procedure of H∞

NLOS-tolerant fuzzy estimator-based reference tracking con-
trol of the mobile robot in wireless sensor network under
NLOS situation as follows:
(1) Construct the augmented T-S fuzzy system in (26) of

mobile robot with embedded smoothing signal model (8)
and (25) of bias signal S(t) and F(t) of NLOS in the
transmission of output measurement and control signal,
respectively.
(2) Construct the T-S fuzzy estimator-based tracking con-

trol in (32).
(3) Specify weighting matrices Q̄1, Q̄2 and R of the H∞

NLOS-tolerant fuzzy estimator-based reference tracking con-
trol strategy in (37).
(4) Solve the LMIs-constrained optimal problem in (56)

by two-step design procedure forW ∗1 , {Ȳ
∗
j }

J
j=1, P

∗

3, {M̄
∗
i }
J
i=1.

Then, the optimal fuzzy localization filter (estimator) gains
and fuzzy control gains in (32) are obtained as {L̄∗i =
P
∗
−1
3 M̄∗i }

J
i=1 and {K̄

∗
j = Ȳ ∗j W

∗
−1

1 }
J
j=1, respectively.

Remark 5: The optimization problemswith bilinearmatrix
inequality (BMI) constraints in (45) have been known as
nonconvex and NP-hard problems, which are hard to solve.
Several researchers have developed some approaches to solve
these problems by using a sum-of-squares approach to the
fixed order H∞ control synthesis [34], local and global
methods based on techniques of the global optimization for
control design [35] and sequential semidefinite program-
ming (SDP) method for control design [36]. Also, the Matlab
toolbox of BMI-solver has been proposed [37] to approximate
the feasible set of the nonconvex problems in control by a
sequence of inner positive semidefinite convex approximation
sets. These methods can solve the BMI constraints problem to
obtain control gains and observer gains simultaneously and
effectively.
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V. SIMULATION EXAMPLE
In this section, the proposed robust H∞NLOS-tolerant local-
ization filter and robust H∞ NLOS-tolerant fuzzy estimator-
based reference tracking control design are applied to the
localization and desired reference pose tracking control of
the mobile robot at the remote site in wireless sensor net-
work under NLOS situation inside an intelligent building as
shown in Fig.1. In the simulation example, we assume four
receivers are installed at points (-50,-50), (-50,50), (50,-50)
and (50,50), respectively, all in meters. Further, the robust
H∞ localization filter-based remote control is implemented
by a computer (Core i7-2700K, 3.5 GHz, 16GB RAM) to
run all the algorithms and analyze the data namely. All the
simulation data are analyzed and calculated by MATLAB
R2019B. Suppose the order of smoothing model of S(t) in (8)
is 3 (i.e., d = 3) and F(t) in (25) is 3 (i.e., d = 3).
The extrapolation coefficients of sensor bias signal in As are
chosen a0 = 0.4, a1 = 0.3, a2 = 0.2, a3 = 0.1 in (8) and
the extrapolation coefficients of actuator bias signal in Af are
chosen as b0 = 0.5, b1 = 0.2, b2 = 0.2, b3 = 0.1 in (25).
Suppose the external disturbances v1(t), v2(t) and v3(t) and
measurement noises n1(t), n2(t), n3(t) and n4(t) in (5) are all
Gaussian white noises with zero mean and standard deviation
σ = 1.
For the reference model in (36), we choose

Ār = diag(0 0 Ar ), B̄r = I11 − Ār (57)

where Ar = 0.3I3.
In the wireless sensor network system, actuator bias signal

f (t) due to NLOS inwireless channels will be transmitted into
the actuator with remote control command to influence the
pose of the mobile robot. Four sensors of indoor localization
systemwill suffer the interference from sensor bias signal s(t)
due to NLOS impact in wireless channels. Sensor bias signal
s(t) = [s1(t) s2(t) s3(t)]T and the actuator bias signal f (t) =
[f1(t) f2(t)]T are displayed in Fig, 3.
The initial state of the mobile robot and its estimation

in WSN are assumed to be X (0) = [−40, 5, π/2]T and
X̂ (0) = [−40, 5, 0], respectively, and the initial state X̄ (0)
of the augmented system in (26) and its estimation are given
by

