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ABSTRACT In this study, a feedback linearization model predictive control algorithm is designed for
quadcopter trajectory tracking. By applying feedback linearization to the quadcopter nonlinear model, the
quadcopter nonlinear model is transformed into a linear system as the foundation for further controller
design. By feedback linearization, the linear control schemes can be used to control the quadcopter. A model
predictive controller is then designed for the linearized quadcopter model without considering the external
disturbance. A disturbance observer is designed to estimate the external disturbance, keeping the estimation
error BIBO stable to compensate for the external disturbance. Numerical simulations are performed to
evaluate the proposed control algorithm. The simulations are performed in two test scenarios to examine
the tracking performance. The quadcopter is commended for reaching a waypoint (scenario. I) and tracking
a helical trajectory (scenario. II) in the simulations, and the root means square errors are calculated to
demonstrate the tracking effectiveness. The simulation results show that the designed control algorithm can
effectively ensure the quadcopter tracks a given trajectory under constant or continuous disturbances.

INDEX TERMS Quadcopter, model predictive control, feedback linearization.

I. INTRODUCTION
Quadcopters are widely used UAVs (Unmanned Aerial
Vehicles) in practical applications. Quadcopters are popular
consumer products for individual users for entertainment.
The quadcopters’ application is expanding quickly from per-
sonal users to multiple fields like industries, agriculture,
filming, etc. For example, the quadcopters can monitor the
status of the growing agricultural products and do the pes-
ticide spraying, watering, and fertilizing. The employment
of the quadcopters improves agriculture’s intelligence level,
making it more profitable and effective [1]–[3]. Most quad-
copters’ autonomous tasks require the quadcopters to follow
a given trajectory like mapping, surveillance, spraying, etc.
Therefore, trajectory tracking control is an essential research
subject for quadcopters.

The quadcopters can perform 6 DOFs (Degrees of
Freedom) movements by the thrust and moments generated
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by four rotors. The quadcopters are economically efficient
and can be easily assembled. However, the control of the
quadcopters is still challenging for reliability, precision,
safety, and efficiency. The quadcopter is a MIMO system
with four rotors’ rotation rates as inputs to control multiple
system states of position and rotation. The system states
are coupled and nonlinear. Thus, the quadcopter system is
an underactuated coupled nonlinear system—the fluence of
external disturbances like winds, temperature changes, solid
particles, etc., also affects tracking performance. To over-
come the nonlinearity of the quadcopter systems, lineariza-
tion methods based on the Taylor series are often applied.
However, the round-off errors of these kinds of linearization
approaches are inevitable and may decrease the controllers’
performance. The controllers are usually designedwithmulti-
loops to avoid the coupling between the position states and
rotation states. The inner-loop stabilize the rotation states and
the outer-loop for the position, where the outer-loop generates
the desired trajectory for the inner-loop. The external distur-
bances need to be estimated by appropriate approaches to be
compensated by the quadcopter controller.

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 162909

https://orcid.org/0000-0002-0326-5616
https://orcid.org/0000-0001-5486-5702


Z. Cai et al.: Model Predictive Controller for Quadcopter Trajectory Tracking

A. RELATED WORKS
Several linear controllers are first deployed to control the
quadcopters for trajectory tracking, like PID(Proportional-
Integral-Differential) controllers and LQR (linear quadratic
regulator) controllers [4]–[8]. PID controllers are commonly
designed around the quadcopter system’s equilibrium point,
the hovering point for quadcopters. The setting of the con-
troller parameters for PID controllers is the main challenge
for these control schemes. A set of constant parameters
can not satisfy different flight circumstances and external
disturbances.

Linear Quadratic Regulator controllers are based on the
quadcopters’ state-space model. The central concept of LQR
is to optimize a defined cost function to find an optimal
control inputs vector. However, the LQR control schemes
require linear models. The linearization of the quadcopter
systems ignores multiple nonlinear parts, leading to deficient
performance of such controllers when the internal or external
parameters are variable. According to [7], the LQR control
can only stabilize the quadcopter system for trajectory track-
ing when the quadratic sum of pitch and roll angle is less
than 48◦2.
The linear control schemes like PID and LQR can stabilize

the quadcopter system when the states of the quadcopter
are around the equilibrium point, which is caused by the
nonlinear characteristic of the quadcopters. The commonly
used linearization approaches will ignore the nonlinear parts,
which will reduce the controllers’ performance. Thus, non-
linear control schemes are applied to control the quadcopter
systems.

