
Received November 1, 2021, accepted December 5, 2021, date of publication December 7, 2021,
date of current version December 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133630

Toward Reliable Programmable Logic Controller
Function Block Diagrams
JIANYONG ZHAO AND ZHE TAO
Institute of Intelligent and Software Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding author: Jianyong Zhao (zjy@hdu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2020YFB2010901, and in
part by the Key Research and Development Program of Zhejiang Province under Grant 2020C01031.

ABSTRACT Programmable logic controllers (PLCs) are widely used in industrial electronic systems. With
the augmenting complexity of system, the reliability poses a crucial challenge in safety critical applications.
This paper proposes a formal modeling and verification approach for programming function block diagrams.
Function block diagrams are formalized in a logic specification system. We consider the equivalence
checking problem which occurs frequently between design implementations under different performance
constraints. We present a novel method to harness a powerful co-induction proof strategy with bisimulation
to establish the equivalence in a higher-order logic theorem proving system. We validate the effectiveness of
our approach by a real industry application example with key scenarios. The soundness and the completeness
of our approach are substantiated.

INDEX TERMS Bisimulation, function block diagram, programmable logic controller.

I. INTRODUCTION
From nuclear and chemical plants to elevators, programmable
logic controllers (PLCs) are primary components in many
safety-critical control systems. Thus their failure may lead
to unacceptable consequences, such as huge loss of property,
life-threatening. Recently, we were asked to fix a PLC eleva-
tor control program following a serious accident with casual-
ties. We need to ensure that there are no more discrepancies
between the corrected program and its given specification.
But this task is nearly impossible to be done using traditional
empirical approaches like code review, testing and simula-
tion. Because these approaches are incapable of expressing
complex specifications and exhaustively verifying that imple-
mentations conform to their specifications. To ensure the cor-
rectness of this system, we investigated formal methods and
designed a novel and rigorous methodology in Coq [1] (an
interactive theorem prover combines higher-order logic and
richly-typed functional programming language). The Coq has
been widely applied in systems such as industrial control
systems [2], [3] and SCADA [4]. With the assist of the Coq,
we have successfully verified the correctness of the corrected
elevator control program.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

In this paper, we present a novel methodology to ver-
ify Function Block Diagram (FBD) programs in real-time
control systems conform to given specifications. First, we
propose a coinduction execution model to characterize time-
dependent behaviors. Then we formalize an FBD program
and its given specification into this model. Finally, we prove
the equivalence relation using bisimulation. The specific
challenges and contributions of this work are the following:
• How to formalize FBD programs: FBD [5] is a graph-
ical PLC programming language that derives from
signal-flow graph (SFG) [6], but more flexible and oper-
ational. While an SFG strictly represents a set of linear
algebra equations, FBD is less constrained. For example,
FBD consists of a list of networks whose execution order
might be non-deterministic. These features prevent us
from completely defining the formal semantics of FBD.
Thus, our formalization considers a deterministic subset
of FBD. We assume that 1) the list of FBD networks
is executed in sequential; 2) the feedback paths are
sampled at the end of a scan cycle. This paper proposes a
novel method to model the deterministic FBD programs
into Mealy machines.

• How to model the execution of PLC programs: Differing
from other controllers, PLC executes programs repeat-
edly in cycles. The control programs of real-time PLC
systems like elevators are typically non-terminating.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 166137

https://orcid.org/0000-0002-1379-0940
https://orcid.org/0000-0002-0026-2284

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

They are designed to react to input signals cyclically,
continuously and infinitely. We propose a coinduction
model to formalize the execution of real-time PLC con-
trol programs.

• How to define and prove the equivalence relation: The
behavior of real-time PLC programs is time-dependent.
So, our equivalence relation should express this time-
dependent behavior. Because our PLC execution model
is cycle-based, we use the cycle-dependent equivalence
to express the time-dependent equivalence. We assume
each cycle of PLC execution takes a constant unit period.
In fact, each cycle takes some time to complete the
program in PLCs one time. Then we use bisimula-
tion to define the time-dependent equivalence of two
execution models. This paper proposes a method to
model the given specification into a Mealy machine and
prove the bisimulation of an FBD program and its given
specification.

There have been already many valuable attempts [7] to apply
formal methods on PLC systems for various purposes, such
as testing [8], engineering [9], [10], and validation [11]. The
existing works which formalize and verify PLC programs
have trade-offs and are not universally applicable. They can
be divided into two categories: theorem proving and model
checking. Most of them adopt model checking [12]–[16].
They typically transformed a PLC program into a finite-state
transition system, which is called state space. This space con-
tains all states that a system can reach. Then they used model
checking tools to exhaustively and automatically check if
every state satisfies the specification given in temporal logic.
Model checking provides a ‘‘push-button’’ solution but can
easily encounter the combinatorial explosion problem caused
by its brute state space exploration [17], because the state
space of a Real-time PLC program can be enormous and
exponentially grow in the number of state variables. The
application of model checking is limited in certain kinds of
verification works.

To avoid this problem, we adopt theorem proving to handle
complex PLC systems, but related works are relatively few.
Wan et al. [18] abstracted and verified timer-related behavior
of ladder diagram (LD) programs in Coq. They presented a
detailed analysis of a quiz machine with timers and proved its
time-dependent correctness. Their formalization is program-
specific, which means that different programs derive differ-
ent sets of axioms and propositions. By comparison, our
syntax-based modeling of FBD programs is general and can
be automated.

In [19], Wan presented an approach to model PLC pro-
gramming elements using inductive dependent-type in Coq.
Specification and verification are modularized and parame-
terized. We generalize this approach to hierarchically model
FBD programs and construct proofs.

Newell et al. [20] and Pang et al. [21] coped with FBD
programs. They formalized FBD and ST programs into the
prototype verification system (PVS), defined specifications
in tabular expressions and presented a detailed case study.

