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ABSTRACT Driver distraction is a major cause of road accidents. Distracting activities while driving include
text messaging and talking on the phone. In this paper, we propose a robust driver distraction detection
system that extracts the driver’s state from the recordings of an onboard camera using Deep Learning.
We consider ten driving activities, which consist of one normal driving and nine distracted driving behaviors.
Nine drivers were included in the experiments, and each one was asked to perform the ten activities in
naturalistic and simulated driving situations. The main feature of the proposed solution is the extraction of
the driver’s body parts, using deep learning-based segmentation, before performing the distraction detection
and classification task. Experimental results show that the segmentation module significantly improves the
classification performance. The average accuracy of the proposed solution exceeds 96% on our dataset and
95% on the public AUC dataset.

INDEX TERMS Driver distraction, advanced driver assistance systems, deep convolutional neural network,
driving behavior, semantic segmentation.

I. INTRODUCTION
According to the National Highway Traffic Safety Admin-
istration (NHTSA) [1], 80% of accidents and 16% of high-
way deaths are the result of distracted driving. The National
Safety Council (NSC) [2] estimates that 1.6 million (25%)
(resp. 1 million (18%)) of annual crashes are due to the use
of the phone (resp. to text messaging) during driving. Other
sources of distraction while driving include eating, drinking,
adjusting the radio, reaching for objects in the car.

Although the issue of driver distraction is not new, it has
worsened significantly with the advent of smartphones.
Distracted driving can be divided into three types: visual
(taking eyes off the road, e.g., looking for items on the floor of
the car, reaching behind), manual (taking hands off the steer-
ing wheel, e.g., eating, drinking), and cognitive (driver losing
focus while driving, e.g., talking, mind away from driving).
The three types of distraction can lead to more considerable
lane variations, a lower capability of vehicle control, a slower
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response to hazards, and a less efficient perception of the road
environment than attentive driving. It is worth pointing out
that some activities fall under a combination of two or three
distracted driving categories. These activities are hazardous,
as they tend to take more attention away from the driving task
than activities that fall under one category only. Texting is
one of such activities. Indeed, while texting, the drivers are
distracted visually, as they look at their phones instead of
the road and nearby cars, manually, as they type messages
instead of keeping their hands on the steering wheel and
being ready to react, and cognitively, as they concentrate on
the conversations instead of the situations unfolding in their
driving environment.

Many efforts have been made in the literature to detect
driver distraction, especially machine vision-based tech-
niques. Most of them use the whole image as input to the
CNN-based classifiers. However, as humans, we focus only
on relevant regions from the driver when performing this
task. We assumed that we could help classification models
to learn and predict the exact distraction type if we selected
only those critical regions from the image and used them as
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input. Thus, we propose using a robust deep learning-based
human body part segmentation method as a preprocessing
step before the CNN-based classification model. Our work
aims to design an effective framework to correctly recognize
distraction activities of any driver from the video captured by
an on-board camera. The main contributions of this paper can
be summarized as follow:
• We propose a new annotated naturalistic driving image
dataset for the study of driver distraction detection of
more than 38K images, which we will share with the
scientific community.

• We propose an end-to-end deep learning-based driver
distraction detection system able to be used with any
driver and in any environment.

• We propose using deep learning-based human body
parts segmentation method to efficiently remove irrel-
evant objects and identify the driver’s critical body parts
(i.e., the image regions that contribute to the driver’s
distraction recognition). We show that this significantly
improves classification accuracy. To the best of our
knowledge, a deep learning-based body segmentation
has not been used before for driver distraction detection.

The rest of the paper is organized as follows. In Section II,
we discuss the most important datasets used to detect driver
distractions, we review the methods that have been pro-
posed in the literature for the detection of driver distractions,
and we discuss the relevant human segmentation methods.
In Section III, we describe the data acquisition system used
to build our dataset. The proposed framework for the detec-
tion and classification of driving distractions is described in
Section IV. The experimental results and their analysis are
presented in Section V. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK
This section reviews some of the relevant existing work on
driver detection. In the literature, the issue of driver detection
has been addressed using either natural driving conditions
or a driving simulator. Distraction detection systems differ
in the type of data used, and the approach used to build the
detection model. Three main types of data sources have been
used, as described next.

