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ABSTRACT This work proposes a robust tracker based on the Poisson Multi Bernoulli Mixture (PMBM)
filter for multistatic sonar networks (MSNs) systems. The PMBM based trackers estimate the number of
targets and provide the target information via Bernoulli and Poisson Point Processes. The PMBM based
trackers handle existing tracks, undetected targets, and new births separately at each computation step by
using these two processes together. In practice, the PMBM tracker aims to initiate the track as soon as possible
and maintain the track continuity. Initiating track and maintaining track continuity are hard in challenging
underwater environments without adapting the algorithm to changing environmental conditions. This paper
uses the adaptive measurement-driven birth process and multistatic acoustic model-dependent probability
of detection specifications. The adaptive measurement-driven birth process improves the robustness of the
track initiation, and the multistatic acoustic model-dependent probability of detection advances the track
continuity through the transition regions. These contributions to the PMBM tracker make it robust in terms
of tracker performance in challenging underwater environments and acoustic transition regions where it is
hard to get an accurate measurement.

INDEX TERMS Multistatic sonar networks, multistatic sonar tracker, multiple target tracking, Poisson multi

Bernoulli mixture, random finite set, trajectory tracker.

I. INTRODUCTION

The ability to track underwater targets using active sonar
systems has been a topic of interest for many years. It has been
particularly challenging in practice due to the complex envi-
ronmental conditions that reduce the effectiveness of sonar
systems [1]. Detection probability is considerably reduced
in these areas, affecting tracker performance negatively. The
new rising concept against this complex environment is to
employ multistatic sonar networks (MSNs) [2], [3].

In a multistatic operation, more than one sensor listens to
the field illuminated by at least one source. In this way, the
threat cannot detect the threatening platform. It is improbable
to perform an evasive maneuver for the threat since it does not
know the exact location of the receiver sensor [4]. Another
main reason for choosing the multistatic operating concept is
that the requirement for expensive active sources is less in this
configuration compared to monostatic operations. Therefore
multistatic operations are very cost-effective.

Although multistatic operations provide many advan-
tages, they could be tolerably challenging in practice when
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these sonar systems are exposed to dense clutter and
ambient noise. These harsh conditions make underwater
multi-target tracking a difficult problem for MSNs. Espe-
cially in low-frequency active sonar systems, clutter distri-
butions indicate coherent characteristics [5].

Coraluppi suggests Multi-Hypotheses Tracking (MHT)
type algorithms for MSNs [6], [7]. The MHT is a multi-scan
approach and enhances the tracking quality, but the algorithm
is based on data association, which can be complicated for
underwater applications. Some recent MHT studies focus on
enhancing the data association capability [8], [9]. As an alter-
native to the MHT, Random Finite Set (RFS) based trackers
were recently proposed by Mahler [10]. There is a difference
between the statistical inference problem MHT solves and
the RFS filter methods solve. MHT aims to find distribution
on data association and track label hypothesis, whereas RFS
filters seek to obtain a posterior distribution jointly over the
hypotheses and the state space [11]. With the help of an RFS
filter approach, the posterior distribution of the target can be
computed in a direct Bayesian approach. The RFS based, the
Probability Hypothesis Density (PHD) algorithm and the Car-
dinalized Probability Hypothesis Density (CPHD) algorithms
which are introduced by Mahler [12], [13], have been applied
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to various underwater target tracking problems [14]-[16].
These filters do not establish track continuity, which is
desirable for Multiple Target Tracking (MTT). Recently, the
Poisson Multi Bernoulli Mixture (PMBM) algorithm was
proposed as an alternative [17], which outperforms the PHD
regarding the GOSPA metric in challenging scenarios [18].
Also, the PMBM filter algorithm can be converted into
an algorithm for the trajectory estimation without chang-
ing the computational load [19]. Thus, PMBM based track-
ers can provide track continuity and can compute multiple
trajectories [20].

This study mainly investigates the PMBM based methods
for the MSNs to maintain the tracker performance espe-
cially in the challenging underwater conditions. The standard
formulation of the probability hypothesis density PMBM
filters assumes that the target birth intensity is known a
priori which is inefficient since the target can appear any-
where in the challenging conditions. For this purpose, the
PMBM based tracker performance is enhanced with adaptive
measurement-driven birth process specifications. In addition,
in this work, the tracker performance is improved by using
a range-dependent multistatic acoustic model to prevent the
decrease in tracking performance during the transition of the
target in shadow zone and acoustic performance degraded
areas. We propose the enhancements on the PMBM based
tracker for the multiple target tracking and the multiple tra-
jectory tracking. We name the PMBM tracker computing
the multiple trajectories as “T-PMBM’ to keep the content
integrity.

The rest of the paper is organized as follows. Section II
discusses the fundamentals of the multistatic sonar system
and gives a brief description of the PMBM filter. Section III
describes the proposed algorithms. The simulation results
showing the comparative performance of the proposed algo-
rithms with existing algorithms are given in Section IV.
Lastly, Section V concludes the article.

Il. BACKGROUND

A. MULTISTATIC SONAR SYSTEM

In this section, we provide an overview of multistatic sonar
systems. Accordingly, the concept of a multistatic sonar sys-
tem is discussed briefly.