But there are some drawbacks in their formalization of FBD.
They defined a delay function to implement function blocks
like the flip-flop, timer and counter block rather than support
internal variables of FBD. Consequently, the applicability of
their FBD formalization is limited. By comparison, our FBD
formalization is more practical and applicable. Our method
uses dependent types to support FBD programs with internal
variables and internal instances of stateful function blocks
like timers.

Besides Newell and Pang’s work [20], [21], there are other
works involving the formalization of FBD. Some of them are
lack details. Yoo et al. [22] presented a high-level framework
and a case study to verify the equivalence between FBD
programs using model checking. But they did not describe
details of their formalization and verification. Others are
not practical enough. Soliman et al. [16] defined an abstract
syntax of FBD. They disassemble the structure of FBD as
function blocks and connections between them. Then they
presented a transformation from FBD to a large number
of timed automatons for model checking purposes, which
simply defines every connection of two function blocks as
a timed automaton. Pavlović and Ehrich [15] presented a
method to transform FBDprograms into a text form formodel
checking purpose. But they only considered basic functions
like arithmetic and Boolean operation. They ignored lots of
distinguished FBD features like function blocks and feedback
paths. This formalization made FBD just an alternative form
of assignment statements and expressions of common imper-
ative languages.

Overall, the novelties of our work are the following:
• We present a novel formalization of FBD programs with
details. Our formalization is more practical and applica-
ble than existing works.

• We propose a novel method with details to verify the
equivalence between FBD programs and their given
specifications, which have not been explored previously.
Our method considers key features of PLC real-time
control systems like non-terminating execution and
time-dependent behavior. This method can verify com-
plex PLC programs.

Our work fills the vacancy of the effective formalization
and formal equivalence verification of real-time FBD pro-
grams using theorem proving. It is structured as follows.
Section II discusses some key features of PLC. Section III
defines the infinite trace, bisimilarity, and execution model
in Coq. Section IV illustrates how to formalize standard
graphical blocks. Section V demonstrates the formalization
of FBD implementations and specifications with an exam-
ple. Section VI presents the proof script of bisimilarity.
Section VII presents our conclusions and directions for future
work.

II. PROGRAMMABLE LOGIC CONTROLLERS
A. EXECUTION SCHEMA
A PLC system executes in a periodic schema, which repeats
the scan cycle. The scan cycle consists of three steps: input

166138 VOLUME 9, 2021

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

scan, user program scan, and output scan. In order to verify
the equivalence between an FBD program and a given speci-
fication, we assume the execution of PLC is non-terminating
and use coinduction to model it.

B. FUNCTION BLOCK DIAGRAM
IEC 61131-3 defines five programming languages for various
purposes. It includes two textual languages, ST and instruc-
tion list (IL); two graphical languages, LD and FBD; and
a mixed language, SFC which can be specified in textual
or graphical forms [5]. Currently, we only consider PLC
programs implemented in FBD because it is widely used and
compatible with LD. Additionally, there are many studies
applied to other textual languages, but the study in graphical
languages is in a relatively early stage.

C. PROGRAM ORGANIZATION UNITS
In PLC programming, programs are implemented as pro-
gram organization units (POUs), which are reusable struc-
tured elements. There are several kinds of POUs defined in
IEC 61131-3 for the purpose of modularization. Commonly,
a POUhas awell-defined purpose and an interfacewith inputs
and outputs. These POUs include Functions (FC), Function
Blocks (FB), and Programs [5]. Accordingly, our specifica-
tions and verifications are also modularized, parameterized
and reusable for further developments. IEC 61131-3 defines
a series of standard functions and function blocks as standard
programming blocks, and they are used as basic units in this
investigation.

III. PRELIMINARIES
For easier understanding and reading, we introduce some
preliminaries in this section, where timing behavior, infi-
nite trace, bisimilarity, and execution model in Coq are
introduced.

A. TIME
Timing behavior is crucial to real-time systems. Since PLC
executes in cycles [5], we model time in a discrete manner.
We assume that each scan cycle goes through a unit of time
encoded as a natural number, because the exact period of
each cycle is implementation-dependent but time increases
monotonically. The modeling details of timer behavior are
presented in Section IV.

B. INFINITE TRACES
In this work, the input and output sequences of PLC programs
during the non-terminating execution are specified as infinite
traces.

We adopt the definition of the ω-language and define
infinite traces as ω-words (words of infinite length [23]).
ω-languages are sets of ω-words. We assume that ω =
{0, 1, 2, · · · } denotes the set of natural numbers, and that
6 = {σ0, σ1, σ2, · · · } is a finite alphabet. 6∗ is the set of all
finite words over 6, while 6ω is the set of all infinite words

over6. X6 ∈ 6ω denotes an infinite trace (ω-word) over the
alphabet 6 and has length |X6 | = ω.
A short tutorial to Coq can be found in [24]. we briefly

introduce some basic commands in the following descrip-
tions. In Coq, we define 6ω as a coinductive type of infinite
trace (lines 1-2). The coinductive definition of trace includes
all possible infinite traces. Each possible infinite trace of trace
can be defined without specifying every term and justified by
applying finite or infinite numbers of coinductive rules:

1 CoInductive trace (A: Type): Type:=
2 | Cons: A -> trace A -> trace A.
3 Notation ‘‘x ’:::’ X’’:= (Cons x X’) (at

level 20).
4 Definition head (X: trace):=
5 match X with Cons a _ => a end.
6 Definition tail (X: trace):=
7 match X with Cons _ a => a end.

We use the command CoInductive to define 6ω as a coin-
ductive type trace with a constructor Cons. The constructor
Cons constructs an infinite trace by concatenating an ele-
ment with another infinite trace. Additionally, the command
Notation defines an infix notation ::: of the constructor Cons
(line 3).

We define two functions head and tail (line 4-7) to speci-
fied infinite traces, e.g., an infinite trace X6 = σ0, σ1, σ2, · · ·
is specified as the head term head(X6) = σ0 with the tail
trace tail(X6) = σ1, σ2, · · · .

