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ABSTRACT Since the rapid outbreak of Covid-19, profound research interest has emerged to understand
the innate immune response to viruses to enable appropriate vaccination. This understanding can help
to inhibit virus replication, prolong adaptive immune response, accelerated virus clearance, and tissue
recovery, a key milestone to combat coronaviruses (CoVs), e.g., Covid-19. An innate immune system triggers
inflammatory responses against CoVs upon recognition of viruses. An appropriate defense against various
coronavirus strains requires a deep understanding of the innate immune response system. Current deep
learning approaches focus more on Covid-19 detection and pay no attention to understand the immune
response once a virus invades. In this work, we propose a graph neural network-based (GNN) model that
exploits the interactions between pattern recognition receptors (PRRs)to understand the human immune
response system. PRRs are germline-encoded proteins that identify molecules related to pathogens and
initiate a defense mechanism against the related pathogens, thereby aiding the innate immune response
system. An understanding of PRR interactions can help to recognize pathogen-associated molecular
patterns (PAMPs) to predict the activation requirements of each PRR. The immune response information
of each PRR is derived from combining its historical PAMPs activation coupled with the modeled effect on
the same from PRRs in its neighborhood. On one hand, this work can help to understand how long Covid-19
can confer immunity for a strong immune response. On the other hand, this GNN-based understanding can
also abode well for appropriate vaccine development efforts against CoVs. Our proposal has been evaluated
using CoVs immune response dataset, with results showing an average IFNs activation prediction accuracy
of 90%, compared to 85% using feed-forward neural networks.

INDEX TERMS Deep learning for Covid-19, modelling innate immune system, GNN for cornovirus, deep
learning and immune-dependencies.

I. INTRODUCTION

CoVs patients, such as Covid-19 show unique clinical/para-
clinical features including fever, cough, shortness of breath,
and chest abnormalities. The features associated with chest
abnormalities can be detected by medical chest imaging
including computed tomography (CT) or X-ray imaging
techniques [1]. These features, however, do not distinguish
CoVs from pneumonia [2]. Early CoVs diagnosis is a real
concern to facilitate the timely isolation of a suspected patient
due to the unavailability of appropriate vaccination.

Reverse  transcription-polymerase  chain  reaction
(RT-PCR) determines the volume of specific ribonucleic
acids by interacting with ribonucleic (RNA) and deoxyri-
bonucleic acids (DNA) [3]. The test can detect severe acute
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respiratory syndrome coronavirus 2 (SARS-CoV-2) strain for
Covid-19 detection. One of the major limitations of this test
is negative at an initial stage which is detected as a positive
by a CT scan [4]. Several existing works have recommended
CTS scans and X-rays as a better choice due to the limited
availability of RT-PCR [5]-[7].

Another popular method to screen CoVs is real-time
reverse transcription-polymerase chain reaction (rRT-
PCR) [8]. Although, rTR-PCR is capable to provide results
within a few hours, however, its sensitivity is not high with
values ranging from 37% to 71% [9]. Low sensitivity can
result in a substantially high number of false-negative results
at an early stage of infection. For such false-negative cases,
recent works suggest chest radiology as a potential tool to
detect Covid-19 [10]. Recently, the Fleischner Society has
issued a consensus statement on the suitability of CT scans
at an early stage in different clinical settings [11]. Owing to
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the non-invasiveness and high sensitivity of CT scan-based
Covid-19 detection, it is recommended for early Covid-19
detection and thus isolation. Radiologic diagnostic support is
not available 24 hours and may have restrictions concerning
location [12]. Further CT scan cannot differentiate the
features of Covid-19 from the pneumonia features, thus
causing uncertain predictions by radiologists.

A rapid rise in Artificial Intelligence (Al)necessitates the
need for automatic Covid-19 techniques in medical imaging.
Deep learning has revolutionized a rapid and early Covid-
19 based on accurate analysis of chest CT images in the
early stage as compared to radiologic diagnostic support.
Recently, several works based on deep learning have been
proposed for CoVs detection, such as Covid-19. In recent
work in [13], authors proposed a deep learning model
for Covid-19 called as COVID-Net. The proposed model
achieved an accuracy of 83% for Covid-19 prediction. A work
in [14] proposed a ChexNet model which has demonstrated
outstanding results as compared to a radio-logistic diagnosis
to detect pneumonia.

A reliable deep learning screening method for Covid-
19 detection based on CXR images is proposed in [15].
The work consists of backbone, classification, and detection
components. The classification model is based on convolu-
tional neural networks (CNNs) with the ““sigmoid” activation
function. The anomaly module calculates anomaly scores
which detects anomaly images for Covid-19 to reduce the
false-positive rate. The proposal demonstrates a sensitivity
of 96% with an accuracy of 71%. Until recently, CNNs
have been a popular choice for pneumonia and other chest
diagnoses including CoVs. Alternative simpler solutions to
CNN, e.g., ResNet-50 [16] can process the images faster
using numerous hidden layers.

