
Received October 22, 2021, accepted November 21, 2021, date of publication December 7, 2021,
date of current version December 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133567

Complex Semantic-Spatial Relation Aided Indoor
Target-Directed Exploration
WOO-CHEOL LEE , (Student Member, IEEE), AND HAN-LIM CHOI , (Senior Member, IEEE)
Department of Aerospace Engineering and KI for Robotics, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Corresponding author: Han-Lim Choi (hanlimc@kaist.ac.kr)

This work was supported in part by the Unmanned Vehicles Core Technology Research and Development Program through the National
Research Foundation of Korea (NRF), Unmanned Vehicle Advanced Research Center (UVARC), funded by the Ministry of Science and
Information and Communication Technology (ICT), Republic of Korea, under Grant 2020M3C1C1A01082375.

ABSTRACT This paper addresses the problem of target-directed exploration (TDE) in initially unknown
and large-scale indoor environments. In such scenarios, the inference on an unknown space can improve
the search performance under the assumption that the context of a particular space (i.e., the functional
category of the space) is correlated with the existence of a target. The space inference is promising in that
there is a strong statistical correlation between the semantic categories of indoor spaces and their adjacency
because the spaces are designed to reflect universal human preferences. In this point of view, we propose a
novel TDE scheme leveraging the semantic-spatial relations of an indoor floorplan dataset. Whereas existing
works dealing with the data-driven space inferences consider only the one-to-one relation statistics of the
spaces or utilize heuristic counting-based matching algorithms without building a trainable latent model,
we propose the pattern cognitiveMultivariate Bernoulli Distribution-based Graphical Space InferenceModel
(MBD-GSIM). MBD-GSIM efficiently captures the core contexts of the discrete semantic-spatial relations
to predict an unknown space by using the latent Multivariate Bernoulli Distribution model. We also suggest
utilizing theMBD-GSIM in a cost-utility based frontier exploration scheme for TDE problems. The proposed
scheme is constructed in the Robot Operating System (ROS); its efficiency is investigated in the Gazebo
simulation environment.

INDEX TERMS Indoor exploration, robot exploration, robotics and automation, indoor environments,
inference algorithms, indoor space inference, planning, computation artificial intelligence, semantic-spatial
relation.

I. INTRODUCTION
Advances in technologies such as mapping, object
recognition, and navigation in the field of robotics open the
possibility that autonomous robot systems can be utilized
in applications such as service, structural investigation and
exploration, and rescue. While such tasks generally require
a robot to be able to search a target, in many realistic sce-
narios, information about the environment and target is often
partially given or uncertain.

For exploratory tasks of indoor robots, the cost-utility
based frontier exploration strategy has been widely adopted.
In the strategy, the key is to design a utility model that varies
according to the mission objective. Unlike the cost model,
which only requires the pre-observed map information, the
utility model is generally hard to obtain because the future
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observation (i.e., the target existence in the TDE problem)
from the action to be taken must be inferred. Although the
conventional cost-utility based robot exploration schemes
have generally been developed in the point of speeding up
the volumic spatial information gathering, the TDE problem
requires to consider qualitative differences of spaces deter-
mined by the existence probability of target.

Related to the target existence inference in spaces, the
semantic relation of the space and object have been widely
used [1]–[7]. [1] and [2]–[4], [7] utilize prior knowledge
about the object-spatial relation to designate a most probable
location to find the target; however, the region of interest
is limited to a pre-observed map. In [5] and [6], the space
prediction concept is introduced to cover unknown regions.
[5] suggests a heuristic algorithm to match the pre-observed
map to the given dataset to provide the most likely cat-
egory of the unknown space over the frontier of interest.
However, because the algorithm is highly dependent on the
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prior data, and not on constructing a latent pattern cog-
nitive model, it is limited for understanding the core pat-
terns of a semantic-spatial relation dataset. [6] constructs a
probability distribution of space-to-space pair relations, but
does not consider the complex relations of more than two
spaces. Including the above papers, to the best of the authors’
knowledge, existing studies do not suggest a sophisticated
pattern-cognitive learning model which can understand the
latent patterns of complex semantic-spatial relations from
datasets and predict unknown spaces.

With the aforementioned backgrounds, this paper stud-
ies: 1) a space inference model, which learns the regular-
ities of complex indoor semantic-spatial relations, to infer
the semantic category of space beyond the frontier of
interest, and 2) the usage of the inference model for
next-goal generation in the way of cost-utility based frontier
exploration.

For the space inference, Multivariate Bernoulli
Distribution-based Graphical Space Inference Model
(MBD-GSIM) is proposed to predict the category of the
unknown node beyond the node of interest. MBD-GSIM
learns core latent patterns of the indoor navigational graph
dataset which is obtained by a domain conversion of the
indoor floorplan from 2D Euclidean space to a graph repre-
sentation with useful node features (i.e., semantic categories
of nodes, position of nodes, location of robot, proximity to
frontier of nodes). Among the features in the graph rep-
resentation, the semantic-spatial relation (discrete seman-
tic categories of nodes and their interactions) is exploited
by MBD-GSIM. MBD-GSIM efficiently captures the core
context of the semantic-spatial relation with two properties:
1) MBD model can effectively parameterize a multivariate
Bernoulli graph consisting of Bernoulli (binary) nodes and
their high order interactions (i.e., node itself, edges, cliques),
and 2) an indoor semantic-spatial relation graph with cate-
gorical nodes can be generalized in the form of multivariate
Bernoulli graph. Since MBD-GSIM does not rely on the
exhaustive graph matching algorithm or one-to-one relation
statistics of the spaces, but learns regularities from complex
semantic-spatial relation dataset, so higher inference accu-
racy and faster prediction times are expected. Also, a multi-
step prediction is allowed by the rollout technique because
MBD-GSIM takes a graph with multiple space nodes as an
input.

For the next-goal generation, a method to sophisticatedly
integrate the frontier exploration scheme and theMBD-GSIM
is introduced. The proposed method inherits exploration
transform (ET) based cost map generation scheme ( [8], [9]),
where the next goal is obtained by following the steepest
gradient from the current robot position. Extending the ET,
exploration-search transform (EST) generating a cost-utility
map that simultaneously reflects the robot travel cost and
the concept of the frontier value is suggested. By using
MBD-GSIM to estimate the frontier values, the robot can be
efficiently guided to the region with high probability of target
presence.

In sum, this paper proposes an MBD-GSIM based frontier
exploration scheme is proposed for efficient TDE. Our con-
tributions are as follows:
• The suggestion of domain conversion from 2D
Euclidean space to a navigational graph in which holds
representative information in a concise yet sufficient
manner for TDE.