We can define the operating modes of modern sonar sys-
tems in three different configurations: monostatic, bistatic,
and multistatic. The main difference in these operating modes
is the placement of the transmitter and receiver. The receiver
and transmitter are in close placement or at the same loca-
tion in monostatic operations. On the other hand, in mul-
tistatic and bistatic sonar systems, the source and receiver
are separated by a considerable distance. The key difference
between bistatic and multistatic operation is that only one
transmitter-receiver pair is available in bistatic operation,
while multiple transceiver pairs are possible in multistatic
operation.

The possible acoustic coverages in the case of different
sonar operations are presented in Figs.1-3. It is seen from
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FIGURE 1. Coverage for the Monostatic Sonar Operation. The transmitter

is at the same location as the receiver. Contours of the probability of
detection represent the sonar coverage. The source location is shown by

an asterisk, while a red dot indicates the receiver location.

FIGURE 2. Coverage for the Multistatic Sonar Operation. Contours of the
probability of detection represent the sonar coverage. The source location
is shown by an asterisk, while a red dot indicates the receiver location.
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figures that in the monostatic operation that only a circu-
lar coverage area is formed around the receiver sensor (see
Fig. 1), whereas, in the multistatic operation, an ellipse-like
coverage is formed, which is called Cassini ovals in literature
(see Fig. 2) [21].

We call the combination of these two modes as the com-
bined mode. This mode has a much higher coverage rate than
other modes (see Fig. 3). In the combined mode, the receiver
process all incoming echoes.

B. THE PMBM FILTER

The PMBM filter (PMBM tracker) is an RFS-based filter
approach representing the states of multiple targets over the
union of a Poisson Point Process (PPP) and a Mixture of
Multi Bernoulli (MBM) Process [17]. The filter applies pre-
diction, update, and state estimation steps recursively using
PPP and MBM processes. The filtering algorithm finds the
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FIGURE 3. Coverage for the Combined Mode. The probability of
detections of monostatic and multistatic are fused in this mode. Contours
of the probability of detection represent the sonar coverage. The source
location is shown by an asterisk, while a red dot indicates the receiver
location.

multi-target posterior distribution of this process given the
observed noisy sonar measurements in a way similar to other
RFS tracking methods [22].

The disjoint union of undetected target density and
detected target density processes express the multi-target den-
sity as [17], [23],

feX = Y [l X XD (1
XuwXd=X

where the undetected target has the PPP density with intensity
MO0,

— [ A% (X)dx
faoxy = & PN TT o000, )
XeX#
and the linear combination of the detected target distribution
has the MBM density,

fkéfk/(Xd)O( Z Cl)zlk/ Z 1_[ féi::(xl) (3)
achy WX =X €Ty

Here, a indicates a possible global data association hypothesis
within the global data association hypotheses set, a € Ay
and i is one of the tracks within the track table, i € Ty .
Therefore, a' denotes hypothesis a for the track i. The weight
of the global data hypothesis (w,‘:lk,) is a combination of

weights of single hypotheses, w;;’la]:,,
wl‘:\k, == 1_[ (U]i("(;(/. (4)
iETklk/
Considering each Multi Bernoulli component can be
expressed with two parameters which are Bernoulli density
(fkll’Z,) and probability of existence (r]i’l‘;c,), the PMBM den-
sity (1) consists of the following parameters [19]:

M), { (wk.k r,iii,ﬁ;‘io) } )

aeAklk/ L i€y
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1) THE PMIBM PREDICTION

The predicted distribution for the next step is in the form of
PMBM, so the prediction step incorporates the MBM and
PPP processes. Here, the PPP component follows the PHD
prediction steps [12].

If the measurements fall inside a gate of predicted PPP
states, new Bernoulli components are added. Simultaneously,
anew target is added to the global data association hypotheses
set and is considered a new potentially detected target.

The probability of survival, PS5, is another important
parameter in the prediction step since this parameter directly
affects the death time of existing tracks. Therefore, the sur-
vival probability plays a critical role for previously detected
tracks and undetected tracks, which are implicitly kept in the
algorithm.

PPP component is expressed as,

M X) = 25(X) + ffklk’(X|X/)PS(X/))\k/|k’(X/)dX/- (6)

This equation can be expressed using constant PS with a
Gaussian mixture as [23],

Np Ny
Mo X) =Y PO+ P Y o fie 0. (D

i=1 i=1

The previously detected targets follow the MBM prediction
steps. Equations for the transition model and prediction step
are given in [10], [17] as follows:

[ X IX P X (X X!

i,ai .
T X) = Py a— ,Vi,d', (8)
(fk;lk/v Pk/>
. . . .
me = e o Pr) Yisd' ©)
. . .
a);(ﬁ(, = w]l(’ffk,, Vi, d', (10)

where (f; g) = f f(x)g(x)dx denotes the inner product.

2) THE PMBM UPDATE
After the prediction step, the PMBM update for the standard
point object model is applied to obtain the multi-target pos-
terior density. The PMBM update step considers three types
of contact: the undetected targets, the potentially detected tar-
gets, and the existing targets. Therefore, a different equation
is used in the PMBM update step depending on the types of
targets; accordingly, the update step is separated into three
parts [17];

« Updates for the previously undetected targets (PPP)

o Updates for the new potentially detected targets (MB

Update)
« Updates for the existing targets (MB Update)

a: UPDATES FOR THE PREVIOUSLY UNDETECTED TARGETS

We consider that the surviving undetected targets remain in
the same status. The prior intensity of an undetected target is
updated using the probability of missed detection (1 —PkD X))
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and the predicted intensity 1Y Kl (X). The intensity update is

M) = (1—Pg (X)))\,':,‘k(X). (11)
b: UPDATES FOR THE NEW POTENTIALLY DETECTED
TARGETS
This update step refers to a detection that is in the sonar con-
tact list but not associated with any MB component before.
If a PPP update has resulted in a potentially new target at the
previous time step, the algorithm generates a new MB, and
this new MB is added to the set of global data association
hypotheses for the evaluation in the next iteration.

