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ABSTRACT IoT devices are deployed in a building to instantly collect electricity load usage for next hour
load consumption forecasting so that the operation of the building can be properly managed. However, due
to the hardware or system error, data missing or overflow might occur. Noise might also be added into the
collected data. Under this circumstance, the accuracy of next hour load forecasting would degrade which
in turn decreases the building operation performance. In this paper, we propose an hourly load forecasting
framework combining Data Preparation and LSTM, namely LSTM-DP, by considering data pre-processing,
feature engineering and Long Short-Term Memory (LSTM). In LSTM-DP, the collected data is firstly
processed by interpolation and Savitzky Golay filter, therefore the pattern of load consumption can be
properly extracted by LSTM for next hour load forecasting. Moreover, we adopt two-stack LSTM to better
determine the relationships among the time series information. We study the real data collected from three
buildings of a company in Asia to investigate the performance of next hour load forecasting, and the results
show the proposed LSTM-DP outperforms others.

INDEX TERMS Short-term load forecasting, long short-term memory (LSTM), smart meter, data

pre-processing, feature engineering.

I. INTRODUCTION

Smart Meter Infrastructure (SMI) development enables
bi-directional communication between the power company
and individual users [1]. By integrating the SMI in a building,
the collected data in the database can be applied for vari-
ous applications. For example, short-term load forecasting
is one of the popular applications utilizing SMI [2], [3].
More specifically, with accurate short-term load forecasting,
individual customers can better plan their usage such as
shifting their usage to off-peak periods whenever possible
so that they can avoid massive consumption or overpayment.
However, the short-term load forecasting, especially hourly
load forecasting, highly relies on past historical data obtained
from SMI because of the dynamic behavior of each user from
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one hour to another. Specifically, the dynamic behavior of
each user affects the pattern of load usage which plays a main
role in hourly load forecasting. Furthermore, transmission
and technical errors also affect the load usage pattern which
in turn may degrade the short-term load forecasting accuracy.

Due to transmission and technical errors in the system,
the data might contain missing values, overflow values, noise
and so on [4], [5] which would produce a lousy prediction
result [2], when such data is directly used for load prediction.
Hence, many studies have addressed the importance of data
pre-processing. Due to the volatile nature of the load data,
data smoothing and data imputation are performed in previ-
ous studies. In [2], authors apply a moving average filter to
refine the load data. The moving average filter is quite helpful
to refine the dataset. However, it only uses the mean value
of the defined number of windows. If the sequence of the
window contains mod of the data, the filled value will ruin the
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sequence of the data. In [6], mean, median, Savitzky-Golay,
Kalman, and Gaussian filter are applied to smooth the digital
sensor data for further investigation.

Data imputation is also introduced in recent studies. Due
to system/human error, the data sent to the database might
be lost or wrong. In [7], authors introduce an improved
random forest algorithm to fill the missing values aiming
to improve the prediction performance. Because the filling
result depends on the average vote from all the trees, the
pattern of that sequence would be ruined. To fill the missing
values, KNN is also used. However, as mentioned in [8], KNN
requires the use of the training data in the application process
of imputing unseen data. It takes more computation time on
a large-scale dataset. Additionally, in [9], K. Liang et al.
use selective ensemble learning to predict load consumption.
They find many missing data for 1-3 months in their dataset,
and they chose to fill the missing values with the average
value. Otherwise, they will eliminate the value. They also use
K-Means to make a cluster of load consumption behavior, but
using the average value of the dataset to fill the missing value
may break down the pattern of a certain sequence.

Previous studies introduce Long Short-Term Mem-
ory (LSTM) to perform load forecasting [3], [9]-[11].
In [3], [11], increasing number of layers in LSTM is intro-
duced for the models to learn the sequence deeper so that
load forecasting performance is improved. However, too
many stacks of LSTM layers may overfit the data during
the training process. Then, as [1], [2], [12], to increase the
accuracy of load forecasting, hybrid models combining deep
learning models with another machine learning model are
proposed. Specifically, authors combine Convolutional Neu-
ral Network (CNN) and LSTM to construct a load forecasting
framework. The purpose of using CNN is to perform feature
extraction and facilitate various hidden features of the load
sequences to provide accurate load forecasting. Ullah et al.
in [2] present an intelligent hybrid technique that combines
the CNN with a Multi-layer Bi-directional Long-Short Term
Memory (M-BDLSTM). M-BDLSTM integrates the pre-
processing and data organization mechanisms to refine the
data and remove abnormalities. The refined data is fed to
CNN first, and thus M-BDLSTM can learn the sequence
pattern effectively which increases the prediction accuracy.
However, M-BDLSTM only uses one feature to predict the
load consumption which would limit the load forecasting per-
formance. Under this condition, feature engineering would
need.