C. BISIMULATION
Bisimulation is a rich concept of behavioral equivalence.
Originally, it is introduced by Milner [25] as the notion
of behavioral equivalence between processes. Today it has
been employed in various areas of computer sciences in
various forms. We use the bisimulation equity, called bisimi-
larity, on infinite traces to define the behavioral equivalence
between FBD programs and given specifications.
Definition 1 (Bisimilarity on Infinite Traces): A bisimilar

on infinite trace is a relation∼⊆ 6ω×6ω that if s ∼ t , then
head(s) = head(t) and tail(s) ∼ tail(t).
The bisimilarity is defined as a coinductive predicate

Bisimilar in Coq.
1 CoInductive Bisimilar {T: Type}
2 (X1 X2: trace T)
3 : Prop:=
4 | bisimilar: (head X1) = (head X2) ->
5 Bisimilar (tail X1) (tail X2) ->
6 Bisimilar X1 X2.

D. POU EXECUTION MODEL
Definition 2 (Syntax of POU): A POU can be represented

as P = V ∪ Prog, where
• V = Vin∪Vout ∪Vintl is the set of variable declarations,
which consist of input variables Vin, output variables
Vout , and internal variables Vintl , and

• Prog is the program body.
The POU variables V are of various data types, and the

program body Prog can be implemented in several PLC pro-
gramming languages. In the following sections, we describe

VOLUME 9, 2021 166139

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

our methodology to formalize them into an execution model.
We formalize the semantics of a POU based on a Mealy
machine.
Definition 3 (Mealy Machine): A Mealy machine [26] is

a 5-tupleM = (I ,O, S, s0, trans), where

• I is the finite set of inputs,
• O is the finite set of outputs,
• S is the finite set of states,
• s0 ∈ S is the initial state, and
• trans : I × S → O× S is the state transition function.

In this paper we use i, o, and s to denote the elements of I , O,
and S, respectively.

According to the periodic and non-terminating execution
schema of the PLC system, we define a coinductive execution
model to characterize the POU’s execution behavior. The
observable input and output sequences of the infinite execu-
tion cycles are defined as infinite input and output traces.
Definition 4 (Execution Model): The execution model of

a POU is a 6-tuple E = (I ,O, S, s0, trans, exec) emulates
the infinite execution of PLC programs. It extends the Mealy
machine with an execution function exec : Iω × S → Oω.
This execution function corecursively yields an infinite out-
put trace with an infinite input trace and an initial state.
Given an input trace XI ∈ Iω and an output trace
XO ∈ Oω, exec is defined with the transition function trans
as

XO = exec(XI , s0),

where

(head(XO), s′) = trans(head(XI), s0),

tail(XO) = exec(tail(XI), s′).

This execution model is defined in Coq as

1 Module Type ProgramOrganizationUnit.
2 Parameters I O S: Type.
3 Parameter s0: S.
4 Parameter trans: I -> S -> O * S.
5 Parameter exec: trace I -> S -> trace O

.
6 Parameter o_default: O.
7 End ProgramOrganizationUnit.

o_default is an assistant definition denoting the default out-
put value. It will be used in the formalization of FBD pro-
grams in Section V-A.

In Coq, the command Module Type defines a list
of parameters and axioms, which is called the signa-
ture of a module. A module of a module type is an
implementation of the signature of this module type.
POUs are implemented as modules in Coq, which have
ProgramOrganizationUnit as their signatures, as shown in this
example:

1 Module ExamplePOU <: ProgramOrganizationUnit
.

2 (*definitions*)
3 End ExamplePOU.

Additionally, an assistant function build_exec is defined to
build the execution function exec with the transition function
trans :

1 CoFixpoint build_exec {I O S: Type}
2 (trans: I -> S -> O * S)
3 (XI: trace I) (s: S)
4 : trace O:=
5 match XI with
6 | i::: XI’ =>
7 let (o, s’):= trans i s in
8 let XO’:= build_exec trans XI’ s’ in
9 o::: XO’
10 end.

IV. STANDARD GRAPHICAL BLOCKS
In this section, we formalize standard graphical blocks in
Coq, including standard functions and standard function
blocks. These blocks are reusable POUs of FBD programs.

A. STANDARD FUNCTION
Definition 5 (FC): As a type of POU, the syntax of a PLC

function can be represented as P = V ∪ Prog.
IEC 61131-3 specifies a series of standard functions

including numerical and arithmetic functions, bit Boolean
functions, and selection and comparison functions. Take the
standard function AND (Boolean and operator) as an exam-
ple, we formalize PAND = V ∪Prog into its execution model
EAND = (I ,O, S, s0, trans, exec), as shown in Fig. 1.

FIGURE 1. Standard Boolean and function AND.

1) FORMALIZE VARIABLES V
We use the input variables Vin to define the input set I and
the output variables Vout to define the output setO. For Vin =
{in1, in2, · · · , inn}, then I =

∏n
i=1 dom(ini), where dom(ini)

is the domain of the variable ini.
In most cases, the internal variables will be retained

with the POU instance, with the state set S defined by the
internal and output variables Vintl and Voutput (i.e., S =∏m

i=1 dom(intl i) ×
∏n

i=1 dom(out i)). However, the internal
variables of PLC functions are temporal. Therefore, we only
use Vout to define the state set S of PLC functions (i.e.,
S =

∏n
i=1 dom(out i)).