• The suggestion of latent MBD model based space infer-
ence method for higher space inference accuracy than
conventional methods by efficiently capturing the core
context of complex semantic-spatial relations in the nav-
igational graphs.

• The suggestion of EST method that sophisticatedly
integrates the concept of the space inference and the
cost-utility based exploration strategy.

• The extensive evaluation and comparison with the exist-
ing space inference and robot exploration methods in the
ROS/Gazebo environment.

The structure of this paper is as follows: Section II is
devoted to a comprehensive description of existing works
related to our problem. Section III presents the problem state-
ment. In section IV andV, the proposed space inference aided
next-goal generation method and MBD-GSIM for space
inference method are described, respectively. In section VI,
the computational complexity reduction method for the pro-
posed scheme is described. Section VII provides the evalua-
tion. The last section concludes and plans future work.

II. RELATED WORKS
A. TARGET-DIRECTED EXPLORATION
Table 1 shows a comparison between this paper and previ-
ous works related to the TDE problem, with the following
perspectives:
• Covered scenario
• Inferred unknown information
• Used environmental context information
• Exploration strategy
[10] and [11] first proposed the concept of cost-based

frontier exploration for robot exploration, and various frontier
exploration strategies such as costmap generationmethod [8],
random tree graph-based method [12], and bio-inspired
method [13] for robot exploration considering the path safety
are proposed. Even though they do not deal with target
search problems, it is worth referring to these works in
that the practical exploration schemes are useful for any
exploratory tasks including target search problem. [9], [14],
[15] combine the object detection method in cost-based
exploration methods to obtain target view during exploration.
Although they deal with the concept of target search in
initially unknown environments, they are not an active tar-
get search methods that make inferences about unknown
spaces.

Some studies introduced the concept of unseen target local-
ization based on environmental context. [2]–[4] and [18]
introduce the methods of inferring the probability in which
a target might exist from semantic contextual information in
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TABLE 1. Comparison of previous works and this paper. (Abbreviations mean: scen.-scenario, I.U.I.- Inference of unknown information, C.I.U.- Context
information usage, O2P-Object to Place relation, P2P-Place to Place relation, use P2P: Whether to use place-to-place relationships, M-P2P: Wheter to use
Multiple Place to Place relation, L.P.M-Wheter to use Latent Parameterized Model, E.S.-Exploration Strategy).

the observed map. Although these methods do not address
exploration in the unseen space, it is meaningful in that
the concept of considering the context between objects and
spaces is addressed. [16] introduces the concept of attention,
by approximately establishing a region of interest where the
target might exist, and then generating a path towards it.
[1] uses semantic information from scattered objects to infer
the probability of existence of the target object. [16] and [1]
both make inferences for target localization based on the
observed structural context of the space. [7] and [17] adopts a
partially observable Markov decision process (POMDP) for
exploration decision in an unknown space to find the target
and uses semantic information of places and objects. How-
ever, the region of interest is limited to the already observed
space, which means the probability that the target is over a
frontier is not considered.

The inference methods of unseen space to speed up the
robot exploration are also proposed. [19] proposes the use
of a TSP solver by assuming that prior map information
in the form of topo-metric graph is available. Although
the topo-metric graph that corresponds to the mission envi-
ronment is needed, it is worthwhile to refer to in that
unknown space over frontiers is inferred in the scenario. [21],
[23] and [24] use a Deep Neural Network (DNN) to pre-
dict the local unseen space around frontiers to speed up
the exploration. [20] adopts the Gaussian Process (GP)
to predict the potential value of the goals to maximize
the spatial information gain. [19], [21], [24] and [20]
use predicted space information to explore the map effi-
ciently, but they only consider the volumic information
maximization.

[25] and [6] utilize the concept of space inference and
object-to-space (O2S) relation knowledge to efficiently guide
robot to a probable location to find the target. They first
abstract the map to the graph domain and the space-to-space
(S2S) relation based space inference is performed by leverag-
ing on the indoor floorplan dataset; however, these methods
do not consider complex relations in which more than two
spaces are interconnected, or the counting based heuristic
algorithm without using the latent pattern cognitive model is
not promising to understand the context of indoor semantic-
spatial relations.

B. SEMANTIC PERCEPTION AND NAVIGATION
In addition to studies directly related to robot explorationmis-
sions (section II-A), this subsection describes overall studies
related to the semantic perception and robot navigation using
it. Many robot navigation problems consider the interaction
with the external environment [26]–[28]. In particular, the
semantic representation of the environment (e.g., room num-
ber, objects, functional category of roads or spaces) contains
valuable information for missions. To exploit the semantic
information, the semantic mapping methods using a cam-
era [29]–[34], or multiple heterogeneous sensors [35], [36]
are proposed. Also, the usability of the semantic percep-
tion methods have been increased due to the public map
datasets [5], [37]. The datasets contain semantic informa-
tion about outdoor or indoor environments. [38] and [28]
suggest global outdoor navigation method by matching the
robot sensing data with the OpenStreetMap data using geo-
metric and semantic features. Similarly, in the indoor nav-
igation, robot navigation methods comparing the geometric
and semantic sensing data with given flooplan data are sug-
gested [39]–[42]. With the advances of the semantic percep-
tion, navigation methods, and public navigational datasets,
pattern-cognitive navigation is promising.

C. GRAPHICAL MAP ABSTRACTION
Graph abstraction has been developed for various purposes
in various fields, and attempts have been made to abstract
indoor space into graphs in fields such as robotics and geom-
etry. Many of robot exploration problems also adopt the
graphical map abstraction technique for an efficient inference
on spaces [1]–[7]. The location and connection of nodes
are determined by various perspectives, including inter-
visibility [43]–[45], sampling [41], [42], [46], and spatial seg-
mentation methods [47], [48]. Among these, this paper uses
the voronoi-based graph generation method that performs the
graph extraction by spatial segmentation methods [47].