Current efforts to CoVs detection continue to rely on deep
learning-based Covid-19 detection as a potential research
avenue. Most of the existing deep learning approaches are
based on convolutional neural networks including ResNet,
DenseNet, VCGNet which can exploit a large number of
hidden layers with extensive hyperparameter tuning and long
training time. Although CNN-based models are preferred
deep learning models due to the processing of large data sets,
however, max pooling layer can only transfer information
from one layer to the next layer. It can result in the loss of
small details in the data and may not capture the data which
cannot be transferred from one layer to another layer. Another
limitation of CNN and other deep learning models is that they
cannot capture the critical relationships which exist in data.
In the context of CoVs, there are dependencies between the
innate human immune system and CoVs features which we
can exploit to predict the CoVs detection without relying on
X-ray images and CT scans.

Scarselli ef al. [17] introduced graph neural network
(GNN)approach that is widely used for predictive tasks
including node classification and link prediction. GNN can
learn and exploit dependencies in sparse and relational
structures in data [32]. In GNN, a node can use recursive
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neighborhood aggregation to determine a new state and
feature vector.

Unlike existing works, in this work, we model depen-
dencies/relationships between PAMPs associated with PPRs
using GNN with a particular focus on the human innate
immune system. Based on this model, we propose PRRs
detection and learning mechanisms that can predict PRRs
activation with high sensitivity and accuracy. Our proposed
PRRs prediction Algorithm PRRg,, can learn useful relation-
ships between the PRRs of the innate human immune system
by using Algorithm PRRs.q,. Experimental evaluations
and results based on PRRDB2.0 considering a positive
dataset and Swiss-Prot as negative data set show that the
proposed Algorithm PRRgy,, can predict PRRs activation
with high sensitivity and accuracy compared with the PRRs
activation traditional feed-forward neural network (FNN).
Our evaluations reveal that the PRRgy, considers useful
dependencies between PRRs for IFNs activation. Our results
reason that the proposed PRRg;;, can extract useful insights
into PRRs interactions that can be useful for CoVs detection
with high accuracy at an early stage.

The remainder of this paper is organized as follows.
Section II investigates the existing works relevant to PRRs
activation using deep learning. Section III details the immune
response features. Section IV presents and discusses the pro-
posed CoVs immune response system model based on GNN
and Algorithms with learning. Section V presents the results
and discussion of the proposed method. Section VIdiscusses
the limitations of the study and conclusions and future works
are given in Section VII.

Il. RELATED WORKS

The last few months have witnessed several Covid-19
investigations relevant to its detection and spread [18]. The
Covid-19 detection has been addressed based on different
deep learning approaches using medical imaging including
CT scans and chest X-ray. Other works discuss the spread
of Covid-19 with a focus on the number of confirmed cases,
recoveries, and deaths. Recent years have seen a rise in
deep learning-based solutions to disease diagnosis, primarily
based on x-ray images. In a similar effort, a deep neural
network model called ChexNet for pneumonia detection
based on chest x-ray images is proposed in [19]. The
model demonstrated exceptional performance results in terms
of accuracy. Following this work, another model called
ChestNet [20], a deep learning solution to predict thorax
disease based on chest x-ray images.

In a recent work on Covid-19 diagnosis, authors have
evaluated various convolutional neural networks (CNN)
coupled with a pre-trained ResNet 50 model with 98%
accuracy [5]. The evaluation study classifies healthy and
Covid-19 infected patients. The work reports Covid-19
diagnosis with an accuracy of 97% using InceptionV3 and
87% based on Inception-ResNetV2. The study, however,
does not consider the discrimination between pneumonia
conditions from Covid-19. In another work [21], authors
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TABLE 1. Comparison of machine learning techniques used for protein sequence analysis.

Model Advantages Limitations
SVM [26]
o Efficiently handles non-linear data. o Slower training speed.
o Demonstrates good generalization capabil- o Not suitable for larger datasets, e.g., pro-
ities. tein interactions.
o Stable under new data points. o High computational complexity.
RF [26]
o Efficiently works with colinearity. o Low generalization capabilities.
o Works efficiently with high number of fea- e High complexity for larger protein
tures in the data. datasets.
o Highly stable under new data points. e Training time increases as the number of
trees increases.
FNN [27]
o Works well with both linear and non-linear o Unable to leverage underlying structure in
data. PRRDB.
o Fault tolerant under high regularization. o Not powerful to discover new patterns in
o Scales well to larger datasets. molecular networks.
e Good generalization ability. o Unable to model PRRs relationships effi-
ciently.
KNN [28]
o Suitable for non-linear decision bound- o Slower prediction speed for large datasets.
aries. o Computationally expensive with high
o Works well with high number of features memory requirements.
in the data. o Highly sensitive to outliers in PRRDB
o Highly stable under new data points. dataset.
o Little to no explicit training requirements.

presented a CNN-based solution to Covid-19 diagnosis from
chest x-ray images. The proposal suggested a classification
accuracy of approximately 97% with MobileNet.

