
Received November 8, 2021, accepted November 27, 2021, date of publication December 7, 2021,
date of current version December 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133666

A Method for Closed Frequent Subgraph Mining
in a Single Large Graph
LAM B. Q. NGUYEN 1,2, LOAN T. T. NGUYEN 3,4, IVAN ZELINKA2,5, (Member, IEEE),
VACLAV SNASEL 2, (Senior Member, IEEE), HUNG SON NGUYEN6, AND BAY VO 7
1Faculty of Information and Communications, Kien Giang University, Kien Giang 920000, Vietnam
2Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 700 30 Ostrava, Poruba, Czech Republic
3School of Computer Science and Engineering, International University—VNU-HCM, Ho Chi Minh City 700000, Vietnam
4Vietnam National University, Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
5Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
6Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 00-927 Warsaw, Poland
7Faculty of Information Technology, HUTECH University, Ho Chi Minh City 700000, Vietnam

Corresponding authors: Loan T. T. Nguyen (nttloan@hcmiu.edu.vn) and Bay Vo (vd.bay@hutech.edu.vn)

This work was supported in part by the Institute for Computational Science and Technology (ICST)—Ho Chi Minh City, and in part by the
Department of Science and Technology (DOST)—Ho Chi Minh City under Grant 23/2021/H–D-QKHCN.

ABSTRACT Mining frequent subgraphs is an interesting and important problem in the graph mining field,
in that mining frequent subgraphs from a single large graph has been strongly developed, and has recently
attracted many researchers. Among them, MNI-based approaches are considered as state-of-the-art, such as
the GraMi algorithm. Besides frequent subgraph mining (FSM), frequent closed frequent subgraph mining
was also developed. This has many practical applications and is a fundamental premise for many studies.
This paper proposes the CloGraMi (Closed Frequent Subgraph Mining) algorithm based on GraMi to find
all closed frequent subgraphs in a single large graph. Two effective strategies are also developed, the first one
is a new level order traversal strategy to quickly determine closed subgraphs in the searching process, and
the second is setting a condition for early pruning a large portion of non-closed candidates, both of them aim
to reduce the running time as well as the memory requirements, improve the performance of the proposed
algorithm. Our experiments are performed on five real datasets (both directed and undirected graphs) and
the results show that the running time as well as the memory requirements of our algorithm are significantly
better than those of the GraMi-based algorithm.

INDEX TERMS Data mining, frequent closed subgraph, social network, pruning strategy.

I. INTRODUCTION
In the data mining field [1]–[3], closed itemset mining [4] has
been developed for a long time and been the focus of many
studies [5]–[10]. But in the graph mining field [11]–[14],
closed frequent subgraph mining is a new problem with little
research [15], [16]–[19]. Because graphs are non-linear data
structures [20], [21] they are a challenging and interesting
research area that can be used to organize, simulate, model
and solve a lot of real world problems [22]–[24] and thus
it has become more popular both in scientific as well as
commercial fields. Graph analysis [25] has been studied for
a long time, and is the premise for many applications such as
those associated with social networks, telephone networks,

The associate editor coordinating the review of this manuscript and

approving it for publication was Senthil Kumar .

program flows, bio-informatics, chemical compounds, ter-
rorist networks, etc., with closed frequent subgraph mining
forming the fundamental basis for graph clustering, graph
based anomaly detection, and graph classification [26]–[28].

For a real-life example, a sales company collects customer
data and wants to find frequent customer groups to fine-tune
its business strategies. The graph G in Figure 1 demonstrates
the list of all the customers, each customer is represented by a
node belonging to a group labeled A, B, C or D, and each edge
of the two nodes indicates the relationship (labeled x, y, z, t or
w) of those two customers. Node labels indicate the kinds
of the customers and edge labels illustrate the kinds of cus-
tomers’ relationships. Two subgraphs S1, S2 in Figure 1 are
two samples for the company’s frequent purchasing groups.

This leads to a very practical and useful problem, which
is to find all frequent purchasing groups with their largest

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 165719

https://orcid.org/0000-0002-8809-6857
https://orcid.org/0000-0001-6440-6462
https://orcid.org/0000-0002-9600-8319
https://orcid.org/0000-0002-2723-1138
https://orcid.org/0000-0002-8587-7017

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

FIGURE 1. A large graph G and two subgraphs S1 and S2.

possible actual number of purchasing times. The results of
the search help to adjust the company’s business strategies.
This is useful not only in business management [10] but also
in many other fields [29], such as criminal investigations,
decision support systems, information retrieval systems, map
model analysis, consulting systems, structural graph cluster-
ing, and so on.

In 2014, GraMi [30], [31] was proposed as a novel
approach to efficiently mine frequent subgraphs [30]. Most
methods for subgraph mining in a large graph G work by
searching and counting the number of isomorphisms of a
subgraph S in G [30], [32]–[34], if this number is not less
than a given frequency threshold τ , this means S is a frequent
subgraph. These subgraph mining algorithms suffer twomain
costs: (1) generating candidates [33] and (2) checking candi-
dates’ isomorphisms [21], [35].

The approach in GraMi is novel in comparison to the previ-
ous grow-and-store methods, because it only stores templates
of all candidate subgraphs, not each candidate’s appearance
in the entire large graph in order to reduce the huge storage
space of candidate generation. In addition, it uses a method to
model a candidate’s support, the constraint satisfaction prob-
lem (CSP) [30]. To reduce running time when checking iso-
morphisms of a subgraph, GraMi only searches the number
of appearances (isomorphisms), or the minimum image based
support (MNI) [30] of S in G, and this number is enough
to determine whether a subgraph S is frequent or not, and
thus it ignores all the remaining appearances (in Section III,
we describe them in detail). However, in the worst case the
time needed by the CSP model still increases exponentially.

In 2020, we improved GraMi to be able to find the sup-
ports for frequent subgraphs, with an approach called SuG-
raMi [33]. Because of finding just enough isomorphisms to
determine that a candidate subgraph S is frequent, GraMi can

only find all frequent subgraphs in a graph dataset, but not
their support. In 2020, we improved GraMi to be able to find
the supports for frequent subgraphs, with an approach called
SuGraMi [33]. Although SuGraMi can find all frequent sub-
graphs with their useful supports, they are not closed frequent
subgraphs yet. For this problem, we proposal an algorithm for
closed frequent subgraph mining and two effective strategies
to optimize this algorithm:

(1) We state the problem of mining closed frequent sub-
graphs from a single large graph.

(2) With the aim to reduce the processing time as well
as storage space for our proposed method, we propose a
level-wise traversal strategy for the search tree to determine
closed frequent subgraphs early, and this helps improve the
performance of the algorithm. Based on this strategy, we set
one more condition for non-closed subgraphs, if non-closed
subgraphs violate that condition, they will be pruned early to
reduce storage space.

(3) We propose an efficient algorithm, named CloGraMi,
to mine all closed frequent subgraphs based on (2).

Our paper is organized as follows: We survey related stud-
ies related to subgraphmining in Section II. The concepts and
definitions for the new algorithm are presented in Section III,
while in Section IV our new algorithm and optimizations
will be demonstrated in detail. All our experimental results
with five datasets (directed/undirected graph) are shown in
Section V. Finally, Section VI presents our conclusion and
proposes some directions for future research.

II. RELATED STUDIES
In 2002, the gSpan [36] algorithm was proposed as a new
approach, it can efficiently mine frequent graph-based pat-
terns in a graph dataset by building a new lexicographic order
for graphs, then it maps each subgraph to a unique minimum

165720 VOLUME 9, 2021

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

depth-first search (DFS) code as its canonical label. Then,
based on this lexicographic order, a subgraph with (k + 1)
edges will be generated by adding a new edge to a subgraph
with k edges on the search tree. This (k + 1) edges subgraph
corresponds to the level (k + 1) in the search tree, and has
nodes that contain the DFS code of subgraph k edge. GraMi
uses gSpan to find subgraph candidate isomorphisms because
gSpan can greatly reduce memory requirements. Instead of
keeping all candidates’ appearances in the large graph, GraMi
only stores these candidates’ templates in order to reduce
storage space in the search tree. GraMi also finds just enough
isomorphisms to determine whether a candidate subgraph is
frequent or not [35], and ignores all the remaining appear-
ances to reduce the search time.

Continuing to optimize GraMi using parallel and
distributed computing, ScaleMine [21], [31], [37] and SSI-
GRAM [38] were proposed in 2016 and 2018 as paral-
lel frequent subgraph mining algorithms for a single large
graph. The ScaleMine algorithm splits all mining tasks to
separate CPU cores and is performed on the Shaheen II (a
modest cluster on the Cray XC40 supercomputer), while the
SSIGRAM algorithm uses threads on a cluster [38] and is
implemented on the Apache Spark framework. ParGraph [39]
includes a new hybrid load balancing scheme to distribute
tasks/threads more efficiently and processes the data using a
message passing interface (MPI) and OpenMP. This scheme
for hybrid load balancing is different from current parallel
approaches based on load balancing, as seen with MapRe-
duce [40], OpenMP [41], Arabesque [42], DistGraph [43] and
Pregel [44].

