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ABSTRACT To take full advantage of the available network capacity, connections need to be able to use
multiple paths to route their packets. Max-min fairness (MMF) can be effectively applied to single-path net-
works, but computing MMF rates in multipath networks requires solving a series of linear programming (LP)
problems with high computational cost. Thus, a relaxation of MMF has been proposed, namely, upward
max-min fairness (UMMF), which can be solved by simple combinatorial algorithms. Current proposals
carry out incremental approximations emulating the waterfilling algorithm, which inherently establishes a
dependency between the time required to achieve the optimal solution and the capacity of the links. Thus, the
more capacity the network has, the less efficient the algorithms are. We defined the concept of the saturation
level as the basis for the computation of fair shares. We developed the first centralized algorithm based
on this concept, which we call c-SLEN. Unlike its predecessors, its convergence time does not depend
on network capacity, and it does not incur link oversaturation. Based on c-SLEN, we derived d-SLEN,
a distributed protocol that does not need to maintain per-subflow information in routers and guarantees
constant processing time for control packets, making it a good candidate for practical use. Finally, through
extensive simulations, we showed that d-SLEN is faster, lighter, and more accurate than its counterparts.
Owing to its accuracy and convergence speed, it is able to maintain the size of link queues at minimal values
at all times, thus proactively avoiding network congestion.

INDEX TERMS ERC algorithms, multipath networks, upward max-min fairness, high-speed networks,

proactive congestion control.

I. INTRODUCTION
Two essential network issues are congestion control and a fair
distribution of network capacity among the connections in the
network. They have been thoroughly studied in the context
of traditional single-path networks (where connections use
a single path to route their packets) but much less in the
context of multipath networks (where connections might use
a variable number of, not necessarily disjoint, paths).

Congestion control algorithms face three main challenges:
maximizing capacity utilization of bottleneck links, fair
resource sharing, and not stressing link queues [1].

In data center networks, packet losses cause long retrans-
mission delays, which can be catastrophic for many real-time
applications. To avoid this issue, lossless networks have been
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deployed in many production data centers. Nonetheless, when
congestion occurs at some link, it may spread to adjacent
links, the so-called saturation tree, yielding unfair conditions
and seriously degrading global performance [2].

Congestion has traditionally been tackled in a reactive
manner. It can be explicitly notified by means of explicit
congestion notification (ECN) protocols [3], [4], or it can
be detected indirectly [5], [6]. Typical indicators of conges-
tion are packet loss and increment of the round-trip time
(RTT). Typically, the sender progressively increases the num-
ber of packets sent at each time, the so-called congestion
window, until congestion is detected. Then, it drastically
reduces the sending rate. This approach was inherited by most
congestion-window algorithms. Therefore, these algorithms
do not avoid congestion but only mitigate its effects.

Window-based protocols like TCP (Transmission Control
Protocol) and its derivatives follow the additive increase
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multiplicative decrease (AIMD) scheme [7], [8]. Because
of their slow convergence, as networks become faster, more
subflows will be able to end in less RTTs than the congestion
control loop needs to react, making this approach less useful
in the future, particularly for short subflows [9]. Furthermore,
it has been shown that the slow start model of TCP is a
bottleneck in the context of high-speed, large-delay networks,
where it may be able to use only approximately three-quarters
of the available capacity [10]. Thus, some improvements have
been proposed, both in the context of single-path and multi-
path networks [11]-[14]. Of special interest is the proposal
of the bottleneck bandwidth and round-trip propagation time
(BBR) [15] algorithm to improve congestion control of TCP
connections. BBR estimates the rate at which packets should
be sent (which depends on the delivery rate) to achieve high
throughput and short RTT, avoiding the buffer overconnec-
tion problem of loss-based congestion control approaches,
and providing fairness among connections. In [16], wBBR
(weighted BBR) was proposed as an extension of BBR to
multipath TCP (MPTCP). Each subflow of a connection is
assigned a weight that is periodically recomputed to converge
to a fair share.

Proactive congestion control has been recently proposed
as a viable alternative through explicit rate control (ERC)
mechanisms which also provide fairness among competing
connections. Calculating explicit rates improves the conver-
gence time [17]. Examples of algorithms that follow this
approach are PERC [17] and B-Neck [18], the first quiescent
such protocol. These algorithms require per-connection infor-
mation maintained at the routers. To overcome this problem,
s-PERC [19] and SLBN [20] have been proposed as stateless
versions of previous algorithms. One of the most interesting
properties of this type of algorithm is that the convergence
time to the optimal rates depends on the number of bottleneck
levels (in the notation of [18]) and the RTT, but not on the
capacity of the links, as in window-based algorithms which
progressively increase the transmission rate at the sources.
This work focuses on the ERC algorithms.

Currently, datacenters are built over communication net-
works with links of very high capacity and multiple available
paths between hosts. In this type of network, multipath
routing allows for better utilization of the communication
infrastructure. High-speed overlay networks have similar
requirements with the difference in the propagation time
of the links for the long distances involved. Because the
approaches used for single-path networks cannot be applied
directly to the multipath paradigm, algorithms for multipath
systems have been developed, which focus on congestion
control and dynamic routing, and apply different fairness
criteria [21]. Therefore, this study focuses on multipath
networks.