Feedback linearization approaches like input-output
linearization and state-space linearization transform the
nonlinear quadcopter system into a linear one [9], [10].
The transformed mathematical model and the original sys-
tem are diffeomorphisms; therefore, the nonlinear parts of
the system are still concerned for further control algorithm
design. Sliding Mode Control is well known for its robust-
ness and ability to reject internal disturbances and eliminate
external disturbances [11]. In [12] and [13], second-order
SMC controllers are designed for a quadcopter to track a
trajectory, and the Lyapunov theory proves the stability of the
proposed SMC controllers. Backstepping control schemes are
focused on the dynamic models of the quadcopter without
linearization [14], [24], [25]. Reference [15] proposed a
dynamic backstepping control scheme that only requires first
and second-order derivatives of the desired trajectory, thus
decreasing the controller’s sensibility to the disturbances.
Robust control approaches are employed to control the quad-
copter systems to overcome the uncertainties of the system
parameters and external disturbances.

In [16], a robust attitude tracking controller based on a
nonlinear disturbance observer is designed for a quadcopter to
track the desired attitude trajectory with internal model uncer-
tainties. Reference [17] proposed anH infinity controller with
two degrees of freedom to improve the quadcopter’s hovering
performance under external disturbances. In [18] and [19],

by establishing multiple linearized models around different
operating points of the quadcopter, various controllers are
designed based on Linear Matrix Inequality to ensure the
overall stability of the quadcopter’s attitude control. Model
Predictive Control (MPC) is a kind of optimization control
scheme. The central concept is to predict the system’s future
response and optimize control inputs on a receding horizon.
In [20], a switching model predictive controller for quad-
copter is designed, different predictive models are presented
for different quadcopter states to stabilize the quadcopter
subject to atmospheric disturbances.

Besides the above control schemes, learning strategies
are becoming popular to enhance the quadcopters’ con-
trol performance. Combining machine learning and MPC,
reference [21] acquired the quadcopter’s dynamics by learn-
ing algorithms and improved the performance of the MPC
controller. Reinforcement learning is used for a quad-
copter to learn the control law itself by failure and reward
functions [22].

B. MAIN CONTRIBUTIONS
In this study, a model predictive controller for quadcopter is
designed based on feedback linearization. The main moti-
vation of this study is to obtain a more accurate linearized
predictive model for applying model predictive control and
decrease the calculate complexity of optimizing the control
inputs for applications. Model predictive control is highly
reliant on the accuracy of the predictive model. Therefore,
approximative linear methods based on the Taylor series will
decrease the controller performance. To reduce the errors
caused by approximative linearization, feedback linearization
is performed. The original nonlinear model is transformed
into a linear one and converts the original 4-inputs-6-outputs
system into a 4-inputs-4-outputs system, which eliminates the
coupling of the horizontal movements and the Euler angles.
By feedback linearization, the system can be controlled by a
linear model predictive controller, and the linearized model is
a better approximation to the original model. In the stage of
receding horizon control, a linear model predictive controller
solves a convex optimization problem, where a nonlinear
model predictive controller solves a nonconvex optimiza-
tion problem, which consumes much more computational
power and reduces the controller’s instantaneity. Therefore,
the proposed feedback linearization model predictive con-
troller increases both accuracy and efficiency for quadcopter
trajectory control compared to traditional model predictive
controllers. To compensate for external disturbances, a dis-
turbance observer is designed to estimate constant or variable
wind disturbances. Numerical simulations examine the tra-
jectory tracking performance of the designed controller, and
the results show the validity of the proposed controller. The
quadcopter can track the given trajectories with low RMSE
and can eliminate the external wind disturbances.

The article is structured as follows: in Section II, the
dynamic model of the quadcopter is proposed. The con-
troller design with feedback linearization, MPC design, and
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disturbance observer design is presented in Section III. Sim-
ulations and results are presented in Section IV with discus-
sion. The conclusion of this study is presented in Section V.