X̄ (0) = [0, 0, 0, 0, 0, 0, 0, 0,−40, 5, π/2]T̂̄X (0) = [0, 0, 0, 0, 0, 0, 0, 0,−40, 5, 0]T (58)

respectively. The weighting matrices of the robust H∞
NLOS-tolerant fuzzy estimator-based reference tracking con-
trol strategy in (37) are selected as

Q̄1 = 10−3 × I11, Q̄2 = 3× 10−3 × I11, R = 0.5× I3
(59)

To construct the T-S fuzzy system of the mobile robot
system in (9), the premise variables ε1(t), ε2(t) and ε3(t) are
chosen as x(t), y(t), and θ (t) respectively and the operation
points are given as

x11 = −50, x21 = 10, x31 = 50

y12 = −50, y22 = 10, y32 = 50

θ13 = 275, θ23 = 375, θ33 = 450 (60)

After solving the LMIs-constrained optimization problem
in (56) by two-step design procedure with the optimal atten-
uation level ρ∗ = 0.8, we can obtain the fuzzy control
gain {L̄∗i = P

∗
−1
3 M̄∗i }

27
i=1 and fuzzy observer gains {K̄∗j =

Ȳ ∗j W̄
∗
−1

1 }
27
j=1, respectively.

The bias signals due to NLOS at actuator and output signal
sensors and their estimates by T-S fuzzy estimator in (32)
via the proposed H∞ NLOS-tolerant fuzzy estimator-based
reference tracking control strategy in (37) are shown in Fig. 3.
Fig. 3(a) shows the actuator bias signal f (t) = [f1(t) f2(t)]T

and its estimation f̂ (t). Fig. 3(b) shows the sensor bias sig-
nal s(t) = [s1(t) s2(t) s3(t)]T and its estimation ŝ(t) by
the proposed H∞ NLOS-tolerant estimator-based reference
tracking control strategy of the mobile robot in WSNs inside
the intelligent building. At first, the estimation of f (t) and
s(t) have large transient responses due to the initial condi-
tion. However, the proposed H∞NLOS-tolerant fuzzy Luen-
berger observer can estimate both actuator and sensor bias
signal as well as the pose of mobile robot precisely during
a short transient time. In Fig. 4, the moving trajectory and
the desired trajectory of the mobile robot in the wireless
sensor network by the proposed H∞ NLOS-tolerant fuzzy
estimator-based reference tracking control strategy are dis-
played. In addition, the trajectory of mobile robot and the
corresponding desired reference trajectory are also shown
in Fig. 5. From Figs. 4-5, while the mobile robot moves
across the different Quadrants, the trajectory of the mobile
robot will suffer from a huge interference because of the
dramatic change of angle θ (t) = tan−1( vy(t)vx (t)

) when vx(t) ' 0.
For example, once the mobile robot moves across the fourth
quadrant to the first quadrant, the trajectory of the mobile
robot will move a little bit away from the desired trajectory.
Even there are some floats with the trajectory due to dramatic
changes of angle θ(t), the result shows that the proposed
robust H∞ NLOS-tolerant estimator-based fuzzy reference
tracking control strategy can efficiently estimate the state of
the mobile robot and bias signal due to NLOS inWSN as well
as can make mobile robot to robustly track the desired refer-
ence quite well in the cluttered and noisy indoor environment
inside the intelligent building, especially in NLOS situations.

The control signals u∗(t) = [1d∗(t),1θ∗(t)] for the
mobile robot in the wireless sensor network are shown in
Fig. 6. The control distance signal 1d∗(t) can almost can-
cel the actuator signal f (t) when it causes an effect on the
control actuator of the mobile robot in the wireless system.
In addition, in Fig. 6, the control angle signal 1θ∗(t) gives
a large control signal in the 150s and 300s to cancel the bias
signal of rapid change of the angle θ (t) from the first to fourth
quadrant and the third to second quadrant. The proposed
robust H∞NLOS-tolerant observer-based reference tracking
controller can eliminate the effect of actuator bias signal f (t)
and sensor bias signal s(t) due to NLOS in WSN during
the observer-based reference tracking control process of the
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FIGURE 3. Bias signals s(t) = [s1(t) s2(t) s3(t)]T and f (t) = [f1(t) f2(t)]T
due to NLOS in sensor and actuator and their estimates ŝ(t) = [ŝ1(t) ŝ2(t)
ŝ3(t)]T and f̂ (t) = [f̂1(t) f̂2(t)]T by T-S fuzzy estimator in (32) based on the
optimal H∞ NLOS-tolerant estimator-based reference tracking control
strategy in (37).