Several fairness criteria have been proposed in the litera-
ture. Probably, the most popular among them, in single-path
networks, is max-min fairness (MMF), because it guarantees
the maximum possible rate to the connection with the lowest
allocation and achieves high network utilization [22], [23].
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Another popular criterion is utility max-min fairness [24],
which tries to satisfy the different qualities of service required
by the different connections. This criterion can be applied
to multipath networks [25], [26]. Because MMF can incur a
high computational cost when applied to multipath networks,
upward max-min fairness (UMMF) [27], which requires
much less computation, has been proposed as a relaxation of
MMEF in the sense that every MMF allocation is UMME, but
not all UMMEF allocations are necessarily MMF. This study
focuses on UMMF allocations.

In multipath networks, fairness criteria can be used to
choose optimal routes among the set of all possible routes
for each connection [22], [28]. However, in dense networks,
the number of possible routes may grow so much that it is
not practical to consider all of them. Furthermore, the set of
sessions, on which routing will depend, is highly dynamic.
Thus, it may be much more convenient to compute routes
statically, considering the topology but not which connections
are active in the network. This way, the number of possible
subflows per connection is bounded. In this study, we assume
that routes are calculated in advance, which includes both
the case in which all possible routes are used and the case
of single-route routing. The way these routes are chosen is
outside the scope of this work.

Traffic control can be faced in a centralized, distributed,
or hybrid way. Depending on the size, speed, and type of
traffic, one approach may be better than the others. Since
centralized algorithms assume global knowledge, they are not
well suited for large networks, where distributed or hybrid
approaches may be a better option. However, centralized
algorithms have been proposed in the context of high-speed
datacenter networks [29] and they are always interesting from
a theoretical point of view, as they can be used as a reference
to validate distributed algorithms and might also lead to
efficient distributed versions. Because centralized algorithms
are not scalable, we propose a centralized algorithm and its
highly scalable distributed version.

A. RELATED WORK

In this section, we review previous work on ERC algorithms
for multipath networks, both centralized and distributed,
which try to achieve fairness.

There are many congestion control algorithms for single-
path networks. Therefore, a traditional approach has been to
adapt these algorithms to multipath environments in order to
take advantage of the total capacity of the network. Thus, for
example, in the field of information centric networks (ICN),
MIRCC [30] is proposed as an extension of the rate control
protocol (RCP) [31]. A single-path version that outperforms
RCP is presented. A multipath extension is then introduced
using a hybrid approach, first trying to evenly share the avail-
able bandwidth between connections and then to make full
use of the remaining capacity. However, the authors recognize
that it is a difficult challenge, and their results do not seem to
be applicable outside the scope of ICN.
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A generalization of the well-known waterfilling algorithm
is formulated in [32] as a maximization problem by using a
geometric approach to compute max-min fair rates in a mul-
tipath network. A throughput polytope is computed, which
delimits the range of feasible throughput configurations, so a
maximal configuration can be obtained. However, computing
the throughput polytope may require exponentially many
steps in the general case. Thus, although it may be computed
fast for easy scenarios, it does not seem to be of practical use
in real networks.

One of the main results in [28] is a centralized (offline)
algorithm that computes global max-min fair (GMMEF) rates
for a set of connections in a multipath network. This algo-
rithm, called OPT_WMMF, requires solving a series of lin-
ear programming (LP) problems and can be completed in
a polynomial number of steps. However, the size of these
problems may grow exponentially, which makes this algo-
rithm impractical for use in real networks. Thus, relaxations
of the problem have been proposed, for example, to compute
local max-min fair (LMMEF) rates (instead of GMMF), and
a distributed algorithm that computes an approximation of
the MMF rates. However, such distributed algorithm has very
strong requirements like global knowledge in routers and
synchronization among sources. These requirements make
the distributed algorithm impractical.

Since solving MMF in a multipath network by formulating
a general LP problem is infeasible for large networks, in [33],
the LP problem is reformulated, taking into consideration
topological considerations, for the specific case of fat-tree
networks. Furthermore, a progressive filling algorithm that
does not need to solve any LP problems is also devised.
This algorithm is parallelized with a notable improvement
in the running times. All these algorithms are centralized,
which makes them appropriate for high performance com-
puting (HPC) datacenters, but not for the general case, where
a distributed algorithm is necessary.

As the computation of MMEF rates in a multipath network
seems to be prohibitively expensive in terms of computing
power and time, UMMF is an alternative explored in [34],
where a distributed algorithm is proposed based on the cen-
tralized algorithm of [27]. A price-feedback mechanism is
used to design a control protocol that runs on the sources
and links in the network. The links compute the prices and
report them to sources. When a source (connection) receives
the feedback from all its subflows, it recomputes the rates for
each individual subflow and notifies the links traversed by
each subflow, so the links can recompute prices. This process
continues until convergence to the UMMEF allocation has been
achieved. This approach is very interesting and promising,
although it presents some issues:

« Its oscillation nature until convergence, as shown by the
experiments performed.

o The number of iterations until convergence (in the order
of hundreds for a network with four connections with
two subflows each and five links). Note that the time
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required to perform each iteration is in the order of
the RTT.
o A parameter needs to be tuned to achieve better
convergence.
As can be seen, there is still work to be done to devise
a congestion control mechanism that achieves UMMF and
performs well enough to be of practical interest in multipath
networks.