A. DATA SOURCES
• Visual data: these include facial expressions, eye gaze,
and body movements, captured using an onboard cam-
era. In [3]–[5], the authors used pre-trained networks to
extract driving features and recognize behaviors from
images. In [6], the authors provided a system that detects
driver fatigue using images of the driver’s face; they
extracted facial components, including eyes, mouth,
and head position from the input image. The extracted
facial components are used to train the classifier model
(based on the Support Vector Machine method) to pre-
dict whether the driver is in danger or not. In [7],
the authors proposed an algorithm for the detection of
manual distractions. The detection algorithm consists of

two modules; the former predicts the bounding boxes
of the driver’s right hand and right ear from the RGB
images. While the second takes the bounding boxes as
input and predicts the type of distraction. Five types
of non-driving tasks were taken into account: talking
on the cell phone, texting, drinking water, using the
touchscreen, and placing a marker in the cup-holder.
The algorithm was evaluated on videos collected using
a driving simulator and obtained an F1 score of 0.74.
In the experimental setup of this paper, the five non-
driving activities mentioned above may not only be
associated with movements of the right hand and right
ear; the drivers’ left hands can be engaged in one of
the five activities while keeping the right hand in the
steering wheel. Consequently, the proposed algorithm
falsely considers it as safe driving.

• Vehicle control data: these include different vehicle
system data such as acceleration, deceleration, steer-
ing angle, vehicle heading angle, speed, steering input
count, etc. In [8], the authors developed an algorithm
that can detect texting and eating/drinking tasks using
vehicle control data collected by a driving simulator.
In [9], the authors provided a system that recognizes
three cognitive distractions states - no cognitive dis-
traction, low cognitive distraction, and high cognitive
distraction - using different vehicle control data.

• Physiological data: these include electrocardiogram
(ECG) and electroencephalogram (EEG) data. As men-
tioned previously, three general types of distractions
may occur while driving (i.e., visual, manual, and cogni-
tive). Visual and manual distractions can be easily rec-
ognized based on visual sensors (i.e., cameras), unlike
cognitive distractions, which are not easily detected and
require a robust data fusion system. The challenge is to
integrate different data streams, including visual, vehi-
cle control, and physiological data. In [10], the authors
developed an algorithm to identify cognitive distraction
based on eye gaze, head movements, changes in pupil
diameter, and ECG heart rate.

Researchers often build datasets to carry out their studies,
but rarely publish these datasets. The dataset of StateFarm
on Kaggle [11] was the first publicly available dataset, but
used for competition purposes only. The dataset consists of
examples of ten distractions: safe driving, texting using right
hand, talking on the phone using right hand, texting using
left hand, talking on the phone using left hand, operating
the radio, drinking, reaching behind, doing hair and makeup,
and talking to a passenger. In [12], the authors built a new
Distracted Driver dataset which is similar to the StateFarm’s
dataset (i.e. it is composed of the same ten distraction activi-
ties). A total of 31 volunteers from seven different countries
participated in the creation of this dataset. However, we have
found that this dataset is not balanced (e.g. the normal driving
class represents 21% of the complete data against only 7% for
the reaching behind class). Moreover, some drivers did not
participate in all distraction activities.
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TABLE 1. Estimation of incorrect annotation rates based on 2000 randomly selected (200 image per class) from each dataset.

TABLE 2. Benchmark data sources. V. = Visual, VCD = Vehicle Control Data, PD = Physiological data, R = Realistic, S = Simulated, * = not mentioned.

In 2020, a new Driver Monitoring Dataset (DMD) was
presented in [13]. All recordings were made from three in-
vehicle perspectives with three cameras positioned to capture
the driver’s face, hands, and body. Each camera offers three
channels: RGB, infrared, and depth information. A total of
37 volunteers participated in the creation of DMD, 27% of
whom were women.