mobile robot inside the intelligent building. The simulation
performance of the proposed optimal H∞ NLOS-tolerant
fuzzy estimator-based reference tracking control strategy in
(37) is calculated as follows∑350

t=0(X̄ (t)− X̄r (t))
T Q̄1(X̄ (t)− X̄r (t))

+(X̄ (t)− ̂̄X (t))T Q̄2(X̄ (t)− ̂̄X (t))+ u(t)TRu(t)
−[X̄ (t) X̄r (t) ē(t)]TP

∗

 X̄ (t)
X̄r (t)
ē(t)

− _
X̄
T
(0)

_
P̄

_
X̄ (0)

∑350
t=0(v̄

T (t)v̄(t)+ r̄(t)T r̄(t))
≈ 0.7, (61)

Obviously, the optimal H∞ NLOS-tolerant fuzzy
estimator-based reference tracking performance can be
achieved by the result of simulation example with smoothing
signal model of NLOS. In order to validate the effective-
ness of our design scheme, the trajectory of the same H∞

FIGURE 4. The trajectory and the desired reference trajectory of mobile
robot under the proposed H∞ NLOS-tolerant fuzzy estimator-based
reference tracking control. Since θ(t) = tan−1(

vy (t)
vx (t) ), while vx (t) ' 0,

there exists a large change in θ(t).

FIGURE 5. The desired reference trajectory Xr (t) and the real trajectory
X (t) of mobile robot in WSN in Fig. 1 by the proposed H∞ NLOS-tolerant
fuzzy estimator-based reference tracking control. Since
θ(t) = tan−1(

vy (t)
vx (t) ), θ(t) has a large change when vx (t) ' 0.

estimator-based reference tracking control of the mobile
robot in NLOS without using the smoothing signal model is
carried out. From Fig. 7, once the bias signals (actuator bias
signal and sensor bias signal) occur due to NLOS situations
in the mobile robot in WSN inside the intelligent building,
the mobile robot under the H∞ estimator-based reference
tracking control without using the smoothing model can not
track the desired reference well because of the corruption
of bias signals due to NLOS in WSN. Obviously, the bias
signals due to NLOS will deteriorate the pose estimate and
reference tracking control of the mobile robot so that the
reference tracking performance is severely degraded even the
H∞ estimator-based reference tracking control has a robust
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TABLE 1. Comparison of localization estimates between the proposed localization filter and the particle filter in [7].

FIGURE 6. Control signal u∗(t) = [1d∗(t), θ∗(t)]T of the proposed H∞
NLOS-tolerant fuzzy estimator-based reference tracking control strategy.
There exists a large control signal to overcome the large changes of θ(t)
of the mobile robot in the reference tracking process.

FIGURE 7. Comparison between H∞ NLOS-tolerant fuzzy
estimator-based reference tracking control and conventional H∞
estimator-based reference tracking control without smoothing model in
NLOS. The trajectory [xw(t) yw(t) θw(t)]T denotes the conventional H∞
estimator-based reference tracking results of the same method but
without considering the smoothing signal model and the trajectory [x(t)
y (t) θ(t)]T denotes the tracking results of our method.

state estimation and control performance under external dis-
turbance and measurement noise simultaneously.

The NLOS-tolerant localization filter estimation perfor-
mance of the proposed H∞ estimator-based reference track-

FIGURE 8. Localization estimation by the proposed H∞ NLOS-tolerant
filter and particle filter.

FIGURE 9. Position error by the proposed method and particle filter
method are compared by simulation.

ing control method is shown in Fig. 8. It seems that when
the mobile robot moves across different quadrants, some
dramatic change of angle θ (t) will cause an inaccurate esti-
mation. To validate the effectiveness of our method, the tra-
jectory estimation of the particle filter in [7] is carried out
based on the proposed H∞ NLOS-tolerant control scheme.
It is means that, once the mobile robot moves across the
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second quadrant to the third quadrant, the proposed H∞
NLOS-tolerant localization filter can estimate precisely than
the traditional particle filter.