D. MULTIVARIATE BERNOULLI DISTRIBUTION MODEL
We consider the inference of the existence and cate-
gory of unknown nodes beyond the node of interest with
the graph obtained by abstracting partially observed map
as input. It is known that MBD model can efficiently
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represent the distribution of the multivariate Bernoulli graph
by capturing high-order interactions of multiple groups
of nodes as well as relationships between two variables.
Also, the categorical graph, which is the same format with
semantic-spatial relation data can be represented by gener-
alizing Bernoulli (Binary) random variables. A method to
optimize the latent parameters in MBD model using linear
predictors is proposed in [49]. [50] considers a multivari-
ate Bernoulli model that uses a smoothing spline model
to replace the linear predictor, but setting the second and
higher order interactions between the nodes as constants. [51]
and [52] try to build a unified framework of a generalized
linear model for the multivariate Bernoulli distribution which
includes both higher order interactions among the nodes and
covariate information. [53] and [54] suggest a deep neural
network-based parameter learning method using the MBD.
Existing studies show that MBD models have the ability to
capture the context of graphs with discrete variables, and
focus on learning them by high-order parameterization.

According to these studies, we discover that pattern cog-
nitive learning model for space inference and non-myopic
target-directed exploration problem has not been properly
investigated.Motivated by the graphical map abstraction con-
cept and the characteristics of MBD models learning interac-
tions between discrete nodes, we propose the graphical space
inference model and the target-directed exploration planner
aided by it.

III. PROBLEM STATEMENT
Consider a mobile robot that operates in a closed 2D indoor
environment M ∈ Mw×h, incrementally building an esti-
mated map M̂ ∈Mw×h, in whichM ∈ {O : occupancy, C :
functional category of space} is map configuration,O ∈ {F :
free,O : occupied,U : unknown} is configuration of cell
occupancy, C ∈ {1, . . . ,Nc} is category of cell, and w and h
are the maximum width and height of map, respectively. For
efficient target search in unknown environments, we present
an exploration framework that generates goals in the direction
of maximizing the detection probability of the target while
reducing the overall cost of travel until the target is found:

max
X

(
pψ(X )(ot )− C(X )

)
(1)

where X is the traveled trajectory, C(·) is the cost, ψ(X ) =
M̂O

⋃
M̂F is observed space by the travel X , ot ∈ {0, 1} is

existence of target, and pψ (ot ) is the target existence proba-
bility in the space ψ . To deal with the cost C(X ) and utility
pψ (ot ) jointly, it is necessary to infer the existence of a target
in unobserved spaces. To incorporate the inference concept
and the exploratory target search problem, we define several
probabilities related to space and objects as follows:
• p(Eotcj ) ∈ [0, 1]: The existence probability of target in a
space in category cj

• p(H ci
xj ) ∈ [0, 1]: The probability that the category of

hypothetical space over space xj is ci
To handle the objective (equation 1) in the cost-

utility-based frontier exploration manner, the following

Exploration-Search Transform (EST) concept is suggested.
The EST generates a cost-utility map θ (x) ∀x ∈ M̂. In the
cost-utility map, the shortest path from an initial robot posi-
tion to the best next goal in frontiers can be extracted by
simply following the steepest gradient. The value of each cell
in the cost-utility map is defined as follows:

θ(x) = max
xf ∈F

[
max
X∈X

xf
x

(
C(X )

)
− βVM (M̂ , xf )

]
(2)

VM (M̂ , xf ) =
Nc∑
cj=1

p(Eotcj )p(H
cj
xf |M̂ )

+γ

Nc∑
cj=1

p(Eotcj )
Nc∑

x̄f 1=1

p(H
cj
x̄f 1
|M̄

x̄f 1
xf )

+ · · ·

+γ R−1
Nc∑
cj=1

p(Eotcj )
Nc∑

x̄f R−1=1

· · ·

Nc∑
x̄f 2=1

Nc∑
x̄f 1=1

p
(
H
cj
x̄f R−1
|M̄

x̄f 1 ,··· ,x̄f R−1
vf

)
(3)

where F is the set of all frontiers in M̂ , X xf
x is the set of all

paths from x to xf , C(X ) is the cost of path X , VM (M̂ , xf )
is the value of the frontier xf , γ is the discounting factor

(set to 0.99), p(H
cj
x̄f k
|M̄

x̄f 1 ,··· ,x̄f k
xf ) is the probability that the

category of hypothetical space over space x̄f k turns out to be cj

given map M̄
x̄f 1 ,··· ,x̄f k
xf , M̄

x̄f 1 ,··· ,x̄f k
xf is the predicted map after

action sequences (xf , x̄f 1 , · · · , x̄f k ) are taken, R is the roll-out
length, and α is the coefficient. To focus on space inference
and planning, we introduce following assumptions:
Assumption 1: The existence probability of target in a

space in category cj p(E
ot
cj ) is given in advance

Assumption 2: At the time of mapping, the probability that
the category of hypothetical space over space xj is ci P(C

ci
xj )

for all xj ∈ M̂F are given
In this paper, we focus on the following tasks:
• Building the space inference model to obtain p(H

cj
xf |M )

• Building the next-goal generation method aided by the
space inference model

IV. GRAPHICAL SPACE INFERENCE AIDED GOAL
GENERATION
Due to huge dimensionality of the state space representa-
tion of the map in the metric domain, the construction of a
space inference model in that domain is also computationally
intractable. Therefore, the metric domain of the environment
is converted to the graph domain ((a) in Figure 1), and we
redefine EST in the graphical domain as follows:

θ (x) = max
xf ∈F

[
max
X∈X

xf
x

(
C(X )

)
−βVG

(
TM (M̂ ),TV (TM (M̂ ), xf )

)]
(4)
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FIGURE 1. Space inference aided next-goal generation.

VG(G, vf ) =
Nc∑
cj=1

p(Eotcj )p(H
cj
vf |G)

+γ

Nc∑
cj=1

p(Eotcj )
Nc∑

v̄f 1=1

p
(
H
cj
v̄f 1
|Ḡ

v̄f 1
vf

)
+ · · ·

+γ R−1
Nc∑
cj=1

p(Eotcj )
Nc∑

v̄f R−1=1

· · ·

Nc∑
v̄f 2=1

Nc∑
v̄f 1=1

p
(
H
cj
v̄f R−1
|Ḡ

v̄f 1 ,··· ,v̄f R−1
vf

)
(5)

where TM (·) : M → G is the conversion function from a
metric map to a converted graph, TV (·) : G × R2

→ v is the
conversion function from ametric position to a closest node in

the converted graph G, p
(
H
cj
v̄f k
|Ḡ

v̄f 1 ,··· ,v̄f k
vf

)
is the probability

that the category of hypothetical node over node v̄f k is cj given

graph Ḡ
v̄f 1 ,··· ,v̄f k
vf . The graph representation G is defined as

follows:

G = (V, E,W) (6)

where V is a set of nodes, E ⊆ (V × V) is a set of edges, and
W ∈ {P, C, If , Ir } is the set of node features. In the node
features, C ∈ {c1, · · · , cNc}|V | is the category set of nodes,
P ∈ R|V |×2 is a position set of nodes, If ∈ {0, 1}|V | is the
vector of indicator function, which equals 1 if any frontier is
near the node and 0 otherwise, and Ir ∈ {0, 1}|V | is also the
vector of indicator function that equals 1 if the robot is at the
node and 0 otherwise.