Wang et al. [13] proposed COVID-Net, a deep learning
model for Covid-19 detection. The model demonstrated
an accuracy of 83.5% for Covid-19 classification based
on healthy, bacterial-infection, and viral-infection classes.
In another work in [22], authors evaluated different deep
learning models for Covid-19 detection using chest x-ray
images. The authors also proposed a COVIDX-Net model
based on 7 CNN models. In a similar work on Covid-19 detec-
tion [23], authors have classified and evaluated the chest x-ray
images as healthy or infected using various deep learning
approaches, i.e., AlexNet, VGG16, GoogleNet, ResNet-101,
and Inception-ResNet-v2, etc. The evaluations demonstrated
an accuracy of approximately 95% for RestNet50.

In [24], Hassanien et al. proposed a multi-level threshold-
based support vector machine (SVM) framework for classi-
fication. The proposed system detects Covid-19 using x-ray
images. It relies on 40 x-ray images of 15 healthy and
25 infect cases. It has demonstrated an accuracy of 97%
with a sensitivity of 96%. In a similar work in [25], the
authors demonstrated deep learning algorithms for Covid-19
detection based on CT scans of 157 patients. The system
evaluated the deep learning-based detection algorithm using
two subsystems. One subsystem considers a 3D analysis,
whereas the second one performs a 2D analysis of the CT
scans using a Resnet-50-2 with an area under the curve of
99%. The subsystem demonstrated a sensitivity of 98% with
a specificity of 92%.
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A work in [26] evaluated SVM and random forests (RF)
for predicting interleukin-10 (IL-10) inducing peptides,
a cytokine responsible for suppressing the immune system.
Both the models were trained on 394 IL-10 inducing and
848 non-inducing peptides. Results in the study reveal that the
RF performs better in terms of accuracy in contrast to SVM
using dipeptide composition.

A study in [27] evaluates an artificial neural network/feed-
forward neural network to predict hemolytic activity from a
peptide’s primary sequences. Results show that the classifier
demonstrates a validation accuracy of 85.7% and outperforms
SVM and RF. In another work, [28], the authors used various
machine learning models including k-nearest neighbour
(KNN), linear SVM, and RF for the prediction of proteomes
as new B-cell epitopes in vaccine design using reference
epitope sequences. The models are evaluated under peptide
sequences that are converted into molecular descriptors. The
non-linear SVM uses non-linear interactions between the
molecular properties for proteomes predictions.

In recent work, Wang et al. [29] proposed a deep learning
solution to predict Covid-19 based on 195 regions of
interest (ROIs) of 395 x 223 to 636 x 533 pixels from the
CT scans of 44 Covid-19 positive patients and 258 ROIs from
50 Covid-19 negative patients. The internal validation of the
proposed model has suggested an accuracy of 83% with the
specificity of 80.5% and sensitivity of 84%. The proposed
inception model demonstrates an accuracy of 73.1% with
a sensitivity of 74% and a specificity of 67%. In [30],
authors have proposed deep ResNet-50-based classification
system for lung diseases including Covid-19 and pneumonia.
The model is trained on more than 60K CT scans from
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918 patients including Covid-19 and non-Covid-19. The
proposed model has demonstrated an accuracy, specificity,
and sensitivity of approximately 98%. Another similar work
in [31] reports image classification as Covid-19 and non-
Covid-19 using RestNet-based methods. However, contrary
to the work in [30], this work uses a Bayesian function
to differentiate Covid-19 and non-Covid-19 images with an
accuracy of 86.7%.

Table 1 presents a comparison of recent studies that use
machine learning models to predict IL-10 inducing peptides
responsible for immune response, hemolytic activity from
peptide sequences, and proteomes as new B-cell epitopes in
vaccine design. These approaches, however, do not model the
interactions among PRRs as a graph to initiate a cascaded
activation sequence for immune response. This study is the
first effort to model interactions among PRRs as a graph
to understand the human innate immune response and make
predictions using graph-based deep learning.

Ill. IMMUNE RESPONSE
FEATURES:PATHOGEN-ASSOCIATED MOLECULAR
PATTERNS (PAMPs)

The primary features with respect to human immune system
are PAMPs that are recognized by different pattern recog-
nition receptors (PRRs). Various PAMPs features associated
with different PRRs are discussed below.

A. TOLL-LIKE RECEPTORS PAMPS

Toll-like receptors (TLRs) can recognize PAMPs denoted
as PAMPsy,s including lipids, proteins, lipoproteins, and
nucleic acids. The recognition of PAMPsy, occurs in cell
membranes, endosomes, lysosomes, endocytolysosomes, and
other locations in cells [33]. Different TLRs can induce
different biological responses via subsequent activation of
varied adapter proteins, such as MyD88, TIRAP, TRIP,
and TRAM. All these adapter proteins share the Toll
receptor (TIR) structure. MyD88 is the first identified TIR
family member which acts as an adapter protein by almost all
TLRs except TLR3 [34].