II. DYNAMIC MODEL OF QUADCOPTER
The modeling of the quadcopter based on Newton-Euler
equations is widely used by studies on quadcopter control
schemes. The establishment of the quadcopter mathematic
model is briefly discussed in this section. First, as shown in
Fig. 1, the inertial frame of reference I and the body frame
B are defined. The position of the quadcopter in the inertial
frame is determined by ζ along the axis xI , yI , zI . The rotation
of the quadcopter is defined by Euler angles η. The Roll angle
φ denotes the rotation around the axis xI , the Pitch angle θ
denotes the rotation around the axis yI and the Yaw angle ψ
denotes the rotation around the axis zI .

ζ =

 xy
z

 , η =

 φθ
ψ

 (1)

The transformmatrix transforming the body frame to the iner-
tial frame using the X-Y-Z rotation sequence can be written
as (2):

R =

 cθcψ cθ −sθ
sφsθcψ − cφsψ sφsθ sψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθ sψ − sφcψ cφcθ

 (2)

where s(·) denotes sin(·) and c(·) denotes cos(·).We define four
quadcopter control inputs U1,U2,U3,U4 to represent four
kinds of movements of a quadcopter where U1 is the total
thrust generated by four propellers, U2 is the roll moment,
U3 is the pitch moment and U4 is the yaw moment. Thus, the
translation dynamics of the quadcopter can be obtained by
Newton equation and the transform matrix (2) as:

 ẍÿ
z̈

 =

−sθ

U1

m

sφcθ
U1

m
cφcθ

U1

m
− g

 (3)

where ẍ, ÿ, z̈ are the acceleration along the axis xI , yI , zI , and
m is the mass of the quadcopter.
Define the angular rate in the body frame as p, q, r

around the axis xB, yB, zB respectively. Taking the transform
matrix (2) into consideration, we can obtain the relationship
between the body angular rates and the Euler rates φ̇, θ̇ , ψ̇ : φ̇θ̇

ψ̇

 =


cψ
cθ

−
sψ
cθ

0

sψ cψ 0
−cψ tθ sψ tθ 1


 pq
r

 (4)

Assume the rotation of the roll angle, and the pitch angle is
slight, equation (4) can linearize as: φ̇θ̇

ψ̇

 =
 cψ −sψ 0
sψ cψ 0
0 0 1

 pq
r

 (5)

By the Euler equation, we can obtain the rotation dynamics:

 ṗq̇
ṙ

 =


1
Ix

[(
Iy − Iz

)
qr − IpqωT + U2

]
1
Iy

[
(Iz − Ix) pr − IppωT + U3

]
1
Iz

[(
Ix − Iy

)
pq+ U4

]

 (6)

where Ix , Iy, Iz are the moments of inertia along the body axes
xB, yB, zB, Ip is the moment of inertia of the propeller along its
rotation axis, ωT is the sum of the four propellers’ rotational
speed.

The quadcopter is X-type as shown in Figure 1, the rela-
tionship between the control inputs U =

[
U1 U2 U3 U4

]T
and the rotational speeds of four propellers ω2

=[
ω2
1 ω

2
2 ω

2
3 ω

2
4

]T is:


U1
U2
U3
U4

=


b b b b
√
2
2
lb −

√
2
2
lb −

√
2
2
lb

√
2
2
lb

√
2
2
lb

√
2
2
lb −

√
2
2
lb −

√
2
2
lb

d −d d −d




ω2
1

ω2
2

ω2
3

ω2
4


(7)

where b denotes the thrust coefficient, and d denotes the drag
coefficient. l is the length from the propeller’s rotation axis
to the quadcopter’s rotation center.

Combine equations (3) to (6) and consider wind distur-
bance, the nonlinear state-space model of the quadcopter can
be written as follows:

Ẋ=



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
˙x10
˙x11
˙x12



= f (X)=



ẋ
ẏ
ż

−sθ
U1

m
+ dwx

sφcθ
U1

m
+ dwy

cφcθ
U1

m
− g+ dwz

cψp− sψq
sψp+ cψq

r
1
Ix

[(
Iy − Iz

)
qr − IpqωT + U2

]
1
Iy

[
(Iz − Ix) pr − IppωT + U3

]
1
Iz

[(
Ix − Iy

)
pq+ U4

]


(8)

the state vector is X = [x y z ẋ ẏ ż φ θ ψ p q r]T .
dwx , dwy, dwz are the acceleration caused by wind disturbance
along xI , yI , zI respectively.