Meanwhile, CloseGraph [15] generates closed frequent
patterns with a smaller support value than any of its sub-
patterns, Graphsig [45] also has a similar approach when
using a specific subgraph for mining. SMPCS (Steiner Max-
imum Path-Connected Subgraph) [46] represent the SIoT as
the heterogeneous information networks (HINs) with multi
types of entities and relations, and it resolves this problem
from the perspective of cohesive subgraph search develop
efficient algorithms based on an index tree for searching.
In 2016, Karabadji et al. presented ECE-CloseSG [16]. This
is a mining algorithm for closed frequent unique edge label
subgraphs. It has a method for search space pruning, and
applies a strong accessibility property which allows the algo-
rithm to ignore uninteresting subgraphs. Instead of mining all
subgraphs, CloseGraph [15] mines only closed frequent sub-
graph patterns from a multi-graph dataset by exploring sev-
eral interesting pruning methods. Its performance shows that
CloseGraph not only decreases the number of unnecessar-
ily generated subgraphs significantly, but also substantially
enhances the efficiency of the mining process. The success
of the algorithm is based on the development of the novel
concepts that help CloseGraph prune the search space with
regard to the equivalent occurrence of candidate subgraphs,
and carry out early termination with a small additional cost.

With regard to closed frequent subgraph mining, the PSI-
CFSM algorithm [19] was introduced in 2017 as an optimiza-

tion for closed frequent subgraph mining algorithm for a set
of graphs, and this efficient method aims to reduce the costly
process of subgraph isomorphism testing. PSI-CFSM can
obtain polynomial time complexity because it uses a binary
search to search string code for a unique representation of
a k-subgraph in an array of ordered unique string code for
a k-subgraph set in a random-access machine model. Fre-
quent approximate subgraph (FAS) mining is also an impor-
tant technique in the field of graph mining. The paper [18]
introduced an algorithm for mining generalized closed FASs
from multi-graph collections [47]. This is the first algorithm
reported in the literature for mining this kind of pattern
over multi-graph collections. One direction that has emerged
recently is to use Topological Data Analysis as a method of
re-representing a complex graph into a simple graph while
preserving its topological characteristics [47]. This is an idea
that has a lot of promise which could be exploited in the near
future, but it still needs to be thoroughly evaluated for the the-
oretical framework in approximation [48], [49]. In 2018, the
ENERGETICS, CENERGETICS and EXCESS [17] algo-
rithms introduced the novel problem of exceptional closed
pattern mining in attributed graphs. This approach identi-
fies all neighborhoods with homogeneous and exceptional
characteristics. It takes closure operators, upper bounds and
pruning properties. Their experiments on ten real datasets
demonstrated the relevance of both approaches, and also
showed their limits. The effectiveness of CENERGETICS
overcomes that of its previous version, ENERGETICS, but
it still has difficulties to scale with the number of attributes.
EXCESS can fix this problem because it can mine graphs
with hundreds of attributes.

In the field of maximal frequent subgraph mining, a max-
imal frequent subgraph is defined as a frequent subgraph
if it does not have a super-graph that is frequent. In 2018,
a novel algorithm UMFGAMW [50] was proposed for uncer-
tain maximal frequent subgraph mining based on the adja-
cency matrix and weight. It presents an adjacency matrix
as well as a standard matrix coding for uncertain graphs.
In this method, the complexity is reduced for uncertain graph
standard coding, which improves the matching speed for the
uncertain subgraph standard coding. In order to reduce the
number of total mining results researchers proposed using a
limiting condition of the mean weight for weighted uncertain
edges and the minimum support threshold under uncertain
meaning. In 2021, the RASMA algorithm [51] was proposed
for mining frequent and maximal frequent subgraphs in a
given collection of graphs [18]. A key innovation in this
algorithm is using a connected subgraph enumerator with a
reverse-search strategy to enumerate the connected subgraphs
of an undirected graph. RASMA uses this enumeration strat-
egy to very efficiently obtain all maximal frequent subgraphs,
and employs several pruning strategies to overcome the pro-
hibitively costly task of storing all frequent subgraphs.

According to our survey, there are currently very few stud-
ies onmining closed frequent subgraphs [15]–[19], [52]–[54],
although CloseGraph [15] is an efficient algorithm for mining

VOLUME 9, 2021 165721

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

closed graph patterns in a labeled graphs dataset. ECE-
CloseSG [16] is an algorithm which finds closed frequent
subgraphs in Unique Edge Label Graphs, and it uses search
space pruning and applies the strong accessibility prop-
erty [53], [54] to ignore a large portion of uninteresting
subgraphs. TGP [52] was developed to mine closed patterns
without minimum support, because it introduces a novel
structure to store graph patterns called a Lexicographic Pat-
tern Net, which makes the verification of the closed frequent
patterns more efficient and can speed up the process of raising
the frequency threshold dynamically.

Almost algorithms mentioned above mine for a set of
graphs. There are very few algorithms for mining closed
subgraphs in a single large graph, and this is our motivation to
propose a new algorithm for this issue. Besides, GraMi [30]
is one of the most efficient algorithms for FSM from large
graphs [55], but it only finds all frequent subgraphs from
a single graph. Therefore, our first contribution is based on
the GraMi algorithm, and we propose using CloGraMi to
mine closed frequent subgraphs. Our second contribution is to
further enhance the performance of the CloGraMi algorithm
by early determination of the closed frequent subgraphs. The
third contribution is to use a condition for early pruning of
non-closed subgraphs which are violated. With these contri-
butions, the CloGraMi algorithm is able to reduce the storage
space as well as running time, showing better performance
than GraMi.

III. DEFINITIONS, PROPOSITIONS AND PROBLEM
STATEMENT
Definition 1 [30]: A graph is a triplet G = (V , E , L),
in which V is a set containing all the nodes of graph G, E
is a set containing all the edges of graphG and L is a function
assigning labels to all nodes/edges in the graph.
Definition 2 [30]: Let S = (VS , ES , LS) be a subgraph of

a graph G = (V , E , L). A subgraph isomorphism of S to G is
an injective function f : VS → V satisfying

(a) LS (v) = L(f (v)), ∀v ∈ VS
(b) (f (u), f (v)) ∈ E and LS (u, v) = L(f (u), f (v)), ∀(u,

v) ∈ ES .
Example 1: In Figure 1, subgraph S2 has three distinct

isomorphisms I1, I2 and I3 with corresponding nodes as
following:

In our algorithm, each node v ∈ S has an own domain
containing all nodes u which have the same node label and
can be assigned to v. We use u to list the nodes in the large
graph G and v to list the nodes in the subgraph S. These
domains for all nodes in a subgraph are used to mark and
count the corresponding occurrences of these nodes v on the
large graph G.

FIGURE 2. Valid and invalid assignments for subgraph S2.

Example 2: In Figure 2, node v0 (of subgraph S) has a
domain including nodes {u0, u2, u6, u9} (on large graph G).
Proposition 1 [33], [34]: Let S = (VS , ES , LS) be a

subgraph of a graph G = (V, E, L), u ∈ V and v ∈ VS . An
assignment of a node u is a valid assignment in the domain
of v if there exists an isomorphism I that u is assignable to v,
otherwise u is an invalid assignment.
Example 3: In Figure 2, node v0 has a domain D(v0) =
{u0, u2, u6, u9}, in which u0, u2, u6 are valid assignments
(they are corresponding to I1, I2 and I3 in Example 1), the
last node u9 is an invalid assignment because there do not
exist corresponding isomorphisms that assign u9 to v0.
Because subgraph S2 has three distinct isomorphisms I1,

I2, and I3, the corresponding nodes u (in G) of these isomor-
phisms are valid assignments. Although S2 has other isomor-
phisms such as (u2, u7, u12) and (u6, u3, u4), these nodes u
are already valid assignments in the domain, therefore finding
these isomorphisms does not affect S2’s domain so we do not
list them in Example 1.