Moreover, machine learning based approaches are also
commonly applied for modeling load consumption. Authors
in [13] propose an improved random forest algorithm to
perform load forecasting. They also introduce fuzzy clus-
tering to improve the load forecasting performance. How-
ever, a prediction from random forest is an average of the
predictions produced by the trees in the forest which might
be biased by the presence of miss or overflow data. Mean-
while, authors in [14] use K-Nearest Neighbor (KNN) and
Support Vector Machine (SVM) to develop a load forecasting
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framework. The combination of KNN and SVM produces
competitive performance. However, SVM is not suitable
for large datasets. If the number of features for each data
point exceeds the number of training data samples, the SVM
would underperform. In addition to deep learning or machine
learning based approaches, statistical approaches are also
applied for load forecasting. In [15], authors propose Auto-
Regressive Integrated Moving Average (ARIMA) to perform
peak load forecasting, which incorporates the time series
modeling with the knowledge of experienced human opera-
tors. It is shown that the proposed method can exactly forecast
the daily peak load of a power system. Although ARIMA
could improve performance, it is generally less flexible. If the
data is generated by a process similar to ARIMA assump-
tions, it will work well. In [16], authors apply regression to
perform load forecasting. The advantage of using regression
to perform load forecasting is that it only needs a small
amount of data. However, the performance would be limited
since the pattern of the load usage might not be always linear.
Due to dynamic user behavior, linearities might seldom occur.
Also, the outliers in the dataset, such as missing or overflow
values, would break the linearity of the data.

In this paper, we investigate the real data collected from
three buildings of a company in Asia and propose an hourly
load forecasting framework combining Data Preparation
and LSTM, namely LSTM-DP, for hourly load forecasting.
To handle the abnormal data, the Data Preparation (DP)
strategy in LSTM-DP pre-processes the load consumption
data through interpolation and filtering. The DP strategy also
contains feature engineering to select several appropriate fea-
tures to assist load forecasting so that the prediction accuracy
can be improved. On the other hand, the LSTM for load
forecasting (LSTM) strategy in LSTM-DP uses LSTM to
identify short-term and long-term dependencies. We adopt
two stacks of LSTM layers to let the model learn deeper
along with the sequences to further enhance the forecasting
performance.

The remainder of the paper is organized as follows.
Exploratory data analysis and problem identification are
provided in Section II. The proposed hourly load fore-
casting framework combining Data Preparation and LSTM
(LSTM-DP) is presented in Section III. The case study and
experimental results are elaborated in Section I'V. Finally, the
work is concluded in Section V.

Il. EXPLORATORY DATA ANALYSIS AND PROBLEM
IDENTIFICATION

The dataset contains the data from three buildings of a com-
pany in Asia from July until October 2020. The buildings
are denoted as BU1, BU2 and BU3, and the data is collected
every five minutes from smart power meters. We denote the
load consumption of a building as p,, where ¢ is the ¢-th hour
within a target time interval. We also denote the predicted
load usage of a building the ¢-th hour from a target time
interval as p;, and p; is obtained at the (z-1)-th hour.
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FIGURE 1. Hourly load data in three buildings.

200000
175000
150000
125000 o

100000

Load (W)

75000

50000
25000 é i
=

0

Morning ~ Afternoon  Evening Night Midnight

FIGURE 2. Distribution of load consumption in different session time.

80000

60000

Load (W)

40000

20000

07/01  07/03 07/05  07/07 07/09 07/11 07/13
Date

FIGURE 3. Load consumption pattern in weekdays/weekends.

Unlike smart grid, individual load data in a building lacks
the obvious consistent patterns from others. Fig. 1 shows the
load usages of three buildings at the same time interval over
two consecutive days (i.e., 48 hours). It can be seen the load
consumption patterns among these three buildings are totally
different. Different numbers of people with different habits
as well as different events in each building might make the
load usage volatile and practically changing every time [17].
Therefore, simply using the data from one building to perform
load forecasting for each building is challenging.
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To further observe the load consumption based on the
time interval of a day, we divide the timestamp into five
time zones and call the time interval of each time zone
as “Session Time”. The session times consist of ‘Morn-
ing’, ‘Afternoon’, ‘Evening’, ‘Night’ and ‘Midnight’. The
session time ‘Morning’ is 6 AM - 12 PM, ‘Afternoon’
is 12 PM - 6 PM, ‘Evening’ is 6 PM - 12 AM, ‘Night’ is
12 AM - 6 AM, and ‘Midnight’ is 12 AM - 1 AM. Fig. 2 shows
the relationship between the distribution of load consumption
in a building and each session time in a day. For example,
the load usage in the ‘Night’ session is mainly distributed
between 100,000 and 150,000 (W) while those in ‘Afternoon’
and ‘Evening’ session are less than 25,000 (W). Moreover,
in the ‘Morning’ session, the variation of the load consump-
tion is much larger than others. For example, it can reach
about 200,000 (W), but its distribution is mainly between
50,000 and 125,000 (W). Hence, this feature would be helpful
to assist the hourly load forecasting.