B. RIG-I-LIKE RECEPTORS PAMPs

RIG-I-like receptors (RLRs) can recognize PAMPs features
based on nucleic acids denoted as PAMPs,i,. PAMPs,;q
can result from different infections including Influenza A
virus (IAV), Measles virus (MV), and Hepatitis C virus
(HCV). These PAMPs,;; can also include viral nucleocapsid
proteins containing triphosphate and double basic acid RNA
at the 5-end [35]. These features are used to identify
RNAs of picornaviruses, including poliovirus (PV) and
Encephalomyocarditis virus (EMCV). These RNAs are
primarily characterized by long double-stranded RNA of
more than 1 kbp.

C. NUCLEOTIDE-BINDING AND OLIGOMERIZATION
DOMAIN-LIKE RECEPTORS ((NLRs) PAMPS

NLRs recognize PAMPs features PAMPsy;s based on
conserved Nucleotide-binding and oligomerization domain
(NOD) structure. These features are based on various
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proteins/complexes called the inflammasome, reproduction,
and regulatory NLRs. The inflammasome consists of at least
eight NLR proteins, including NLRP1, NLRP3, NLRP6,
NLRC4, NLRC5W, and AY2 [36], [37].

D. C-TYPE LECTIN-LIKE RECEPTOR (CLRs) PAMPs

CLRs recognize PAMPs features, denoted as PAMPsjys.
CLRs are activated directly through macrophage-induced
Mincle and CLEC4E, and Dectin-2 CLEC6A) receptors. The
indirect activation of CLRs is triggered by the HAM-like
motifs in the intracellular tail of the receptor, e.g., Dectin-1
(CLEC7A) and DNGR-1 (CLEC9A) [37]. These activations
result in acidified spleen tyrosine kinases which trigger the
formation of CARD9, B-cell lymphoid tissue 10 (BcL10),
and Maltlcomplex formation. The signaling pathways can
also include SyK and JNK acidified apoptosis-related protein
granule, e.g., ASC [38]. These pathways, in turn, activate
downstream PAMPs, i.e., NF-kB and MAPKSs. These PAMPs
can trigger various cellular responses, e.g., phagocytosis,
maturation, and chemotaxis of cells [39].

E. CYTOPLASMIC DNA RECEPTOR PAMPs

CLRs Cytoplasmic DNA receptor (CDR) can recognizes
DNA CpG islands, denoted as PAMPs.qr [40]. Examples
of CDRs include AIM2-like receptors (ALRs), DNA-
dependent activator of IFN-regulatory factor (DAI), leucine-
rich repeat flightless-interacting protein 1 (LRRFIP1),
DExD/H-box RNA helicase (DDX), Meiotic recombinant
protein 11 Homolog A (MRE11), RNA polymerase III
(Pol III), DNA dependent protein kinase (DNA-PK), DNA
repair-related proteins Rad50 and Sry-related HMG box 2
(Sox2) [41]. DAI recognizes PAMPs based on Z-type DNA
and B-type DNA [43]. These DNAs depend on the length
of DNA. AIM2-related PAMPs recognize double-stranded
DNA. IFI16 and cGAS receptors can recognize cytosolic
DNA recognition and are capable of type I interferon [42].

F. TYPE I INTERFERONS

Pathogen-associated molecular patterns recognize the viral
nucleic acid, activate IRF3 and IRF7, and promote type
I interferons (IFNs). IFNs trigger the JAK-STAT signal
pathway, thereby promoting IFN-stimulated genes (ISGs)
[44], [45]. IFNs are antiviral molecules that contribute
a major role to immunomodulatory. Specifically, antigens
resultant from these IFNS restricts infected target and T/B
cells and any blockage to IFNs can affect the survival of the
virus [46], [47].

PRRs consist of three types including membrane, secretory
and cytoplasmic [48]. The membrane PRRs include TLR2,
TLR4, mannose receptor (MR), and scavenger receptor (SR).
On the other hand, the secretory PRRs consist of mannose-
binding lectin (MBL) and C-reactive protein (CRP). TLR3,
TLR7/8, and NLRs form cytoplasmic PRRs. Among all
these types, PRRs including TLRs, RLRs, and NLRs result
in IFN production. SARS-CoV and other coronaviruses are
pathogenic and are sensitive to IFN-a/b. The N-protein of
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SARS-CoV is classified as an immune-escape-protein and is
an antagonist against host interferon response [49].