Among the information in the graph, (V, E, C) which
contains semantic categories of space and their relations
are used for MBD-GSIM. In the model learning phase of

FIGURE 2. Example of metric to graph domain conversion (left:GVD [47],
right:RGVD (algorithm 1)).

MBD-GSIM, the semantic-spatial relations in the graph
dataset are exploited, and in the prediction phase, the space

beyond the node of interest in the graph p
(
H
cj
v̄f k
|Ḡ

v̄f 1 ,··· ,v̄f k
vf

)
is inferred by using the graph and the node of inter-
est as the inputs ((c) in Figure 1). The space inference
information is used to calculate the frontier node val-
ues VG

(
TM (M̂ ),TV (TM (M̂ ), xf )

)
((b) in Figure 1) using

Equation 5. Based on the frontier values, the next goal is
extracted ((d) in Figure 1) by following the steepest gradient
from the current robot position in the cost-utility map derived
from Equation 4.

In this paper, we use the Generalized Voronoi Dia-
gram (GVD) scheme [47] for metric to graph domain con-
version. A Voronoi diagram can be considered as a collection
of the medial axes between a set of points. The graph G
from GVD can be considered as the medial lines between the
obstacles, which can be used to form an indoor representative
graph. To generate the graph, because the GVD scheme
considers only the geometric features to generate the graph,
it has many redundant nodes in the paths between free spaces.
For the semantic space inference we intend to perform in this
paper, it is better to represent the space considered semanti-
cally identical as one node. For that, a reduced GVD scheme
(Algorithm 1, Figure 2) is suggested. It utilizes the node
category information and betweenness centrality concept to
merge the nodes without losing the adequacy of the geometric
placement of the nodes.
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Algorithm 1 Reduced GVD

1: Input:map M̂ , maximum number of nodes in each clus-
ter Ng

2: Obtain G using GVD scheme [47] with input M̂
3: for all ci ∈ {1, · · · ,Nc} do
4: Gci ← {connected subgraphs in G of category ci}
5: while ∃|Gsci | > Ng in Gci do
6: for all Gsci ∈ Gci do
7: if |Gsci | > Ng then
8: e← {acyclic edges in Gsci}
9: er ← argmaxe∈e(betweeness centrality of e)

10: E sc ← E sc \ er
11: Gci ← {connected subgraphs
12: with category ci in G}
13: end if
14: end for
15: end while
16: for all Gsci ∈ Gci do
17: merge nodes
18: end for
19: end for
20: Return: G

V. MBD-GSIM BASED SPACE INFERENCE
In this section, we describe the MBD-GSIM. MBD-GSIM
infers the semantic category of space beyond the node of
interest p(H ci

vf |G). For this, the concept of MBD model
(section V-A), and MBD-GSIM scheme (section V-B) based
on it are described.

A. MULTIVARIATE BERNOULLI DISTRIBUTION MODEL
MBD is suitable for modeling graphs of Bernoulli nodes with
the concept of statistical correlations. The K -dimensional
random vector and its realization are defined as follows:

Y = (Y (1),Y (2), · · · ,Y (K ))

y = (y(1), y(2), · · · , y(K )) (7)

where Y(i) ∀i ∈ {1, · · · ,K } are the possibly correlated
Bernoulli random variables (nodes), and K is the number of
the bernoulli nodes. The joint probability distribution of y is
as follows:

p(y) = p
∏K
j=1(1−y(j))

0,0,··· ,0 p
y(1)

∏K
j=2(1−y(j))

1,0,··· ,0

·p
(1−y(1))y(2)

∏K
j=3(1−y(j))

0,1,··· ,0 · · · p
∏K
j=1 y(j)

1,1,··· ,1 (8)

where py1,y2,··· ,yK = p(y(1), y(2), · · · , y(K )). For simplifica-
tion, the following definition is introduced:
Definition 1: For any two superscripts τ1 = {j1, j2, . . . , jr }

such that τ1 ∈ T and τ2 = {k1, k2, . . . , ks} with τ2 ∈ T and
r ≤ s, we can say that τ1 ⊆ τ2 if for any j ∈ τ1, there is a
k ∈ τ2 such that j = k , where T is the power set of indices
{1, 2, . . . ,K }.

Using Equation 8 and Definition 1, log-linear formulation
l(y, f(x)) can be written as follows:

l(y, f(x)) = −log[p(y)]

= −

∑
τ∈T

f τ (x)Bτ (y)+ b(f(x))

Bτ (y) =
∏
j∈τ

y(j)

b(f(x)) = log
[
1+

∑
τ∈T

exp[Sτ (x(i))]
]

Sτ =
∑
τ0⊆τ

f τ0 (x) (9)

where T is the set of all possible subsets of {1, 2, · · · ,K },
and f = (f {1}, f {2}, · · · , f τ , · · · , f {1,2,··· ,K }) is the vector of
the natural parameters. x ∈ Rp is the input feature vector,
and y ∈ IK is the realization of the multivariate Bernoulli
random vector. The natural parameter f τ (x) represents the
interaction between nodes belonging to τ , and it is to be fitted
by training. Given the Nd data pairs xi = (x i(1), .., x i(p)),
yi = (yi(1), , , yi(K )) ∀i ∈ {1, · · · ,Nd }, equation 9 is rewrit-
ten as follows:

l(y, f(x)) =
1
Nd

Nd∑
i=1

[
−

∑
τ∈T

f τ (xi)Bτ (yi)+ b(f(x))
]

(10)

Fitting f τ ∀τ ∈ T using equation 10 can be said to
be the construction of an MBD model. Once the model is
constructed, it is possible to calculate the joint probability of
y by the following formula:

p(yτ ) =
(exp(Sτ (x)))

(1+
∑
τ∈T exp[Sτ (x)])

(11)

where p(yτ ) = P(Y (i) = 1 ∀i ∈ τ,Y (j) = 0 ∀j /∈ τ ). One
example of computing the joint probability of multivariate
Bernoulli random variables using trained f τ (x) is as follows:

P(Y (1) = 1,Y (2) = 1,Y (3) = 0)

=
exp(S{1,1,0}(x))

1+ S{0,0,0} + S{1,0,0} + · · · + S{1,1,1}

S{0,0,0} = f {0,0,0}(x)

S{1,0,0} = f {0,0,0}(x)+ f {1,0,0}(x)

S{0,1,0} = f {0,0,0}(x)+ f {0,1,0}(x)

· · ·

S{1,1,1} = f {0,0,0}(x)+ f {1,0,0}(x)+ · · · + f {1,1,1}(x) (12)

where x is the input feature vector, and f {k1,k2,k3} (ki ∈ {0, 1})
is the natural parameter. Using the concept of MBD, we build
MBD-GSIM which takes a graph of a partially observed map
as a query and output predicted space information.