In order to evaluate the performance of the proposed
method, obviously, we need to calculate the localization fil-
tering error and the average localization error. The localiza-
tion filtering error is computed by

Er (t) =
√
(x(t)− x̂(t))2 + (y(t)− ŷ(t))2 (62)

and the average localization filtering error is computed as
6
tT
t=1Er (t)
tT

, where (x(t), y(t)) is the true position of a mobile
robot and (x̂(t), ŷ(t)) is its estimated position. In addition,
in Table 1, the localization estimates with the proposed
scheme for a few sample locations are given to clearly con-
firm the performance of the proposed method for the local-
ization estimation of indoor mobile robot in WSN. In Fig. 9,
the position filtering error by the proposed method and par-
ticle filter in [7] are carried out. Obviously, it is found that
the proposed H∞ estimator-based reference tracking con-
trol method demonstrates a better location estimation per-
formance than the particle filter in [7]. The result in Fig. 9
shows that the proposed method can be effectively against
the dramatic change of angle θ (t) while the mobile robot
moves across the different Quadrants. It is noted that the
average localization error of our method is reduced by about
90% as compared to particle filter according to the average
localization error of our method (0.2874) and particle fil-
ter (3.0207), respectively. From the simulation experiments,
it can be concluded that the estimation accuracy (trajectory
and localization error) of the proposed method is better than
the traditional particle filter under NLOS situations, external
disturbance and measurement noise.

VI. CONCLUSION
In this study, the robust H∞ NLOS-tolerant fuzzy localiza-
tion filter and H∞ NLOS-tolerant localization filter-based
reference tracking control of the mobile robot are proposed
for the mobile robot to track a desired reference trajectory
in the cluttered and noisy indoor environment with NLOS
in the wireless sensor network. A discrete-time smoothing
signal model is proposed to efficiently estimate the bias
signals due to NLOS in the wireless sensor network. By
using T-S fuzzy interpolation method, the nonlinear WSN-
based indoor localization system of the mobile robot can be
interpolated by a set of local discrete-time linear dynamic
systems via fuzzy basis functions to simplify the design pro-
cedure. Further, by embedding the smoothing signal models
of bias signals due to NLOS in the mobile robot system to
avoid the corruption of bias signals due to NLOS, a fuzzy
Luenberger observer can be used to estimate state and bias
signals due to NLOS of mobile robot localization system
in WSN. Then, both the robust H∞ NLOS-tolerant local-
ization filter design problem and NLOS-tolerant observer-
based reference tracking control design problem of the indoor
mobile robot reference tracking control design in WSN could

be transformed into a corresponding LMI-constrained opti-
mization problem which could be efficiently solved by the
proposed two-step design procedure. A simulation of robust
H∞ NLOS-tolerant fuzzy estimator-based reference track-
ing control design of indoor mobile robot in an intelligent
building via wireless sensor network is provided to validate
the effectiveness of the proposed method. Because of the
corruption avoidance of NLOS and precise estimation of
NLOS via our proposed discrete smoothing model, the pro-
posed H∞ NLOS-tolerant fuzzy estimator-based reference
tracking control can eliminate the influence of bias signals
due to NLOS in wireless channels to improve the reference
tracking performance of the indoor mobile robot in WSN
inside the intelligent building. Since the accurate localiza-
tion and robust tracking control of the mobile robot using
wireless networks under NLOS situations can be guaranteed
well, the proposed NLOS-tolerant localization filter and the
NLOS-tolerant tracking control design method will be much
potential for more practical applications in future smart cities.

APPENDIX A
PROOF OF LEMMA 1
By utilizing the rank test in [28], the augmented T-S fuzzy
system in (11) is observable if the following rank condition
holds

rank
[
zI3(d+2) − Ā

C̄i

]
= 3(d + 2), ∀z ∈ Z (63)

where Z denotes the set in complex domain.
The proof is divided into two parts:
(i) z /∈ eig(I3) and eig(As) and (ii) z ∈ eig(I3) and eig(As).