On the other hand, based on Fig. 3, the box A and B
represent the load consumption during the weekends and
weekends, respectively. The load consumption is fluctuated
significantly during the weekends. Further, it can be seen
that more usage on weekdays than weekends which might be
resulted from human behavior. Moreover, the data separated
from the index of weekdays or weekends would also help
hourly load forecasting.
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FIGURE 4. Original load data.

However, some issues are found in the collected dataset
which cause the challenges in hourly load forecasting. Due to
the system failure and human error, the data might be wrong
or lost during transmission [5]. As shown in Fig. 4, the over-
flow value is sent to the database which is significantly larger
than the load usage present in Fig. 2 and 3. Such anomaly data
would produce lousy prediction if it is used to forecast load
usage. Specifically, the distribution of the load usage would
be influenced, and thus the accuracy in load forecasting
decreases. Moreover, some of the load data collected from the
smart power meter has missing values. We find each building
contains missing data in Fig. 5, and more than 30% data of
BUI is missing. The missing value would also influence the
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load forecasting accuracy. As a result, a method is needed to
pre-process such abnormal behaviors before we use the data
for load forecasting. Additionally, due to system problems,
individual mistakes or measurement errors, noise would also
be introduced in the collected dataset. Similar to [2], the curve
of load across several days shown in Fig. 6 contains some
spikes on the top side of the data which might be introduced
by the noise. The presence of noise would degrade the load
forecasting performance, and thus a de-noising method would
require to remove such advert effect.
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FIGURE 5. Missing percentage of the each building.
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FIGURE 6. lllustration of noise data.

IIl. HOURLY LOAD FORECASTING FRAMEWORK
COMBINING DATA PREPARATION

AND LSTM (LSTM-DP)

To effectively predict the next hour load consumption,
we propose hourly load forecasting framework combining
Data Preparation and LSTM, namely LSTM-DP. LSTM-DP
includes Data Preparation (DP) strategy and LSTM for load
forecasting (LSTM) strategy. In DP strategy, we apply data
pre-processing and feature engineering in order to prepare
the input for load forecasting by LSTM. Specifically, data
pre-processing aims to deal with missing, overflow and noisy
data in the dataset to enhance the forecasting accuracy by
interpolation, smoothing and de-noising approaches. On the
other hand, feature engineering aims to select proper features
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to assist the forecasting. Moreover, we consider the model of
two stacked LSTM with dropout and dense layers to forecast
load consumption.

A. DATA PREPARATION (DP) STRATEGY

1) DATA INTERPOLATION

We apply interpolation to fill the missing or overflow data
caused by system error to assist load forecasting. The missing
value is interpolated using the average of the previous and
next value. For example, if the value of the t-th point is
missing or overflow, it is interpolated by p; = ’% After
interpolating all missing points, we re-sample the dataset into
hourly load consumption for next-hour load forecasting.

2) DATA SMOOTHING AND DE-NOISING

Data smoothing is further applied to remove the noise caused
by climate, metering problems, and individual mistakes or
measurement errors [2]. More specifically, we intend to refine
the load data with Savitzky Golay Filter [6], and denote the
refined value at ¢-th time as P;.

w—1
2
Pi= Y Cixpiyi (1)

. l—w
=7

where w is the window size, C; is the coefficient for weighting
function which already declared in [18], p;4; is the unfiltered
value at the (¢ + i) time, and t+ = 1, ..., n within the target
time interval.

3) FEATURE ENGINEERING

To select appropriate features for hourly load forecasting,
we extract data from our dataset. Firstly, based on the dataset,
the hourly load consumption correlates with time. As shown
inFig. 3, the pattern of load consumption behaves differently
between weekdays and weekends. Further, the distribution
of load usage varies from one session time to another as
illustrated in Fig. 2. Thus, the hourly load consumption,
weekdays/weekends indicator and the session time are firstly
taken as features for load forecasting.

Moreover, we check all of the features retrieved from data
analysis and feature engineering with Spearman Correlation.
We select the feature that has a strong relationship with load
data as additional features. Specifically, the total apparent
power data is related to the load consumption since it is a
combination of reactive power and load data. Total apparent
power relates to the power triangle, which includes reactive
power and load, therefore it is also selected as a feature.
As mentioned in [19], weather temperature can also cause
changes in load consumption. Hence, we collect temperature
datasets from the government site, and then take an average
temperature value of each hour as another feature.