The potentially new target might originate from clutter or
a detected target for the first time. These two possibilities are
considered separately. The target existence probability helps
to incorporate both of these possibilities.

The first hypothesis of the potentially new target is for
clutter, and can be expressed as:

rax = 0. (12)
ol =1 (13)

The second hypothesis handles the possibilities of the new
tracks (i.e., the new track commencing on measurement zL),
and they are defined as follows:

E M) + (W g 1IPP)

2 8EGIXPPOOM LX)
<)\'k|k/; g(Z;J)Pk

WA + (Mt 8P, (16)

i,2
wy

c: UPDATES FOR THE EXISTING TARGETS

The update step for an existing target is implemented by
taking into account different association hypotheses. The
algorithm classifies an existing target as detection or misde-
tection. These two cases are considered disjointedly.

If an existing target in the prior hypothesis is not associated
with any measurement, this hypothesis is called a misde-
tection, and a new hypothesis is added to the set of global
hypotheses. The following equations are used for the update:

i, i i, i. D
id r/lc|(11c/(fkl|lf~ - P7) 17
rk|k - ial  pi,al ’ ( )
— ek <fk\k” D)
i (1 — PP ()
Fid 00 = —— ‘D (18)
(fklk/’ - >

i,ai_ s i,a
] —a)k‘k,(l rk|k’(fk\k“PD' (19)

If the association for any measurement is with any existing
target, this prior hypothesis is called an existed detection, and
the following equations are used to update the parameter:

i

d(;{ =1, (20)
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. PP g (2 1XFH (X
fklllf X) = k( )é:k(zu ?fk|k—1( )’ @
(fkl“? 1’ g(Z’ |)PE>

ofif = ofprii il sGbrD. @)

where this update step uses the previous hypothesis, @, and
measurement zﬁc to update the hypothesis weight and distribu-
tion. The algorithm indeed accepts the existence of the target
and sets the probability of existence to 1.

C. TRAJECTORY ESTIMATION

The trajectory information is highly desired for Anti Subma-
rine Warfare (ASW) applications since this helps to interpret
the output of the sonar systems in dense clutter regions and
distinguish between moving targets. Also, trajectory informa-
tion can be used by Al-based classifiers [24].

Trajectory estimation depends on the Bayesian approach,
and the posterior of Trajectories RFS is recursively com-
puted using PMBM algorithm prediction and update step.
The marginalization of Trajectory RFS can extract the cur-
rent state of the target [19], [25], [26]. Each RFS trajectory
consists of three parameters, [27],

X = (B, €, xp:e)s

where 8 and € are track initiation and last update time indices,
respectively. Here, xg.. denotes the sequence of states

B =ec=<k, (23)

X8y XBA1s v o> Xetls Xe. 24)

The PMBM distribution over trajectories is a conjugate
prior for the standard models, where the point process and
the Poisson birth are assumed. The PPP considers undetected
trajectories.

The MBM handles data association uncertainties. Each
term in the mixture corresponds to a global data association
hypothesis; ergo, each MB describes the distribution of the
set of trajectories of the detected objects given a specific data
association hypothesis.

The posterior distribution of the trajectories is calcu-
lated using all conditional relationships between states and
measurements,

PX1:klz1:k) X (P(xlzk|lek71)P(Zk|xk)>» (25)

which increases the algorithm’s complexity. Therefore,
trajectory computation could become computationally
intractable for long-life targets. The Bernoulli RFS approxi-
mation is used as a solution

paklz) = (pelz0pCin i) - pGailen)). - 26)

This approximation considers each state independent from
previous states and calculates the state using the given mea-
surement up to that time step. After the update step of trajecto-
ries, the trajectories until the current time step are reevaluated,
and the trajectory estimate is smoothed using the previous
trajectory estimate to avoid a sudden jump in display and
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tracker result in a smooth display. The details of this tracker
are given in [19].

This paper evaluates the performances of trackers for the
variable of interest as the set of trajectories and the set of
target states. We add a 7 notation to the tracker abbreviation
(e.g., T'.PMBM) to emphasize that the output of the tracker
is Multi-Trajectory in order to provide an explicit distinction
with Multi-Target Trackers.

D. HYPOTHESIS REDUCTION

After the PMBM update step, all hypotheses are reconsid-
ered, and new hypotheses are added to the set of hypotheses.
Hence, the update step results in a tremendous rise in the
number of global hypotheses. This significant increase in
the number of global hypotheses is the bottleneck in the
necessary computations. The hypothesis Reduction step helps
to reduce the complexity of the PMBM tracker. The pruning
is applied to the output of the Poisson process by ignoring
the components whose weight is below the threshold. For the
maximum number of global hypotheses, pruning is limited
with predefined parameters.

Moreover, the pruning in the Poisson process, selecting
the k-best global hypothesis, is implemented in the MBM
process. The number of the global hypothesis is limited to
a specific number hypothesis.