The AND function presented previously has Vin =

{IN1, IN2}, Vout = {OUT }, and Vintl = ∅, where IN1, IN2,
and OUT are Boolean values. Therefore, I = B×B, O = B,
and S = B, where B is the Boolean domain.
Although PLC program languages support many data

types, we consider only Booleans, natural numbers, and dura-
tions (time) here. In Coq, Booleans are defined values of type

166140 VOLUME 9, 2021

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

bool, and natural numbers and durations are defined as values
of type nat. We define sets, such as I , O, and S, using record
types. We define I ,O, S, s0 and the default output o_default
of the AND function as follows:

1 Record I_proto: Type:= mk_i{IN1:bool; IN2:
bool}.

2 Record O_proto: Type:= mk_o{OUT:bool}.
3 Record S_proto: Type:= mk_s{_OUT:bool}.
4 Definition I:= I_proto.
5 Definition O:= O_proto.
6 Definition S:= S_proto.
7 Definition s0:= {|_OUT:= false|}.
8 Definition o_default:= {|OUT:= false|}.

The variables are defined as fields (e.g., IN1, IN2) of
record types (e.g., I_proto). We define a set by specifying
values of each field and obtain the value of s0’s field _OUT
with (_OUT s0). Additionally, we define a series of helper
notations for each field that allows us to modify the value of
s0’s _OUT field using the simple assignment (s0&{|_OUT:=
true|}). Using record types to define sets of variables reduces
confusion when defining, accessing, and modifying them.

2) FORMALIZE PROGRAM BODY Prog
The behavior of standard functions are defined in
IEC 61131-3, but their implementations (i.e., program body
Prog, which defines the transition function trans and the
execution function exec of execution model) are vendor-
specific. Therefore, we implement the behavior of standard
functions in Coq according to IEC 61131-3. As an example,
AND accepts two Booleans as input and returns their Boolean
and result. We use the Boolean and function andb in the Coq
standard library to implement it. The transition function trans
of AND is defined as a function trans in Coq. The definition
detail is omitted and represented instead by . . . to save space.

1 Definition trans (i: I) (s: S): O * S:= \
ldots

The execution function exec is defined using the assistant
function build_exec with trans as a corecursive function
exec.

1 Definition exec:= build_exec trans.

B. STANDARD FUNCTION BLOCK
Definition 6 (FB): As a type of POU, a FB can be repre-

sented as P = V ∪ Prog.
IEC 61131-3 also specifies a series of standard function

blocks including bistable elements, edge detection routines,
counters, and timers. Taking the TON (on-delay timer) FB as
an example, we use the approach presented in the preceding
subsection to formalize PTON = V ∪ Prog into its execution
model ETON = (I ,O, S, s0, trans, exec), as shown in Fig. 2.

1) FORMALIZE VARIABLES V
Similar to standard functions, the input set I , the output set
O, and the state set S of execution models are defined using
the variables V in FBs.

FIGURE 2. On-delay timer TON.

Taking the TON (on-delay timer) FB as an example, the
function requires an enable signal IN and a preset time PT as
input variables Vin = {IN ,PT } and yields a timeout signal
Q and an elapsed time ET as output Vout = {Q,ET }, where
IN and Q are Boolean values and PT and ET are durations.
It has no internal variables, so Vintl = ∅. Therefore, the input
set I = B × N, the output set O = B × N, and the state
set S = B × N, where B and N are Boolean and natural
number domains.We define I ,O, S, s0, and the default output
o_default of TON as follows:

1 Record I_proto: Type:= mk_i{IN:bool; PT:nat
}.

2 Record O_proto: Type:= mk_o{Q:bool; ET:nat}.
3 Record S_proto: Type:= mk_s{_Q:bool; _ET:nat

}.
4 Definition I:= I_proto.
5 Definition O:= O_proto.
6 Definition S:= S_proto.
7 Definition s0:= {|_Q:= false; _ET:= 0|}.
8 Definition o_default:= {|Q:= false; ET:=

0|}.

FIGURE 3. Timing diagram of TON function.

2) FORMALIZE PROGRAM BODY Prog
Informally, the behavior of the TON function is described
in a timing diagram (Fig. 3). Once IN rises and holds true,
ET increases from 0. If IN becomes false, ET is reset to 0.
Only if ET≥ PT is the timeout signal Q true. We assume that
the outputs of timers are sampled at the ending of each scan
cycle and affect the next scan cycle, and formally define the
transition function trans of TON as a function trans in Coq.

1 Definition trans (i: I) (s: S): (O * S):= \
ldots

Its execution function exec is defined using the helper
function build_exec with trans as a corecursive function
exec.

1 Definition exec:= build_exec trans.

VOLUME 9, 2021 166141

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

V. FBD IMPLEMENTATIONS AND SPECIFICATIONS
In this section, we describe in detail the method of formal-
izing an FBD implementation and its specification into the
POU execution model.

In practice, we implemented a syntax-based translator to
parse the XML file of FBD programs and translate them
to Coq definitions, where the XML file is the storage form
of FBD program which is standardized by IEC 61131-3,
and FBD components and Coq definitions have a one-to-one
correspondence. We used it to formalize our elevator control
system and chose a door control FB block fb_close_delay
(Fig. 4) as an example.

Informally, this block provides a function to determine
when to send a signal to close the elevator door after it has
opened. Once the block receives the enable signal that the
door has been opened, the first delay duration (force-open)
begins. During this initial force-open period, 1) the block will
not send the close signal; and 2) if it receives a signal to open
the door, the elapsed time of this duration will reset. Once
the force-open duration ends, the second duration (keep-open)
begins. In this keep-open duration, 1) if the block receives a
signal to close the door, or the keep-open duration ends, it will
send the close signal; and 2) if it receives a signal to open
the door, the elapsed time of this duration will reset. These
two durations run only when the enable signal holds true;
otherwise, the program will be reset to the initial (disabled)
state.

Although it is relatively small, its behavior involving tim-
ing is well-defined, and its complexity is suitable for us
to describe our formalism to FBD programs. Therefore,
we choose it to demonstrate how we formalize a graphical
program and encode the function it expresses.

A. FBD IMPLEMENTATIONS
Definition 7 (Syntax of FBD-Implemented POU): APOU

implemented in FBD can be represented as P = V ∪ Prog,
where

• V = Vin ∪ Vout ∪ Vintl is the declaration of variables,
and

• Prog = ∪ni=1Ntwk i is the program body which consists
of FBD networks.