TheCSPmodel [30], [33] inGraMi is represented as a tuple
(X , D, C):

(a) X is the set of variables (corresponding to nodes in a
subgraph),

(b) D is the set of domains of variables in X ,
(c) C is the set of constraints between all variables in X .
GraMi searches for isomorphisms of a subgraph for the

CSP to get assignments to the variables in X , such that all
the constraints in C are satisfied.
Example 4: In Figure 2, the CSP of S2 is represented as:
(X = {v0, v1, v2},
D = {{u0, u2, u6, u9}, {u1, u3, u7}, {u4, u8, u10, u12}},
C = {v0 6= v1 6= v2; L(v0) = A, L(v1) = B, L(v2) = C;

L(v0, v1) = x, L(v1, v2) = y})
GraMi solves the CSP model by searching isomorphisms

until it finds the MNI support of S in G that is enough to
evaluate S as a frequent subgraph, and it ignores all remaining
appearances. TheMNI-based support is only used to evaluate
a candidate subgraph, it is not the exact number of appear-
ances of a subgraph in the large graph. In this paper, we need
to compare the support of frequent subgraphs to find out all
closed subgraphs, therefore we do not use the MNI-based
support. Instead, we search all isomorphisms and use the full
support [33] of candidate subgraphs.

165722 VOLUME 9, 2021

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

Proposition 2 [33]: The support of a subgraph S in a
large graph G (denoted by sG(S)) is the minimum number of
all distinct valid assignments (corresponding to all isomor-
phisms of S) for every node v in the domain of S. In other
words:
sG(S) = min{t|t = |D(v)|, ∀v ∈ VS}.
Example 5: The support of S2 in G
sG(S2) = min(|D(v0)|, |D(v1)|, |D(v2)|) =

min(3, 3, 3) = 3.
Definition 3 [33]:A subgraph S inG is frequent if sG(S) ≥

τ with τ is a given frequency threshold.
If nothing changes, the frequency threshold is chosen τ =

2 for all the examples in this paper.
Example 6: Because sG(S2) = 3 and sG(S2) ≥ τ , therefore

S is a frequent subgraph in G.
If S is a subgraph of S ′, then S ′ is a super graph of S,

denoted by S ∈ S ′ (if proper super graph, S ⊂ S ′). The set of
frequent graph patterns, FS, consists of all the graphs whose
support is equal to or greater than a given frequency threshold.
The set of closed frequent graph patterns, CS, is defined as
follow [15]:
CS = {S|S ∈ FS and S ′ ∈ FS such that S ⊂ S ′ and

support(S) = support(S ′)}
Definition 4 [15]: A frequent subgraph S is a closed fre-

quent subgraph if and only if there does not exist any proper
supergraph S ′ whose support is equal to that of S (and we call
as ‘‘closed subgraph’’ in short).
Example 7: S2 is a closed subgraph and S1 is a non-closed

subgraph (see the details in Figure 3 and Subsection IV.A).
Our first contribution is to propose a GraMi-based algo-

rithm to find out all closed subgraphs from the list of mined
frequent subgraphs. It consists of two main steps: 1) the algo-
rithm finds all frequent subgraphs; and 2) the program filters
out all closed subgraphs in the list of frequent subgraphs (see
Subsection IV.B for details).

As in [33], we have proved that sG(S ′) ≤ sG(S) if subgraph
S ′ is generated from subgraph S. Thus, when evaluating
whether a subgraph S (with size n) is closed or not, the
algorithm only needs to check the subgraphs S ′ with size
(n + 1) that are directly generated from S (proven in Sub-
section IV.B). This proposal is also our second contribution
in this paper.

The mining closed frequent subgraphs problem in a single
large graphG is stated to find all frequent subgraphs S if there
exists no proper supergraph S’ (of S in G) that has the same
support as S. To solve it, we propose the CloGraMi algorithm,
based on an advanced version of the GraMi algorithm, which
can accurately find all closed frequent subgraphs through two
phases (see Subsection IV.A). However, this algorithm still
needs a long time and large storage space to be executed.
To reduce the search time, we propose a new traversal strat-
egy for CloGraMi (detailed in Subsection IV.B). Moreover,
we propose a condition for an effective strategy to quickly
determine whether a frequent subgraph is not a closed sub-
graph and remove it from the storage space of the mining
process. This strategy helps to reduce the search time and

reduce the storage space (detailed in Subsection IV.C). This
is our third contribution.

IV. PROPOSED ALGORITHMS
In this section, we describe our three contributions in detail
with specific examples for each contribution.

A. A CLOSED SUBGRAPH MINING ALGORITHM BASED
ON GRAMI
The GraMi algorithm uses a novel approach and can quickly
and efficiently mine frequent subgraphs, and many other
algorithms have been proposed to improve its performance.
However, with regard to mining frequent subgraphs, no other
algorithms have been proposed to mine closed subgraphs
based on GraMi. Indeed, there are very few closed subgraph
mining algorithms that aim to work with single large graphs,
and there are none based on GraMi.

In this subsection, we propose the GraMi-based algorithm
as a baseline algorithm to mine closed subgraphs with the
following two main steps:

(1) Find frequent subgraphs (from Line 2 to Line 6): Like
GraMi, our algorithm puts all frequent edges into a list, called
fEdges. These edges are frequent subgraphs with 1-edge, then
the program will simultaneously extend these subgraphs by
adding a new edge (from the fEdges list) to generate a new
subgraph candidate and evaluate whether this candidate is
frequent or not. If the candidate is frequent, the program
continues to extend and evaluates it recursively.
Example 8: Given the graph G in Figure 1, assuming the

frequent threshold is τ = 2, we have a list of frequent edges:

fEdges = {A x—B;B y—C;C z—D}

The program will process the edges in fEdges sequentially.
In Figure 3, with τ = 2, S11 (corresponding to S1 in Figure 1)
is a frequent subgraph because sG(S11) = 3, so the program
will generate and evaluate recursively the children of S12.
Because S12 is also a frequent subgraph because sG(S12) = 2,
the process will generate and evaluate recursively for all the
children of S12 on the search tree, and when all the children
on that branch are generated and evaluated the program will
move to the next branch (S14 in this case).

(2) Filter out all closed subgraphs from the list of frequent
subgraphs (from Line 7 to Line 14): For each subgraph S in
the list of frequent subgraphs obtained in Step 1, the program
checks for the existence of a subgraph S ′ which is a proper
supergraph of S and that has the same support. If no subgraph
S ′ exists, then S is a closed subgraph and it will be put into
the result list.
Example 9: In Figure 3, S11 (S1 in Figure 1) is a frequent

subgraph but not a closed subgraph, because there exists S15
as a proper supergraph and sG(S11) = sG(S15) = 3. But S15
(S2 in Figure 1) is a closed subgraph.

In the first step of the mining process, at Line 5 we use the
recursive function SUBGRAPHEXTENSION() as in [30],
and if a subgraph candidate is determined to be frequent
then it will be extended and evaluated recursively to find all

VOLUME 9, 2021 165723

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

FIGURE 3. Valid and invalid assignments for subgraph A x— B.

Algorithm 1 GraMi-Based
Input: G : single large graph, τ : frequency threshold
Output: rList: closed subgraphs of G
1 rList← ∅ //the result list of all closed subgraphs
2 fSubgraphs← ∅ //the list of all frequent subgraphs
3 Let fEdges be a set containing frequent edges in G
4 foreach e ∈ fEdges do
5 fSubgraphs ← fSubgraphs ∪

SUBGRAPHEXTENSION(e, G, τ , fEdges)
6 Remove e from fEdges
7 foreach S ∈ fSubgraphs do
8 closed← true
9 foreach S ′ ∈ fSubgraphs do
10 if (S ′ ⊃ S) and sG(S ′) = sG(S) then
11 closed← false
12 break
13 if closed = true then
14 rList← rList ∪S 15 return rList

frequent subgraphs which are generated from that subgraph.
All frequent subgraphs will be restored with their support to
compare in the second step.

In the second step, for each mined frequent subgraph S
(Line 7), we need to check if there exists a frequent subgraph

S ′ in the list of frequent subgraphs which is the proper super-
graph of S; and S ′ has the support equal to that of S (Line
10). If no subgraph S ′ exists, then S is a closed subgraph and
is put in the result list (Lines 13 and 14).

However, those two steps in our CloGraMi algorithm are
still costly in terms of running time and memory requirement.
We continuously optimize our algorithm by two efficient
strategies as shown in the following subsections.

B. LEVEL ORDER TRAVERSAL STRATEGY TO QUICKLY
DETERMINE CLOSED SUBGRAPHS
With the baseline approach as in Subsection IV.A, the mining
process needs to find and store all frequent subgraphs in
G, then perform a filtering process for all closed subgraphs
by comparing each frequent subgraph S with all remaining
frequent subgraphs in the result list, and this is costly and
unnecessary.
Proposition 3: Frequent subgraph S with size n is not a

closed subgraph if there exists a subgraph S ′ size (n + 1)
generated from S in the search tree, whose the support is equal
to that of S.

Proof:
- Let S be a frequent subgraph with size n.
- Let S ′ be a frequent subgraph with size (n+ 1), let S ′′ be

a frequent subgraph with size (n+ 2), and so on.