The logarithmic weight value of each hypothesis is calcu-
lated and fed to an optimization algorithm such as Murty’s
Algorithm as the cost [28]. The weight is computed by
considering each combination of measurement associations.
Therefore, the computation of weights consists of all possibil-
ities (missed detection, existing target detection, new targets,
false alarms/clutter).

ill. THE PROPOSED POISSON MULTI BERNOULLI
MIXTURE BASED ALGORITHMS

In our PMBM tracker implementation, undetected targets and
new births are handled using an adaptive measurement-driven
RFS PPP, while existing targets are propagated using MBM
process update rules. We call this tracker Robust PMBM
(RPMBM). This algorithm is presented in Section III-A.

We propose to incorporate the multistatic acoustic
model-dependent probability of detection (PP) of the MSN's
into the PMBM algorithm to enhance the track continuity.
Section III-B considers the computation of probability of
detection and explains how we incorporate the parameter P
into the PMBM algorithm. This proposed algorithm is named
the Robust Model-Dependent PMBM (RMDPMBM).

A. ROBUST POISSON MULTI-BERNOULLI FILTER
The dynamically changing conditions of the underwater envi-
ronment bring tracking difficulties for sonar systems. Sonar
systems may not initiate new tracks even if they are in the
measurements.

In the PMBM filter, new targets are generated based on the
intensity of undetected targets. As seen in (6), the undetected
intensity depends on the surviving undetected target density
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and the density of the new birth. The surviving undetected
targets contribute to the new potential target with smaller
intensity than the birth density. In other words, the birth model
plays a critical role in delivering and maintaining a new birth.
In PMBM implementations, the positions of Gaussians are
assumed as a known prior, so they are constant and located at
the edge of the surveillance area of the tracking sensor. How-
ever, it is not straightforward to determine the surveillance
area for acoustic sensors due to their changing performance
depending on environmental conditions. Therefore, locating
the Gaussians in birth density at the edge of the prescribed
borderline of surveillance area is not always adequate for the
MSN:E.

This study proposes to change the positions of Gaussians of
the birth model adaptively based on the measurements [29] to
provide better track continuity since the birth model without
an adaptive model causes deterioration in track initiation and
track continuity.

Poisson RFS models the new births with the intensity
depending on the components sampled from the Gaussian
Mixture Model (GMM). The component of GMM depends
on the previous time step propagated measurement. The new-
born target intensity can be expressed as,

No )
W) = w0p N (L Pog) 27)

n=1

where Pj shows the spread of the birth intensity in the
vicinity of the mean values (see step-1 in Fig. 4).

The confirmation of an underwater contact as a target
depends on contact continuity. This birth model supports
the principle of contact continuity by considering the new
possible targets in the vicinity of the previous measurement
to prevent delays in target initiation.

B. ROBUST MODEL-DEPENDENT POISSON MULTI
BERNOULLI MIXTURE FILTER

As seen in the PPP and MBM update steps (11-22), the
posterior distribution of multiple-target directly depends on
the probability of detection, PP(X). The posterior intensity
for the undetected targets would be higher in regions where
detection probabilities are low and vice versa. The unde-
tected target update will lead to a small contribution from the
undetected target model on the PMBM posterior in scenarios
where PP is close to one. As a result, the number of unde-
tected targets remains the same or increases slightly. In this
case, the initiation of new potential targets depends mainly on
the birth states.

On the other hand, for highly cluttered regions, if PP is
assumed low, the number of undetected targets will increase
and bring an additional computational cost to target initiation.
Simultaneously, this brings other disadvantages, such as an
increased rate of false alarms. Thus, the selection of PP
can be interpreted as a trade-off from an application point
of view. Therefore the assumption of the unity of PP in a
figure of view is not realistic and causes to reduce tracking
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FIGURE 4. RMDPMBM algorithm flow diagram, the red nodes shows the
contribution to the PMBM algorithm.
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performance. Briefly, the computational accuracy of PP is
an essential parameter since this directly affects the detection
reliability, which is a crucial parameter in tracking. Consid-
ering the ASW requirements, PP should change dynamically
during operation, depending on the acoustic propagation con-
ditions [14]. Some work uses P” as a constant term, but
it is straightforward to improve the method to realistic P
curves, such as those from the acoustic-propagation model-
ing. Hence, the analytical multistatic acoustic model should
be preferred to compute the PP dynamically in the multistatic
operation rather than the coarse unity assumption.

The model-dependent PP enhances tracker performance
and prevents tracks in the update step from falling off the
tracker in the transition regions like shadow zone or degraded
acoustic performance zone. We call this model-dependent
algorithm as the Robust Model-Dependent Multi Bernoulli
Filter (RMDPMBM) tracker. The flow diagram of the pro-
posed algorithm is depicted in Fig. 4. In the figure, the red
nodes highlight the contribution of the proposed algorithm,
while the other nodes denote the processing step of the stan-
dard PMBM filter.

The following subsection explains the computation of
probability of detection for the MSNs based on Fewell’s
work [30].