• Ntwk is an FBD network composed of graphical blocks,
including standard functions, standard function blocks,
and user-defined blocks.

Additionally, we assume that the FBD networks Ntwk i in Prog
are sorted by their execution order.

Using fb_close_delay as an example, we now illustrate
how to formalize an FBD-implemented POU Pclose_delay =
V ∪ Prog into the POU execution model and Eclose_delay =
(I ,O, S, s0, trans, exec) in two steps.

1) FORMALIZE VARIABLES V
We formalize fb_close_delay ’s variables V in a manner simi-
lar to the preceding section. fb_close_delay takes three input

variables Vin = {opened, open_request, close_request},
where we define the following:
• opened: a Boolean value denoting the elevator door has
been opened.

• open_request: a Boolean value denoting the request to
open the elevator door.

• close_request : a Boolean value denotes the request to
close the elevator door.

Therefore, the input set is I = B × B × B, which produces
an output variable Vout = {close}, where close is a Boolean
value indicating a signal to close the elevator door. Thus, the
output set O = B.

fb_close_delay has four internal variables Vintl =

{timeout_force, timeout_keep, force, keep}, where we define
the following:
• force and keep: TON instances, which count the force-
open and keep-open durations.

• timeout_force and timeout_keep: Boolean variables
indicating when the force-open and keep-open durations
have ended.

Therefore, the state set is S = B × B × STON × STON × B,
where STON is the state set of TON’s execution model ETON .

We predefine I_common and O_common in Coq from
module FB_CLOSE_DELAY, which will be used to define
I and O of the FBD implementations and specifications.
We define the constants pt_force and pt_keep, which are the
preset timeout of two timers:

1 Record I_common: Type:=
2 mk_in{OPENED: bool;
3 OPEN_REQUEST: bool;
4 CLOSE_REQUEST: bool}.
5 Record O_common: Type:=
6 mk_out{CLOSE: bool}.
7 Definition pt_force: TIME:= 10.
8 Definition pt_keep: TIME:= 5.

We define I ,O, S, s0, and the default output o_default
with I_common and O_common in Coq as follows:

1 Record S_proto: Type:=
2 mk_st{TIMEOUT_FORCE: bool;
3 TIMEOUT_KEEP: bool;
4 TON_FORCE: TON.S;
5 TON_KEEP: TON.S;
6 _CLOSE: bool}.
7 Definition I:= I_common.
8 Definition O:= O_common.
9 Definition S:= S_proto.
10 Definition s0: S:= \ldots
11 Definition o_default:= \ldots

2) FORMALIZE PROGRAM BODY Prog
The implementation of fb_close_delay has two FBD net-
works; that is, Prog = Ntwk1 ∪ Ntwk2. We define an evalua-
tion function eval i : I×O×S → O×S for each FBD network
Ntwk i. Each network takes the input i of this cycle, the output
o and the state s updated by last network (or the default output
odefault and the initial state s of this cycle, in terms of the first
network), updates o and s during its execution, and returns
the new output o′ and the new state s′. The transition function
trans will be defined with these evaluation functions.

166142 VOLUME 9, 2021

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

FIGURE 4. FBD implementation of FB fb_close_delay.

Every FBD network is composed of interconnected graph-
ical blocks. According to the evaluation rules for FBD net-
works, a network or block in a network will be evaluated
once all its inputs are produced by previous blocks or received
from the periphery. We assume that the FBD networks Ntwk i
in Prog are sorted by their execution order. In terms of
fb_close_delay , its first network Ntwk1 has four blocks in
which the negative symbol of the input variable open_request
denotes a NOT block. They will be evaluated in the following
order: NOT, AND, TON (named force), TON (named keep).
The evaluation function eval1 of Ntwk1 is defined as follows
in Coq:

1 Definition eval1 (i: I) (cont: O * S)
2 : O * S:= let (o, s):= cont in
3 let (o_NOT, _):=
4 NOT.trans {|NOT.IN:=OPEN_REQUEST i|} NOT.s0

in
5 let (o_AND, _):=
6 AND.trans {|AND.IN1:=NOT.OUT o_NOT;
7 AND.IN2:=OPENED i|} AND.s0 in
8 let (o_TON_FORCE, s_TON_FORCE):=
9 TON.trans {|TON.IN:=AND.OUT o_AND;
10 TON.PT:=pt_force|}(TON_FORCE s) in
11 let (o_TON_KEEP, s_TON_KEEP):=
12 TON.trans {|TON.IN:=TON.Q o_TON_FORCE;
13 TON.PT:=pt_keep|} (TON_KEEP s) in
14 (o, s & {|TIMEOUT_FORCE:= TON.Q o_TON_FORCE

|}
15 & {|TIMEOUT_KEEP:= TON.Q o_TON_KEEP|}
16 & {|TON_FORCE:= s_TON_FORCE|}
17 & {|TON_KEEP:= s_TON_KEEP|}).

where these FBs are encoded in line 3-4, 5-7, 8-10, 11-13,
and the output and state are updated in line 14-17. The
evaluation functions of the other networks are defined in the
same manner. These evaluation functions are defined as a list
evals in Coq:

1 Definition eval2 (i:I)(cont:O * S):O * S:= \
ldots

2 Definition evals:= (eval1::eval2::nil)%list.

After defining the evaluation functions of each network,
we define an assistant function build_trans to construct the
transition function trans as a function trans in Coq with
the list of evaluation functions evals and the default output
o_default :

1 Definition build_trans {I O S: Type}
2 (evals: list (I -> O * S -> O * S))

3 (o_default: O) (i: I) (s: S)
4 : O * S:=
5 (fix f (evals: list (I -> O * S -> O * S))
6 (i: I) (cont: O * S) {struct evals}
7 : O * S:=
8 match evals with
9 | (eval:: evals’)
10 let cont’:= eval i cont in
11 f evals’ i cont’
12 | nil => cont
13 end) evals i (o_default,s).