165724 VOLUME 9, 2021

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

Algorithm 2 CloGraMi
Input: G: single large graph, τ : frequency threshold
Output: rList: closed subgraphs of G 1 rList ← ∅ //the
result list of all closed subgraphs
2 Let fEdges is a set contains frequent edges of G
3 foreach e ∈ fEdges do
4 rList← rList ∪ ExtendByLevel(e, τ , fEdges, G)
5 Remove e from fEdges
6 return rList

- In [33], we have proved:
sG(S) ≥ sG(S ′) where S ′ is directly generated from S in the

search tree (1)
- Thus, by extension, we have:
sG(S) ≥ sG(S ′) ≥ sG(S ′′), where S ′′ is the directly

generated subgraph from S ′ (2)
- From (2), in the search tree, if there does not exist S ′

(subgraph with size n+1) whose support is equal to that of S
(subgraph with size n), then there cannot exist a subgraph S ′′

(subgraph with size n + 2) that has the same support as that
of S.
- Therefore, rather than having to compare it to all mined

frequent subgraphs in the result list, when determining
whether a subgraph S (size n) is closed or not we only need
to compare it with the frequent subgraphs that are directly
generated children (size n+ 1) on the search tree (1): if there
exist S ′ whose support is equal to the support of S then S is
not closed.

With the GraMi algorithm, the process of extending and
evaluating frequent subgraphs will be implemented recur-
sively using a DFS on the search tree with the function
SUBGRAPHEXTENSION(), we propose implementing a
strategy of frequent extension and evaluation for a ‘‘level
order traversal’’ in the search tree, namely the function
ExtendByLevel A frequent subgraph with size nwill generate
all its candidate subgraphs size (n+1), and we only compare
its support with the candidates’ size (n + 1) to determine
whether it is a closed subgraph or not.
Example 10: In Figure 4, S21 (corresponding to S1 in

Figure 1) is a frequent subgraph, and the algorithm will
generate all children of S21 in the search tree (including S22,
S23, S24 and others). After calculating the support for these
children, the mining process will compare the support of
S21 to its children’s support, if there exists one that has the
same support as S21 (in this case sG(S21) = sG(S24) = 3),
it determines S21 as a frequent subgraph but not a closed
subgraph. All frequent subgraphs generated from S21 will
also be generated and evaluated recursively by the program.
With this strategy, instead of comparing the support of S21
with all the mined frequent subgraphs, we only compare S21
with its children to reduce the processing time.

In the CloGraMi algorithm, we only need one list to store
the closed subgraphs (Line 1) during entire the computation,
and a list for all frequent subgraphs is unnecessary. At Line 4,

Algorithm 3 ExtendByLevel
Input: S: frequent subgraph, τ : frequency threshold,
fEdges: set of frequent edges of large graph G
Output: cSubgraphs: closed subgraphs in G that are
extended from S
1 cSubgraphs← ∅ //the list of closed subgraphs
2 gSubgraphs← ∅ //the list of generated subgraphs
3 fSubgraphs← ∅ //the list of frequent subgraphs
4 foreach edge e ∈ fEdges and node v ∈ S do
5 if e can extend u then
6 Let E be the extension of S by e
7 if E is not already generated then
8 gSubgraphs← gSubgraphs ∪E
9 closed← true
10 foreach g ∈ gSubgraphs do
11 if sG(g) ≥ τ then//g is a frequent subgraph
12 fSubgraphs← fSubgraphs ∪g
13 if sG(g) = sG(S) then//compare the support
14 closed← false
15 if closed = true then
16 cSubgraphs← cSubgraphs ∪S
17 foreach S ′ ∈ fSubgraphs do
18 cSubgraphs← cSubgraphs ∪ ExtendByLevel(S ′, τ ,
fEdges, G)
19 return cSubgraphs

the recursive function ExtendByLevel() has been optimized,
which will generate all the children of a frequent subgraph S
and evaluate them sequentially.

In the function ExtendByLevel(), from Line 4 to Line 8,
the program will generate all candidate subgraphs of the
subgraphs of S. Line 11 and Line 12 check whether these
subgraphs are frequent or not. From Line 10 to Line 16, the
program only compares the support of subgraph S with the
frequent subgraphs g (sG(g) ≥ τ at Line 11) generated from
it instead of comparing with all mined frequent subgraphs.
If S is closed, it will be put in the result list. Line 17 and
Line 18 are used to recursively generate and evaluate frequent
subgraphs that are children of subgraph S.
Thus, after finishing the recursive process for each branch

in the search tree, the main program can free the storage for
frequent subgraphs and allocate it to another search branch
instead of having to store the entire frequent subgraphs of all
the branches in the search tree, as in Subsection IV.A. After
applying the level order traversal strategy for the search tree,
we propose another strategy to identify non-closed subgraph
early in subsection IV.C to enhance the algorithm perfor-
mance.

C. EARLY PRUNING NON-CLOSED CANDIDATES
With our level order traversal strategy, when determining
whether a frequent subgraph S ′ is closed or not, in the
recursive ExtendByLevel() function in Subsection IV.B, the
program will generate all candidate subgraphs S ′ and store

VOLUME 9, 2021 165725

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

FIGURE 4. Some subgraphs generated from A x— B.

them all; after the generation process is the process of cal-
culating the support for these subgraphs S ′ to determine
the frequent subgraphs (which will continue to recursively
expand in a later step); Finally, compare the support of
S and that of S ′ to determine whether S is a closed sub-
graph or not. However, this still requires a lot of computer
memory.

Our third contribution is to set a condition to function
ExtendByLevel() for early pruning a non-closed subgraph
S as soon as it is determined that there is a candidate S ′

whose support is equal to that of S and we called it as
ExtendByCondition Remove the domain of S from storage
memory and save only the template of S to generate the next
candidates S ′, in addition we also arrange the edges in the
fEdges list to increase performance.

In the ExtendByCondition() function we set a ‘‘closed’’
variable at Line 3, and this is the condition to determine S is
a non-closed subgraph, from Line 4 to Line 6, the program
will generate the children subgraph S ′ of S in the search
tree. In this, the program does not have to wait until all
children of have been generated before starting the process
of evaluating each of them. When generating any child, the
program will calculate support for that subgraph. From Line
8 to Line 9, only frequent subgraphs S ′ will be stored to be
evaluated recursively (Line 15 to Line 16), and if at any time
the program detects the existence of a frequent subgraph S ′

whose support is equal to that of S (Line 10), then S is not
a closed subgraph (Line 11) and the process will delete the
domain of a subgraph S (Line 12) to reduce the storage space,
keeping only the template (including the list of vertices and
edges of S) to generate the next S ′. All frequent subgraphs
generated from S will be extended recursively (Line 15 and
Line 16).

Algorithm 4 ExtendByCondition
Input: S: frequent subgraph, τ : frequency threshold,
fEdges: set of frequent edges of large graph G
Output: cSubgraphs: closed subgraphs in G that are
extended from S
1 cSubgraphs← ∅ //the list of closed subgraphs
2 fSubgraphs← ∅ //the list of frequent subgraphs
3 closed← true
4 foreach edge e ∈ fEdges and node u ∈ S do
5 if e can extend u then
6 Let S ′ be the extension of S with e
7 if S ′ is not already generated then
8 if sG(S ′) ≥ τ then
9 fSubgraphs← fSubgraphs ∪S ′

10 if sG(S ′) = sG(S) then
11 closed← false
12 Delete domain of S
13 if closed = true then
14 cSubgraphs← S
15 foreach fS ∈ fSubgraphs do
16 cSubgraphs ← cSubgraphs ∪ ExtendByCondi-
ton(fS, τ , fEdges, G)
17 return cSubgraphs

Let N and n be the number of nodes in G and S, respec-
tively, both GraMi-based and CloGraMi and the complexity
of the mining process needs O(2N

2
. N n) time [30], which

is exponential in the problem size. But the GraMi-based
approach needs a step to filter out closed subgraphs from
the list of all frequent subgraphs (from Line 7 to Line 14)
after the mining process. Let M be the number of frequent

165726 VOLUME 9, 2021

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

subgraphs, at Line 7 and Line 9, we have O(M2) for iteration
of the frequent subgraphs list. Let k is the number of nodes in
S,K is the number of nodes in S ′, in the filtering process S is a
subgraph and S ′ is a large graph. At Line 10, we need to check
whether S is an subgraph isomorphism in S ′, and this problem
takes O(K k) time (a well-known NP-hard problem) [30].
Overall, the complexity of the filtering process is O(M2.K k).

In contrast, our CloGraMi only needs the mining process,
without the filtering process. In the function ExtendByCon-
dition() of the mining process, because S ′ is generated from
S in the search tree (S is always a subgraph isomorphism of
S ′). At Line 8, getting the support of all candidate subgraphs
in G (NP hard complete) is the same as with the function
SUBGRAPHEXTENSION() [30] in GraMi-based, we only
need to compare these supports at Line 10, sG(S ′) = sG(S),
which only takes the complexity O(1).