Finally, given each selected feature, we consider the infor-
mation of the past k consecutive timesteps (hours) prior to the
target hour 7, and thus the features fed into LSTM for load
forecasting are summarized as below:
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1) Load consumption: P = {P;_¢, ..., Pr_2, Ps_1}.

2) Total apparent power: A = {a;—k,...,a—2,ar—1},
where g; is the apparent power of the i-th point within
the target time interval.

3) Temperature: C = {c;—k, ..., C—2,Ci—1} € RK, where
¢; is the temperature of the i-th point within the target
time interval.

4) Weekdays/Weekends indicator: H = {h;—, ..
h;—1}, where h;_j is the indicator of the i-th point
within the target time interval. It is O for weekdays
and 0 for weekends.

5) Session time indicator: S = {s;—, ..., S:—2,Sr—1},
where s; is the session time indicator of the i-th point
within the target time interval. It is set as 0, 1, 2, 3
and 4 for ‘Night’, ‘Midnight’, ‘Morning’, ‘Afternoon’
and ‘Evening’, respectively.

L] hl—27

B. LSTM FOR LOAD FORECASTING (LSTM) STRATEGY

The architecture of the proposed LSTM based model for
hourly load forecasting is shown in Fig. 7. The model con-
sists of two stacked LSTM with dropout and dense layers.
LSTM is commonly used for short-term load forecasting [1]
as it is able to learn and capture the pattern along with the
sequences. Previous studies prove that the additional stacks
on LSTM could give benefits and disadvantages to the train-
ing model [11], and thus we adopt two stack for our model.

m e B

Normalization

| LSTM Block

LSTM Block }'.,
LSTM Block

LSTM Block )
LSTM Block ¢,

LSTM Block |

‘ Dropout Layer ‘

|
‘ Fully Connected Layer ‘

P
FIGURE 7. Process of LSTM strategy for load forecasting process in
LSTM-DP.

Since LSTM is slightly sensitive to the value from the
input, we normalize the input first, as shown in the Normal-
ization block in Fig. 7. We use a min-max scaler to rescale
P, A, C and S between 0 and 1, and denote the scaled feature
as P, A, C, S, respectively. Then we denote X for the LSTM
input matrix, and X = {f’, A,C,H, 5‘}. Each row of X is the
scaled features for the corresponding timestep, which feeds
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sequentially in the LSTM block. Then, each LSTM block pro-
duces an output which is further fed into other LSTM blocks
to determine which information is used for next sequence.
The return sequence of the first stack of LSTM is set to true
to pass the hidden state to the following stack. The return
sequence is set to false in the following stack as it reaches
the final step. The output of the learning is connected to the
dropout layer. The dropout layer is used to keep essential
nodes and avoid overfitting before the fully connected layer
(Dense Layer) produces the forecasting result, p;.

Before performing prediction, we crate a training dataset
to select best performing models. After running some initial
tests, we find that the dropout layer with a 0.1 rate slightly
improves the load forecasting model. We set 1000 epoch for
the experiments with a stop condition. If the model fails to
get a better result in 30 epochs, the training stops. We also
create a validation dataset to test the trained model after
the training process. Moreover, Adam is used to train the
proposed forecasting framework with recommended default
parameters (learning rate, momentum, and decay), since the
Adam optimizer showed better results than the other candi-
dates such as RMSProp and SGD in our experiments.

IV. EVALUATION RESULTS
In the case study, we evaluate the proposed LSTM-DP
through the dataset collected from BU1, BU2 and BU3 to
perform one hour ahead load forecasting. For each building,
we pick 123 days data from July 1st, 2020 to October 31st,
2020 which covers a part of the summer season, an entire fall
season and the beginning of the winter season so that seasonal
factors can be reasonably ignored in this case study. For each
building, we split the 123 days data into three subsets, which
are the training set (July 1st to August 30th), validation set
(August 31st to September 30th), and the testing set (Octo-
ber 1st to October 31st). Further, we set k as 9 indicating the
previous 9 points of the load data prior to the target hour are
applied to forecast next hour load usage. We also define sev-
eral hyper-parameters in our load forecasting model. Table 1
shows a dropout layer rate, activation function, stopping con-
dition, epoch, and optimizer function. All of the experiments
are built on Google Colab notebooks. Furthermore, the mean
absolute error percentage (MAPE) is used to evaluate the
forecasting performance. Considering 7 is the total points of
within the testing dataset, the MAPE is calculated as

P b

n

MAPE = x 100%. 2)

A. RESULTS

1) THE IMPACT OF METHOD IN FILLING THE
MISSING/OVERFLOW DATA

In this experiment, we compare LSTM-DP with other
methods replacing the interpolation in LSTM-DP for
load forecasting. Specifically, we investigate the predic-
tion results using different methods to fill missing/overflow
values. These methods include average value [9], random
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TABLE 1. Hyper-parameter summary.