III. CONTROLLER DESIGN
In this section, a feedback linearization model predictive
controller for quadcopter is proposed in two main steps.
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FIGURE 1. Frame definition of the quadcopter.

Firstly, the quadcopter’s nonlinear state-space model is lin-
earizedwith a feedback-linearization-based control law. Then
a model predictive control is established based on the lin-
earized model to follow the desired trajectory.

A. FEEDBACK LINEARIZATION
The goal of feedback linearization is to convert the nonlin-
ear quadcopter model into a linear one. In this subsection,
the nonlinear quadcopter state-space model is linearized by
feedback linearization. The first step to feedback-linearize the
quadcopter system is to define the outputs of the linearized
system. The main task of the proposed controller is to let the
quadcopter track a given translation trajectory and follow a
given yaw angle. Therefore, the outputs are chosen as:

Y =
[
x y z ψ

]T (9)

After defining the outputs of the system, a control law V ∈
R4×1 is designed to linearize the nonlinear model, where it is
intended to be:

V = α (X)+ β (X)U (10)

where:

α (X) =

α1 (X)α2 (X)
α3 (X)
α4 (X)

 (11)

is a 4×1 vector of scalar functions αi (X) , i = 1, 2, 3, 4. And

β (X) =

 β11(X ) β12(X ) β13(X ) β14(X )
β21(X ) β22(X ) β23(X ) β24(X )
β31(X ) β32(X ) β33(X ) β34(X )
β41(X ) β42(X ) β43(X ) β44(X )


is a 4×4 matrix of scalar functions βij (X) , i = 1, 2, 3, 4 and
j = 1, 2, 3, 4. To determine the control law V , a new state
vector W is defined as:

W = h (X) (12)

where h (X) is a diffeomorphism from X to W that
ensures the new state vector W describe the same system
as X . The h (X) is determined by taking Lie derivatives
of i∈ {x, y, z, ψ} respect to f (X) until former control
inputs U appear in the nth Lie derivative, then take
the 0th to the n− 1th Lie derivatives as the diffeomor-
phism h (X). In the state-space model (8), the nonlin-
ear parts: (Iy−Iz)qr−IpqωTIx

,
(Iz−Ix )pr−IpqωT

Iy
,
(Ix−Iy)qr−IpqωT

Iz
are

ignored because the value of these parts is relatively small

compared to control inputs, and the inertia is small due to the
light-weighted propellers. Therefore, the h (X) is determined
as:

h (X) =



w1
w2
w3
w4
w5
w6
w7
w8
w9
w10
w11
w12
w13
w14



=



L0f x
L1f x
L2f x
L3f x
L0f y
L1f y
L2f y
L3f y
L0f z
L1f z
L2f z
L3f z

L0f ψ
L1f ψ



=



x
ẋ

−sθ
U1

m

−θ̇cθ
U1

m
− sθ

U̇1

m
y
ẏ

sφcθ
U1

m

φ̇cφcθ
U1

m
− θ̇sφsθ

U1

m
+ sφcθ

U̇1

m
z
ż

cφcθ
U1

m
− g

−φ̇sφcθ
U1

m
− θ̇cφsθ

U1

m
+ cφcθ

U̇1

m
ψ
r



(13)

Notice that Ü1 appears in L4f x,L
4
f y,L

4
f z, Therefore U and U̇

are added into the original state-space model as x13 and x14
respectively. Therefore, the linearized state-space model can
be written as:

Ẇ =



ẇ1
ẇ2
ẇ3
ẇ4
ẇ5
ẇ6
ẇ7
ẇ8
ẇ9
˙w10
˙w11
˙w12
˙w13
˙w14



=



w2
w3
w4

α1 (X)+β11Ü1+β12U2+β13U3+β14U4
w6
w7
w8

α2 (X)+β21Ü1+β22U2+β23U3+β24U4
w10
w11
w12

α3 (X)+β31Ü1+β32U2+β33U3+β34U4
w14

α4 (X)+β41Ü1+β42U2+β43U3+β44U4


(14)
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where:

α1 = θ̇
2sθ

U1

m
− 2θ̇cθ

U̇1

m
,

α2 = −
(
φ̇2 + θ̇2

)
sφcθ

U1

m
− 2φ̇θ̇cφsθ

U1

m

+ 2(φ̇cφcθ
U̇1

m
− θ̇sφsθ

U̇1

m
),

α3 = −
(
φ̇2 + θ̇2

)
cφcθ

U1

m
+ 2φ̇θ̇sφsθ

U1

m

− 2(φ̇sφcθ
U̇1

m
+ θ̇cφsθ

U̇1

m
),

α4 = 0.