A well-reported EV71 infection down-regulates JAKI,
p-JAK1 and p-TYK?2. This down-regulation results in block-
age of JAK-STAT signaling pathway thereby inhibits IFNs
production. Reduced function of IFNs results in high EV71
replication in host cells [50]. Similarly, Ebola virus (EBOV)
inhibits IFNs production by promoting cytokine signal
inhibitory factor-1 (SOCS1) which also blocks JAK-STAT
signaling pathway [51]. Further, influenza A is also capable
to inhibit IFN-I production by activating SOCS3 [52].

G. DENDRITIC CELLS

Dendritic cells (DCs) stimulate the activation of
T-lymphocytes and B-lymphocytes and play a vital role
in innate and adaptive immunity. Mature DCs can activate
T cells, thereby directly affecting the adaptive immune
responses. DC precursor cells are differentiated based
on inducers including GM-CSF, IL-4, and TNF-« if not
transfected with HIV-1 Nef protein. The viral antigens
capability of DCs is limited by the HIV-1 which reduces
the major histocompatibility antigen I (MHC I) on DC’s
surface. The functionality of DCs interferes with the viral
infections which helps the viruses to evade the adaptive
immune response of the host [53].

H. DEFENSINS

Defensins consist of antibiotic peptide molecules which are
critical for the host’s innate defense system. It eliminates
bacteria including viruses, fungi, and tumor cells. Defensins
are found in neutrophils that consist of small molecular
cationic polypeptides. Defensin HNP-1 inactivates viruses
including HSV-1, HSV-2, cytomegalovirus (CMV), VSV, and
IAV [54]. There are some studies that reveal that the human
neutrophil defensin (HNP1-3) is not able to inhibit or kill
SARS-CoV [55].

IV. METHODS

A. GRAPH NEURAL NETWORK MODEL

We formulate the PRR activation as a neighbor-dependency
problem. The proposed solution called PRR,,; uses
GNN [17] approach to model the dependencies between the
PRRs. These PRRs dependencies can contribute towards the
innate immune response prediction. Given a human innate
immune system with various PRRs that recognize different
PAMPs, the use of GNN is motivated by the fact that
an immunity-response against CoVs results in inter-PRRs
dependencies explaining the impact of CoVs on the health
of a particular individual.

A trained PRRgy,, can predict the role of innate immune
response based on the PAMPs features of a PRR, and the
PAMPs features of neighboring PRRs.PRRs are assumed
to have PAMPs activation dependencies in the host innate
immune system. PRRg,, consists of two feed-forward neural
networks (FNNs). PRRg,;, uses the first FNN to compute

VOLUME 9, 2021

its next activation state denoted as a, based on the PAMPs
features of its neighboring PRRs n*. The second FNN
predicts the activation of PRR based on the a, and its
historical PAMP features. PRR,;,, model for PRR activation
prediction is given below in form of Equation 1 and
Equation 2.

an =Y _ hy(fu.firai),  Vn (1
en

Cu() = gwlan, fu), Vn (2)
The equation 1 represents that the activation state function of
a PRR depends on the PAMPs features f; and its activation
state, i.e., a;. In the equation, h, represents a parametric
function that depends on its PAMPs features, PAMPs
features of its neighboring PRRs, and the activation state of
neighboring PRRs. The g,, function in Equation 2 denotes the
activation prediction of PRR based on the activation state a,
from equation 1 and its historical PAMPSs. PRR,, consists of
both h,, and g,, function for each of the PRRs that converge
exponentially fast. The fast convergence process yields stable
PRR and predicted PRR activation states to predict the innate

immune response.

B. PRRs GRAPH NEURAL NETWORK MODEL (PRRgnn)
Given a host innate immune system which can activate
PRRs to identify PAMPs to detect viral infections, the
PRRgu, aims PRRs activation to predict immune response.
The immune response of a PRR impacts the activation of
neighboring PRRs that reflects critical relationships among
PRRs. It is possible to model these immune response PRRs
dependencies with a GNN which can assist a faster and
accurate innate immune response prediction that can be used
to treat the patient promptly and helps to prioritize critical
cases. These inter-dependencies among PRRs reflect the
activation dependencies of the immune response system.

GNN-based immune response model, i.e., PRRgy, is
explained with help of Equation 1 and Equation2. Figure 1
shows an example of activation-related dependencies among
PRRs. Figure 2 shows different modules of PRRg,. It con-
sists of immune features, immune states, one FNN for #,,, and
the other for g,,. The A,, function provides the PAMPs features
of a PRR and its state, whereas, the g,, function predicts the
activation state of PRR, e.g., IFNs based on its past features
and state combined with the neighbouring PRR ’s PAMPs
features.