With large datasets consisting of millions of nodes/edges,
the domain of a frequent subgraph is very large, but the
template of a subgraph is always very small, so deleting
the domain will reduce storage space. Because the time for
support calculation of the candidates is constant, with our
early pruning non-closed strategy the program can reduce the
time needed to filter closed subgraphs, reducing the storage
space of non-closed subgraphs.

V. EXPERIMENTAL STUDIES
We use five datasets (including three undirected graph
datasets and two directed graph datasets), a personal com-
puter with a CPU i5, 4 cores, 3.2GHz, 4GB RAM, Win-
dows 10 operating system and Java programming language.
In this section we record and compare the performance of the
GraMi-based algorithm with our new algorithm CloGraMi
based on five real datasets.

The details of our five datasets are as follows:
+ Bitcoin Alpha: This is downloaded from the website

https://snap.stanford.edu/data/, and is the dataset of an undi-
rected graph, which is a network of people who use Bitcoin
to trade on the Bitcoin Alpha platform. Because Bitcoin users
are anonymous, this needs to maintain a record of user’s
reputation to prevent transactions with fraudulent and risky
users. It includes 3,783 nodes and 24,186 edges; initially
these vertices and edges have no labels, so we add 50 different
labels randomly with the rate shown in Table 1.
+ LastFM Asia Social Network: Like the Bitcoin Alpha

dataset, this dataset is also downloaded from the web-
site https://snap.stanford.edu/data/. It is a social network of
LastFM users, consisting of 7,624 nodes and 27,806 edges.
It was collected in March 2020 from the public API. Its nodes
are the users of LastFM from Asian countries and its edges
are relationships between the users. The nodes and edges are
also randomly labeled by us, with 60 different labels, with the
details shown in Table 2.
+ CiteSeer: This dataset is a directed graph, there are

3,312 publications (each publication corresponds to a node in
this dataset) and 4,732 citations for these publications (each
citation is a directed edge between two nodes). Each node

TABLE 1. 50 distinct labels for nodes/edges and their ratings.

in this dataset has a single label (it is a field of Computer
Science) and each edge has a value from 0 to 100, with these
edge labels indicating the similarity between two publica-
tions. As in [33], [34], we only take the integer parts of the
decimal numbers of each edge label.
+ Email-Eu-core network: This directed graph dataset was

downloaded from the website https://snap.stanford.edu/data/.
The network includes 1,005 nodes and 25,571 edges, it was
generated from a large European research institution by using
email data, but it has anonymized member information about
all incoming/outgoing email among users. There is a directed
edge if a person sent another person at least one email in the
network. Just like the Bitcoin Alpha dataset above, we ran-
domly added 50 different labels to the nodes/edges at the rate
shown in Table 1.
+ GitHub Social Network: This graph was downloaded

from the website https://snap.stanford.edu/data/. It is an undi-
rected graph dataset, it is a large social network collected
in June 2019 from the public API. This is a network of
GitHub developers, in which the nodes present developers
(have starred at least 10 repositories), the edges illustrate
mutual follower relationships between developers. The node
features are extracted based on the email address, location
and repositories starred. This dataset includes 37,700 nodes
(10 times bigger than the Bitcoin Alpha dataset) and 289,003
edges (over 10 times bigger than the LastFM Asia Social
Network dataset). Each node is a user with their own name,
so to anonymize the names we randomly added 60 different
labels to the nodes/edges at the rate shown in Table 2.

The features of our five datasets are shown in Table 3:
Using these five datasets consisting of undirected and

directed graphs we conduct the experiments and record the
results, using different frequency thresholds τ (to demon-
strate the performance of the new algorithm with a large
number of frequent subgraphs and closed subgraphs, we try
to reduce the thresholds τ until our computer cannot execute
it anymore). Specifically for the last dataset, GitHub Social
Network, we divide it into four parts of 22,000 nodes, 27,000
nodes, 32,000 nodes and 37,700 nodes (entire this dataset) to
test the scalability of our CloGraMi algorithm and compare

VOLUME 9, 2021 165727

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

TABLE 2. 60 distinct labels for nodes/edges and their ratings.

TABLE 3. The features of the five datasets.

the results. We also use a sorting strategy [33] for the new
algorithm to reduce the search space. In this section we will
compare theGraMi-based algorithmwith the CloGraMi algo-
rithm on three criteria: the number of candidates for filtering
closed subgraphs, the running time and the computer memory
requirements. As in all our experiments, the lower the thresh-
old, the better the CloGraMi algorithm is in comparison to
the GraMi-based one.

With the first criterion the GraMi-based algorithm finds
all frequent subgraphs, and these are candidates to filter out
the necessary closed subgraphs, but for our CloGraMi the
programfilters out closed subgraphs while testing them, so all
frequent subgraphs in the result list are closed subgraphs.
+ For the Bitcoin Alpha dataset (Figure 5.a): In this

dataset, CloGraMi proved to be significantly more efficient
than the GraMi-based algorithm. The number of candidates
of CloGraMi (also the number of closed subgraphs) can be
reduced to 71.9% that needed when compared to the GraMi-
based algorithm. In particular, at threshold τ = 5, GraMi
finds 584 frequent subgraphs and filters out 420 closed sub-
graphs, but CloGraMi finds 420 closed subgraphs directly.
+ For the LastFM Asia Social Network dataset (Fig-

ure 5.b): The effect of CloGraMi with this dataset is not as
significant as that of Bitcoin Alpha dataset, at our lowest
possible threshold τ = 5, CloGraMi is only reduced to 94.9%
compared to GraMi. CloGraMi finds 504 closed subgraphs

FIGURE 5. The numbers of frequent and closed subgraphs of two
undirected graphs.

FIGURE 6. The numbers of frequent and closed subgraphs of two directed
graphs.

directly, while GraMi finds 531 frequent subgraphs, and then
has to perform the filtering process.
+ For the dataset CiteSeer (Figure 6.a): On this directed

graph dataset, our CloGraMi proved to be the most efficient
of the five datasets, as the number of candidates of CloGraMi
can be reduced to 67.5% at threshold τ = 11. Specifically,
at this threshold, GraMi cannot perform because of exceeding
the available memory, but CloGraMi was still able to find
146 closed subgraphs directly (and we used a statistical vari-
able to record the number of frequent subgraphs that can be
mined at this threshold as 216).
+ For the Email-Eu-core network dataset (Figure 6.b):

Although not as effective as with the CiteSeer dataset above,
CloGraMi can also reduce the number of candidates to 87.6%
compared to that needed byGraMi. Specifically, at the thresh-
old τ = 9 GraMi also exceeds the available memory and
crashes, CloGraMi can directly find 205 closed subgraphs,
and we also use a statistical variable to record the number of
frequent subgraphs at this threshold as 234.

The second criterion for our comparison is the running
time for the two algorithms. As with the first criterion, the
number of candidates is reduced, and there is no time to
filter closed subgraphs, so CloGraMi can reduce the running
time significantly compared to the GraMi-based algorithm,
the greatest reduction is to 73.7% for the first dataset. On the
three undirected datasets, the running time is reduced much
more than on the two directed datasets.

165728 VOLUME 9, 2021

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

FIGURE 7. Running time for the two undirected datasets.

+ For the Bitcoin Alpha dataset (Figure 7.a): The effi-
ciency of CloGraMi increases gradually by the experimental
thresholds, the running time can be reduced to 73.7% when
compared to GraMi. At threshold τ = 5, GraMi needs
639.411 seconds to find 584 frequent subgraphs and filter out
420 closed subgraphs (in Figure 5.a), while CloGraMi needs
471.808 seconds to find closed subgraphs directly without
filtering.
+ For the LastFM Asia Social Network dataset (Fig-

ure 7.b): Because the number of candidates and closed sub-
graphs in this dataset is not as great as with the Bitcoin
Alpha dataset (in Figure 5.b), the efficiency of CloGraMi
increases gradually when we reduce the experimental thresh-
old, but it is not as good as that with the previous dataset.
CloGraMi can reduce running time by 77.3% in comparison
to GraMi. In particular, at the threshold τ = 5, it took GraMi
648.453 seconds to find 531 frequent subgraphs and filter out
504 closed subgraphs, while CloGraMi needed 501.594 sec-
onds to find closed subgraphs directly.
+ For CiteSeer dataset (Figure 8.a): CloGraMi only

reduced the running time to 84.4% that needed for GraMi
at threshold τ = 12, as CloGraMi required 300.304 seconds
and GraMi needed 355.075 seconds. In particular, at the end
threshold τ = 11 GraMi could not run because it was out
of available memory, but CloGraMi still found 146 closed
subgraphs (Figure 6.a) with 602.698 seconds for the running
time.
+ For the Email-Eu-core network dataset (Figure 8.b):

Similar to the directed graph dataset above, CloGraMi can
only need 83.7% of the running time of GraMi at threshold
τ = 10, as GraMi needed 602.008 seconds to execute but
CloGraMi only needed 504.182 seconds. Especially at the
last threshold τ = 9, GraMi exceeded the available memory
and could not execute, CloGraMi still found closed subgraphs
with 1,072.109 seconds.