The authors of the DMD andAUC datasets used a temporal
annotation mechanism to annotate the recorded videos. Each
video sequence (group of frames) was labeled with one class.
However, by analyzing the annotated frames, we noticed
that in some cases, the authors failed to correctly select the
beginning and the ending of a homogeneous video sequence,
which caused incorrect annotations of some of the images.
Since the datasets contain a very large number of images,
we have randomly selected and examined 2000 images from
each dataset (i.e., 200 images from each class) to estimate
the rates of incorrect annotations. We found that 28.9% and
22.8% of the labels of AUC and DMD, respectively, are
incorrect, as illustrated in Table 1. This is an issue when
training neural networks to classify each frame.

Descriptions of the benchmark data sources are given in
Table 2.

B. DETECTION METHODS
There are three main methods used to detect driver distrac-
tion, as described next:
• Thresholding: this is a training-less method for distrac-
tion detection, in which extracted features’ values are
compared with preset thresholds. For example, in [14],
the authors developed a real-time approach to detecting
driver distraction by comparing visual features from the
face region with thresholds.

• Classical machine learning: this approach detects driver
distraction by building a machine learning model whose
inputs are engineered features. For example, in [15], the
authors focused on visual and cognitive distraction by
monitoring the driver’s momentary state; visual distrac-
tion detection was based on eye gaze and head direction
to generate an attention mapping algorithm; cognitive
distraction detection relied on eyes, head movements,
and vehicle driving position. Rule-based and support
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vector machine (SVM) methods were used for the clas-
sification task. The results show over 80% success in
detecting visual distraction and 68% success in detecting
cognitive distraction. In [16], the authors focused on
driver cognitive distraction and used head orientation
and eye-tracking measurement as well as the interval
between the heart R-waves as features for the pattern
recognition algorithm (AdaBoost, SVM). In [17], the
authors compared the performance of Random Forest
and some other well-known classifiers for visual distrac-
tion detection. First, five visual features were extracted:
arm position, eye closure, eye gaze, facial expressions,
and orientation. The extracted features were then fed
into a classifier, such as AdaBoost, Hidden Markov
Models, Random Forest, SVM, Conditional Random
Field, or Neural Network. Experimental results show the
superiority of the Random Forest classifier compared to
the other classifiers.

• Deep learning: this approach is often referred to as
end-to-end learning since feature engineering is not
required and models are learned from the raw data.
Deep neural networks have achieved outstanding per-
formance on various machine learning tasks, especially
computer vision (image recognition, object detection,
and semantic segmentation). Driving distraction detec-
tion based on image/video analysis has thus benefited
from this approach. For example, in [5], the authors uti-
lized the pretrained 19-layer VGG-19 network to extract
visual features and recognize driving behavior. In [4],
the authors compared and evaluated four deep convo-
lutional neural networks, including VGG-16, AlexNet,
GoogleNet, and residual networks for distraction recog-
nition. Experiments were conducted using a driving sim-
ulator to evaluate the trainedmodels. The results indicate
that GoogleNet outperforms the other models. In [3], the
authors first applied the background subtraction (GMM)
algorithm to the raw RGB images to extract the driver’s
body and remove the background. The result of this
pre-processing is then fed to a convolutional neural net-
work (CNN) model for distraction classification. It was
shown that the background subtraction step significantly
improves the classification accuracy. In our work, we too
perform image segmentation prior to learning a classi-
fier. However, instead of using a classical segmentation
method (e.g., GMM) to detect the driver’s body (fore-
ground), we perform a deep learning-based segmenta-
tion to extract each part of the human body. As shown
later, this reduces the complexity of the subsequent clas-
sification task and increases its robustness to the noise
by selecting only the parts of the body that are relevant
for distraction detection. Indeed, in GMM, only moving
objects in the scene are considered foreground and thus
used for classification. The issue with this approach is
that since the camera is installed inside the vehicle, some
parts of the driver’s body (e.g., head, torso) may not
move, and may thus be considered as background, while