C. PRRgnn FEATURES

PRRgy, features include PAMPs recognized by different
PRRs. These PRRs include TLR, RLR, NLR, CLmin, cGAS,
IF116, STING, DAI, etc. Few of these have been discussed
in detail in Section III. These PAMPs features are provided
as an input to predict the next activation state of PRR a, by
using Equation 1. The output function in Equation 2 takes the
PAMPs of the current PRR f;, and the a,,. For example, PAMPs
recognized by TLRs PAMPsy,s include lipids, lipoproteins,
proteins, and nucleic acids of the bacteria and viruses.
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FIGURE 1. States & Features from IFNs’s neighbouring PRRs.

D. PRRgnn STATES

The PRRs are assumed to preserve the activation state aj,
derived by the parametric function A,,. This function takes the
PAMPs features of a PRR and PAMPs of neighboring PRRs.
h,, shows that the activation state of a PRR depends on the
PAMP features and PAMP features of its neighboring PRRs,
thereby reflecting the activation dependencies of the immune
response system.

The function A,, in Equation 1 computes the next activation
state a;y1 of PRR based on the current state a;. It means,
the current state a,(i) of PRR depends on the previous states
am(i — 1) of its neighbour m as given in Equation 5.

an(i+1) = D hulfas fins am(D) 3)
men

Figure 1 depicts the activation dependency of a PRR on
the features of neighbouring PRRs. The figure shows that the
state of the PRR IFNs depends on the activation states ay, az,
as and features of TLRs, NLRS, and RLRs, i.e., f1, f2, 3. The
activation state of [FNs denoted as a4 can be predicted based
on Equation 1. The state a4 at IFNs in figure 1 is given as

Equation 4.

as = hy(fa, fi, a) + h(fa, f2, a2) + hy(fa, f3,a3)  (4)

E. OUTPUT FUNCTION

PRR activation based on the PAMPs features depends on
the next activation state as computed by the h,, function
and a PRR § features. For the example in figure 1, the
output function is based on a g, as given in Equation 5. The
function g,, is an FNN trained by the gradient descent method
discussed later. The g,, function of each PRR predicts its next
activation state.

Cu(t) = gwlaa. fa) &)

F. PRRgnn ALGORITHM

The PRRgy, is illustrated with the help of Equation 1 and
Equation 2. It takes PAMPs features of a PRR as input and
outputs its activation state. The model computes the activation
state of each PRR. This computation is the result of an
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FNN ——» State Function (h,,)
A A

Immune Features Immune States

PRR features 1, PRR state s,

Features of neighbouring
PRRs fm

States of neighbouring
PRRs s,

FNN ————>Output Function (g,)

Y
PRR Activation
Prediction

FIGURE 2. PRR activation using PRRgnn.

iterative process where each PRR has #,, functions equivalent
to the number of its neighboring PRRs in the innate immune
system. The PRR activation contributes to determining the
innate immune response at an early stage.

Both the A, and g,, functions are implemented as FNN.
This is illustrated in Algorithm 1. The algorithm shows that
the PRR activation prediction is based on:

1) Observation of a PRR’s PAMPs and its directly
connected neighboring PRRs,

2) Computation of the next activation state of PRR based
on the observed PAMPs features, and,

3) Use PAMPs observations from step 1 and activation
state from step 2 to predict the IFNs activation that
can help to determine the innate immune response at
an early stage.

G. PRRgnn LEARNING

Both the FNNs for the two functions h, and g, require
training in order to make accurate predictions. This is
accomplished with the help of input Q and output P which
is used to tune the weights of the FNNs. In our use-case of
Covid-19, this requires a dataset for a human innate immune
system including historic and current PAMPs features. The
learning of FNNs minimizes the cost function as given in
Equation 6.

1
=) (E(cn — P+ ﬂL(Cn)) ©)

meM

Equation 6 computes the error to minimize the cost
function. The loss is added to the error function and can be
scaled based on S. The value of L penalizes the weights of
the FNN whenever its output, i.e., C, exceeds the u [17].
Algorithm 2 illustrates the learning algorithm based on
gradient descent. The algorithm adjusts the weights for both
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Algorithm 1 PRR;,, Algorithm

Input Data: k = 0, state(k)=0,number of iterations M
Ouput: Predicted PRRs Activation = To determine immune
response
1: PAMPsyeatures <~ PAMPsyeatures(PRRs) U
PAMPsyeatures(neighbouring(PRRs) > Observe PAMPs
features for all PRRs and their neighbouring PRRs

2: while k < M do

3: Cln(k =+ 1) = Zmen hw(fnvfmv sm(k))v \

4: k<k+1

5: Cx = gw(sn(k)sfn)s Vn

6: PRRs, < Cy > Predict PRRs activation
7

: return (PRR, a,)

Algorithm 2 PRRsjeq, Algorithm
Input Data: w = 0, k, Desired criteria ACC
Ouput: Learned FNNs for £,, and g,
1: while k < ACC do
2: an(k) <— Algorithm 1 (k)
3: Cy < Algorithm 1 (k)
4: %iv; < BPPgradient(q,, w)
5
6
7:

wk + 1) < w(k) — a%
k<k+1
return learned A,, and g,,

the FNNs for each A, and g, in order to minimize the cost
functiong,, given in Equation 6.