β11 = −
sθ
m
, β12 = −

cθ sψU1

mIx
, β13 = −

cθcψU1

mIy
,

β14 = 0, β21 =
sφcθ
m
,

β22 =
(cφcθcψ − sφsθ sψ )U1

mIx
,

β23 = −
(cφcθ sψ + sφsθcψ )U1

mIy
, β24 = 0, β31 =

cφcθ
m

,

β32 = −
(sφcθcψ+cφsθ sψ )U1

mIx
, β33=

(sφcθ sψ−cφsθcψ )U1

mIy
,

β34 = 0, β41 = β42 = β43 = 0, β44 =
1
Iz
.

Thus, the quadcopter system is linearized into the linear state-
space model bellow:

Ẇ = AW + BV

Y = CW (15)

where

A =


A1 04×4 04×4 04×2

04×4 A1 04×4 04×2

04×4 04×4 A1 04×2

02×4 02×4 02×4 A2



A1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , A2 =
[
0 1
0 0

]

B =



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1



, CT
=



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1



B. MODEL PREDICTIVE CONTROLLER
In this subsection, a model predictive controller is designed
for the quadcopter system to track a given trajectory. Model
predictive control is achieved by two main steps: prediction
based on a predictive model and receding horizon optimiza-
tion. The predictive model is the feedback-linearized quad-
copter model (15). Model predictive control is commonly
used in digital control systems, so the quadcopter model
needs to be discretized before designing the model predictive
controller. Define predictive period T , which is the step length
of the model predictive controller. Then the discrete form of
the quadcopter model is:

W (k + 1|k) = (I + TA)W (k)+ TBV (k) (16)

where k denotes the current time step, and I is an identity
matrix. Notation k|k + 1 means the state is the prediction of
time step k + 1 at time step k . Therefore, the discrete model
of the quadcopter system is:

W (k + 1) = ĀW (k)+ B̄V (k) (17)

where Ā = (I + TA) and B̄ = TB. Denote the predicted state
vector in predictive horizon p as:

Wp =

[
W (k + 1 | k)TW (k + 2 | k)T · · ·W (k + p | k)T

]T
(18)

and the control inputs are

Vk =
[
V (k | k)TV (k + 1 | k)T · · ·V (k + p− 1 | k)T

]T
(19)

Apply the model (17) and (19) into (18), and the predicted
states can be written as:

Wp = 9W (k)+2Vp (20)

where:

9 =


Ā1

Ā2
...

Āp

 , 2 =


Ā1−1B̄ · · · 0 0
Ā2−1B̄ Ā2−2B̄ · · · 0
...

...
. . .

...

Āp−1B̄ Āp−2B̄ · · · Āp−pB̄


(21)

The goal of the design of the quadcopter controller is to track
a given trajectory. The desired trajectory in predictive horizon
p is:

Rk = [R (k + 1)TR (k + 2)T · · ·R(k + p)T ] (22)

To optimize the trajectory tracking performance, define the
cost function as:

J =
(
Wp − Rk

)T Q (Wp − Rk
)
+ V T

k FVk (23)

where Q and F are weight matrices to weight the tracking
error and the control inputs, respectively, by substituting
equation (21) into (23), the cost function can be written as:

J = E (k + 1)TGE (k + 1)+ 2E (k)TMVk + V T
k HVk (24)
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where G = 9TQ9, E = 9TQ2, H = 2Q2 + F and
E (k + 1) = W (k + 1)−R(k+1). To control the quadcopter,
the cost function should be minimized. Therefore, the prob-
lem is transformed into a quadratic programming problem:

min
Vk

1
2
V T
k HVk + E (k)

TMVk

s.b. Vkmin ≤ Vk ≤ Vkmax (25)

By solving the quadratic programming problem, we can
acquire V k with p control inputs vectors. Then choose the
first inputs vector V (k) as the control inputs for current time
step k . According to the equation (10), U can be acquired as:

U = β−1(X )[V k − α(X )] (26)

The matrix β(X ) should be invertible to calculate the control
input U . The determinant of matrix β (X) is calculated to be:

|β (X)| =
cθU2

1

m3IxIyIz
(27)

The pitch angle θ is constrained to be −π4 ≤ θ ≤
π
4 , hence,

cθ> 0. U1 is the total thrust generated by four propellers,
which is constantly greater than zero during the flight. There-
fore, |β (X)|> 0 and the control inputs U can be determined
by equation (26).