B. MBD-GSIM
Figures 3 illustrates the MBD-GSIM and its training frame-
work, respectively. In the training phase (Figure 3-(b)),
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FIGURE 3. MBD-GSIM (a) and it’s training phase (b).

the Nd datapairs are given as follows:

(queryi, labeli) =
(
(Gik , v

i
k ),G

i
k+1

)
, i = 1, 2, · · · ,Nd

(13)

(Gik , v
i
k ) is the graph and the node of interest and G

i
k+1 is the

resulting graph when the action of taking vik is taken. k and
k + 1 are used as notations to distinguish between the query
and the label data, respectively. In this paper, we generate
the data pairs from the graph format KTH dataset [5] (exam-
ples are in the Figure 4) through random walk exploration
(Figure 5).
The MBD model takes a real-valued feature vector and

Bernoulli (binary) multivariate vector for the input and real-
ization, respectively. However, the dataset is given in the form
of the graph and the index of the node (Equation 13). Because
the required data format of the MBD model (xik , y

i
k+1) and

given dataset (Equation 13) do not match, some conversion
functions between them are needed. First, the ‘Hypotheti-
cal Graph Construction (HGC)’ makes the query (Gik , v

i
k )

into a single hypothetical graph Gh,ik+1. Then, the ‘Decom-
position’ module decomposes Gh,ik+1 and Gik+1 into multi-
ple path graphs as a preprocessing to vectorize them. After
that, the decomposed data pairs (Gh,i,dk+1 ,G

i,d
k+1) ∀d ∈ D are

encoded into vector form (xi,dk yi,dk+1),∀d ∈ D through the
’Graph2vec’ (for Gh,i,dk+1 ) and ’Random Variable Assignment
(RVA)’ (for Gi,dk+1). Based on the data pairs (xi,dk , y

i,d
k+1), the

model φMBD is trained.
The trained MBD-GSIM (Figure 3-(a)) only requires

(Gk , vk ) as an input. Like the training phase, xdk is obtained
through ’HGC’, ’Decomposition’, and ’Graph2vec’.With the
feature vector input xdk ∀d ∈ D, the MBD model outputs
natural parameter f τ (xdk ) ∀d ∈ D, which is used to obtain
’Hypothetical node probability calculation’. In the following
subsections, each module in Figure 3 are described.

FIGURE 4. Example of KTH dataset (left: Floorplan color-coded according
to semantic categories, right: Graph representation of the floorplans).

1) HYPOTHETICAL GRAPH CONSTRUCTION
HGC is the process of constructing one hypothetical
graph representation Ghk+1 by integrating the original query
(Gk , vk ). Starting from the graph Gk = (Vk , Ek , Ck ), Ghk+1 is
derived as follows:

Ghk+1 = (Vhk+1, E
h
k+1, C

h
k+1)

Vhk+1 = Vk ∪ vhk+1
Ehk+1 = Ek ∪ (vk , vhk+1)
Chk+1 = Ck ∪ {0} (14)

where vhk+1 is a newly defined hypothetical node. The neigh-
bor node of vhk+1 is set to the node of interest vk . Because
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FIGURE 5. Example of random-walk based dataset generation: The prior
map graph Gi

k is set by random initial start and random walks. The blue
node is the node of interest (v i

k ) in Gi
k , which is selected randomly. With

the query (prior) (Gi
k , v i

k ), the label Gi
k+1 is obtained from the ground

truth graph G = T (M).

FIGURE 6. Example of hypothetical graph construction.

the existence and category of vhk+1 is uncertain, it is assigned
a dummy category 0. The example of HGC is shown in the
Figure 6.

2) DECOMPOSITION
In MBD-GSIM training, the label graph Gik+1 of data
pair (Gh,ik+1,G

i
k+1) should be represented as a multivariate

Bernoulli variable. However, the multivariate Bernoulli vari-
able cannot be obtained directly fromGik+1 because the graph
format does not naturally have priorities between nodes, but
it may contain cycle subgraphs, has unlimited size, and the
structure changes at every step. Therefore, we introduce the
assumptions below to decompose the graph Gik+1 into map-
pable form to the multivariate bernoulli variable.
Assumption 3: Structural features of indoor graph G can

be approximated with BFS tree graph G′.
Assumption 4: The characteristic of the place of interest

can be captured through the context of the nearby surrounding
places.
Assumption 5: The spatial properties of the tree graphs can

be expressed as a set of path graphs from root nodes to all leaf
nodes.

With the above assumptions, we propose a graph decompo-
sition process as shown in Figure 7. First, with assumption 3,
we extract the BFS tree by setting the hypothesis node as
the root node. Then, because the large graph sizes can makes
training and prediction computationally intractable, the depth
of the tree is limited to the length L set by user. Assumption 4

FIGURE 7. Example of indoor graph decomposition.

allows us to limit the input size by considering only the space
within a certain range around the node of interest. Finally,
we obtain a set of path graphs (Gh,i,dk+1 ,G

i,d
k+1) ∀d ∈ Di that

connect all leaf nodes to the root node (assumption 5).

3) Graph2vec
We construct the graph embedding model to obtain the input
feature xdk ∀d ∈ D for the downstream MBD model. For
that, we apply the widely adopted Graph2vec [55] scheme
which provides δ-dimensional distributed representations for
the given graph dataset. Given the decomposed path graphs
Gh,i,dk+1 (∀i ∈ {1, · · · ,Nd }, d ∈ Di), the optimal embedding
model for downstream MBD model is obtained by the fol-
lowing objective function:

|Di
|∑

j=1

log(P(sgj|Gi)) (15)

where P(sgj|Gi) is defined as,

exp(Gi · sgj)∑
sg∈SG exp(Gi · sg)

(16)

and SG is the set of all the subgraphs across all path graphs.
The overall process to construct the graph embedding

model using query dataset {(Gik , v
i
k )|∀i ∈ {1, · · · ,Nd }} is

shown in algorithm 2. For all queries, ’HGC’ (line 5) and
’Decomposition’ (line 6) are applied, and the decomposed
hypothetical graph sets Gh,dk+1 are gathered to construct the
graph embedding model (line 7). The typical Graph2vec
optimizer is applied to construct the embedding model φ with
Equation 15 as the objective function (lines 9∼18).

