
Received November 5, 2021, accepted November 30, 2021, date of publication December 7, 2021,
date of current version December 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133529

Multiple Hypothesis Detection and Tracking Using
Deep Learning for Video Traffic Surveillance
HAMD AIT ABDELALI 1, HATIM DERROUZ 1,2, (Member, IEEE), YAHYA ZENNAYI1,
RACHID OULAD HAJ THAMI 2, AND FRANÇOIS BOURZEIX 1
1Embedded System and AI Department, MAScIR, Rabat 10100, Morocco
2IRDA Team, ADMIR Laboratory, Rabat IT Center, ENSIAS, Université Mohammed V de Rabat, Rabat 10100, Morocco

Corresponding authors: Hamd Ait Abdelali (h.aitabdelali@mascir.ma) and Hatim Derrouz (h.derrouz@ieee.org)

This work was supported in part by the National Center for Scientific and Technical Research (CNRST), and in part by the Ministry of
Higher Education, Scientific Research and Executive Training (MESRSFC), through the Development of an Integrated
System for Traffic Management and Detection of Road Traffic Infractions Project.

ABSTRACT Moroccan Intelligent Transport System is the first Moroccan system that uses the latest
advances in computer vision, machine learning and deep learning techniques to manageMoroccan traffic and
road violations. In this paper, we propose a fully automatic approach to Multiple Hypothesis Detection and
Tracking (MHDT) for video traffic surveillance. The proposed framework combines Kalman filter and data
association-based tracking methods using YOLO detection approach, to robustly track vehicles in complex
traffic surveillance scenes. Experimental results demonstrate that the proposed approach is robust to detect
and track the trajectory of the vehicles in different situations such as scale variation, stopped vehicles,
rotation, varying illumination and occlusion. The proposed approach shows a competitive results (detection:
94.10% accuracy, tracking: 92.50% accuracy ) compared to the state-of-the-art approaches.

INDEX TERMS Traffic surveillance, computer vision, deep learning, Kalman filter, data association,
detection, multiple hypotheses tracking, occlusion handling.

I. INTRODUCTION
In the recent past [1]–[4], the interest of many researchers has
been captured by the deployment of automated systems for
video traffic surveillance. The change of illumination causes
the most challenging factors in video traffic surveillance,
deformation of vehicles, pause, motion blur, occlusions, and
camera view angle, etc. Although traffic surveillance has been
studied for several decades and numerous methods have been
proposed for different tasks [5]–[8], it remains to be a very
challenging problem. In the literature, traffic surveillance
methods can be divided into two approaches, online model
and offline models. An online model is a hard problem that
receives video sequence input on a frame-by-frame basis and
has to give an output for each frame. Offline models, allows
for global optimization of the path, scanning forwards and
backwards through the frames of a video sequence. Since
offline models have access to more information, better per-
formance is expected from these models.

Furthermore, there is no single method that can be suc-
cessfully applied to all tasks and situations. However, recent
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progress on Multiple Object Tracking (MOT) has focused on
the tracking-by-detection strategy, to solve the ambiguities
in associating objects detection and to overcome detection
failures. Themajority of recent works process video sequence
in a batch mode in which video frames from future time
steps are also used to solve the data association problem. The
general idea is to first localize, for each frame, all objects
using an object detector, then associate the detected objects
between frames using features such as location and appear-
ance. A common methodology is to split the tracking into
two phases: prediction of object location, and matching of
detections and predictions. That is, for each new frame, the
complete tracking model does the following: detect objects
of interest, predict the new locations of the detected objects
from previous frames, associate the detected objects between
frames by the similarity of detected and predicted locations.

This paper describes a framework for detection and track-
ing of multiple vehicles using video sequences from a surveil-
lance camera. In this paper, we will focus our attention on
Multiple Hypotheses Detection and Tracking (MHDT) for
video traffic surveillance. The proposed framework combines
Kalman filter and data association-based tracking methods
using YOLO detection approach [9]. Our result show that the
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proposed method is robust to detect and track the trajectory
of the vehicles in different situations (scale variation, pause,
rotation, and occlusion).

The rest of the paper is organized as follows: Section 2
presents the Related work and motivation. Section 3 presents
the problem formulation andmethodology. Section 4 presents
the System Overview. Section 5 presents the experiments
results and Section 6 concludes the paper.