Probability of Detection for Multistatic Sonar Networks:
The tentative attempts to calculate the PP using high-fidelity
multistatic acoustic propagation modeling can be time-
consuming. The expectation is that the probability of detec-
tion behaves with a decreasing trend proportional to a target
range [31] due to the assumption that propagation losses are
predominantly dependent on distance. The decreasing trend
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of PP can be modeled using simple models like a cookie-
cutter, an exponential curve, or the Fermi function. The
difference between these three approaches is the transition
to the degraded acoustic detection region. The transition is
smoother in the Fermi function compared to the other two
curves. The Fermi function is widely used for PP calculation,
and it is given as [30],

1
D

Por= 1 + 10@Rmuii/Ro—1)/b (28)
where Pgr shows a probability of detection for a single
source-receiver pair. In the case of a MSN, all pairs should
be considered. The b parameter shows the tail width of the
Fermi function, which helps simulate the smooth transition
to the shadow zone or out of the figure of merit. Here, Ry is
arange of the day concerning 50% detection probability, and
Ry denotes the distance for the bistatic propagation loss
or equivalent monostatic range. Ry,;,i;; is expressed with the
distances source-target and target-receiver by [32] as,

Ruywuii = v RsTRTR (29)

Another vital issue for PP is the limits due to signal pro-
cessing. For example, detection during transmission is not
feasible without pulse compression, which causes a blind
zone near the receiver. In the multistatic operation, a blind
zone occurs near the receiver, caused by the direct blast effect.
It is not possible to detect the target echos till the direct blast
arrives in the receiver. The shape of the blind zone is an
ellipse, and the form is directly related to the receiver-source
distance. If the following equality holds within the scenario,
a blind zone occurs:

Rst + R7r < Rsg + 2Ry (30

The acoustic propagation model considers a blind zone by
hard thresholding the PP. Thus, the PP equals O for the closer
distance than the blind zone, R. Equation (28) becomes,

1 .
1 + 10Rmai/Ro—1)/b if Ruiti > Rp, (31)

0 otherwise.

D _
Ps,r_

An acoustic model was created within the framework of a
multistatic scenario, and the Fermi model, which is used in
many academic studies on multistatic, was preferred for cov-
erage and probability of detection modeling [30], [31], [33].

The total probability of detection for MSNss, PtD , 1s revised
by taking into account the Signal Excess (SE), which shows
the level of signal excess in dB above the Detection Threshold
(DT) and decreases with the distance. The SE computation
for the multistatic active sonar requires multiple solutions of
the bistatic sonar equation, which is given in noise-limited
conditions as [34],

SE = SL + TS — TLst — TL[r—NL — DT.  (32)

Here, SL is the transmitter’s source level. The target geom-
etry and scattering characteristic is considered by the Tar-
get Strength (TS) term. Another essential term is the Noise
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Level (NL). It is the interference to the sensor originating
from the environment or shipping. Therefore, NL directly
affects sonar performance, reducing the signal-to-noise ratio
(SNR). NL is usually assumed an isotropic. The last term
in the sonar equation is the Transmission Loss (TL), mainly
dependent on the acoustic range-dependent spreading and
absorption loss. All parameters of the sonar equation are
almost consistent for a short time except TL, which is directly
dependent on the target distance. TL can be expressed as [32],

TL i = klog(RstRrr) + a(Rst + Rr) (33)

where « is the attenuation coefficient, and k is the geometrical
propagation loss coefficient (k is equal to, e.g., 20 for spheri-
cal spreading, 10 for cylindrical spreading). The propagation
distance is equal to the sum of the source-target and target-
receiver distances.

However, the spreading loss is assumed a predominated
effect in TL; the absorption losses might be crucial for the
model in high frequencies [1]. Thus, the absorption loss is
incorporated in the acoustic model as a correction factor.

After the calculating the PP using the Fermi function, the
absorption correction is made to the PP in line with the
absorption losses regarding the transmission frequency and
target range. The SE — PP transition is performed using the
following equation [30]:

SEuncorr. = o~/ 2inverf2PP — 1) (34)

where the inverf corresponds to the inverse error function.
The standard deviation of noise is set as 0,, = 8 (dB). Urick
suggested this value since the usage of this value results in
significant similarities to the experiment. Then, the absorp-
tion correction is applied regarding (33),

SEcorr = SEuncorr. — (Rgt + Ryt — 2Requiv)~ (35)

At last, the PP is recalculated for each trans-receiver pair
using the following transition equation:

p _ 1 SE
Pl = 2(1 +erf(anﬁ)>. (36)

Assuming all probabilities are independent and considering
all trans-receiver pairs in the network, the total probability of
detection for MSNs can be expressed as [31],

]_[ 1-PP, (37)

(s,r)eSXR

D __
P, =1-
where the source is s € S, and the receiveris r € R.

IV. SIMULATION AND RESULTS

A. MODEL

Under the linear Gaussian dynamics, this paper assumes a
point target measurement model [35]. The following equa-
tions are used for modeling the target motion and the mea-
surement process:

Sewx18) = N(x: Fro18, O—1)s (38)
gk(z|x) = N(z: Hix, Ry), (39)
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where ¢ corresponds to the previous state. The tracker per-
forms in a track-oriented fashion by assuming that each gated
measurement creates a new track hypothesis.

1) THE MEASUREMENT MODEL

The measurements are obtained from the simulation of an
underwater multistatic sonar network system consisting of
more than one receiver and transmitter pair. The components
of each measurement are the range (in meters) and the bear-
ing (in radians). The measurement model utilizes ellipsoidal
gating in order to ignore the very unlikely measurements. The
measurement component can be expressed as,

tan—! Y=Y
mz O 4o, 0~NO. %) (40)
r toa X SOS

where t,,, refers to the time of arrival and sos is the speed of
sound.