Parameter Details
Dropout Layer 0.1
Activation on Dense Layer Linear
Optimizer Adam
Stopping Condition 40 Patience
Epoch 1000

forest algorithm [7], and KNN [20]. We name them
as LSTM-DP(Average), LSTM-DP(Random Forest) and
LSTM-DP(KNN), respectively, as only the method for filling
missing value in LSTM-DP is changed.

16 == LSTM-DP
LSTM-DP (Random Forest)
== LSTM-DP (Average)
LSTM-DP (KNN)

= - —
o N S

MAPE(%)
oo

BU1 BU2 BU3

FIGURE 8. MAPE of various filling methods.

TABLE 2. Peak error of various filling methods.

Peak Error (W)
LSTM-DP 12593.375
LSTM-DP (Average) 99649.972
LSTM-DP (Random Forest) 99703.956
LSTM-DP (KNN) 98478.93

As present in Fig. 8, LSTM-DP obtains the best per-
formance. It is because the filled value from interpolation
only involves the nearest value from the missing values, the
filled value from interpolation certainly closes to the actual
value. Meanwhile, LSTM-DP(Average) performs the worst
among the others. As shown in Fig. 2, the existence of large
load usage within certain time interval would dominate the
average results which in turn would influence the load con-
sumption pattern for forecasting. LSTM-DP(Random Forest)
improves the performance comparing to LSTM-DP(Average)
because of the working principle of the random forest algo-
rithm. Under this condition, the filled data could be better
correlated with the corresponding values for load forecast-
ing. However, the performance is not as good as interpola-
tion applied in LSTM-DP, since the interpolation by using
the previous and next values could better capture the load
consumption. On the other hand, LSTM-DP(KNN) gener-
ally performs better than LSTM-DP(Random Forest) and
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LSTM-DP(Average), because it fills the missing values by
finding the most similar samples to assist estimation.

Moreover, as shown in Table 2, LSTM-DP also obtains
the minimum prediction error in addition to the smallest
MAPE. More specifically, approximately 80% improvement
is achieved by the interpolation in LSTM-DP comparing to
other filling methods. The missing points are interpolated by
the nearest two points in LSTM-DP so that the load con-
sumption pattern can be better reconstructed for prediction,
since the load usage is normally time dependent due to human
behavior.

2) THE IMPACT OF FILTER FOR DATA SMOOTHING AND
DE-NOISING

In this experiment, we compare the Savitzky Golay filter in
LSTM-DP with other filters for data smoothing aiming to
investigate the gains using various filters for data smoothing.
Specifically, Kalman and moving average filter replace the
Savitzky Galoy filter in LSTM-DP, and thus they are denoted
as LSTM-DP(Kalman Filter) and LSTM-DP(Moving Aver-
age Filter), respectively.

m== LSTM-DP (Kalman Filter)
== LSTM-DP
=== LSTM-DP (Moving Average Filter)

BU1

FIGURE 9. MAPE of various filters.

TABLE 3. Peak error of various filters.

Peak Error (W)
LSTM-DP 12593.375
LSTM-DP (Kalman Filter) 14542.529
LSTM-DP (Moving Average Filter) 17458.440

Based on Fig. 9, LSTM-DP using Savitzky Golay filter
for smoothing and de-noising outperforms the others. It is
because Savitzky Golay filter tends to increase the preci-
sion of the load forecasting by better removing the spike
and noise from the dataset. LSTM-DP(Kalman Filter) uses
Kalman filter to estimate the load consumption and noise,
but the performance is lower than LSTM-DP since Kalman
filter is not specifically designed for recovering the spike or
noise values of the data. LSTM-DP(Moving Average Filter)
using the moving average filter performs worse than the
others. Moving average algorithm makes a mean value of
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each window containing just several data, and thus it can not
remove the noise efficiently.

Moreover, Table 3 shows LSTM-DP using Savitzky Golay
filter introduces the least peak error among these three filters.
LSTM-DP(Kalman Filter) approximately improves the peak
error by 3000 (W) comparing to LSTM-DP(Moving Aver-
age Filter), but its peak error is higher than LSTM-DP
by 2000 (W).