the driver is engaging in a distraction. This motivates
the need for robust driver body detection. The authors
of [18] have proposed a driver behavior analysis system
using a two-stream convolutional neural network (CNN)
model. A two-dimensional (2D) ConvNet was used to
construct the spatial and temporal ConvNet streams,
whichwas pre-trained using the ImageNet dataset. Then,
a fusion network was designed to integrate the features
for classification. The authors achieved an average accu-
racy of 80% using their own dataset which has not
been made public. The authors of [19] tested different
machine learning and deep learning approaches to detect
cognitive load while driving. The authors exploited
visual, thermal, and physiological modalities to model
distracted driving behavior and investigated how dif-
ferent modality-fusion and machine-learning processing
pipelines could handle various modalities. Experimental
results showed that gradient boosting achieved the high-
est F1 classification score of 94%. In [20], the authors
have proposed a spatial-temporal framework that com-
bines CNN and Recurrent Neural Network-based Gated
Recurrent Unit to process EEG signals. The framework
was evaluated for binary classification tasks (safe and
distracted) and achieved an accuracy of 92%. A com-
parison of the detection methods is given in Table 3.

C. SEGMENTATION METHODS
Image segmentation can be formulated as a problem of clas-
sifying pixels with semantic labels (semantic segmentation)
or partitioning of individual objects (instance segmentation).
The latter extends the semantic segmentation scope further
by detecting and delineating each object in the image. Mask
R-CNN is one of the robust deep learning-based instance
segmentation methods [21]. It extends Faster R-CNN [22] by
adding a branch for predicting segmentation masks on each
region of interest, parallel with the existing branch for clas-
sification and bounding box regression. In [23], the authors
proposed a new instance-based human segmentation method
that separates instances based on the human pose rather than
proposal region detection. Experimental results showed that
the proposed method outperforms the Mask R-CNN method
on the human instance segmentation problem and better han-
dles the occlusion challenge.

Human body parts segmentation represents a challeng-
ing problem in the image segmentation field. It aims at
partitioning persons in the image into multiple semanti-
cally consistent regions (e.g., head, arms, legs). In [24], the
authors proposed the HBPSmethod, which is a deep learning-
based segmentation method with encoding and decoding
parts. The encoding part comprises multiple convolutions and
pooling layers, whereas the decoding part consists of up-
convolution layers. Each layer combines the output of its
previous layer with the contracting network’s corresponding
layer’s pooled features. The authors of [25] contributed to the
enrichment of the Pascal Visual Object Classes dataset [26]
without human labeling by synthetic images. Moreover, they
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TABLE 3. Methods comparison. + = fusion of methods.

proposed the CDCL method, where the model learns parts
segmentation from graphics simulation. Experimental results
showed that the CDCL outperforms several state-of-the-art
approaches requiring human labeling including those pro-
posed in [27]–[32], and [33].

III. DATASET
In our study, due to the limitations mentioned in Table 2,
we built our own dataset using an efficient data collection
and annotation strategy. The following ten driver distraction
classes were defined:

• C0: Safe driving
• C1: Texting - right hand
• C2: Talking on the phone - right hand
• C3: Texting - left hand
• C4: Talking on the phone - left hand
• C5: Operating the radio
• C6: Drinking
• C7: Reaching behind
• C8: Tidying up hair or applying makeup
• C9: Talking to passenger

To study the driver’s behavior in real traffic situations,
we conducted experiments using an instrumented vehicle,
which comprises: (i) a camera, installed above the vehicle’s
side window and oriented toward the driver, and (ii) a Mobile
Digital Video Recorder (MDVR).

One part of the data was collected in real-world driving
conditions. The other part was collected by asking drivers to
simulate different types of driving behaviors in the instru-
mented vehicle, but without moving the vehicle for safety
reasons. Nine drivers were involved in the experiment. Each
of them was asked to perform the ten activities separately
(i.e., one activity for each video sequence) while driving or
pretending to drive, which took about 15 minutes for each
driver resulting in about 450 images per class per driver. After
manual examination, a total of about 38 thousand images
were kept in the dataset. Table 4 shows the data distribution
over the classes.

IV. METHODOLOGY
Themain component of the proposed framework is the human
body parts segmentation. It is applied to the raw RGB image
in order to efficiently remove the irrelevant objects and

TABLE 4. Class distribution of the collected dataset.

FIGURE 1. Discriminative pixels used by the VGG-19 model trained on the
raw RGB images to activate the safe driving class.

identify the driver’s critical body parts. The resulting image
is then fed into the classification model; see fig. 2. In this
section, we first discuss the human body parts segmentation
step, and then we describe the classification models and
training methods used to classify the segmented image.