The measurement model incorporates the false contacts to
the scenario by combining the clutter model measurements
with the target originating measurement. The measurement
model considers the clutter model as the homogeneously
distributed Poisson model with a density parameter A
equals 10. Thus, the clutter model generates an average of
10 clutter measurements per transmission. False measure-
ments are uniformly distributed through the surveillance area
(6 km x 6 km).

2) THE MOTION MODEL

The motion model follows linear Gaussian dynamics with a
constant survival probability, ps x = 0.99. A target state has
the position and velocity components:

X = [Px.k» Px.k> Py.ks Pyk ] (41)

In the case of trajectory tracking, the trajectory state con-
sists of the target state, track initiation (), and last existence
time indices (¢) [36]. It is defined as follows:

X=(B.€,xpe), P=e=k (42)
3) THE TARGET BIRTH MODEL

The GMM is used for the generation of the birth’s prior.
The position components are updated by the measurement,
which is obtained at the previous time step. The velocity
component is randomly sampled using the GMM, assuming
that the tracker tracks solely moving targets.

The number of birth is time-varying, and it is dependent
on the number of measurements. The predefined Gaussian
model (with o, = 0.5m/s%) is used for the velocity compo-
nents of birth’s prior. The covariance matrix is selected as,

100 0 0 0
0 025 0 0

Po=1"9 0 100 0 | (43)
0 0 0 025
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4) PERFORMANCE EVALUATION
In this paper, the performance of multi-target tracking is eval-
uated by using the Generalized Optimal Sub-Pattern Assign-
ment (GOSPA) metric [37].

When the parameter « equals 2, the GOSPA metric can be
written as,

E[df’z(f(, x)] - [mirrl< 3 ded 3y
Y Nijer

P N P
+?(|X| —lyl+IxI— |V|)>} (44)

where d©(x,%) = min(c, d(x, %)) refers to the distance
between the position of the set of the truth (x), and the position
of the set of the estimation (x) with a cut-off at c. A cut-off,
¢, is a design variable and refers to the cost of missed and
false targets. The y denotes the correctly detected targets.
The difference with y can penalize missed and false targets,
respectively, in this equation. The last parameter, p, refers to
the state space’s Lp norm.

B. SCENARIO AND RESULTS

We present three different scenarios to investigate the perfor-
mances of the proposed PMBM and T-PMBM algorithms.
Firstly, we consider a single target tracking problem for
the high probability of detection rates. Then we reduce
the probability of detection rates and reevaluate the tracker
performance in Scenario-2. Finally, multiple-target tracking
performance is considered in Scenario-3. In all scenarios,
the multistatic PP values are obtained from the Fermi func-
tion with a diffusivity of 0.5. The attenuation coefficient is
o = 0.1dB/km, an appropriate coefficient for an acoustic
frequency of about 1.5 kHz [1]. The range of the day is
set to 350 m. We consider six fixed sensor nodes in the
MSN. The sensor nodes behave like the multistatic sonar,
and their transducer has no directivity, so all transmissions
are omnidirectional within the scenario. The active nodes
ensonify the surveillance area. All sensor nodes (including
its receiver) receive the backscattered echoes and generate the
contact information. All contacts are collected and fused by a
processing center. Therefore, the network-centric tracker gen-
erates a combined coverage region that is desired to enhance
the coverage.

All targets act as point source target that has a constant
route and speed during the scenario. We keep the ship noise
interference and shallow water-oriented reverberation within
the scenario by adding clutter to the measurement.

The blind zone elimination is not applied, so the acoustic
model considers a blind zone in the vicinity of the receiver
nodes whether it works monostatic or as a multistatic receiver.
The common scenario parameters are shown in Table 1.

1) SCENARIO-1: HIGH PROBABILITY DETECTION RATE
In this scenario, a single underwater target aims to circumvent
the MSN to avoid detection. We consider the densely located
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TABLE 1. List of common scenario parameters.

Number of Monte Carlo 100
Number Of Node 6
Range of Day(meter) 350
Prob. of Detection 0.90
Prob. of Survival 0.99
A 10
Clutter Intensity 2.778e-07
Gating Val. 0.99
Pruning Threshold 0.001
Max. Hypothesis Number 100
Selected Metric GOSPA
Metric Param. ¢ Val. 50
Metric Param. p Val.

Metric Param. o Val. 2

Probability of Detection Coverage

3000

—— Target Start
2000 —@— Target Stop
Sonar Nodes

1000

-1000

-2000

-3000
-2000 0 2000

FIGURE 5. This figure illustrates the sonar coverage of Scenario-1 for
densely located six sonar nodes (red dot). The nodes are equally
separated with 1000 meters in horizontal axes and 500 meters in vertical
axes. Contours of the probability of detection represent the sonar
coverage. The initial position of a target trajectory is marked with a red
circle, while the last position is marked with a red diamond.

network nodes. It causes to reduce the coverage rate but
increases the probability of detection in this limited region,
shown in Fig. 5. This figure illustrates the sonar coverage of
Scenario-1 for densely located six sonar nodes (red dot). The
nodes are equally separated with 1000 meters in horizontal
axes and 500 meters in vertical axes. The initial position
of a target trajectory is marked with a red circle, while the
last position is marked with a red diamond. The probability
of detection of MSN is displayed with contour lines that
take values between 0-1. The resulting data set consists of
100 scans with a one-second sampling interval.