II. RELATED WORK AND MOTIVATION
In this part, we will provide an overview of the state-of-
the-art techniques for detection and Multiple Objects Track-
ing (MOT) [5]–[8], [10]–[12]. Multiple Object Tracking is
one of the earliest successful algorithms for visual track-
ing. Originally proposed in 1979 by Reid [13], it builds a
tree of potential track hypotheses for each candidate target,
thereby providing a systematic solution to the data association
problem. However, this method is limited when it comes to
modelling the complex appearance changes of a target. Prokaj
and al [14], [15] presented a technique for Multiple objects
tracking in an aerial road surveillance network. The moving
object detection was performed using background subtrac-
tion, where the background was displayed as the method of a
stabilized sliding window of frames. At that point, the infor-
mation association problem was detailed as induction in a lot
of Bayesian networks using movement and appearance con-
sistency. This methodology avoided the exhaustive evaluation
of data association hypotheses. Andriyenko and al. [8] pro-
posed a discrete continuous optimization technique to solve
trajectory estimation and data association, these two stages
are exchanged until convergence. In [10], a fixed appearance
model incorporated into a standard MOT system [16]–[18].
Interestingly, MOT can be extended to include online learned
discriminative appearance models for each track hypothesis.

Currently, deep neural networks have been employed in
multiple objects tracking frameworks [19]–[27], but unfor-
tunately, highly accurate tracking algorithms based on CNN
are often too slow for practical systems. MDNet [20] is a
well knownCNN-based trackingmethodwith state-of-the-art
accuracy. This method is inspired by an object detection net-
work, R-CNN [28]–[30], it samples candidate areas, which
are passed through a CNN pre-trained on a huge scale dataset
and fine-tuned at the first frame in a test video sequence.
Since each candidate is processed independently, MDNet
suffers from high computational complexity in terms of time
and space. In addition, while its multi-domain learning frame-
work concentrates on the saliency of the target against the
background in each domain, it is not optimized to distinguish
potential target instances across multiple domains. Conse-
quently, a learned model by MDNet is not the optimal choice
to distinguish represent unseen target objects with similar
semantics in test sequences. In [31] Abdelwahab and al,
presented a rapid and reliable traffic congestion detection
method based on robust texture and motion features extracted
from traffic videos. In [32] Abdelwahab and al, presented
a temporal pooling method to generate a dynamic image

TABLE 1. The reviewed works according to their main distinguishing
features.

descriptor using a deep residual neural network to extract
texture Features. The Table 1 showing the works reviewed
in terms of its main distinguishing features.

As noted early on, there is no single tracking method
that can be successfully applied to all tasks and situations
such as scale variation, pause, rotation, lighting variation,
and occlusion. In this paper, our overall goal is to develop
a fully automatic approach that can detect and track different
vehicles and record their trajectories.

III. PROBLEM FORMULATION AND METHODOLOGY
A. PROBLEM FORMULATION
We will start by endeavoring to give a general mathemati-
cal formulation of MOT, discuss its possible categorizations
based on different aspects. Let i be a vehicle appearing
in a frame t . Let δ be a binary function that indicate the
presence of the vehicle i in the frame t , where δit = 1 if
i apperas and δit = 0 otherwise. The state of the vehi-
cle i in the frame t is represented as x it = (pit ,w

i
t , h

i
t , v

i
t ),

where pit = (pit (x), p
i
t (y)) is the vehicle i center location,

wit and hit are the width and height of its bounding box,
and vit = (vit (x), v

i
t (y)) represents its velocity. We then

define the track T it of the vehicle i as a set of states up to
frame t and denote it as T it =

{
x ik |δ

i
t = 1 6 t is 6 t ie6t

}
,

where t is and t ie are the start-frame and end-frame of the
tracks, respectively. In addition, T i1:t =

{
T i1,T

i
2, · · · ,T

i
n
}

are the states of all the n vehicles in the t-th frame, and
T1:t =

{
T 1
1:t ,T

2
1:t , . . . ,T

n
1:t

}
is the set of tracks of all the

n vehicles up to frame t . Correspondingly, d jt = (pd ,wd ,
hd )

j
t is the j-th detected observation at frame t , with pd being

the position of the centre location (given by its coordinates
(p(x), p(y))), and wd and hd being the width and the height,
respectively, of the detected vehicle. We also define Dt ={
d jt ; 16j6n