C. DISTURBANCE OBSERVER
In actual flight circumstances, the wind disturbance is
not negligible. Therefore, a simple disturbance observer is
designed in this subsection. Since the quadcopter mathemati-
cal model is linearized by feedback linearization, it is possible
to develop a linear disturbance observer for the controller.

Taking disturbance into consideration, system (15) can be
extended into:

Ẇ = AW + BV + Bdd

Y = CW (28)

where Bd is the coefficient matrix of disturbance vector d .
Given by [23], the time-domain disturbance observer can
be employed to estimate the disturbances in the linearized
quadcopter system (15):{

γ̇ = −LBd (γ + LW )− L (AW + BV )
d̂ = γ + LW

(29)

where γ is the internal variable vector with the initial value
of zero, L is the gain matrix of the disturbance observer to be
designed later.

Define the error of the estimation as:

e = d − d̂ (30)

Take the derivative of e:

ė = −LBde+ ḋ (31)

Therefore, by designing an appropriate observer gain L to
ensure the matrix−LBd Hurwitz, the estimation error is then

BIBO stable. In addition, if the disturbance derivative ḋ is
tend to zero when t →∞, the error system is asymptotically
stable.

To compensate for the estimated disturbances of the quad-
copter system, the disturbance observer is transformed into
the discrete form: γ̇ (k)=−LBd (γ (k − 1)+LW (k))−L(AW (k)+BV (k))

d̂ = γ (k − 1)+ T γ̇ (k)+ LW

(32)

Therefore, the estimated disturbances d̂ can be used to extract
the disturbances from the measured states of the quadcopter
system.

IV. SIMULATIONS AND RESULTS
This section performs numerical simulations to evaluate the
proposed feedback linearization model predictive controller
(FL-MPC). The simulations are performed in two scenarios.
In the first scenario, the desired trajectory is a point in a
3D space, which evaluates the controllers’ response to a
set waypoint. The performance of the disturbance observer
is also examined. The second scenario is to track a heli-
cal trajectory in a 3D space, which evaluates the over-
all performance of the controllers for trajectory tracking
by RMSE.

A. ASSUMPTIONS
The simulations are based on certain assumptions: the atti-
tude and position of the quadcopter are measured by inertial
measurement units (IMUs) placed at the center of the quad-
copter, the measurements are without errors, and the actuator
errors are ignored. The real quadcopter is represented by the
nonlinear model (8), the wind disturbance is bounded and
continuous. The parameters of the quadcopter are selected
to be: m = 2kg, g = 9.81m/s2, Ix = 1.25kg · m2,

Iy = 1.25kg · m2, Iz = 2.5kg · m2, Ip = 5×10−5kg·m2,
b = 2.5×10−5N · s2, l = 0.25m, d = 0.5×10−6N · m·s2.
The initial condition of the quadcopter’s states are all zeros.
Assume that the quadcopter is taken off and already hovering
around the initial position. The parameters of the FL-MPC
are shown in Table. 1.

The disturbance observer gain L should satisfy that −LBd
is Hurwitz. The coefficient matrix Bd is: 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0

T .
The disturbance observer gain L is then chosen to be: 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0


which ensures that the observer has sufficient convergence
speed and stability.
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TABLE 1. Parameters for FL-MPC.

FIGURE 2. Simulation No.1: Position trajectories with constant wind
disturbance.

B. TEST SCENARIO I: WAYPOINT TRACKING
In test scenario I, the desired waypoint is given by: xd =
6m, yd = 8m, zd = 10m and the desired yaw angle is set
to ψd = 0. The simulation lasts 100 seconds. Two kinds of
wind disturbance are added to the quadcopter, respectively:
in simulation No.1, a constant wind disturbance is added to
the system, where dwx = 0.12m/s2, dwy = −0.08m/s2 and
dwy = 0.05m/s2.