The simulation results are presented in Table 2. It is
observed that the algorithm with the lowest error is the pro-
posed algorithm RMDPMBM. The most significant reason
for the increase in performance is that the RMDPMBM
algorithm is based on the multistatic acoustic model, which
assumes that the probability of target detection in the
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TABLE 2. Scenario-1, the comparison of GOSPA metric of different PMBM
trackers on the multistatic sonar network simulation data set.

Average GOSPA Cost
Tracker %\;ﬁe((::er?[)) ut. Missed  False  Position  Total
PMBM 2.58 16.36 16.73 4.06 37.15
RPMBM 2.85 10.58 10.80 6.62 28.00
RMDPMBM 8.28 4.836 5.00 11.28 21.14
T-PMBM 2.67 16.68 17.03 3.89 37.60
T-RPMBM 3.04 11.10 11.32 6.38 28.80
T-RMDPMBM 7.09 5.79 591 10.28 21.98

coverage areas will be low, preventing breaks in the track-
ing and thus ensuring the track continuity. The multistatic
model-dependent trackers have a better performance in terms
of false and missed target costs. However, they are not among
the best tracker regarding the position error since they utilize
the adaptive Pp value in computation, which might cause a
rise in uncertainty near the acoustic performance transition
regions.

An important consideration regarding the table is the effect
of the birth model on the solution. The PMBM tracker with
fixed birth model parameters does not initiate a tracker until
the required criteria are met. The target initiation criteria
highly depend on the birth model intensity. RPMBM and
T-RPMBM trackers use the proposed adaptive birth model.
The usage of the adaptive birth model increases the possibility
of initiating new targets. Therefore, these algorithms initiate
new targets quickly after the first measurement obtained from
the target. When the fixed birth model-dependent PMBM
and T-PMBM algorithms are compared with the adaptive
birth model-dependent RPMBM and T-RPMBM algorithms,
it is seen that algorithms with the adaptive birth model are
superior. The position error of the GOSPA metric is illustrated
for different trackers in Fig. 8. In this figure, some trackers
have no position error at some scans, as these trackers do not
have an existing track at these scans. Therefore, their GOSPA
metric consists only of the cardinality error at these scans.
Average GOSPA metric results for all considered trackers are
depicted in Figs. 6-9.

2) SCENARIO-2: LOW PROBABILITY DETECTION RATE

This scenario aims to evaluate the performance of the MSN
when the coverage rate is low. So, we increase the distance
between the nodes in this scenario. This positioning approach
reduces the probability of detection in the figure of merit
while increasing the coverage. Therefore, some degraded
acoustic zone exists between nodes which provide an escape
opportunity to the adversary unit, shown in Fig. 10. The
resulting data set consists of 100 scans with a one-second
sampling interval.

The vital benefit of the multistatic acoustic model can
be easily seen in this scenario since transition zones appear
throughout the route of the target, which degrades the
measurement accuracy. Consistent measurements are not
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False Alarm Error
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FIGURE 6. Scenario-1, the false alarm error of the average GOSPA metric
for different trackers.

Missed Target Error

60F ]
PMBM

5ot ———— RPMBM ]
RMDPMBM

40+ T-PMBM ]
T-RPMBM
T-RMDPMBM |

100

Time

FIGURE 7. Scenario-1, the missed target error of the average GOSPA
metric for different trackers.

possible in the vicinity of acoustic degraded zones. The
model-dependent algorithms change the PP value following
the multistatic acoustic model. This model helps to improve
track continuity. "TRMDPMBM and RMDPMBM are supe-
rior in terms of false and missed target cost. The differ-
ence in false and missed target costs is significant among
the algorithms. While the positioning cost is comparable
(see Table 3).

As expected, PMBM trackers show similar tracking per-
formance characteristics in areas with high target detection
probability. However, there are differences in tracking per-
formance near ‘transition zones, where the performance of
acoustic detection is reduced. The transition region causes the
oscillation in tracker result, and the average GOSPA metric
results illustrate this effect explicitly (see Figs. 11-14). The
target passes two times through the transition zone during the
scenario, and the T-RMDPMBM and RMDPMBM trackers
have a better performance than other trackers at this time
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Position Error

PMBM

40 F —— RPMBM .
RMDPMBM
T-PMBM
T-RPMBM
T-RMDPMBM

Cost

0 20 40 60 80 100
Time

FIGURE 8. Scenario-1, the position error of the average GOSPA metric is
illustrated for different trackers. Some tracker has no position error at
some scans, as these trackers do not have an existing track at these
scans. Therefore, their GOSPA metric consists only of the cardinality error
at these scans.

Total Error

120f ]
PMBM
—— RPMBM
100 RMDPMBM
I T-PMBM |
o 80 T-RPMBM
S T-RMDPMBM

Time

FIGURE 9. Scenario-1, the total error of the average GOSPA metric. Shown
is the overall GOSPA error for all six trackers.

TABLE 3. Scenario-2, the comparison of GOSPA metric of different PMBM
trackers on the multistatic sonar network simulation data set.