The Algorithm 2, PRRSjeqm, tunes the weights w of FNN's
based on gradient descent, each for 4,, and g,, to minimize the
cost given in Equation 6. The algorithm executes iteratively
and updates the state and output as given in line 2 and line 3 by
calling the Algorithm 1. Line 4 computes the gradient Ba’fj of
the cost function for 4,, and g,, for weight w. Line 5 updates
the weight as w(k + 1) < w(k) — « aatf; where o denotes the
learning rate. Line 4 uses the backpropagation-through-time
(BPTT) [17] to compute the gradient of the cost function for

both the FNNs each for h,, and g,,.

V. RESULTS AND DISCUSSIONS

A. EXPERIMENTAL SETUP AND DATASET

PRRs sequences are obtained from the database
PRRDB2.0 [56] that constitute a positive dataset. PRRDB2.0
provides extensive information about unique PRRs and
PAMPs. Each entry of the PRR in PRRDB2.0 has details
of the PAMPs features. The main aim of the dataset is to
understand human innate immunity. We have considered
two datasets, i.e., a positive and a negative. For the positive
dataset, initially, approximately 2727 PRRs are selected
randomly. From these PRRs, only 179 PRRS are consid-
ered after eliminating redundant sequences. The negative
dataset is derived by selecting sequences randomly from
the Swiss-Prot [60], constituting non-pattern recognition
receptors(Non-PRRs). To formulate positive and negative
clusters, we have considered a cutoff of 40% sequence
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similarity without significantly reducing the number of
proteins from the dataset for unbiased models training and
testing of FNN and GNN. [57], [58] Based on the selected
cutoff, we have obtained 106 positive and 210 negative
subsets to train and test the PRR;,, model.

Experiments are based on PyTorchLightning to implement
the GNN and FNN models using the ’LightningMod-
ule’ [61].The proteins are converted to fixed vectors to
facilitate training and testing of the models, and the model
hyper-parameters are tuned by using the parameter function
of the implemented "LightningModule’, i.e., GNN and FNN.
The training considers 4 positive and 4 negative subsets from
106 positive and 210 negative subsets. The test set, however,
considers one positive and one negative subset to evaluate
the model performance. From the ’LightningModule’, fit()
function is used to train the models, and forward() for
inference/predictions.

Experiments consider a 5-fold cross-validation technique
to address the issues of bias for the positive and negative
classes. For each fold, the proteins in the test set are matched
with the training set using a cutoff of 40%sequence similarity.
This process is repeated 5 times to cover all the proteins from
the training set. Training and test sets are based on positive
and negative subsets. 4 positive and 4 negative subsets are
combined for the training set, whereas, one positive and one
negative subset forms the test set.

This process is repeated 5 times. In each fold, the positive
and the corresponding negative subset acts as a test set exactly
once. The experiments consider the 1000 number of trials to
understand the learning curve and convergence of both the
GNN and FNN in terms of accuracy, sensitivity, specificity,
and AUC. These trials also signify that the model is not
overfitted.

B. PERFORMANCE METRICS

PRRgn, evaluation is based on threshold-dependent and
threshold-independent scoring parameters. Threshold-based
scoring is used to calculate sensitivity, specificity, accuracy,
and Matthew’s correlation coefficient (MCC). Sensitivity is
defined as correctly predicted positive PRRs divided by the
total positive PRRs. On the other hand, specificity denotes the
true negative rate of PRRs. Accuracy represents a model’s
ability to predict true positive PRRs. MCC calculates the
correlation coefficient between actual and predicted PRRs.
The threshold-independent performance metric area under
the receiver operating characteristic curve (AUC) represents
the plot between sensitivity and false-positive rate.

C. ANALYSIS OF RESULTS

In the experiments, the trained PRRgy,, system is tested
to determine its sensitivity, specificity, prediction accu-
racy, MCC, and AUC over 1,000 tests. The evaluation
results for the PRR activation based on FNN are given
in Figure 3 to Figure 7. Figure 3 shows the sensitivity
of the FNN-based PRR activation. The trained traditional
neural network achieves 78% sensitivity and specificity of
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FIGURE 6. MCC of FNN.

approximately 89% for the activation of IFNs to predict
innate immune response against CoVs. The sensitivity for
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FIGURE 9. Specificity of PRRgnn-

the NLRs activation is 83% with a specificity of 89%. TLR’s
sensitivity associated with the TLRs using FNN varies 74%
to 76% for all the test measurements with a specificity of a
maximum 83%. PRR,;,-based IFNs activation demonstrates
an approximately 86% sensitivity and 87% specificity. The
sensitivity of the TLRs activation based on FNN varies
between 75% to 77%, with specificity between 76% to 83%.
The PRRgy, shows NLRs activation sensitivity with a value
84% for all the tests, with maximum specificity of 88%.
The maximum accuracy achieved by the FNN-based IFNs
activation is approximately 85%, with AUC 0.9%, and MCC
0.74%. On the other hand, PRR,;,,-based IFNs activation
accuracy is 90% for all the tests, with AUC 0.9%, and MCC
0.73%.
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TABLE 2. Performance comparison of GNN with other machine learning classifiers techniques.