Fig. 2 and Fig. 3 presents the quadcopter position trajec-
tories with constant wind disturbance with or without the
disturbance observer designed to compensate for the exter-
nal disturbance. The external disturbance results in obvi-
ous steady-state error and oscillations when the disturbance
observer is not employed to the FL-MPC controller. The
disturbance observer reduced the steady-state error tremen-
dously, and the oscillations were alleviated. However, small
offsets still exist compared to the desired trajectory due to the
ignored small nonlinear dynamics like the gyroscopic effect
of the propellers and the quadcopter itself.

The actual disturbance and the estimated disturbance are
presented in Fig. 4. The result shows that the designed linear
disturbance observer can estimate the constant disturbance
with acceptable speed and accuracy.

In the simulation I, the wind disturbance varies over time.
The disturbance is given as superposed sine waves. The

FIGURE 3. Simulation No.1: Position trajectories with constant wind
disturbance in 3D space.

FIGURE 4. Actual and estimated disturbance (Simulation No.1).

FIGURE 5. Simulation No.2: Position trajectories with variational wind
disturbance.

disturbance is added to the system as:

dwx = 0.15 sin
(
π t
100

)
+ 0.1 sin (0.2t)+ 0.03sint (33)

and dwy = 0m/s2 and dwy = 0m/s2.
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FIGURE 6. Simulation No.2: Position trajectories with variational wind
disturbance in 3D space.

FIGURE 7. Actual and estimated disturbance (Simulation No.2).

FIGURE 8. Actual and desired trajectory in 3D space (Simulation No.3).

As shown in Fig. 5 and Fig. 6, the variational disturbance
makes the quadcopter unable to be stable around the desig-
nated position without the disturbance observer. The tracking

FIGURE 9. Actual and desired trajectory (Simulation No.3).

FIGURE 10. Actual and desired trajectory in 3D space (Simulation No.4).

FIGURE 11. Actual and desired trajectory (Simulation No.4).

error is reduced when the disturbance observer is employed,
but the quadcopter still swings around the desired position.
The phenomenon’s cause is the error between the actual
disturbance and the estimated disturbance, as shown in Fig. 7.
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TABLE 2. RMSE of the tracking error.

Notice that the estimated disturbance is delayed, and the
estimation error is BIBO stable yet not asymptotically stable
when the disturbance is not constant. However, the estimated
disturbance can reflect the variation of the actual distur-
bance and keep the estimation error bounded. The designed
FL-MPCwith disturbance observer is effective under disturb-
ing circumstances for waypoint tracking.

C. TEST SCENARIO II: TRAJECTORY TRACKING
In test scenario II, the desired trajectory is given by:

xd = sin(
π

10
t)

yd = −1+ cos
( π
10
t
)

zd = t + sin
( π
10
t
)

(34)

In simulation No.3, the quadcopter is commanded to track the
desired trajectory without external disturbance. As shown in
Fig. 8 and Fig. 9, the designed FL-MPC enables the quad-
copter to track the desired helical trajectory. Notice that there
is an obvious tracking error in axis X in the first 10 seconds,
which is caused by the difference between the system initial
condition ẋ and the desired trajectory initial condition ẋd ,
where ẋ = 0 and ẋd = π

10 .
In simulation No.4, the disturbance is added as:

dwx = 0.03 sin
(
π t
100

)
+ 0.025 sin (0.2t)+ 0.01sint

dwy = −0.08

dwz = 0

As shown in Fig. 10 and Fig. 11, the FL-MPC can still ensure
the quadcopter track the given trajectory.

Furthermore, the tracking error’s 2D and 3D RMSE (Root
Mean Square Error) are calculated with or without the distur-
bance as Table. 2.

The FL-MPC for quadcopter has a superior performance
in axis X and axis Y . The controller can compensate for
the disturbance and reduce the final tracking error with the
disturbance observer.

V. CONCLUSION
In this study, a feedback-linearization model predictive con-
troller is designed for a quadcopter. By feedback lineariza-
tion, the original nonlinear quadcopter state-space model is
linearized in a precise way without creating round-off errors
like linearization based on the Taylor series. With the lin-
earized model, a model predictive controller is designed for
the quadcopter to track a given trajectory, and a disturbance

observer is added to compensate for the external disturbance.
The simulation results show that the proposed FL-MPC
enables the quadcopter to track the desired trajectory with
or without external disturbance effectively. The experiments
on actual quadcopters and the improvements of disturbance
compensating will be the future subjects of this study.
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