3) THE IMPACT OF MACHINE LEARNING MODEL FOR
PREDICTION

In this experiment, we evaluate the performance of the
load forecasting model in other deep learning model archi-
tectures. We pick other deep learning models and hybrid
methods from the previous studies that show good perfor-
mance. Specifically, 2CNN+LSTM [1], 3CNN+LSTM [2]
and multi-layer bidirectional LSTM (MBLSTM) [21] are
applied for prediction along with our proposed DP strat-
egy, and thus we denoted them as 2CNN+LSTM-DP,
3CNN+3LSTM-DP and MBLSTM-DP, respectively. It is
worth to noticed that 2CNN+LSTM and 3CNN+LSTM are
hybrid model approaches while MBLSTM is multi-layer
bidirectional LSTM.

@ 2CNN+LSTM-DP
Em 3CNN+3LSTM-DP
= MBLSTM-DP

= LSTM-DP

MAPE (%)

2.5

0.0

BU1 BU2

FIGURE 10. MAPE of various machine learning models.

TABLE 4. Peak error of various machine learning models.

Peak Error (W)
LSTM-DP 12593.375
3CNN+3LSTM-DP 33013.38
2CNN+LSTM-DP 27611.41
MBLSTM-DP 24197.476

According to Fig. 10, LSTM-DP generally outperforms
the others. In LSTM-DP, the DP strategy carefully selects
appropriate dataset for the proposed LSTM strategy which
effectively improves the load forecasting performance. The
hybrid models, 3CMM+3LSTM and 2CNN~+LSTM used in
3CMM+3LSTM-DP and 2CNN+LSTM-DP, obtain higher
MAPEs comparing to LSTM-DP. In such hybrid models,
CNN is generally used to extract and facilitate hidden features
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of the load sequences to provide accurate load forecasting
which has been managed by DP strategy. Therefore, using
a hybrid model with CNN and LSTM to replace LSTM for
load forecasting may not further improve the MAPE. On the
contrary, the extra processing might introduce more errors
which in turn degrades prediction performance.

On the other hand, MBLSTM-DP using multi-layer bidi-
rectional LSTM for load forecasting performs better than the
hybrid model approaches. It is because the feedback mecha-
nism helps improve the unidirectionality of traditional LSTM
network prediction. However, using bidirectional will run the
inputs in two ways, one from past to future and the other from
future to past. Under this circumstance, MAPE increases due
to overfitting. Although tuning the hyperparameters could
improve the performance, it is out the scope of this paper.

In terms of peak error shown in Table 4, hybrid mod-
els (3CNN+3LSTM-DP and 2CNN+LSTM-DP) experience
large peak error than rest models. More specifically, up to
60% peak error can be reduced by LSTM-DP comparing to
hybrid models.

4) THE IMPACT OF LOOKBACK CONFIGURATION IN LSTM
In this experiment, we apply various lookbacks to the
LSTM architecture of LSTM-DP for performance evaluation.
We obtain the best performance when 9 lookbacks in LSTM
is used. Thus, we select 2, 4, 6 and 10 lookbacks denoted as
LSTM(2 Lookback)-DP, LSTM(4 Lookback)-DP, LSTM(6
Lookback)-DP, LSTM(10 Lookback)-DP, respectively for
performance comparison.

LSTM(2 Lookbacks)-DP
LSTM(4 Lookbacks)-DP
10 LSTM(6 Lookbacks)-DP
=== LSTM-DP

LSTM(10 Lookbacks)-DP

MAPE(%)
-

N

0

BU1 BU2 BU3

FIGURE 11. MAPE of various number of lookbacks in LSTM.

TABLE 5. Peak error of various number of lookbacks in LSTM.

Peak Error (W)
LSTM(6 Lookbacks)-DP 12426.710
LSTM-DP 12593.375
LSTM(10 Lookbacks)-DP 34287.019

As illustrated in Fig. 11, some improvements can be found
by adding the number of lookback in LSTM. In this case,
LSTM-DP which uses 9 lookbacks outperforms the others.
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More specifically, the number of lookbacks impacts the load
forecasting results. For example, LSTM(2 Loopbacks)-DP
uses 2 lookbacks which indicates only 2 hours historical
information from the current time is used for load forecasting.
Thus, some references to predict the next hour load usage
may miss which reduce the prediction accuracy. Generally,
when the number of lookbacks is less than 10, the load
forecasting accuracy increases with the increasing of the
number of lookbacks, especially for BU2. In addition, the
performance of LSTM(6 Lookbacks)-DP using 6 lookbacks
is better than LSTM(4 Loopbacks)-DP using 4 lookbacks
for all buildings. However, the performance of LSTM(10
Lookbacks)-DP using 10 lookbacks decreases comparing to
LSTM-DP using 9 lookbacks for all buildings. It is because
overfitting/overtrained might occur when 10 lookbacks is
applied which is similar to the conclusion in [22]. Moreover,
the effect of overfitting/overtrained also can be found in
Table 5 in which LSTM(10 Loopbacks)-DP has about 3 times
more peak error than others.