}
as the set of the n detected vehicles (observa-

tions) at frame t . All the observations associatedwith vehicle i
up to frame t are referred to as d i1:t =

{
d i1, . . . , d

i
t
}
, and

D1:t =
{
d11:t , . . . , d

n
1:t

}
is the set of all observations up to

frame t . Given the set of trees that contains all trajectory
hypotheses (Figure 1) for all targets, we want to determine
the most likely combination of vehicle tracks at frame t .
This can be formulated as a k-dimensional assignment
problem: max

z

∑D1
i1=0

∑D2
i2=0

. . .
∑Dn

it=0
si1i2...inzi1i2...in subject
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FIGURE 1. Track hypotheses after Detection stage.

FIGURE 2. The YOLO convolutional neural network architecture [9].

to
∑D1

i1=0
∑D2

i2=0
. . .
∑Dn

in=0
zi1i2...in = 1 for in = 1, 2, . . . ,Dn.

For each observation i we define one constraint to ensures
that in is assigned to a unique track. Each track is associated
with its binary variable zi1i2...inand track score si1i2...in . Thus,
the objective function represents the total score of the tracks
in the global hypothesis associations.

B. METHODOLOGY
The first step in our algorithm is to detect the vehicles.
To do this, we begin by using the YOLO algorithm [9]. This
algorithm based on two main steps to a predefined size of
images during the learning process:

- Vehicle detection operated by convolution neural
networks;

- A grid of the image that predicts the vehicle if it exists.

For detected vehicles, a tracking model is constructed
using the Kalman filter. The algorithm is used to associate
the temporally detected vehicles from one frame to the next.
To do this, we use the Hungarian algorithm to associate data

for a given frame, using the distance between the outputs of
the algorithm and the Kalman filter estimation.

C. DEEP NEURAL NETWORKS FOR VEHICLES DETECTION
YOLO is implemented as a deep convolutional neural net-
work. The open source implementation released along with
the paper is built upon a customDeepNeural Network (DNN)
framework written by Redmon et al. [9]. YOLO reframes
vehicle detection as a single regression problem, straight from
image pixels to bounding box coordinates. YOLO divides the
input image into a S × S grid. If the centre of a vehicle falls
into a grid cell, that grid cell is responsible for detecting that
vehicle. A description of the YOLO architecture can be seen
in Figure 2:

D. KALMAN FILTER
A Kalman filter [33] is a recursive algorithm which predicts
the state variables and further uses the observed data (mea-
surements) to correct/update the predicted value. Kalman
filter has two main states: the state prediction and the state
correction.
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1) STATE PREDICTION
For each time step t , a Kalman filter first makes a prediction x̂t
of the state:

x̂t = A× xt−1, (1)

where xt−1 is a vector representing the process state at time
step t − 1 and A is a process transition matrix. The Kalman
filter concludes the state prediction steps by projecting an
estimate error covariance P−t forward one time step:

P−t = A× Pt−1 × AT +W , (2)

where Pt−1 is a matrix representing error covariance in the
state prediction at time step t − 1 andW is the process noise
covariance (or the uncertainty in our model of the process).

2) STATE CORRECTION
After predicting the state x̂t (and its error covariance) at time t
using the state prediction steps, the Kalman filter uses mea-
surements to “correct” its prediction during the measurement
update steps. First, the Kalman filter computes a Kalman
gain Kt , which is later used to correct the state estimate x̂t :

Kt = P−t × (P−t + Rt )
−1, (3)

where Rt is the noise covariance measurement. Determining
Rt for a set of measurements is often difficult. In our contri-
bution we calculated Rt dynamically from the measurement
state.

Using Kalman gain Kt and zt measurements from time
step t , we can update the estimate state:

x̂t = x̂t + Kt × (zt − x̂t ). (4)

Conventionally, themeasurements ztare often derived from
sensors. In our approach, the measurements zt are the output
of the tracking algorithm gave the same input: one frame of
a streaming video and the most likely p(x) and p(y) coordi-
nates of the target vehicle in this frame (taking the first two
dimensions of x̂t ).
The final step of the Kalman filter iteration is to update the

error covariance P−t into Pt :

Pt = (I − Kt )× P−t . (5)

The updated error covariance will be significantly
decreased if the measurements are accurate and slightly
decreased if the measurements are noisy.