A. SEGMENTATION PROCESS
The collected images contain many useless regions (e.g. the
vehicle cabin with its various components, and the exter-
nal environment), which disturb the building of an accurate
CNN-based distraction detection classifier. fig. 1 shows the
discriminative pixels used by the VGG-19 classifier when
trained on raw RGB images to activate the safe driving class
(more details are given in V-B). As safe driving is defined
by keeping the eyes on the road and the hands on the steering
wheel, the crucial regions that the CNN classifiermust use are
those corresponding to the hands and the head only. However,
as shown in fig. 1, the pixels that contributed to activate
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FIGURE 2. General system architecture.

the safe driving class include also other pixels which are
irrelevant to the distraction classification. Indeed, the roof of
the vehicle and the gearbox does not provide any information
about the driver’s distraction. A solution to this problem is
to force the CNN classifier to focus on the critical pixels,
i.e. those contributing to the driver’s distraction recognition.

The simplest method towards this objective is to crop the
image to keep only the driver’s region according to a prede-
fined Region Of Interest (ROI). However, due to the driver’s
different activities and the various positions of the driver’s
seat, defining a good ROI is not possible. A better solution is
to segment the driver’s body.

Segmentation methods can be classified into two
main categories: motion-based segmentation methods and
appearance-based segmentation methods. The former cannot
segment static parts of the driver’s body (i.e., head, torso, etc.)
Hence, in our work, we focus on the latter.

We have investigated two segmentation architectures:
Human Body Parts Segmentation (i.e. HBPS) [24] and Cross-
Domain Complementary Learning (i.e. CDCL) [25].

Both segmentation methods detect each part of the human
body (torso, arms, legs, head, etc.) and assign an integer to
each of the predefined human parts in the Pascal VOC dataset.
They achieve great performance on the Pascal VOC dataset;
mean Intersection Over Union (mIOU)= 70% for CDCL and
mIOU= 71% for HBPS. However, the setting used to collect
our data differs from that of the Pascal VOC dataset. Indeed,
as mentioned above, in our setting, the camera is installed
above the vehicle’s sidewindow, and thus the camera captures
the side view of the driver. Therefore, we need to reevaluate
the performance of the two methods on our dataset to choose
the more efficient one.

To assess the performance of the HBPS and CDCL mod-
els on our dataset, knowledge of the associated models’
architectures and weights is required. This knowledge is
available for the CDCL model (the weights are published
in GitHub [34]). However, the authors of HBPS did not
publish the model’s weights. So, we have trained the HBPS
architecture on the Pascal VOC dataset. We used the early
stopping technique to avoid the overfitting problem, and we
let the model run for 1000 epochs. The model achieved a
validation log-loss of 0.34 and a validation accuracy of 88%
(see Table 5).

TABLE 5. HBPS training results. TLL: Train log-loss, VLL: Validation
log-loss, TACC: Train accuracy, VACC: Validation accuracy.

We then tested both models (i.e., CDCL and HBPS) on our
dataset. The models generate an output mask consisting of an
image-map classifying each pixel into one of the body part
categories. It is worth pointing out that the CDCL [25] pre-
dicts two additional outputs: (1) a set of confidence keypoint
maps and (2) a set of Part Affinity Fields that we have ignored
in this study as shown in fig. 2.

Although both models achieved almost the same perfor-
mance on the Pascal VOC dataset, the CDCLmodel achieved
significantly better performance on our dataset (as presented
in V-A). Indeed, with the CDCL model, a good segmen-
tation of critical body parts (i.e., hands, head, arms, torso,
neck) is obtained even when the image is captured in low
lighting conditions (see fig. 3). In this study, by using the
mapping and image generation module, the critical driver’s
body parts obtained by the segmentation module are selected
from the original image and fed to the classification module
(see fig. 2).