Model Sensitivity Specificity Accuracy AUC MCC
PRRgnn 86.35 86.21 90.41 0.74 0.89
SVM 77.02 80.90 79.62 0.731 0.58
FNN 78.85 89.67 86.44 0.707 0.908
RF 71.23 77.10 74.95 0.682 0.58
KNN 69.21 73.23 70.59 0.673 0.52
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FIGURE 10. AUC of PRRgnn-
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FIGURE 11. MCC of PRRgnp.
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FIGURE 12. Accuracy of PRRgnn.

Since the GNN model can specifically capture the features
of the neighbouring PRRs to predict PRR activation, it per-
forms better than FNN in terms of accuracy, specificity, and
sensitivity. Given that a PRR ’s activation can be predicted
as a combined effect of PAMPs of its neighboring PRR
and its own PAMP, the activation prediction accuracy and
sensitivity is better than the FNN. We can observe from
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FIGURE 13. Training and prediction time of PRRgnn-

the Figure 3, Figure 8, Figure 4, and Figure 9 that for the
IFNSs, sensitivity, and specificity are nearly equal which is an
ideal result for the PRRy;,, PRR activation model. The AUC
achieved by FNN-based activation for RLR, NLR, and TLR
is approximately 0.85, while the PRRgy, achieves an AUC
of 0.9 for these PRRs as shown in Figure 5 and Figure 10.
This indicates the significance of our PRRg,, Algorithm for
the action of PRR to predict the innate immune response
against Covid-19. It can be observed from Figure 6 and
Figure 11 that the MCC of FNN-based IFNs activation is
0.7. As compared to FNN-based IFNs activation, the GNN
model shows higher performance with an MCC of nearly
0.75. The PRRgn, NRLs activation demonstrates an MCC of
74% as compared to the FNN-based method with an MCC
value of 0.74. Figure 12 shows that the accuracy achieved by
the PRRgy;, is significantly better than the FNN-based PRR
activation, i.e., above 90% for all the test cases.

Figure 13 compares the training time of PRR,;, PRRs
activation with the FNN-based method. The figure also shows
the time taken by both neural networks to make predictions.
For both cases, GNN takes more time as compared to the
FNNs. This additional time is attributed to the fact that GNN
consists of multiple FNNs. It is evident from Figure 13
that the GNN training time takes about 41,000 seconds.
The GNN training process is offline that does not affect the
online performance of the system to make predictions. Once
trained, the weights of the FNNs are saved and loaded to
make predictions. There is not a significant time difference
for online predictions, e.g., for the time-critical system’s
predictions are kept running. These online predictions take
about 11ms that is comparatively less than the offline training
and prediction time.

From the above results, it is evident that the PRRgy,-
based PRRs activation outperforms the FNN-based activation
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method. This benefit is due to the neighborhood awareness
of the GNN method. Another characteristic of GNN is its
multiple FNNs with a higher number of layers, each with a
higher number of neurons.

Table 2 presents the comparison of with FNN and other
machine learning classifiers, such as SVM, RF, and KNN
using PRRDB 2.0 dataset for 1000 trials to predict IFNs
activation.

VI. LIMITATIONS OF THE STUDY

The PRRDB2.0 and Swiss-Prot datasets are not large enough
to train a reliable version of the PRRgnn model. There
is a margin to improve the size and the quality of these
datasets through public review to avoid bias. Further, it will
be interesting to go beyond neighboring PRR aggregation
to come with powerful architecture to enable PRRgnn
learning for human innate immune response with a focus on
generalization properties of GNN [59].

VII. CONCLUSION AND FUTURE WORK

This work proposes a graph neural network-based approach
to predict the activation of PRRs in a human innate system to
evaluate the immune response against CoVs. The proposed
model exploits the interactions between PRRs inherent to a
human innate immune response system. In comparison to
FNN-based IFNs activation, the proposed model relies on
dependencies between different PRRs to predict activation
of IFNs. Our work can act as a milestone to investigate
graph-based analytic to predict infectious disease through an
understanding of the human innate immune response system.
Future work aims to consider edge features of a graph in
a GNN to weigh the importance of each PRR interaction
along with the PAMPs features. Further, these interactions
can be modeled with self-supervised and semi-supervised
learning to predict PRRs activations of innate human immune
response.

VIil. DATA AVAILABILITY
The datasets used for this study can be found at the PRRpred
webserver (https://webs.iiitd.edu.in/raghava/prrpred/ dataset.

php).
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