Finally, the transition function trans and the execu-
tion function exec of fb_close_delay are defined as
follows:

1 Definition trans:= build_trans evals
o_default.

2 Definition exec:= build_exec trans.

B. FBD SPECIFICATIONS
Definition 8 (Specification of POU): The specification of

a POU is modeled as an execution model Espec =

(I ,O, S, s0, trans, exec).
We continue with the fb_close_delay example. Using

the informal description of its behavior from the begin-
ning of the section, we now model its specification for-
mally in the execution model Espec. We use Eimpl to
denote the execution model we formalized in the preceding
subsection.

The input set Ispec and output setOspec of Espec are identical
to Eimpl . Given a natural number et ∈ N, the state set
Sspec = (unopened, force_open(et), keep_open(et)) contains
three states, where we define the following:
• unopened ∈ Sspec denotes that the elevator door is not
yet completely open.

• force_open(et) denotes that the elevator door has been
in the force-open duration for an elapsed time et , where
force_open : N→ Sspec.

• keep_open(et) denotes that the elevator door has been
in the keep-open duration for an elapsed time et , where
keep_open : N→ Sspec.

• closing ∈ Sspec denotes the intermediate state before a
door closing signal takes effort. This state characterizes
the one-cycle delay behavior of explicit/implicit feed-
back paths.

VOLUME 9, 2021 166143

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

We define Ispec, Ospec, and Sspec in Coq as follows:

1 Definition I:= I_common.
2 Definition O:= O_common.
3 Definition o_default:= o_default.
4 Inductive S_proto: Type:=
5 | FORCE_OPEN: TIME -> S_proto
6 | KEEP_OPEN: TIME -> S_proto
7 | UNOPENED: S_proto
8 | CLOSING: S_proto.
9 Definition S:= S_proto.
10 Definition s0: S:= UNOPENED.

FIGURE 5. Transition diagram of fb_close_delay’s specification.

We formalize the informal behavior described at the begin-
ning of this section as transition rules 1 through 10 in the
transition diagram (Fig. 5), where nodes denote states and
arrows denote transition rules. In Table 1, we describe these
transition rules in detail. The → column denotes transi-
tion rules. Columns s and s′ denote the states that a tran-
sition rule transfers from and to, respectively. The column
input/output denotes the input and output set of this tran-
sition rule, where the terms of input set are ordered by
opened, open_request, close_request, closing. We use 1 and
0 to denote true and false of Boolean variables. The notation _
means the value of this input variable is omitted in this
transition rule. pt force and ptkeep are the preset timeouts of
force-open and keep-open durations.
Taking transition rule 2 as an example, given an elapsed

time et ∈ N, a transition from force_open(et) to
force_open(et + 1) with output {0} happens only when
et < pt force and input is {1, 0, _}. The transition function
transspec is encoded in Coq as follows according to these
transition rules:

1 Definition trans (i: I) (s: S): (O * S):=
2 if negb (OPENED i) then
3 ({|CLOSE:= false|}, UNOPENED)
4 else match s with
5 | FORCE_OPEN et =>
6 if OPEN_REQUEST i then
7 ({|CLOSE:= false|}, FORCE_OPEN 1)

8 else if ge_dec et pt_force then
9 ({|CLOSE:= false|}, KEEP_OPEN 1)
10 else
11 ({|CLOSE:= false|}, FORCE_OPEN (et+1))
12 | KEEP_OPEN et => \ldots
13 | UNOPENED => \ldots
14 end.

where lines 6-7, 8-9, 10-11 encodes transition rules 3, 2, 9.
Other codes are omitted to save space.

The execution function execspec is defined using the assis-
tant function build_exec with trans as a corecursive function
exec.

1 Definition exec:= build_exec trans.

VI. EQUIVALENCE VERIFICATION
In this section, we present formal equivalence verification
between FBD programs and given specifications. Because
we assume that each scan cycle goes through a constant
unit period, we use cycle-dependent behavior to express
time-dependent behavior. The time-dependent equivalence is
defined as bisimilarity (defined in Section III-C) on infinite
traces. The outline of equivalence proof is the following.

A. CORRESPONDING STATES
Before proving the equivalence between FBD implementa-
tion Eimpl and specification Espec, we need to relate their
states. We define a relation Corr to specify that when two
states are corresponding.
Definition 9 (Corresponding Relation Between States):

Given two state sets S1 and S2, the corresponding relation
Corr ⊆ (S1 × S2) means that when s1 ∈ S1, s2 ∈ S2,
(s1, s2) ∈ Corr implies that s1 and s2 are corresponding.
For example, if Sspec = keep_open t , then a corresponding

Simpl should satisfy:

• Simpl .timeout_force = true
• Simpl .timeout_keep = false
• Simpl .ton_keep.et = t
• Simpl ._close = false

We define the corresponding relation of Simpl and Sspec as
a predicate isCorr in Coq.:

1 Inductive isCorr: CLOSE_DELAY_impl.S ->
CLOSE_DELAY_spec.S -> Prop:=

2 | IsCorr: forall (s_impl: CLOSE_DELAY_impl.S
) (s_spec: CLOSE_DELAY_spec.S),

3 \ldots -> isCorr s_impl s_spec.

B. PROOF OUTLINE
Take the FBD implementation Eimpl and the given spec-
ification Espec from Section V as example. They are
formalized in our coinduction execution model E =

(I ,O, S, s0, trans, exec) (defined in Section III-D). We use
the bisimilarity on their output traces to characterize their
equivalence. Assume that:

• They have the same input trace I whose head element
is i.

166144 VOLUME 9, 2021

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

TABLE 1. Transition rules of fb_close_delay’s specification.

• Their initial states are corresponding:
(s_0impl, s_0spec) ∈ Corr .