B. CLASSIFICATION MODEL LEARNING
1) CNN MODELS
Two CNN models have been investigated in our work:
• VGG-19 model: this is a pre-trained model that contains
19 layers with very small receptive fields (3 × 3); it
was proposed in [35] for large-scale image recognition,
and was one of the famous models submitted to the
ILSVRC-2014 challenge [35]. It achieved an improve-
ment over AlexNet [36] by replacing large kernel-sized
filters (11 and 5 in the first and second convolutional
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FIGURE 3. Qualitative results of the segmentation methods. The first (resp. second) row illustrates the segmented images using the CDCL (resp.
HBPS) model.

layers, respectively) with multiple 3×3-sized filters one
after another.

• Inception-v3 model: this architecture, which was pro-
posed in [37], is the winner of the 2015 ILSVRC chal-
lenge, with 3.5% top-5 error and 17.3% top-1 error on
the validation set, and 3.6% top-5 error on the offi-
cial test set. This model can be seen as the culmina-
tion of many ideas which were developed by multiple
researchers over the years. The model is made up of
symmetric and asymmetric building blocks, including
convolutions, average pooling, max pooling, concats,
dropouts, and fully connected layers. Batch norm is
used extensively throughout the model and applied to
activation inputs. The loss is computed via the Softmax
function.

2) TRAINING METHODS
The two commonly used approaches for training a deep neu-
ral network are: i) transfer learning plus fine tuning of the last
layers, and ii) training the neural network from scratch. Both
approaches have benefits and can be used for different deep
learning tasks.

Transfer learning is a widely used technique, which
involves reusing a pre-trained model, which was trained on
a large benchmark dataset (i.e. Imagnet dataset) to solve a
similar problem. The last fully-connected (FC) layers are
modified to adjust to the downstream task’s requirements.

For our driving classification task, the last fully connected
layer computes the probability associated with each of the ten
classes.

Transfer learning works well if the images used to train the
last fully connected layers and to test the trained model are
somewhat closely related to the images used to pre-train the
neural network, i.e. the ImageNet dataset. However, in many
real-world applications of CNN for image recognition, the
distribution of the images to be classifiedmay be significantly
different from those of ImageNet images. This is particularly
true for the detection of driver distraction. To mitigate this
issue, one can either unfreeze some pre-trained layers and

train them along with the fully connected layers, or train the
entire neural network model from scratch. In this work we
have opted for the former approach.

Instead of random initialization, we initialize the weights
of the VGG-19 and Inception-v3 models using the ImageNet-
based pre-trained weights, and we unfreeze some layers in
order to retrain them using our dataset. The multi-perceptrons
classifier is modified as described in Table 8). The other
aspects of the training method are standard operations in deep
learning.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluate and analyze the performance of
the proposed driving distraction detection framework, on the
proposed dataset and on a correctly labeled subset of AUC
benchmark. The main aspect to consider is the evaluation
of the impact of the segmentation module on classification
performance.

A. PERFORMANCE OF THE PROPOSED FRAMEWORK
To evaluate the performance of the proposed framework,
we first started by segmenting the collected dataset. For
each segmented image, we kept only the driver’s body parts
relevant to the classification task (as mentioned in IV-A).
Then, we divided the segmented images into training and test
sets. Since our goal is to design a general solution that works
well on any vehicle, we used the leave-one-out (LOO) cross-
validation method to get the distraction classification results
for each driver. The images from one driver are used as testing
images, whereas the rest of the images associated with the
other eight drivers are used for training. Therefore, for each
driver, the data composing the testing set is entirely new to
the trained CNN models.

The following techniques were applied during the train-
ing process to avoid overfitting on the training dataset and
improve the recognition results.

• Data augmentation: the images were cropped and
flipped horizontally to expand the size of the training
dataset.
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TABLE 6. Range of hyper-parameters used for optimization.

TABLE 7. Hyper-parameters optimization results for the classification
models.

• Dropout [38]: this was applied to each of the fully con-
nected layers except for the last one.

• Adam optimizer: this was used to explore the parameter
space better and thusminimize the cost function as much
as possible.