Average GOSPA Cost
Tracker %\;ﬁe ?;:T,l))m' Missed  False  Position  Total
PMBM 2.81 23.13 23.20 1.03 47.36
RPMBM 3.00 19.78 19.86 3.00 42.64
RMDPMBM 14.74 7.13 7.30 11.72 26.15
T-PMBM 2.67 23.30 23.36 0.95 47.61
T-RPMBM 297 20.35 20.42 2.71 43.48
T-RMDPMBM 9.85 8.80 8.92 10.53 28.25

steps. It is seen that the use of fixed PP causes a rupture in
the target tracking, especially in the transition regions where
the probability of detection is low. On the other hand, with
the multistatic acoustic model, the changes in the transition
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FIGURE 10. Scenario-2, Coverage for the Multistatic Sonar Network. The
nodes are equally separated with a distance of 1000 meters in horizontal
and vertical axes. In this scenario, the route of the target has a low
probability of detection compared to Scenario-1.

False Alarm Error
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FIGURE 11. Scenario-2, the false alarm error of the average GOSPA metric
for different trackers.

regions cause a minimum decrease in the overall tracking
performance.

3) SCENARIO-3: MULTIPLE TARGET TRACKING

In this scenario, we add three additional targets to Scenario-2.
Hence, this scenario helps to evaluate multiple target track-
ing performance of PMBM-based algorithms. The scenario
consists of 150 scans with a one-second sampling interval.
The scenario is illustrated in Fig. 15, and the plot of the
received contacts versus ground truth is displayed in Fig. 16.
The initial position of the true trajectory is marked with
a red circle, while the last position is marked with a red
diamond. The running time and GOSPA metric of the
six algorithms are analyzed and compared in Table 4. All
trackers produce false targets because of the dense clutter.
Only T-RMDPMBM and RMDPMBM trackers successfully
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FIGURE 12. Scenario-2, the missed target error of the average GOSPA

metric for different trackers.
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FIGURE 13. Scenario-2, the position error of the GOSPA metric is

illustrated for different trackers.
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FIGURE 14. Scenario-2, the total error of the average GOSPA metric.
Shown is the overall GOSPA error for all six trackers.

maintain track continuity even in the degraded region (see
Figs. 17 and 18). Nevertheless, their target position error rises
near the degraded region (see Fig. 19). However, the general
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FIGURE 15. Scenario-3, the sonar coverage. The initial position of a true
trajectory is marked with a red circle, while the last position is marked
with a red diamond.

3000 - Scenario for Multistatic Sonar Network
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FIGURE 16. Scenario-3, the initial position of a true trajectory is marked
with a blue circle, while the last position is marked with a blue diamond,
and measurements are displayed with a gray-colored plus marker.

TABLE 4. Scenario-3, the comparison of GOSPA metric of different PMBM
trackers on the multistatic sonar network simulation data set.

Average GOSPA Cost
Tracker %ﬁé?g?gm' Missed  False  Position Total
PMBM 3.73 89.16 15.39 5.58 110.13
RPMBM 6.35 50.81 1.84 21.62 74.27
RMDPMBM 74.20 18.55 2.87 44.78 66.20
T-PMBM 3.72 89.77 15.78 5.25 110.80
T-RPMBM 6.97 53.47 2.10 20.21 75.78
T-RMDPMBM 35.18 22.56 2.10 41.63 66.29

characteristics of average GOSPA metric results are quite
similar to those of other scenarios. The average running time
of the RMDPMBM tracker increases significantly for this
scenario. The increase in time is due to the increasing number
of targets because the algorithm dynamically calculates PP
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FIGURE 17. Scenario-3, the false alarm error of the average GOSPA metric
for different trackers.
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FIGURE 18. Scenario-3, the missed target error of the average GOSPA
metric for different trackers.
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FIGURE 19. Scenario-3, the position error of the GOSPA metric is
illustrated for different trackers.

for each target. A lookup table of PP can be used for a
specific region to avoid this computational burden. The PC
platform is Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz
(2 processors), RAM 32.0 G, MATLAB R2021a. The overall
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FIGURE 20. Scenario-3, the total error of the average GOSPA metric.
Shown is the overall GOSPA error for all six trackers.

performance comparison of the PMBM based trackers is
illustrated in Fig. 20. It is seen from the figure that the
RMDPMBM tracker performs very well during the scenario.

V. CONCLUSION

In this paper, we have proposed two extensions of the PMBM
algorithm for underwater target tracking on Multistatic Sonar
Networks in challenging conditions. Firstly, we use the adap-
tive measurement-driven Poisson Birth Model in the PMBM
prediction step to achieve robustness against the changes in
cardinality. The proposed robust PMBM (RPMBM) tracker
improves the target initiation performance within PMBM and
outperforms the priori known birth intensity model-based
PMBM tracker.

Subsequently, we have enhanced the RPMBM tracker per-
formance by involving the probability of detection, which is
the multistatic model-dependent and computed within each
scan for all trans-receiver pairs, in the update process. This
proposed robust model-dependent PMBM (RMDPMBM)
algorithm has been compared to other PMBM based track-
ers by the numerical simulations, and the performances of
trackers are assessed for the variable of interest as the set of
trajectories and the set of target states.

The simulation results show that the proposed algorithm
outperforms and provides an advantage in reducing false
tracks without impairing track continuity for MSNs in dense
clutter regions. The principal manifestations of this improved
performance are the reduction of false tracks and continuous
target tracking without fragmentation.
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