(i) When z /∈ eig(I3) and eig(As)

rank
[
zI3(d+1) − Ā

C̄i

]
= rank

 zI − As 0
0 zI − I3

DMT
s Ci


= rank

[
zI − As
DMT

s

]
+ rank

[
zI − I3
Ci

]
(64)

By (12) and (13), We get

rank
[
zI3(d+1) − Ā

C̄i

]
= 3+ 3(d + 1) = 3(d + 2) (65)

(ii) When z ∈ eig(I3) and eig(As)

rank
[
zI3(d+2) − Ā

C̄i

]
= rank

 zI − As 0
0 zI − I3
D Ci

 (66)

Since we assume eig(As) ∩ eig(I3) = 0,by assumption on
(12) and (13)

rank
[
zI3(d+2) − Ā

C̄i

]
= rank

[
zI − As
DMT

s

]
+ rank

[
zI − I3
Ci

]
= 3+ 3(d + 1) = 3(d + 2) (67)
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Under conditions in (12) and (13), and from (i) and (ii) we

can prove rank
[
zI3 − Ā
C̄i

]
= 3(d + 2) for all fuzzy local

systems in all z-complex domain, i.e. T-S Fuzzy augmented
mobile robot localization system in (11) is observable. Q.E.D

APPENDIX B
PROOF OF THEOREM 1
For the estimation error equation in (18), we choose the Lya-
punov function V (e(t)) = ēT (t)Pē(t) as its energy function
with P = PT > 0. Then the numerator of (20) becomes

E
{ tT∑
t=0

[ēT (t)Q ē(t)]− ēT (0)Pē(0)
}

= E{V (ē(0))} − E{V (ē(tT + 1))} + E
{ tT∑
t=0

[ēT (t)Qē(t)

+V (ē(t + 1))− V (ē(t))]− ēT (0)Pē(0)
}

= −E{ēT (tf + 1)Pē(tf + 1)} + E
{ tT∑
t=0

[ēT (t)Qē(t)

+ēT (t + 1)Pē(t + 1)− ēT (t)Pē(t)]
}

(68)

By substituting (18) into (68), we get

E
{ tT∑
t=0

[ēT (t)Qē(t)]− ēT (0)Pē(0)
}

= E
{ tT∑
t=0

J∑
i=1

J∑
j=1

αi(ε(t))αj(ε(t))
{
ēT (t)Q ē(t)

−ēT (t)P ē(t)+
{
(Āi − L̄iC̄j)ē(t)+

[
H̄ −L̄i

]
×

[
v̄(t)
n(t)

]}T
× P

{
(Āi − L̄iC̄j)ē(t)+

[
H̄ −L̄i

]
×

[
v̄(t)
n(t)

]}
− ρ

[
v̄T (t) nT (t)

] [ v̄(t)
n(t)

]
+ρ

[
v̄T (t) nT (t)

] [ v̄(t)
n(t)

]}
= E

{ tT∑
t=0

J∑
i=1

J∑
j=1

αi(ε(t))αj(ε(t))

×
[
ēT (t) v̄T (t) n̄T (t)

]
×


Q− P 0 0

0 −ρI 0
0 0 −ρI

+
 (Āi − L̄iC̄j)T

H̄T

−L̄Ti


×P

[
Āi − L̄iC̄j H̄ −L̄i

] }

×

 ē(t)v̄(t)
n̄(t)

+ ρ [ v̄T (t) nT (t) ] [ v̄(t)
n(t)

]}
(69)

Therefore, if the following inequalities holdQ− P 0 0
0 −ρI 0
0 0 −ρI

+
 (Āi − L̄iC̄j)T

H̄T

−L̄Ti


×P

[
(Āi − L̄iC̄j) H̄ −L̄i

]
≤ 0, i, j = 1, . . . , J (70)

then we have

E
{ tT∑
t=0

[ēT (t)Q ē(t)]− ēT (0)Pē(0)
}

≤ ρE
{ tT∑
t=0

[
v̄(t)T n(t)T

] [ v̄(t)
n(t)