• Keras Tuner optimizer with Randomsearch: this was
used in our work to find the optimal learning rate for
the Adam optimizer, the optimal dropout ratio for each
of the dropout layers, and the best number of fully
connected (FC) layers with the best number of neurons.
This was developed by the Google team and is included
in the Keras open library [39]. First, we split the training
set into an optimization training set and an optimization
validation set (the optimization validation set represents
10% of the training set). Then, the Keras tuner optimizer
performs an iteration loop, which evaluates a number of
combinations of hyper-parameter values. The evaluation
is performed by calculating the precision of the trained
model on the validation set.
The range of hyper-parameter values used in the opti-
mization procedure are listed in Table 6:

The optimal values for the hyper-parameters of the
VGG-19 and Inception-v3 classifiers are found to be the same
for the nine different training sets. Table 7 represents the best
Hyper-parameters obtained for the two CNN models. As can
be seen, the optimal number of fully connected layers of the
VGG-19 model is reduced by one compared to the origi-
nal architecture [35], (i.e., the number of layers is changed
from 19 to 18). We denote this modified architecture by
VGG-19*. Table 8 describes the architecture of the VGG-19*
and the Inception-v3 models.

As shown in Table 9, the general detection accuracy for
the CDCL-based segmentation with the Inception-v3 model
achieved an average of 92.04%. The bottom row represents
the weighted average detection rate for each activity, which
is defined by:

waACCk =

∑n
i=1 wikACCik∑n

i=1 wik
(1)

where waACCk is the weighted average accuracy for the kth
activity, n is the number of drivers, ACCik is the detection

accuracy for the ith driver’s kth activity, andwik is the number
of images of the ith driver belonging to the kth activity. The
rightmost column of Table 9 represents the average detection
results for each driver.

Table 10 illustrates the CDCL-based distraction detection
results when using the VGG-19* model. The average accu-
racy of this method is 96.25%.

The HBPS-based distraction detection was similarly
investigated using VGG-19* and Inception-v3 models and
achieved 77,78% and 76,89%, respectively, as illustrated in
Tables 11 and 12. The decrease in precision compared to
the classification based on CDCL can be explained by the
cumulative error resulting from the HBPS model.

In order to better analyze the benefits and the draw-
backs of our approach, a confusion matrix is computed to
report the results of the studied multi-classification problem.
Fig. 4 shows the confusion matrix of the proposed approach.
It reports the classification results of the nine experiments
(i.e., each time we conduct the experiment on a new driver
using LOO). The green diagonal elements show the num-
ber of correct classifications for each class. The last col-
umn shows the classification recall (i.e., fraction of the total
amount of relevant instances that were actually retrieved), and
the last row shows the classification precision (i.e. the fraction
of relevant instances among the retrieved instances).

By inspecting the confusion matrix, we can see that all
of the driving activities were detected with a good accuracy
except for the 8th activity (i.e. tidying up hair and applying
makeup), 150 cases of which were misclassified as ‘talking
on the phone with the right-hand,’ in addition to 104 other
cases misclassified as ‘talking on the phone with the left-
hand.’ One explanation for this is that the hand gestures and
the head orientation might be similar for these classes, thus
making the discrimination between them a challenging task
for the classifier.

B. ABLATION STUDY
Since our approach used segmented images to classify driver
distraction, one interesting question is whether the segmenta-
tionmodel is sound. To answer this question, we evaluated the
performance of the classification without the segmentation
module. We repeat the same steps as in V-A. We used the raw
RGB images instead of the segmented images. We achieved
an average accuracy of 77.09% and 75.24% for the VGG-19*
and Inception-v3 models, respectively. This shows that the
improvement in accuracy brought by the segmentation mod-
ule exceeds 20% as illustrated in Tables 13 and 14.

In order to understand why CNN models perform so
well on the segmented images, the class activation maps
(CAM) [40] have been implemented and analyzed. This
is a simple technique to identify the discriminative image
regions used by a CNN model to identify a specific class
in the image. In other words, CAM help us to visualize
where CNN pay attention. We select randomly 10 images
representing 10 activities from one driver, which have never
been seen by the training process. The raw and segmented
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TABLE 8. Architectures of the VGG-19 and Inception-v3 models.

TABLE 9. Accuracy results for driving distraction classification based on CDCL and Inception-v3.

TABLE 10. Accuracy results for driving distraction classification based on CDCL and VGG-19*.

TABLE 11. Accuracy results for driving distraction classification based on HBPS and Inception-v3.

images are fed into the prediction process, and the CAM are
computed to generate a heat map that shows the strongest
activations.