E. DATA ASSOCIATION
The data association are solved using Hungarian technique
(also known as Kuhn-Munkres algorithm) [34]. This tech-
nique is used to associate the identified objects in frame t to
the unidentified objects in frame t+1 by finding the extreme
solution of the Bhattacharyya distance [35] in the assignment
matrices.

The first association stage solves the assignment problem
between the active tracks Tt−1 and the current detections Dt
to progressively build vehicle trajectories. The input pairs

for this stage are
{(
T it−1, d

j

t

)
| ∀T it−1 ∈ Tt−1,∀d

j
t ∈ Dt

}
,

and the association is evaluated using the following affinity
model:

A
(
T it−1, d

j

t

)
= Aa

(
T it−1, d

j

t

)
As

(
T it−1, d

j

t

)
Am

(
T it−1, d

j

t

)
,

(6)

where Aa

(
T it−1, d

j

t

)
, As

(
T it−1, d

j

t

)
and Am

(
T it−1, d

j

t

)
are

the appearance affinity, shape affinity and motion affinity,
respectively.

Let xd j be the bounding box of a detection d jt , xT i be the
latest bounding box of the track T it−1, and HT i =

{
xT i
}

be the historical bounding box set of the track T ii−1, The
Bhattacharyya distance [35] is used to evaluate the similarity
between two templates, and define the appearance affinit Aa

of the track T it−1 and the detection d jt as:

Aa

(
T it−1, d

i
t

)
= Ω(T it−1)ρ(xT , d

j)

+ (1−Ω(T it−1)) maxk
ρ(xT i , xdj ), (7)

where ρ(., .) is the Bhattacharyya distance, and
Ω(T it−1) ∈ [0, 1].
The shape affinity, As(T it−1, d

j
t ) (in Equation (6)), between

the track and the detection is defined as:

As(T it−1, d
j
t ) = exp

(
−

{
hi − hjd
hi + hjd

+
wi − wjd
wi + wjd

})
, (8)

where (wi, hi) are the width and the height of the bounding
box of the tail of track T it−1 and (wd , hd ) are the width and
the height of the bounding box of the detection d jt .

The motion affinity, Am (in Equation (6)), is evaluated
between the tail of the history of the track T it−1 and the
detection d jt based on a linear motion assumption [36]:

Am(T it−1, d
j
t ) = ℵ(p̃

i, pjd ), (9)

where p̃i and pjd represent the positions of the target T
i
t−1 and

detection d jt , respectively, and ℵ(.) is a Gaussian distribution
function.

Then, an association score matrix S is used to express the
affinity score between detections and tracks:

S =
[
sij
]
nh×nd

, sij = −ln(A(T it−1, d
j
t )). (10)

The Hungarian algorithm [34] is used to determine the
track-detection pairs with the lowest affinity value in S.
A detection d jt is associated with T it−1 when the association
cost sij is less than a pre-defined threshold in [36].

IV. SYSTEM OVERVIEW
Our overall objective is to develop a framework capa-
ble of detecting and tracking different vehicles and record
their trajectories from a video sequence in the Moroccan
urban. To do this, we have two specific objectives to be
achieved:
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FIGURE 3. The MHDT framework modular design.

- Detect vehicles in the video sequence and resolve
problems of detection in the urban environment, such
as shadows, occlusion, change of illumination and
weather conditions.

- Extract the trajectories of the vehicles by calculating
the correspondence between the vehicles in the differ-
ent frames via a strategy of data association and the
elaboration of a tracking model.

To ensure good organization of the progress of the work,
we used the benefits of modular design in our implemented
approach. Figure 3 shows the modular design of the frame-
work system.

The proposed approach MHDT for vehicle detection and
tracking is composed of four blocks named Processing Block,
Detector Block, Tracker Block, and Results Block. The func-
tions of these blocks are as follows:

- Pre-processing Block: starts the video sequence and
convert it into frames to be processed.