]}
(71)

i.e. the H∞ estimation performance in (20) holds.
The inequalities in (70) are equivalent to the following

inequalitiesQ− P 0 0
0 −ρI 0
0 0 −ρI

+
 (Āi − L̄iC̄j)T

H̄T

−L̄Ti

P
×P−1P

[
(Āi − L̄iC̄j) H̄ −L̄i

]
≤ 0,

i, j = 1, . . . , J (72)

orQ− P 0 0
0 −ρI 0
0 0 −ρI

+
 ĀTi P− C̄T

j L̄
T
i P

H̄TP
−L̄Ti P


×P−1

[
(PĀi − PL̄iC̄j) PH̄ −PL̄i

]
≤ 0,

i, j = 1, . . . , J (73)

By the fact Ȳi = PL̄i, we getQ− P 0 0
0 −ρI 0
0 0 −ρI

+
 ĀTi P− C̄T

j Ȳ
T
i

H̄TP
−Ȳ Ti


×P−1

[
(PĀi − ȲiC̄j) PH̄ −Ȳi

]
≤ 0,

i, j = 1, . . . , J (74)

By the Schur complement in Lemma 1, the inequalities
in (74) are equivalent to the following LMIs

Q− P 0 0 ĀTi P− C̄
T
j Ȳ

T
i

0 −ρI 0 H̄TP
0 0 −ρI −Ȳ Ti

PĀi − ȲiC̄j PH̄ −Ȳi −P

 ≤ 0,

i, j = 1, . . . , J (75)

which are the LMIs in (22). After solving P > 0 and Yi
from LMIs in (22 ), we could obtain fuzzy filter gains L̄i =
P−1Yi, i = 1, . . . , J Q.E.D.
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APPENDIX C
PROOF OF THEOREM 2
The numerator of (42) becomes

E
{ tT∑
t=0

[
_
X̄
T
(t)

_
Q̄

_
X̄ (t)+ uT (t)RuT (t)]−

_
X̄
T
(0)

_
P̄

_
X̄ (0)

}

= E{
_
X̄
T
(tf + 1)

_
P̄

_
X̄ (tf + 1)+

tT∑
t=1

_
X̄
T
(t)

_
Q̄

_
X̄ (t)

+uT (t)RuT (t)+
_
X̄
T
(t + 1)

_
P̄

_
X̄ (t + 1)−

_
X̄
T _
P̄

_
X̄ (t)}

(76)

Substituting T-S fuzzy aygmented system in (41) into (76),
we get

E
{ tT∑
t=0

[
_
X̄
T
(t)

_
Q̄

_
X̄ (t)+ uT (t)RuT (t)]−

_
X̄
T
(0)

_
P̄

_
X̄ (0)

}

= E{
_
X̄
T
(tT + 1)

_
P̄

_
X̄ (tT + 1)} + E

{ tT∑
t=0

J∑
i=1

J∑
j=1

αi(ε(t))αj(ε(t)){
_
X̄
T
(t)

_
Q̄

_
X̄ (t)+

_
X̄
T
[I -I -I ]TR[I -I -I ]

_
X̄

+(
_
X̄
T _
Ā
T

ij +
_
v̄
T
(t)

_
H̄ ij)× P̄(

_
Āij

_
X̄ (t)+

_
H̄ ij

_
v̄(t))

−

_
X̄
T
(t)

_
P̄

_
X̄ (t)

}
≤ E

{ tT∑
t=0

J∑
i=1

J∑
j=1

[ _
X̄
T
(t)

_
v̄
T
(t)
]

×


_
Q̄+

_
Ā
T

ij

_
P̄
_
Āij −

_
P̄

+[I -I -I ]TKT
j RKj[I -I -I ]

_
Ā
T

ij

_
P̄

_
H̄ ij

_
H̄
T

ij

_
P̄
_
Āij

_
H̄
T

ij

_
P̄

_
H̄ ij − ρI


×

[ _
X̄ (t)
_
v̄(t)

]
+ ρ

_
v̄
T
(t)

_
v̄(t)

}
(77)

By the fact of matrix inequalities in (43), we get

E
{ tT∑
t=0

[
_
X̄
T
(t)

_
Q̄

_
X̄ (t) + uT (t)RuT (t)] −

_
X̄
T
(0)

_
P̄

_
X̄ (0)

}
≤

ρE
{ tT∑
t=0

_
[v̄T (t)

_
v̄(t)]

}
which is the H∞ estimator-based tracking control perfor-

mance in (42). Q.E.D
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