4) RANDOM VARIABLE ASSIGNMENT
RVA is the operation of assigning the decomposed label data
Gi,dk+1 to a multivariate Bernoulli (binary) vector as follows
(hot-encoding for each node):

yi,dk+1 = [vec(Gi,dk+1(1)), vec(G
i,d
k+1(2)), · · · , vec(G

i,d
k+1(L))]

(17)

167046 VOLUME 9, 2021



W.-C. Lee, H.-L. Choi: Complex Semantic-Spatial Relation Aided Indoor Target-Directed Exploration

Algorithm 2 Graph Embedding Model Construction

1: Input: Query dataset {(Gik , v
i
k )|∀i ∈ {1, · · · ,Nd }},

length limit of graph L, number of epochs Ne, maximum
degree of rooted subgraphs D, learning rate α

2: Initialize: Graph2vec embedding model φG2V
3: GE

= {}

4: for all i = 1 to Nd do
5: Ghk+1← HGC(Gik , v

i
k )

6: Gh,d
k+1← Decomposition(Ghk+1, v

h
k+1,L)

7: GE
← GE

∪Gh,d
k+1

8: end for
9: for all e = 1 to Ne do

10: GE
= Shuffle(GE )

11: for all Gi ∈ GE do
12: SG ← Getsubgraphs(Gi)
13: for all sgj ∈ SG do
14: J (φG2V ) = −logP(sgj|φG2V (Gi))
15: φG2V ← φG2V − α

∂J
∂φG2V

16: end for
17: end for
18: end for
19: Return φG2V

where vec(·) is the hot-encoding operation, Gi,dk+1(1) is the
hypothetical node, and Gi,dk+1(L) is the leaf node. Here, since
the node information is not binary but categorical information
of nodes, Nc variables for each node are required, and the
number of variables required increases linearly with maxi-
mum length L of the path graph from the hypothetical node
considered. If it is determined that there is a wide range
of surrounding spaces affecting the node of interest to be
inferred, then L can be increased, and vice versa.
The generated vector-type (query, label) dataset is used to

fit the MBD model using Equation 10. The overall training
process, including previous processes from the query and
label input, is described in algorithm 3. The original dataset is
encoded to the required form for MBD model (line 3 ∼ 19),
then the natural parameter predictor φMBD is fitted.

5) HYPOTHETICAL NODE PROBABILITY CALCULATION
Using the trained model φMBD, the following natural param-
eters can be obtained:

f τ (xd ) ∀τ ∈ T , d ∈ D (18)

The predicted natural parameter f τ (xd ) d ∈ D is used to
calculate the joint probability p(yτ ) = P(Y (i) = 1 ∀i ∈
τ,Y (j) = 0 ∀j /∈ τ ) which represents the existence and cat-
egory probability of a hypothetical node. For the calculation,
followings are considered:

1) We are interested in the hypothetical node, so it is
necessary to marginalize the above joint probability for
the hypothetical node related random variables.

2) Since f(X ) = {f(xd )|xd ∀d ∈ D} is a natural
parameter prediction for the decomposed query input,

Algorithm 3 Training

1: Input: (Query, label) dataset {((Gik , v
i
k ),G

i
k+1)|∀i ∈

{1, · · · ,Nd }}, length limit of graph L, graph embedding
model φG2V

2: Initialize:MBD model φMBD
3: GQ

= {}

4: GL
= {}

5: for all i = 1 to Nd do
6: Ghk+1 = HGC(Gik , v

i
k )

7: Gh,d
k+1 = Decomposition(Ghk+1, v

h
k+1,L)

8: Gd
k+1 = Decomposition(Gk+1, vhk+1,L)

9: GQ
= GQ

∪Gh,d
k+1

10: GL
= GL

∪Gd
k+1

11: end for
12: X = {}
13: Y = {}
14: for all (GQ,GL) ∈ (GQ,GL) do
15: x = φG2V (GQ)
16: y = RVA(GL)
17: X = X ∪ {x}
18: Y = Y ∪ {y}
19: end for
20: Fit φMBD by Equation 10 with input X and Y
21: Return φMBD

a mechanism for recombining predicted probability
information is needed.

For the first consideration, the variables associated with
the hypothetical node inmultivariate Bernoulli random vector
Y ∈ 1Nc·L are the 1 ∼ Nc-th elements, Y(1 : Nc), so the
marginal probabilities of the decomposed query inputs are
calculated as follows:

p
(
yd (1 : Nc)

)
=

∑
∀yd (Nc+1:Nc·L)

p
(
yd (1 : Nc), yd (Nc + 1 : Nc · L)

)
(19)

For the second consideration, we perform the following
linear combinations of the marginal probability p(yd (1 :
Nc) ∀d ∈ D using the decomposed query information. where
αd is the weight.

p(y(1 : Nc)) =
|D|∑
d=1

αdp(yd (1 : Nc)) (20)

For convenience, we denote the probability variable vectors
of the hypothetical node and their realizations, Y(1 : Nc) and
y(1 : Nc), as Yh, yh. With the marginal probability above, the
probability that the category of hypothetical place over place
xj equals ci, p(H

li
vk |Gk ), is defined as follow:

p(H ci
vk |Gk ) = P

(
Y h(i) = 1,Yh(J ) = 0|Gk , vk

)
(21)

where J = {j|j ∈ {1, · · · ,Nc}&j 6= i}. The overall pro-
cess of predicting the category of hypothetical space node is
described in algorithm 4.
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Algorithm 4 Overall MBD-GSIM Process
1: Input: Query data (Gk , vk ), length limit of graph L,

graph embedding model φG2V , MBM model φMBM
2: Ghk+1 = HGC(Gk , vk )
3: Gh,d

k+1 = Decomposition(Ghk+1, v
h
k+1,L)

4: for all G ∈ Gh,d
k+1 do

5: x = φG2V (G)
6: X = X ∪ {x}
7: end for
8: f(X )← φMBD(X )
9: for all f(xd ) ∈ f(X ) do
10: for all f τ (xd ) ∈ f(xd ) do
11: Sτ ←

∑
τ0⊆τ

f τ0 (xd )
12: P(Y (τ ) = 1,Y (τ c) = 0)← (exp(Sτ (x)))