- Detector Block: detects the vehicles having the speci-
fied area (bounding box).

- Tracker Block: In this block we combine Kalman
filter and data association-based tracking methods.
Furthermore, we estimate the bounding box/labels
(ID), the centroid, and the orientation of the vehicle
tracker.

- Results Block: delivers the tracking trajectory of
the vehicles on the basis of the region properties of
the vehicles such as bounding box/labels (ID), and the
centroid.

Algorithm 1 The Algorithm of the Proposed Framework
MHDT Can Be Explained as Follows:

1 Input: Video sequence V = {Ii}Ni=1, where N is the
number of Images ;

2 Output: Trajectories T of the vehicles in the video ;
3 Initialization: T ← φ ;
4 foreach Image I in V do
5 6 6 Using YOLO detector to detects the vehicules;
6 D← {di}N

′

i=1 6 6 N’ The numbre of vehicles
detected ;

7 foreach detected d in D do
8 6 6 Create or update tracks and attribute track

ID using Kalman filter and data association;
9 T ← T ∪ {d} ;
10 end
11 end

V. EXPERIMENTS RESULTS
A. DATASET
The context of this paper for detection and tracking of
vehicles is the Morrocan Urban Network. In the best
of our knowledge, there is no Morrocan traffic video
dataset. Therefore, we called our dataset. MoVITS dataset
(https://data.mendeley.com/datasets/5jcg5vfx58/3) [37] con-
tains more than 75,230 images annotated with a bounding
box (Ground Truth). It has been recorded under natural condi-
tions using a stereo-vision system in a Moroccan urban area.
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FIGURE 4. MoVITS dataset. (a) Highway, (b, c, d and f) Intersections and (e) Roundabout. [38].

FIGURE 5. Detection results of the Highway sequence. Frames 1, 14 and 176 are displayed.

This Dataset contains challenging scenarios such as occlu-
sion, shadows, varying illumination, and complex back-
ground. Figure 5 shows some example from the collected
data. There are videos with 5 megapixels, 15 frames per
second at a different time and places.

B. SETTINGS AND MATERIAL USED
We selected normalized RGB colour space as the feature
space, and it was quantized into 16 × 16 × 16 bins for
comparison between different algorithms. It should be noted
that other colour spaces such as the HSV colour space
can also be used in the MHDT framework. The MHDT
component runs at 3.70GHz a single core of an Intel(R)
Core (TM) i7-8700Kmachine with 16 GBmemory, NVIDIA
GeForce GTX 1080 Ti, Operating System Linux 64-bit.
The program was implemented using C++ without any

parallel programming, Qt Framework, and the Open Source
Computer Vision (OpenCV) library.

C. RESULTS
The effectiveness of the proposed framework is evaluated
using three videos (with a number of frames varying between
a minimum of 1263 frames and a maximum of 15300 frames)
from the MoVITS dataset. The experimental results show
that the proposed MHDT framework achieves good estima-
tion accuracy of the scale and the orientation of vehicles
in the video sequences. Different sequences are used, and
each sequence has its characteristics (rotation, pause, scale
variation, and occlusion). We set up experiments to list the
estimated width, height, and orientation of the vehicles.

We first use a Highway sequence (where the resolution
is 2456 × 2054, the frame rate is 15 fps, and the number
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FIGURE 6. Tracking results of the Highway sequence. Frames 1, 14 and 176 are displayed.

FIGURE 7. Detection results of the Intersection1 sequence. Frames 700, 739 and 742 are displayed.

of frames is 6225) to verify the efficiency of the pro-
posed approach. As shown in Figure 5 and 6, the external
bounding box represents the target candidate regions used
to estimate the real targets, that is, the inner bounding box.
The experimental results show that the proposed Frame-
work is robust when aiming at predicting the mean posi-
tion and trajectory of the vehicles with scale and orientation
changes.

The second test is an Intersection1 sequence (where the
resolution is 2456 × 2054, the frame rate is 15 fps, and the
number of frames is 11,006), used to verify the efficiency
of the proposed framework on a more complicated situation
(Figure 7 and 8). The vehicles exhibit large scale changeswith
partial occlusion. However, the proposed system works much
better in estimating the scale and orientation of the targets,
especially when an occlusion occurs.