Our final comparison criterion is the memory require-
ments. As in Subsections IV.B and IV.C, CloGraMi does not
need to store frequent subgraphs by execution steps, so the
storage space is also more optimized than with the GraMi-
based algorithm. As with the running time criterion, the
greatest reduction of memory requirements is to 71.6% for
the first dataset. On the three undirected datasets, the running
time is reduced much more than on the two directed datasets.

FIGURE 8. Running time for the two directed datasets.

FIGURE 9. Memory requirements for two undirected datasets.

However, at the last thresholds of the two directed graphs,
only CloGraMi can execute, and GraMi-base crashes because
of exceeding available memory.
+ For the Bitcoin Alpha dataset (Figure 9.a): In this undi-

rected dataset, CloGraMi shows the best performance of our
five datasets, and the memory requirements can be reduced
to 71.6% in comparison to the memory needed by GraMi.
Particularly, at the threshold τ = 5, GraMi needs 986.588
MB and finds 584 frequent subgraphs, while CloGraMi only
needs 706.717 MB and directly finds 420 closed subgraphs.
+ For the LastFM Asia Social Network dataset (Fig-

ure 9.b): CloGraMi requires 75.8% of the computer memory
that GraMi needs at threshold τ = 5, CloGraMi needs
755.547MB and finds 504 closed subgraphs but GraMi needs
996.152MB to find 531 frequent subgraphs and carry out
filtering of the closed subgraphs after searching.
+ For the CiteSeer dataset (Figure 10.a): CloGraMi

requires 80.3% of the memory of GraMi with a small thresh-
old. At threshold τ = 12, GraMi needs 936.122 MB while
CloGraMi only needs 752.315 MB, and at the last threshold,
τ = 11, GraMi could not execute because it exceeded the
available memory, while CloGraMi needed 986.142 MB and
found 146 closed subgraphs.
+ For the Email-Eu-core network dataset (Figure 10.b):

CloGraMi can reduce memory to 76.8% that needed by
GraMi at the threshold τ = 10, as GraMi needs 949.832
MB to perform two steps: searching for frequent subgraphs
and filtering closed subgraphs, while CloGraMi consumes
only 730.237 MB. Specifically, at the end threshold τ = 9,
GraMi is no longer executable because of exceeding the

VOLUME 9, 2021 165729

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

FIGURE 10. Memory requirements for two directed datasets.

available memory, while CloGraMi needs 989.667MB of the
computer’s memory.

To test the scalability of our CloGraMi algorithm, we use
the GitHub Social network dataset, which is the largest
dataset in Table 3, and divide it into four parts of increasing
size. We implement on all of them and record and compare
the results on three criteria, as with all the aforementioned
datasets.

With the first criterion, our CloGraMi algorithm can reduce
the number of candidates in the filtering process of mined
frequent subgraphs to get all closed subgraphs. The larger
the dataset, the lower the threshold, the better the CloGraMi
algorithm is in comparison to the GraMi-based one. More-
over, with regard to three large parts – 27,000 nodes, 32,000
nodes and 37,700 nodes – the GraMi-based approach cannot
execute at the last threshold because of exceeding the avail-
able memory, but CloGraMi is still able to run and we are still
able to record the number of frequent and closed subgraphs.
CloGraMi can reduce the number of candidates to 88.1% in
comparison to the number with the GraMi-based approach,
as seen in Figure 11.

As with the four above datasets, CloGraMi also reduces
the running time in all the four parts of the large dataset.
Running time can be reduced to 85.8% compared to that
of GraMi-based as shown in Figure 12. In each part of
the GitHub Social Network dataset, the lower the frequency
threshold, the greater the reduction in running time due to the
large number of pruned candidates.

The final criterion for our comparison is the memory
requirements. Because CloGraMi does not need to store the
list of frequent subgraphs, passes by the filtering process of
closed subgraphs, and it has an efficient strategy of early
pruning of non-closed subgraphs, memory requirements can
be significantly reduced. On all four parts of the dataset the
memory needed is reduced at lower thresholds, and Clo-
GraMi can be reduced to between 70% and 80%, as shown
in Figure 13. In particular, for the three large parts 27,000
nodes, 32,000 nodes and 37,000 nodes, at the last frequency
thresholds GraMi-based always crashes because of exceeding
the available memory, but CloGraMi can still execute.

Finally, we compare the performances of the CloGraMi
to GraMi-based algorithm by increasing size of the GitHub

FIGURE 11. The numbers of frequent and closed subgraphs of four parts
of the GitHub Social Network dataset.

FIGURE 12. Running time for the four parts of GitHub Social Network
dataset.

Social Network dataset (22,000 nodes, 27,000 nodes, 32,000
nodes and 37,700 nodes). With different dataset sizes, the
algorithms can run on different frequency thresholds, there-
fore, we choose a frequency threshold as 0.11% of the dataset
sizes to unify frequency thresholds to test. The tested thresh-
olds are rounded based on the size of the parts of dataset and
the selected percentage as shown in Table 4.

We choose these thresholds to illustrate and compare the
performances including the runtime (in the Figure 14.a) and

165730 VOLUME 9, 2021

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

FIGURE 13. Memory requirements for four parts of GitHub Social
Network dataset.

TABLE 4. The tested thresholds for four parts of GitHub Social Network
dataset.

FIGURE 14. Performances of the algorithms on GitHub Social Network
dataset with increasing size.

the memory requirements (in the Figure 14.b) of the two
algorithms.

At the same threshold 0.11%, the larger the data size, the
more effective CloGraMi is. Similarly to the comparisons
above, CloGraMi can reduce the running time to 85.6% and
the memory requirements to 73.8% those of GraMi-based,
moreover, GraMi-based always has lower performance and
crashes early in comparison to CloGraMi.

VI. CONCLUSIONS AND FUTURE WORKS
We propose an important problem of finding closed sub-
graphs based on the GraMi algorithm. In this paper, we also
apply two more effective strategies to improve the perfor-
mance of our algorithm CloGraMi, which are the level order
traversal strategy to quickly determine closed subgraph, and
a condition is set to prune non-closed subgraphs early. With
three contributions, our CloGraMi algorithm has shown to
be more efficient than the original algorithm with all three
comparison criteria: the number of candidates to check, the
running time and the memory requirements compared to the
baseline (GraMi-based) algorithm.

In the future, we will continue to research and propose
new methods to innovate and improve the performance of the
closed subgraphs mining algorithm in a single large graph,
such as: defining a feature ensuring the Downward Closure
Property (DCP) in order to prune non-closed subgraphs,
parallel processing on many branches in the search tree at
the same time, and defining and mining closed subgraphs
on a weighted single large graph. In GraMi approach, the
domain of all subgraph candidates stores only values of the
nodes in the large graph, this leads to some inconveniences of
lacking information of edges. Thus a new approach includ-
ing nodes/edges of candidates is very important for further
researches.

REFERENCES
[1] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules,’’

in Proc. 20th Int. Conf. Very Large Data Bases, (VLDB), vol. 1215, 1994,
pp. 487–499.

[2] Z.-H. Deng, ‘‘DiffNodesets: An efficient structure for fast mining frequent
itemsets,’’ Appl. Soft Comput., vol. 41, pp. 214–223, Apr. 2016.

[3] N. Aryabarzan, B. Minaei-Bidgoli, and M. Teshnehlab, ‘‘negFIN: An
efficient algorithm for fast mining frequent itemsets,’’ Expert Syst. Appl.,
vol. 105, pp. 129–143, Sep. 2018.

[4] B. Vo, T.-P. Hong, and B. Le, ‘‘DBV-miner: A dynamic bit-vector approach
for fast mining frequent closed itemsets,’’ Expert Syst. Appl., vol. 39, no. 8,
pp. 7196–7206, Jun. 2012.

[5] M. J. Zaki and C. J. Hsiao, ‘‘Efficient algorithms for mining closed itemsets
and their lattice structure,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 4,
pp. 462–478, Apr. 2005.

[6] L. T. T. Nguyen, V. V. Vu, M. T. H. Lam, T. T. M. Duong,
L. T. Manh, T. T. T. Nguyen, B. Vo, and H. Fujita, ‘‘An efficient method
for mining high utility closed itemsets,’’ Inf. Sci., vol. 495, pp. 78–99,
Aug. 2019.