(1+
∑
τ∈T exp[Sτ (x)])

13: end for
14: p(yd,h) ←

∑
∀yd (Nc+1:NcL) p

(
yd (1 : Nc), yd (Nc + 1 :

Nc · L)
)

15: end for
16: p(yh)←

∑|D|
d=1 α

dp(yd,h)
17: for all ci ∈ {0, 1, · · · ,Nc} do
18: J = {j|j ∈ [1,Nc]&j 6= i}
19: p(H ci

vk |Gk )← P
(
Y h(i) = 1,Yh(J ) = 0|Gk , vk

)
20: end for
21: Return p(H ci

vk |G), ∀ci ∈ {1, · · · ,Nc}

VI. COMPUTATIONAL COMPLEXITY REDUCTION
With p(H ci

v |G) calculated from MBD-GSIM and prior infor-
mation p(Eotlj ), VG(Gk , vk ) can be obtained by Equation 5.
Although all the information for EST calculation (equation 4)
is prepared, calculating the cost-utility values for all cells in
the map is computationally expensive as the observed map
size increases. So, we redefine the EST as equation 22, where
the steepest gradient is applied in the graph domain first
(Phase 1), and in the metric domain at the termination node
(Phase 2) sequentially.

θ =


max

vf ∈V(If=1)

[
max

XG∈X
vf
G,TV (G,x)

(
C(X )

)
− βVG

(
G, vf

)]
, P1

max
xf ∈FL

[
max

X∈X
xf
P(vf )

(
C(X )

)]
, P2

(22)

where P1 and P2 are phase 1 and 2, respectively, G =
VG
(
TM (M̂ )

)
is the graph representation of the map M̂ , X v1

G,v0
is the set of all path graphs from v0 to v1, P(v) is the posi-
tion of node v, and FL(vf ) is the set of frontiers close to
the vf .

VII. EXPERIMENT
In this section, the performances of the proposedMBD-GSIM
andMBD-GSIM aided exploration planner are evaluated. For
that, the dataset and environment are introduced, and the
comparisons with baselines are presented.

FIGURE 8. Neural network used in MBD model. This architecture takes an
input vector x and outputs exp(f τ ).

TABLE 2. Accuracy improvement ratio between MBD-GSIM of
L = 1 ∼ 4 and MLP-GSIM, FSE. (L.B. and U.B. are the lower and upper
bound of 3-sigma, respectively).

A. DATASET AND ENVIRONMENT
The KTH floorplan data of the graph form is used to
train and test the MBD-GSIM (example data is shown in
Figure 4-right). To train MBD-GSIM, we manually selected
20 floor plans considering the completeness of the data, and
the space categories are clustered in 5 categories (office,
corridor, share, maintenance, toilet). The metric form of KTH
floorplan data (Figure 4-right) is also used to generate real
building environments in Gazebo simulation and test the
MBD-GSIM aided exploration planner in the environments.
The turtlebot model equipped with a 2D LIDAR sensor and
Gmapping [28] algorithm is used to build the cumulative slam
map. At the time ofmapping, the category of space is assumed
to be given (noted in assumption 2).

B. EVALUATION METHOD
To evaluate the space inference performance of MBD-GSIM,
we investigate 1) whether the MBD-GSIM learns the con-
text of the semantic-spatial relations without overfitting, and
2) how accurate the space inference is. For that, the con-
ventional multilayer perceptron-based GSIM (MLP-GSIM)
and the Functional Subgraph Exploitation [5]-based GSIM
(FSE-GSIM) are used as baselines. The neural network archi-
tecture in Figure 8 is set as the natural parameter models in
MBD-GSIM.

MLP-GSIM directly outputs the space category predic-
tion by the neural network architecture of Relu(m)-Relu(m)-
Softmax(Nc), where m is the number of hidden neurons. The
FSE is a representative probabilistic method using pattern
matching to predict the space based on the dataset.We present
the logs of loss history over training episodes to investi-
gate whether the overfitting occurs. The loss history is com-
pared with the MLP-GSIM. Since FSE-GSIM is a heuristic
algorithm, it is not used for the overfitting comparisons.
The space inference accuracy of MBD-GSIM is compared
with MLP-GSIM and FSE-GSIM. The overall evaluation
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FIGURE 9. Loss history over episodes for MLP-GSIM (upper graphs) and our MBD-GSIM (lower graphs). Solid lines represent means of losses and
shadows represent 3-sigma bounds. m is the size of hidden layers of MLP and L are the limit lengths of BFS for MBD-GSIM.

FIGURE 10. Space inference accuracy of MBD-GSIM (red), MLP-GSIM
(m=256, blue), and FSE (green) for test dataset.

of MBD-GSIM is conducted by using the graph type KTH
indoor floorplan dataset as the training set and the test set,
respectively, at rates of 90% and 10%. The data pairs are
generated based on the random walk method (Figure 5).

For the analysis of MBD-GSIM based exploration plan-
ner, we compare the MBD-GSIM based planner with base-
line exploration methods (FSE-GSIM based planner [5] and
cost-based hector planner [8], [9]) in multiple indoor environ-
ments (the used environments are in Figure 11, 12, and 13).
In the comparisons, we investigate whether the proposed
method is effective to guide the robot to a space with a high
probability of target presence. For that, various metrics such
as representative snapshots during TDE scenarios, the graph
of exploration speed for the space of high target existence
probability, and the score of information gathering quality are
provided. The score of the information gathering quality is
defined as in Equation 23:

score =
∫
γ 1+x

[∑
cj∈C

p(Eotcj )1Acj (x)
]
dx (23)

where 1Acj (x) is the newly observed space with category cj
at traveled distance x and γ is the discounting factor.

C. RESULT
1) MBD-GSIM
Figure 9 shows the loss histories over episodes of
MBD-GSIM and MLP-GSIM. The upper graphs of Figure 9
represent the loss histories of MLP-GSIM according to
the network size m. Although the loss value drops signifi-
cantly for the training set as m increases, For the test sets,
loss tends to increase significantly after certain episodes.
This is the typical trend of overfitting, which means that
MLP-GSIM is not properly identifying the latent patterns
from the semantic-spatial relation dataset of the indoor space.
On the other hand, in the MBD-GSIM, the loss value drops
with episodes almost equally in the training and test set. This
means that the MBD-GSIM properly learns the latent context
without overfitting. In addition, the final loss value is reduced
as the limit length of BFS L becomes larger. The larger an area
around the node of interest is referenced (as the L becomes
larger), the better the performance. The tendency of the loss
reduction remains the same in the space prediction accuracy
(Figure 10). The ratio of space prediction accuracy between
MLP-GSIM, FSE and MBD-GSIM is shown in Table 2.
At L = 1, the mean accuracies of both methods are similar,
but as L grows, MBD-GSIM performance becomes superior.