V. CONCLUSION

In this paper, we firstly elaborate the challenges and charac-
teristic of the load consumption dataset, and then propose the
hourly load forecasting framework combining Data Prepa-
ration and LSTM, namely LSTM-DP, to predict the hourly
load consumption of each household. The DP strategy of
LSTM-DP is designed to handle the problems of the data
caused by error or noise and select appropriate features while
the LSTM strategy is in charge of load forecasting. Specif-
ically, through the DP strategy, an input dataset containing
several features is created after anomaly data is reconstructed
by interpolation and smoothing. In this way, the LSTM strat-
egy can utilize the prepared datset to better capture the load
consumption pattern on each household for hourly load fore-
casting. The evaluation results show the proposed LSTM-DP
outperforms the others in terms of various viewpoints. In the
future, hyper-parameter tuning methodologies can be devel-
oped to enhance forecasting accuracy. The minor effects that
influence the load consumption include the number of people,
seasonal, and period of holiday can also be investigated in
further.

REFERENCES

[1] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid CNN-LSTM model
for short-term individual household load forecasting,” IEEE Access, vol. 8,
pp. 180544-180557, 2020.

[2] F. U. M. Ullah, A. Ullah, I. U. Haq, S. Rho, and S. W. Baik, “Short-
term prediction of residential power energy consumption via CNN
and multi-layer bi-directional LSTM networks,” IEEE Access, vol. 8,
pp- 123369-123380, 2020.

[3] W.Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, ““Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841-851, Jan. 2019.

[4] N.Q. Uy and V. H. Nam, “A comparison of AMQP and MQTT protocols
for Internet of Things,” in Proc. 6th NAFOSTED Conf. Inf. Comput. Sci.
(NICS), Dec. 2019, pp. 292-297.

[5] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of smart meter
data analytics: Applications, methodologies, and challenges,” IEEE Trans.
Smart Grid, vol. 10, no. 3, pp. 3125-3148, May 2019.

167918

[6]

[7]

[8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

P. Kowalski and R. Smyk, “Review and comparison of smoothing algo-
rithms for one-dimensional data noise reduction,” in Proc. Int. Interdiscipl.
PhD Workshop (IIPhDW), May 2018, pp. 277-281.

W. Deng, Y. Guo, J. Liu, Y. Li, D. Liu, and L. Zhu, “A missing power
data filling method based on improved random forest algorithm,” Chin. J.
Electr. Eng., vol. 5, no. 4, pp. 33-39, Dec. 2019.

B. Al-Helali, Q. Chen, B. Xue, and M. Zhang, “GP-based feature selec-
tion and weighted KNN-based instance selection for symbolic regression
with incomplete data,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Dec. 2020, pp. 905-912.

K. Liang, F. Liu, and Y. Zhang, “Household power consumption predic-
tion method based on selective ensemble learning,” IEEE Access, vol. 8,
pp. 95657-95666, 2020.

R. K. Agrawal, F. Muchahary, and M. M. Tripathi, “Long term load
forecasting with hourly predictions based on long-short-term-memory net-
works,” in Proc. IEEE Texas Power Energy Conf. (TPEC), Feb. 2018,
pp. 1-6.

S. Chakraborty, J. Banik, S. Addhya, and D. Chatterjee, “Study of depen-
dency on number of LSTM units for character based text generation mod-
els,” in Proc. Int. Conf. Comput. Sci., Eng. Appl. (ICCSEA), Mar. 2020,
pp. 1-5.

S. H. Rafi, Nahid-Al-Masood, S. R. Deeba, and E. Hossain, “A short-term
load forecasting method using integrated CNN and LSTM network,” IEEE
Access, vol. 9, pp. 32436-32448, 2021.

H. Yiling and H. Shaofeng, “A short-term load forecasting model based on
improved random forest algorithm,” in Proc. 7th Int. Forum Electr. Eng.
Autom. (IFEEA), Sep. 2020, pp. 928-931.

M. Ali, Z. A. Khan, S. Mujeeb, S. Abbas, and N. Javaid, “Short-term elec-
tricity price and load forecasting using enhanced support vector machine
and K-nearest neighbor,” in Proc. 6th HCT Inf. Technol. Trends (ITT),
Nov. 2019, pp. 79-83.

N. Amjady, “Short-term hourly load forecasting using time-series model-
ing with peak load estimation capability,” IEEE Trans. Power Syst., vol. 16,
no. 3, pp. 498-505, Aug. 2001.

A. D. Papalexopoulos and T. C. Hesterberg, ‘A regression-based approach
to short-term system load forecasting,” IEEE Trans. Power Syst., vol. 5,
no. 4, pp. 1535-1547, Nov. 1990.