The equivalence between Espec and Eimpl is formally
defined as the theorem CLOSE_DELAY_eq:

1 Theorem CLOSE_DELAY_eq:
2 forall (XI: trace I_common)
3 (s_impl: CLOSE_DELAY_impl.S)
4 (s_spec: CLOSE_DELAY_spec.S),
5 isCorr s_impl s_spec ->
6 Bisimilar (CLOSE_DELAY_impl.exec XI s_impl)
7 (CLOSE_DELAY_spec.exec XI s_spec).

This theorem is true if and only if the following two
lemmas are true:

• head_equivalent : The head element of two output traces
are equal:

1 Lemma head_equivalent:
2 forall (XI: trace I_common)
3 (s_impl: CLOSE_DELAY_impl.S)
4 (s_spec:
5 CLOSE_DELAY_spec.S),
6 isCorr s_impl s_spec ->
7 eq (head
8 (CLOSE_DELAY_impl.exec XI s_impl))
9 (head
10 (CLOSE_DELAY_spec.exec XI s_spec)).

• state_invariant : For arbitrary corresponding state pair
(simpl, sspec) ∈ Corr , the next state pair (s′impl, s

′
spec) still

satisfies (s′impl, s
′
spec) ∈ Corr :

1 Lemma state_invariant:
2 forall (i: I_common)
3 (s_impl: CLOSE_DELAY_impl.S)
4 (s_spec: CLOSE_DELAY_spec.S),
5 isCorr s_impl s_spec ->
6 isCorr
7 (snd (CLOSE_DELAY_impl.trans i s_impl))
8 (snd (CLOSE_DELAY_spec.trans i s_spec)).

The proof of the theorem CLOSE_DELAY_eq starts with
the tactic cofix coH,which introduces the goal as an assump-
tion in the current context. The use of this assumption should
satisfy the guardedness condition, which means the result
type of proof must be of the coinductive type and all recursive
calls must occur inside one of the arguments of a constructor
of the coinductive type.

We then introduce the local variables and premises of the
implications and apply the constructor bisimilar to destruct

the current goal into two sub-goals. The first sub-goal is the
equivalence between the head terms of two output traces:

1 \ldots
2 ============================
3 eq (head (CLOSE_DELAY_impl.exec XI s_impl))
4 (head (CLOSE_DELAY_spec.exec XI s_spec))

This can be solved by applying the lemma head_equivalent .
The second sub-goal is the bisimulation between the tail

traces of the output traces:
1 \ldots
2 ============================
3 Bisimilar (tail (CLOSE_DELAY_impl.exec XI

s_impl))
4 (tail (CLOSE_DELAY_spec.exec XI s_spec))

We destruct XI as i0 ::: XI’ and transform the sub-goal to
another form:

1 \ldots
2 coH: forall (XI: trace I_common)
3 (s_impl: CLOSE_DELAY_impl.S)
4 (s_spec: CLOSE_DELAY_spec.S),
5 isCorr s_impl s_spec ->
6 Bisimilar (CLOSE_DELAY_impl.exec XI s_impl)
7 (CLOSE_DELAY_spec.exec XI s_spec)
8 ============================
9 Bisimilar eq
10 (CLOSE_DELAY_impl.exec XI’
11 (snd (CLOSE_DELAY_impl.trans i0 s_impl)))
12 (CLOSE_DELAY_spec.exec XI’
13 (snd (CLOSE_DELAY_spec.trans i0 s_spec)))

(snd (CLOSE_DELAY_impl.trans i0 s_impl)) and
(snd (CLOSE_DELAY_spec.trans i0 s_spec)) are the next
pair of states. Next, the form of goal can be unified with the
coinductive assumption coH. Applying coH to the subgoal
obtains the last goal:

1 \ldots
2 H_corr: isCorr s_impl s_spec
3 ============================
4 isCorr
5 (snd (CLOSE_DELAY_impl.trans i0 s_impl))
6 (snd (CLOSE_DELAY_spec.trans i0 s_spec))

By applying the lemma state_invariant with the premise
H_corr, we finish the proof of the theorem
CLOSE_DELAY_eq.

VII. CONCLUSION
This paper fills the vacancy of the effective formalization and
formal equivalence verification of real-time FBD programs

VOLUME 9, 2021 166145

J. Zhao, Z. Tao: Toward Reliable Programmable Logic Controller Function Block Diagrams

using theorem proving.We firstly propose a coinduction PLC
execution model to characterize the time-dependent behavior
of non-terminating PLC programs. Then we present a method
to formalize FBD programs and given specifications into
this model. A deterministic subset of FBD is considered.
This method is more practical than existing works. Finally,
we prove the equivalence relation using bisimulation. In prac-
tice, we have implemented a translator to parse XML files
of FBD programs and translate them into Coq definitions.
This methodology has been applied to verify that our elevator
control program conforms to the given specification.

In the future, we will formalize specific domain FBs,
where motion control will be our most important focus since
PLCopen has already standardized its FBs. Textual languages
like ST will be added to model user-defined FBs and safety
and liveness properties will be proved in this coinduction
model.

REFERENCES
[1] Coq. (2021) Coq Documentation. Accessed: Oct. 26, 2021. [Online].

Available: https://coq.inria.fr/documentation
[2] H. Janicke, A. Nicholson, S. Webber, and A. Cau, ‘‘Runtime-monitoring

for industrial control systems,’’ Electronics, vol. 4, no. 4, pp. 995–1017,
Dec. 2015.

[3] M. Caselli, E. Zambon, and F. Kargl, ‘‘Sequence-aware intrusion detection
in industrial control systems,’’ in Proc. 1st ACM Workshop Cyber-Phys.
Syst. Secur., Apr. 2015, pp. 13–24.

[4] F. Mercaldo, F. Martinelli, and A. Santone, ‘‘Real-time SCADA attack
detection by means of formal methods,’’ in Proc. IEEE 28th Int. Conf.
Enabling Technol., Infrastruct. Collaborative Enterprises (WETICE),
Jun. 2019, pp. 231–236.