Fig. 5 shows the activation maps when applying the
classification model to the images shown in the top row
of this figure. The Middle row represents the discriminate
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TABLE 12. Accuracy results for driving distraction classification based on HBPS and VGG-19*.

FIGURE 4. Confusion matrix of the distraction detection results.

TABLE 13. Accuracy results for driving distraction classification using VGG-19* on raw RGB images.

regions given by the ReLU16 layer of the VGG-19* model
(i.e., last convolutional layer) when applied to the raw
images (no segmentation). The bottom images represent

the discriminate regions given by the ReLU16 layer of the
VGG-19* model when applied to images generated from the
segmentation module.
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FIGURE 5. Discriminative image regions used by a CNN to identify a specific class in the image. The first row illustrates the raw RGB
images, the second and last rows represent the discriminative image regions of the VGG-19* model without segmentation and the
proposed model, respectively.

TABLE 14. Accuracy results for driving distraction classification using Inception-v3 on raw RGB images.

As shown in the first row of fig. 3, the CDCL-based
segmentation module followed by the mapping and image
generation module (see fig. 2) can extract the critical parts
of the driver body effectively, which allows the classification
module to focus on the most relevant features for distraction
detection. This is illustrated in the bottom row of images
of fig. 5, where the strongest activations of the proposed
approach are associatedwith the driver’s head rotation and the
arm’s position. The strongest activations for the raw image-
based classifier (i.e., classification model without segmenta-
tion) includes, in addition to the driver’s head rotation and the
arm’s position, unnecessary information that are considered
as noise, (e.g. rear mirror position, gear-stick position, etc.
CNN models trained on segmented images are shown to
successfully identify and localize the discriminative regions
for driver distraction detection.

C. COMPARISON WITH OTHER METHODS
We furthermore compared the proposed approach in the pub-
lic benchmark AUC with three state-of-the-art approaches,

TABLE 15. Classification results comparison on AUC dataset.

including [4], [18], and [41]. The authors of [18] performed
a re-split of the AUC dataset, letting the methods train on
a set of drivers and tested on never seen drivers. As the
proposed framework was trained on our dataset, we randomly
selected a set of 2000 images, corrected the corresponding
annotations, and then carried out the evaluation. Similarly,
we re-implemented the solutions proposed in [4], trained the
Resnet and GoogleNet networks on our dataset, and then
tested them on the benchmark subset. The obtained results
are shown in Table 15.
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D. DRIVER DISTRACTION DETECTION: BINARY
CLASSIFICATION
Road accidents involving distracted drivers can be avoided
if the driver is alerted when distraction is detected. In a
simplified setting, the driver assistance system may warn
the driver only if he/she is distracted regardless of the type
of distraction and without attributing any risk level to the
detected distraction. In this setting, we convert the multi-class
classification problem into a binary classification problem.
In order not to retrain the models, we combine/aggregate
classification results from the multi-class classifier to get
the average accuracy for the binary classification problem.
Hence, we select one-ninth of the samples from each dis-
tracted driving class set, and then merge them all into a single
distraction set in order to obtain a balanced data set. We ran
the proposed framework over the created data set. Then, the
multi-classification results are aggregated to calculate the
precision of the binary classifier. The accuracy of the binary
classifier achieves 99%, thus making the proposed method an
efficient solution for distracted driving warning systems.

VI. CONCLUSION
In this work, we proposed a solution to detect driver dis-
traction based on first segmenting the raw images to detect
the critical driver’s body parts, and then apply a deep Con-
volutional Neural Network (CNN), which was trained using
transfer learning and fine-tuning using a dataset that we
have built using an instrumented vehicle and nine drivers.
Extensive experimental results have shown that the segmen-
tation module significantly improves the classification per-
formance, with an average accuracy exceeding 96%.

In the future, we will enrich our dataset with images of
drivers of diverse ages and ethnic groups. We are also cur-
rently building an embedded system to implement a driving
warning system based on the proposed driver distraction
detection solution.

APPENDIX
The data that support the findings of this study are openly
available at github.com/AmalEzzouhri/Driver-Distraction-
Dataset
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