C. Guan, P. B. Luh, L. D. Michel, and Z. Chi, “Hybrid Kalman filters for
very short-term load forecasting and prediction interval estimation,” IEEE
Trans. Power Syst., vol. 28, no. 4, pp. 3806-3817, Nov. 2013.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures,” Anal. Chem., vol. 36, no. 8,
pp. 1627-1639, 1964.

C. S. Chen, M. S. Kang, J. C. Hwang, and C. W. Huang, “Temperature
effect to distribution system load profiles and feeder losses,” IEEE Trans.
Power Syst., vol. 16, no. 4, pp. 916-921, Nov. 2001.

B. Sun, L. Ma, W. Cheng, W. Wen, P. Goswami, and G. Bai, ““An improved
k-nearest neighbours method for traffic time series imputation,” in Proc.
Chin. Autom. Congr. (CAC), Oct. 2017, pp. 7346-7351.

C. Cai, Y. Tao, Q. Ren, and G. Hu, ““Short-term load forecasting based
on MB-LSTM neural network,” in Proc. Chin. Autom. Congr. (CAC),
Nov. 2020, pp. 5402-5406.

K. A. Koparanov, K. K. Georgiev, and V. A. Shterev, ‘“Lookback period,
epochs and hidden states effect on time series prediction using a LSTM
based neural network,” in Proc. 28th Nat. Conf. Int. Participation (TELE-
COM), Oct. 2020, pp. 61-64.

DERNI AGENG received the B.Eng. degree from
the Electrical Engineering Department, University
of Indonesia, Jakarta, Indonesia, in 2019, and the
master’s degree (M.S.) in electronics and computer
engineering from the National Taiwan Univer-
sity of Science and Technology (NTUST), Taipei,
Taiwan, in 2021.

VOLUME 9, 2021



D. Ageng et al.: Short-Term Household Load Forecasting Framework Using LSTM and Data Preparation

IEEE Access

CHIN-YA HUANG (Member, IEEE) received the
B.S. degree in electrical engineering from the
National Central University, Taiwan, in 2004,
the M.S. degree in communication engineer-
ing from the National Chiao-Tung University,
Taiwan, in 2006, and the M.S. degrees in both
electrical & computer engineering and computer
science and the Ph.D. degree in electrical &
computer engineering from the University of
Wisconsin—Madison, USA, in 2008, 2010, and
2012, respectively. She also worked as an Assistant Professor with National
Central University, from 2015 to 2018. She worked as a member of technical
staff in Optimum Semiconductor Tech. Inc., NY, USA, from 2013 to 2015.
In 2012 and 2013, she was a Senior Software Engineer at Qualcomm
Technology Inc., San Diego, CA, USA. She also worked as an Assistant
Research Fellow at Information and Communication Technology Labora-
tory, National Chiao-Tung University, in 2013. Since 2018, she has been
working as an Assistant Professor with the National Taiwan University of
Science and Technology (NTUST), Taiwan. Her research interests include
next-generation wireless networking, software-defined networking, and real-
time computing.

VOLUME 9, 2021

RAY-GUANG CHENG (Senior Member, IEEE)
received the B.E., M.E., and Ph.D. degrees in
communication engineering from the National
Chiao-Tung University, Hsinchu, Taiwan, in 1991,
1993, and 1996, respectively. From 1997 to 2000,
he was a Researcher and the Project Leader with
the Computer and Communication Laboratories,
Advanced Technology Center, Industrial Technol-
ogy Research Institute (ITRI), Hsinchu. He led the
3G Protocol Project and his team was named Top
Research Team of the Year by ITRI, in 2000. From 2000 to 2003, he was
the Senior Manager with the Research and Development Division, BenQ
Mobile System Inc., Hsinchu. He is currently a Distinguished Professor with
the Department of Electronic and Computer Engineering, National Taiwan
University of Science and Technology (NTUST), Taipei, Taiwan. His current
research interests include massive machine-type communications and open
radio access networks (O-RAN). He is a member of Phi Tau Phi Scholastic
Honor Society. He was a recipient of the IEEE Wireless Communication
Professional Certification. He has been holding IEEE Wireless Communi-
cation Professional (WCP) certification, since 2013; holds 18 U.S. patents;
and has published more 30 IEEE/3GPP standard contributions. He led the
3G Protocol project and his team was named Top Research Team of the
Year by ITRI, Taiwan, in 2000. He received the Best Industrial-based Paper
Award from the Ministry of Education, Taiwan, in 1998; Advanced Tech-
nologies Award from the Ministry of Economic Affairs, Taiwan, in 2000;
Y. Z. Hsu Scientific Paper Award, Taiwan, in 2016; and “World Class
Professor Program’ from the Ministry of Research, Technology and Higher
Education, Indonesia, in 2018.

167919