[5] Programmable Controllers—Part 3: Programming Languages, docu-
ment IEC 61131-3, IE Commission, 1993.

[6] S. J. Mason, ‘‘Feedback theory-some properties of signal flow graphs,’’
Proc. IRE, vol. 41, no. 9, pp. 1144–1156, Sep. 1953.

[7] V. Vyatkin, ‘‘Software engineering in industrial automation: State-of-the-
art review,’’ IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1234–1249,
Aug. 2013.

[8] A. Guignard, J.-M. Faure, and G. Faraut, ‘‘Model-based testing of PLC
programswith appropriate conformance relations,’’ IEEE Trans. Ind. Infor-
mat., vol. 14, no. 1, pp. 350–359, Jan. 2018.

[9] M. Obermeier, S. Braun, and B. Vogel-Heuser, ‘‘A model-driven approach
on object-oriented PLC programming for manufacturing systems with
regard to usability,’’ IEEE Trans. Ind. Informat., vol. 11, no. 3,
pp. 790–800, Jun. 2015.

[10] F. Basile, P. Chiacchio, and D. Gerbasio, ‘‘On the implementation of
industrial automation systems based on PLC,’’ IEEE Trans. Autom. Sci.
Eng., vol. 10, no. 4, pp. 990–1003, Oct. 2013.

[11] E. Estevez and M. Marcos, ‘‘Model-based validation of industrial con-
trol systems,’’ IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 302–310,
May 2012.

[12] B. F. Adiego, D. Darvas, E. B. Viñuela, J. Tournier, S. Bliudze, J. O. Blech,
and V. M. G. Suárez, ‘‘Applying model checking to industrial-sized PLC
programs,’’ IEEE Trans. Ind. Informat., vol. 11, no. 6, pp. 1400–1410,
Dec. 2015.

[13] D. Darvas et al., ‘‘Formal verification of complex properties on PLC
programs,’’ in Proc. Int. Conf. Formal Techn. Distrib. Objects, Compon.,
Syst. Berlin, Germany: Springer, 2014, pp. 284–299.

[14] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
‘‘Towards the automatic verification of PLC programs written in
instruction list,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
vol. 4, Oct. 2000, pp. 2449–2454. [Online]. Available: http://ieeexplore.
ieee.org/document/884359/

[15] O. Pavlovic and H.-D. Ehrich, ‘‘Model checking PLC software written in
function block diagram,’’ in Proc. 3rd Int. Conf. Softw. Test., Verification
Validation, 2010, pp. 439–448.

[16] D. Soliman, K. Thramboulidis, and G. Frey, ‘‘Transformation of function
block diagrams to UPPAAL timed automata for the verification of safety
applications,’’ Annu. Rev. Control, vol. 36, no. 2, pp. 338–345, 2012.

[17] E. M. Clarke et al., ‘‘Model checking and the state explosion problem,’’
in LASER Summer School on Software Engineering. Berlin, Germany:
Springer, 2011, pp. 1–30.

[18] H. Wan, G. Chen, X. Song, and M. Gu, ‘‘Formalization and verifi-
cation of PLC timers in coq,’’ in Proc. 33rd Annu. IEEE Int. Com-
put. Softw. Appl. Conf., Dec. 2009, pp. 315–323. [Online]. Available:
http://ieeexplore.ieee.org/document/5254244/

[19] H. Wan, X. Song, and M. Gu, ‘‘Parameterized specification and ver-
ification of PLC systems in coq,’’ in Proc. 4th IEEE Int. Symp.
Theor. Aspects Softw. Eng., Aug. 2010, pp. 179–182. [Online]. Available:
http://ieeexplore.ieee.org/document/5587715/

[20] J. Newell, L. Pang, D. Tremaine, A. Wassyng, and M. Lawford, Formal
Translation of IEC 61131-3 Function Block Diagrams to PVS with Nuclear
Application. Cham, Switzerland: Springer, 2016, pp. 206–220.

[21] L. Pang, C.-W. Wang, M. Lawford, and A. Wassyng, ‘‘Formal verifica-
tion of function blocks applied to iec 61131-3,’’ Sci. Comput. Program.,
vol. 113, pp. 149–190, Dec. 2015.

[22] J. Yoo, S. Cha, and E. Jee, ‘‘A verification framework for fbd based
software in nuclear power plants,’’ in Proc. 15th Asia–Pacific Softw. Eng.
Conf., 2008, pp. 385–392.

[23] D. Park, ‘‘Concurrency and automata on infinite sequences,’’ in Theoretical
Computer Science, P. Deussen, Ed. Berlin, Germany: Springer, 1981,
pp. 167–183.

[24] Y. Bertot, ‘‘A short presentation of Coq,’’ in Proc. Int. Conf. Theorem Prov-
ing Higher Order Logics. Berlin, Germany: Springer, 2008, pp. 12–16.

[25] R. Milner, Communication Concurrency. Upper Saddle River, NJ, USA:
Prentice-Hall, 1989.

[26] G. H. Mealy, ‘‘A method for synthesizing sequential circuits,’’ Bell Syst.
Tech. J., vol. 34, no. 5, pp. 1045–1079, Sep. 1995.

JIANYONG ZHAO received the B.S. and M.S.
degrees in computer science and technology from
Hangzhou Dianzi University, Hangzhou, China,
in 2002 and 2005, respectively. He is currently a
Senior Experimentalist with the Institute of Intelli-
gent and Software Technology, Hangzhou Dianzi
University. His research interests include embed-
ded systems, software development methods and
tools, and intelligent control and automation.

ZHE TAO is currently pursuing the bache-
lor’s degree with the Institute of Intelligent and
Software Technology, Hangzhou Dianzi Univer-
sity, Hangzhou, China. His research interests
include formal verification, logic, and program-
ming languages.

166146 VOLUME 9, 2021