2) MBD-GSIM BASED FRONTIER EXPLORATION
Figure 11 and 12 represent representative snapshots dur-
ing TDE scenarios in different indoor environments.
Figure 11 is the scenarios in which the existence proba-
bility of target object in the toilet (blue region) is high
(p(EotC ) = [office, corridor, share, maintenance, toilet] =
[0.1, 0.1, 0.1, 0.1, 0.6]). Based on the observed map (left),
the abstracted graph representation is obtained (middle). The
future space category p(HC

v ) is predicted by MBD-GSIM
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FIGURE 11. Representative snap shot of MBD-GSIM based frontier exploration when parameters are set to p(E
ot
C ) = [0.1,0.1,0.1,0.1,0.6], R = 3,

and L = 3. Left figure represents the ground truth map (dark background) and observed map (bright region). Middle figure is a graph of the

observed map with estimated VG and p(H
cj
vf

). (shapes of nodes contain information about category of space (outer circle, color by categories),
whether any frontier is in a neighbor (middle circle, white if frontiers are in neighbor, or black), and robot position (inner circle, cyan if robot is at
the node)). Right figure represents the current robot position and generated goal point of MBD-GSIM based planner (red square) compared to
cost-based frontier exploration (green square, Hector exploration planner [8], [9]).

FIGURE 12. Representative snap shot of MBD-GSIM based frontier exploration when p(E
ot
C ) = [0.6,0.1,0.1,0.1,0.1].

(with level L = 4), and the values of frontier nodes are
estimated by rolling out up to length R = 3. The probability
vector p(HC

v ) in the figure is the one-step prediction of the
space category. In the case of Figure 11-(a), Node 5 has
the highest probability that the space over the node is the
toilet, and the node value is also the highest, which is a
desirable result. As a result, even though the robot is located
around node 4 (the farthest from the toilet), the generated
goal point is the frontier near node 5. On the contrary,
the cost-based exploration method [8], [9] generates a goal
nearest to the robot. Figure 11-(b) also shows the results in
different environment. Figure 12 shows the scenarios when
the target object is most likely to be in the office (red region,
p(EotC ) = [0.6, 0.1, 0.1, 0.1, 0.1]. In Figure 12, the robot
is directed by the MBD-GSIM based planner to the right
(node 3) in (a) and the lower right (node 8) in (b), where
many offices are located.

FIGURE 13. Experiment cases to measure the quality of information
gathering. Each case differs according to the p(E

ot
C ) value and

environment. Repetitive experiments are conducted by changing the
initial position in each case.

The scores of information gathering quality (Equation 23)
are also compared. Figures 13 shows the test cases according
to different environments and target existence probability set-
tings. In the two different maps, we calculate scores when the
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FIGURE 14. Information quality scores of MBD-GSIM based planner (ours), FSE-GSIM [5] and hector planner ( [8], [9]).

TABLE 3. Information quality scores improvement ratio of MBD-GSIM based planner (ours) compared to FSE-GSIM [5] and hector planner [8], [9]. Mean,
median and lower bound are investigated. Bold font means an improvement of more than 5 per cent. (M:MBD-GSIM-based planner, F :FSE-GSIM-based
planner, h:hector planner.)

TABLE 4. Kruskal-Wallis (KW) and Mann-Whitney (MW) tests for each experiment case. KW test is used for hypothesis testing of the three groups of
samples (MBD-GSIM planner, FSE-GSIM planner, and hector planner). MW test is used for hypothesis testing of two groups. The hypothesis is: The
samples come from the same distribution. If the hypothesis is rejected (7, p-value< 0.1), it means that there is a meaningful difference between the
methods. (M:MBD-GSIM-based planner, F :FSE-GSIM-based planner, h:hector planner.)

target existence probability is high in the toilet (blue region,
p(EotC ) = [0.025, 0.025, 0.025, 0.025, 0.9]) and office (red
region, p(EotC ) = [0.9, 0.025, 0.025, 0.025, 0.025]). For each

case, 5 iterations of the experiments are conducted changing
the initial robot positions. Figure 14 and Table 3 represent
the results. In the case of high probability in the toilet, the
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FIGURE 15. The average exploration speed for the space with the
category of the highest target existence probability.

MBD-GSIM based planner is superior to the FSE-GSIM [5]
and cost based planner (hector [8], [9]) in terms of mean,
median, and lower bound of 80% confidence (case 1-a and
2-a in Figure 14 and Table 3). When the probability is high
in the office (case 1-b and 2-b), the MBD-GSIM based
planner is slightly better than the others but it is not more
significant than the toilet case. It is because the impact of
spatial inference is relatively low because offices are spaces
that frequently appear in the entire region. This trend is
supported in the statistical analysis in Table 4. According
to the Kruskal-Wallis (KW) and Mann-Whitney (MW) tests,
theMBD-GSIMbased planner have outstanding performance
difference (i.e., improvement) compared to the others in the
case 1-a and 2-a. On the other hand, in case of the target exis-
tence probability is high in the office, the statistical tests rep-
resent the minor differences. These trends are also repeated
in the exploration speed for the area with the category of the
highest target existence probability (Table 15).

VIII. CONCLUSION AND FUTURE WORK
In this paper, an indoor target-directed exploration problem
leveraging the semantic-spatial relation of a floorplan dataset
was investigated. The suggested multivariate Bernoulli distri-
bution based graphical space inference model (MBD-GSIM)
and the space inference aided target-directed exploration
planner was applied in the indoor environment of real build-
ings, and it shows that pattern cognitive model based space
inferencing can be a feasible way to achieve efficient target
search in indoor environments.

In the future, from a practical point of view, the frontier
value estimation method can be strengthened by fusing var-
ious contexts related to the target (i.e., prior target position
information, landmark (e.g., room number) based hints, and
so on). In the theoretical point of view, the MBD-GSIM
model can be developed in the direction of relaxing assump-
tions 3, 4, and 5. In this paper, using the assumptions, the
MBD concept was successfully applied to the space infer-
ence, and high inference accuracy was obtained compared to
the existing method. However, since information related to
the interaction between spaces may be lost in the process of
applying the assumptions, relaxing them can be a future work
for better performance.
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