The last experiment is an Intersection2 sequence (where
the resolution is 2456 × 2054, the frame rate is 15 fps, and
the number of frames is 10,321) presented in Figure 9 and 10.
The experimental results show that the proposed framework
estimates good accuracy of the scales and orientations of the
targets, especially in the case of occlusions.

D. COMPUTATIONAL COMPLEXITY
In this section, we have provided a computational complexity
of the MHDT. the time complexity for the remaining steps is
summarized as follows:

For the detection step, the image is modified and altered
to a size of 416 × 416 and then the image is put through a
slice and dice system where they are divided into 7 × 7 size.
This implies that the size of each grid is of size 64 × 64 and
for each grid cell predicts B bounding boxes, confidence for
those boxes, and C class probabilities. These predictions are
encoded as an 64 × 64 × (B ∗ 5+ C) tensor.

For the tracking step, the state prediction has a complexity
ofO(b), and for state corrections it has a complexity ofO(b2),
and for data association O(b3), where b is the number of
bounding boxes. The total computational cost is therefore
O(b3 + b2 + b).

E. PERFORMANCE MEASURES
The Precision is the ratio of positive-correctly-predicted
observations to the total positive-predicted observations. The
question that this metric answer is of all passengers that
labelled as survived, how many survived. High precision
relates to the low false positive rate. Precision is defined as
the number of true positives Tp over the sum of the number
of false positives and the number of true positives Fp:

Precision =
Tp

Tp + Fp
. (11)

The Recall is the ratio of correctly predicted positive obser-
vations to all observations in actual class. The recall indicates
how many passengers from the ones that truly survived, were
labelled as such. A recall is defined as the sum of the number
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FIGURE 8. Tracking results of the Intersection1 sequence. Frames 700, 739 and 742 are displayed.

FIGURE 9. Detection results of the Intersection2 sequence. Frames 200, 210 and 240 are displayed.

FIGURE 10. Tracking results of the Intersection2 sequence. Frames 200, 210 and 240 are displayed.

of true positives Tp over the sum of the number of false
negatives and the number of true positives Fn:

Recall =
Tp

Tp + Fn
. (12)

We studied the Precision-Recall curves of the proposed
system. Figure 11 shows the performances of the proposed
method in each video sequence used.

The F1 Score is defined as the harmonic mean of Precision
and Recall. Therefore, this score takes both false positives
and false negatives into account. Intuitively it is not as easy
to understand as accuracy, but F1 is usually more useful than
accuracy, especially if you have an uneven class distribution.
Accuracy works best if false positives and false negatives

have a similar cost. If the cost of false positives and false neg-
atives are very different, it’s better to look at both Precision
and Recall.

F1 = 2×
Precision× Recall
Precision+ Recall

(13)

The detection and Tracking performances are evaluated
using the MoVITS dataset. Table 2 compares the proposed
framework MHDT with two baseline trackers MDP [5] and
SORT [6].

The experimental results demonstrate that the proposed
MHDT is robust enough to detect and track the trajectory
of the vehicles in different situations (scale variation, pause,
rotation, and occlusion).
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FIGURE 11. Precision-Recall curves of the proposed system.

TABLE 2. Performance of the proposed approach on the MoVITS dataset.

In the future, we plan to analyse the trajectory of the
vehicles to manage Moroccan traffic and road violations.
The aim is to establish an automatic management system to
monitor traffic flow and detect road violation, to cope with
the ascending raise in vehicles numbers and to reduce the
accidents rates caused by the non-respect of traffic laws.

VI. CONCLUSION
In this paper, a novel Multiple Hypotheses Detection and
Tracking approach have been presented for Moroccan traffic
surveillance in complex scenes. In this approach, we combine
a Kalman filter and data association-based tracking methods
using the YOLO detection approach [9]. The newly MHDT
has been compared with MDP [5] and SORT [6] algorithms
using a MoVITS dataset collected in different condition, and
different places. The experimental results demonstrate that
the proposed approach is robust in detecting and tracking
vehicles under different conditions (scale variation, pause,
rotation, and occlusion). In the future research, we will focus
on vehicle trajectory analysis in order to detect directional
change violations, and take more control of traffic manage-
ment and traffic violations.
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