[7] T. Le and B. Vo, ‘‘An N-list-based algorithm for mining frequent
closed patterns,’’ Expert Syst. Appl., vol. 42, no. 19, pp. 6648–6657,
Nov. 2015.

[8] B. Vo, L. V. Nguyen, V. V. Vu, M. T. H. Lam, T. T. M. Duong, L. T. Manh,
T. T. T. Nguyen, L. T. T. Nguyen, and T.-P. Hong, ‘‘Mining correlated
high utility itemsets in one phase,’’ IEEE Access, vol. 8, pp. 90465–90477,
2020.

[9] M. Nouioua, P. Fournier-Viger, C.-W. Wu, J. C.-W. Lin, and W. Gan,
‘‘FHUQI-Miner: Fast high utility quantitative itemset mining,’’ Appl.
Intell., vol. 51, pp. 6785–6809, Feb. 2021.

[10] P. A. Reddy and M. H. M. K. Prasad, ‘‘High utility item-set mining
from retail market data stream with various discount strategies using
EGUI-tree,’’ J. Ambient Intell. Humanized Comput., pp. 1–12, 2021, doi:
10.1007/s12652-021-03341-3.

[11] Q. Song, Y. Wu, P. Lin, L. X. Dong, and H. Sun, ‘‘Mining summaries for
knowledge graph search,’’ IEEE Trans. Knowl. Data Eng., vol. 30, no. 10,
pp. 1887–1900, Oct. 2018.

[12] M. Haghir Chehreghani, T. Abdessalem, A. Bifet, andM. Bouzbila, ‘‘Sam-
pling informative patterns from large single networks,’’ Future Gener.
Comput. Syst., vol. 106, pp. 653–658, May 2020.

VOLUME 9, 2021 165731

http://dx.doi.org/10.1007/s12652-021-03341-3

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

[13] Y. Chen, X. Zhao, X. Lin, Y. Wang, and D. Guo, ‘‘Efficient mining of
frequent patterns on uncertain graphs,’’ IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 2, pp. 287–300, Feb. 2019.

[14] R. Iqbal, F. Doctor, B. More, S. Mahmud, and U. Yousuf, ‘‘Big data ana-
lytics and computational intelligence for cyber–physical systems: Recent
trends and state of the art applications,’’ Future Gener. Comput. Syst.,
vol. 105, pp. 766–778, Apr. 2020.

[15] X. Yan and J. Han, ‘‘CloseGraph: Mining closed frequent graph patterns,’’
in Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2003, pp. 286–295.

[16] N. E. I. Karabadji, S. Aridhi, and H. Seridi, ‘‘A closed frequent subgraph
mining algorithm in unique edge label graphs,’’ in Proc. Int. Conf. Mach.
Learn. Data Mining Pattern Recognit., 2016, pp. 43–57.

[17] A. Bendimerad, M. Plantevit, and C. Robardet, ‘‘Mining exceptional
closed patterns in attributed graphs,’’ Knowl. Inf. Syst., vol. 56, no. 1,
pp. 1–25, Jul. 2018.

[18] N. Acosta-Mendoza, A. Gago-Alonso, J. A. Carrasco-Ochoa,
J. F. Martínez-Trinidad, and J. E. Medina-Pagola, ‘‘Mining generalized
closed patterns from multi-graph collections,’’ in Proc. Iberoamerican
Congr. Pattern Recognit. Cham, Switzerland: Springer, 2017, pp. 10–18.

[19] J. Demetrovics, H. M. Quang, N. V. Anh, and V. D. Thi, ‘‘An optimization
of closed frequent subgraph mining algorithm,’’ Cybern. Inf. Technol.,
vol. 17, no. 1, pp. 3–15, Mar. 2017.

[20] Z. A. Ansari and M. Abulaish, ‘‘An efficient subgraph isomorphism solver
for large graphs,’’ IEEE Access, vol. 9, pp. 61697–61709, 2021.

[21] E. Abdelhamid, I. Abdelaziz, Z. Khayyat, P. Kalnis, X. Wang, and
P. Kapanipathi, ‘‘Pivoted subgraph isomorphism: The optimist, the pes-
simist and the realist,’’ in Proc. EDBT, 2019, pp. 361–372.

[22] S. J. Nejad, F. Ahmadi-Abkenari, and P. Bayat, ‘‘A combination of frequent
pattern mining and graph traversal approaches for aspect elicitation in
customer reviews,’’ IEEE Access, vol. 8, pp. 151908–151925, 2020.

[23] F. Jie, C. Wang, F. Chen, L. Li, and X. Wu, ‘‘A framework for subgraph
detection in interdependent networks via graph block-structured optimiza-
tion,’’ IEEE Access, vol. 8, pp. 157800–157818, 2020.

[24] H. Guan, Q. Zhao, Y. Ren, and W. Nie, ‘‘View-based 3D model
retrieval by joint subgraph learning and matching,’’ IEEE Access, vol. 8,
pp. 19830–19841, 2020.

[25] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, ‘‘Private
analysis of graph structure,’’ ACM Trans. Database Syst., vol. 39, no. 3,
pp. 1–33, Oct. 2014.

[26] S. Velampalli and V. R. M. Jonnalagedda, ‘‘Frequent SubGraph mining
algorithms: Framework, classification, analysis, comparisons,’’ in Data
Engineering and Intelligent Computing. Singapore: Springer, 2018, pp.
327–336.

[27] A. Borrego, D. Ayala, I. Hernández, C. R. Rivero, and D. Ruiz, ‘‘CAFE:
Knowledge graph completion using neighborhood-aware features,’’ Eng.
Appl. Artif. Intell., vol. 103, Aug. 2021, Art. no. 104302.

[28] J. Fox, T. Roughgarden, C. Seshadhri, F. Wei, and N. Wein, ‘‘Finding
cliques in social networks: A new distribution-free model,’’ SIAM J. Com-
put., vol. 49, no. 2, pp. 448–464, Jan. 2020.

[29] B. P. L. Lau, A. K. Singh, and T. P. L. Tan, ‘‘A review on dependence
graph in social reasoning mechanism,’’ Artif. Intell. Rev., vol. 43, no. 2,
pp. 229–242, Feb. 2015.

[30] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, ‘‘GraMi:
Frequent subgraph and patternmining in a single large graph,’’Proc. VLDB
Endowment, vol. 7, no. 7, pp. 517–528, Mar. 2014.

[31] E. Abdelhamid, ‘‘Scalable frequent subgraph mining,’’ Ph.D. dissertation,
King Abdullah Univ. Sci. Technol., Saudi Arabia, 2017.

[32] J. R. Ullmann, ‘‘An algorithm for subgraph isomorphism,’’ J. ACM, vol. 23,
no. 1, pp. 31–42, Jan. 1976.

[33] L. B. Q. Nguyen, B. Vo, N.-T. Le, V. Snasel, and I. Zelinka, ‘‘Fast and
scalable algorithms for mining subgraphs in a single large graph,’’ Eng.
Appl. Artif. Intell., vol. 90, Apr. 2020, Art. no. 103539.

[34] N.-T. Le, B. Vo, L. B. Q. Nguyen, H. Fujita, and B. Le, ‘‘Mining weighted
subgraphs in a single large graph,’’ Inf. Sci., vol. 514, pp. 149–165,
Apr. 2020.

[35] E. Abdelhamid, M. Canim, M. Sadoghi, B. Bhattacharjee, Y. Chang,
and P. Kalnis, ‘‘Incremental frequent subgraph mining on large evolving
graphs,’’ IEEE Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2710–2723,
Dec. 2017.

[36] X. Yan and J. Han, ‘‘gSpan: Graph-based substructure pattern mining,’’ in
Proc. IEEE Int. Conf. Data Mining, Dec. 2002, pp. 721–724.

[37] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour,
‘‘ScaleMine: Scalable parallel frequent subgraph mining in a single large
graph,’’ in Proc. SC Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2016, pp. 716–727.

[38] F. Qiao, X. Zhang, P. Li, Z. Ding, S. Jia, and H.Wang, ‘‘A parallel approach
for frequent subgraph mining in a single large graph using spark,’’ Appl.
Sci., vol. 8, no. 2, p. 230, Feb. 2018.

[39] N. Talukder and M. J. Zaki, ‘‘Parallel graph mining with dynamic load
balancing,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016,
pp. 3352–3359.

[40] J. Li, Y. Liu, J. Pan, P. Zhang, W. Chen, and L. Wang, ‘‘Map-balance-
reduce: An improved parallel programming model for load balancing
of Mapreduce,’’ Future Gener. Comput. Syst., vol. 105, pp. 993–1001,
Apr. 2020.

[41] S. Reinhardt and G. Karypis, ‘‘A multi-level parallel implementa-
tion of a program for finding frequent patterns in a large sparse
graph,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007,
pp. 1–8.

[42] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki,
and A. Aboulnaga, ‘‘Arabesque: A system for distributed graph
mining,’’ in Proc. 25th Symp. Operating Syst. Princ., Oct. 2015,
pp. 425–440.

[43] N. Talukder and M. J. Zaki, ‘‘A distributed approach for graph mining
in massive networks,’’ Data Mining Knowl. Discovery, vol. 30, no. 5,
pp. 1024–1052, Sep. 2016.

[44] X. Zhao, Y. Chen, C. Xiao, Y. Ishikawa, and J. Tang, ‘‘Frequent subgraph
mining based on Pregel,’’ Comput. J., vol. 59, no. 8, pp. 1113–1128,
Aug. 2016.

[45] S. Ranu and A. K. Singh, ‘‘GraphSig: A scalable approach to mining
significant subgraphs in large graph databases,’’ in Proc. IEEE 25th Int.
Conf. Data Eng., Mar. 2009, pp. 844–855.

[46] X. Fan, Y. Li, J. Sun, Y. Zhao, and G. Wang, ‘‘Effective and efficient
Steiner maximum path-connected subgraph search in large social Internet
of Things,’’ IEEE Access, vol. 9, pp. 72820–72834, 2021.

[47] C. Bodnar, C. Cangea, and P. Liò, ‘‘Deep graph mapper: Seeing
graphs through the neural lens,’’ Frontiers Big Data, vol. 4, Jun. 2021,
Art. no. 680535, doi: 10.3389/fdata.2021.680535.

[48] Q.-T. Bui, B. Vo, V. Snasel, W. Pedrycz, T.-P. Hong, N.-T. Nguyen, and
M.-Y. Chen, ‘‘SFCM: A fuzzy clustering algorithm of extracting the shape
information of data,’’ IEEE Trans. Fuzzy Syst., vol. 29, no. 1, pp. 75–89,
Jan. 2021.

[49] Q.-T. Bui, B. Vo, H.-A.-N. Do, N. Q. V. Hung, and V. Snasel, ‘‘F-mapper:
A fuzzy mapper clustering algorithm,’’ Knowl.-Based Syst., vol. 189,
Feb. 2020, Art. no. 105107.

[50] D. Wu, J. Ren, and L. Sheng, ‘‘Uncertain maximal frequent subgraph
mining algorithm based on adjacency matrix and weight,’’ Int. J. Mach.
Learn. Cybern., vol. 9, no. 9, pp. 1445–1455, Sep. 2018.

[51] S. Salem, M. Alokshiya, and M. A. Hasan, ‘‘RASMA: A reverse search
algorithm for mining maximal frequent subgraphs,’’ BioData Mining,
vol. 14, no. 1, pp. 1–23, Dec. 2021.

[52] Y. Li, Q. Lin, R. Li, and D. Duan, ‘‘TGP: Mining top-K frequent closed
graph pattern without minimum support,’’ in Proc. Int. Conf. Adv. Data
Mining Appl., 2010, pp. 537–548.

[53] B. Güvenoglu and B. E. Bostanoglu, ‘‘A qualitative survey on fre-
quent subgraph mining,’’ Open Comput. Sci., vol. 8, no. 1, pp. 194–209,
Dec. 2018.

[54] P. Fournier-Viger, G. He, C. Cheng, J. Li, M. Zhou, J. C. Lin, and U. Yun,
‘‘A survey of pattern mining in dynamic graphs,’’ WIREs Data Mining
Knowl. Discovery, vol. 10, no. 6, Nov. 2020, Art. no. e1372.

[55] W. Fan, C. Hu, X. Liu, and P. Lu, ‘‘Discovering graph functional
dependencies,’’ ACM Trans. Database Syst., vol. 45, no. 3, pp. 1–42,
Sep. 2020.

LAM B. Q. NGUYEN received the M.Sc. degree
in information systems from the University of Sci-
ence, Vietnam National University, Ho Chi Minh
City, Vietnam, in 2015. He is currently pursuing
the Ph.D. degree with the Technical University of
Ostrava, Czech Republic. His research interests
include graph mining, data mining, parallel pro-
cessing, machine learning, and distributed com-
puting.

165732 VOLUME 9, 2021

http://dx.doi.org/10.3389/fdata.2021.680535

L. B. Q. Nguyen et al.: Method for Closed Frequent Subgraph Mining in Single Large Graph

LOAN T. T. NGUYEN received the B.Sc. and
M.Sc. degrees in computer science from Vietnam
National University, Ho Chi Minh City, Vietnam,
in 2002 and 2008, respectively, and the Ph.D.
degree in computer science from the Wroclaw
University of Technology, Poland, in 2015. From
October 2016 to September 2017, she was an
ERCIM Postdoctoral Researcher with the Uni-
versity of Warsaw, Poland. She was a Visiting
Researcher with NTNU, Norway, in March 2017.

She is currently a Lecturer with the School of Computer Science and
Engineering, International University—VNU-HCM, Vietnam. Her research
interests include association rules, classification, and mining in incremental
databases.

IVAN ZELINKA (Member, IEEE) is currently a
Professor of computer science at Modeling Evo-
lutionary Algorithms Simulation and Artificial
Intelligence, Faculty of Electrical and Electronics
Engineering, Ton Duc Thang University, Ho Chi
Minh City, Vietnam, and the Department of Com-
puter Science, FEECS, VSB-Technical Univer-
sity of Ostrava, Ostrava, Czech Republic. He is
a Chartered IT Professional at the British Com-
puter Society (www.bcs.org/). His field of exper-

tise is artificial intelligence, soft-computing, and cybersecurity. He is a
supervisor of a few research projects, including international projects.
He is also the supervisor of a research lab that consists of three pro-
fessors and Ph.D. students working on different projects. He is an edi-
tor of a few journals and an editor and a founder of a series of books
(http://www.springer.com/series/10624).

VACLAV SNASEL (Senior Member, IEEE) cur-
rently works in a multi-disciplinary environment
involving artificial intelligence, multidimensional
data indexing, conceptual lattice, information
retrieval, semantic web, knowledge management,
data compression, machine intelligence, neural
networks, web intelligence, data mining, and
applied to various real-world problems. His
research and development experience includes
over 25 years in the industry and academia. He has

given more than ten plenary lectures and conference tutorials in these areas.
He has authored/coauthored several refereed journal/conference papers and
book chapters. He has published more than 400 papers (147 is recorded
at Web of Science). He has supervised many Ph.D. students from Czech
Republic, Jordan, Yemen, Slovakia, Ukraine, and Vietnam.

HUNG SON NGUYEN received the Ph.D. and
D.Sci. (Habilitation) degrees, in 1997 and 2008,
respectively. He is currently working as a Pro-
fessor at the University of Warsaw. His main
research interests include fundamentals and appli-
cations of rough set theory, data mining, text
mining, bioinformatics, intelligent multiagent sys-
tems, soft computing, and pattern recognition.
On these topics, he has published more than
140 research papers in edited books and interna-

tional journals and conferences. He was involved in numerous research
and commercial projects, including dialog-based search engine (Nutech),
fraud detection for Bank of America (Nutech), logistic project for General
Motors (Nutech), Semantic Search Engine, Intelligent Decision Support
System for Firefighting in Poland, and RID—Development of Innovative
Transport System and Recommendation System for Fashion and Cosmetic
Branches. He is a fellow of the International Rough Set Society and amember
of the Editorial Board of international journals, including, Transactions
on Rough Sets, Data mining and Knowledge Discovery (2005–2008), and
ERCIM News, and Computational Intelligence. He is the Manager Editor
of Fundamenta Informaticae. He has served as the Program Co-Chair for
RSCTC’06, RSKT2012, and IJCRS2018, a PC Member for various other
conferences, including PKDD, PAKDD, AAMAS, RSCTC, RSFDGrC, and
RSKT, and a reviewer for many other journals.

BAY VO received the B.Sc., M.Sc., and Ph.D.
degrees in computer science from the Univer-
sity of Science, Vietnam National University,
Ho Chi Minh City, Vietnam, in 2002, 2005,
and 2011, respectively. He is currently an Asso-
ciate Professor and the Dean of the Faculty of
Information Technology, Ho Chi Minh City Uni-
versity of Technology (HUTECH), Vietnam. His
research interests include association rules, clas-
sification, mining in incremental database, dis-

tributed databases, graph mining, social network analysis and mining, and
preserving privacy in data mining. He was a PC Member of several confer-
ences, such as IJCAI, PAKDD, ICONIP, SMC, ICCCI, and ACIIDS. He is a
Manager Editor of Vietnam Journal of Computer Science and an Associate
Editor of ICIC Express Letters, Part B: Applications.

VOLUME 9, 2021 165733