B. CONTRIBUTIONS

Because achieving max-min fairness is computationally
expensive, a centralized algorithm to compute UMMF rates,
called c-SLEN (from Saturation Level Explicit Notification)
is proposed. This algorithm resembles the IEWF algo-
rithm [27] using precalculated routes. However, unlike tra-
ditional algorithms (including IEWF) that increase rates in
discrete steps until a link becomes saturated, our algorithm
is based on the concept of saturation level of a link. This
is the first contribution in this work, which allows one to
directly find the next link to saturate and the subflow’s rates
that saturate it. Thus, an improvement in performance is
achieved, since it is not necessary to iterate until a bottleneck
is saturated. Therefore, the saturation level of a link may be
computed at the link itself and notified to the sources, and the
capacity of the links does not affect the performance of the
algorithm.

The main result of this work is a scalable distributed proto-
col that computes UMMF rates. It is a distributed version of
c-SLEN called d-SLEN. To the best of our knowledge, this is
the first protocol of its kind. Its main features are as follows:

o Computing the saturation level of the links in the path of
a subflow and notifying the smallest saturation level to
the sources avoids having to successively increase the
rates until a link becomes saturated (or oversaturated,
depending on the size of the increments) as in [34].
Thus, it is possible to take advantage of all the network
capacity from the beginning.

« Its convergence time to the fair rates does not depend
on the capacity of the network, which makes it a good
candidate for use in high-speed networks.

« Fairness is progressively achieved at a high-speed at the
beginning, which allows the connections to get close to
their optimum rates in just a few RTTs.

o It does not need to maintain information about the
subflows that traverse each link. Only three numbers
per link are necessary, and all the protocol packets can
be processed in constant time. Therefore, the protocol
scales well in terms of the information stored at the
routers and the computing time.

« Itisable to cope with a dynamic situation where connec-
tions enter and leave the network because the saturation
level of each link is recomputed each time a protocol
packet is processed in a link and only affects the con-
nections that share the affected links.

o The protocol does not depend on any parameters to be
tuned to ensure proper convergence.
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By simulation, an experimental evaluation of the proposed
algorithms was carried out with synthetic networks that serve
to compare these algorithms with others proposed in the
literature.

Algorithm c¢-SLEN has been compared with another
recent UMMEF algorithm, a centralized algorithm devised by
Danna et al. [27] named IEWF. The experiments show that,
although the rates allocated to the connections are similar
in all cases, c-SLEN never oversaturates any link, whereas
the other tends to both oversaturate links and leave others
underutilized. Thus, we show that the concept of saturation
level is useful for accurately computing bottleneck rates in
links.

Finally, we compare the running times of c-SLEN and
IEWF and show that c-SLEN converges much faster than
IEWF in all cases owing to its ability to compute the satu-
ration levels in the links.

The distributed protocol d-SLEN was validated by simula-
tion and compared with the recent proposal of Vo et al. [34].
The results obtained show that d-SLEN exhibits much faster
convergence, which does not depend on the capacity of the
network. This convergence does not suffer from oscillations.
Furthermore, it can effectively avoid congestion because it
keeps link queues at minimal sizes.

C. STRUCTURE OF THE REST OF THE PAPER

In the following section, the concepts of upward max-min
fairness and saturation level are presented with a central-
ized algorithm and a distributed protocol, named c-SLEN
and d-SLEN, respectively, which compute UMMF rates.
Section III presents the scenarios used during experimenta-
tion and shows the high performance of the proposed algo-
rithms compared to other UMMF algorithms. Finally, the
results are discussed (see Section I'V) and the conclusions are
presented in Section V.

Il. UPWARD MAX-MIN FAIRNESS

In this section, the system model is presented and the con-
cept of saturation level is defined. Then, a centralized algo-
rithm that computes UMMF rates in a multipath system
and improves the performance and accuracy of current ones
is proposed. Finally, based on this algorithm, a distributed
protocol is developed.

A. SYSTEM MODEL
We begin by defining some basic notations and concepts that
will be extensively used in the proposed algorithms. The basic
notation used is summarized in Table 1. In our system, the
network is represented by a directed graph G = (V, L), where
V is the set of nodes and L is the set of directed links that
connect the nodes. The capacity of the link / is denoted by «;.
There are two types of nodes: routers (which are connected
to other routers and hosts) and hosts (which are connected to
a single router).

The set of connections in the network is denoted by C.
Connections are established from a source host to
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TABLE 1. Basic notation.

Symbol | Description

G Directed graph which represents the network
14 Nodes in the network (routers and hosts)
L Network links
c A connection in the network
C Set of connections in the network
f A subflow

L(f) Set of links traversed by subflow f
F Set of subflows in the network

F(l) Set of subflows traversing link [

Set of subflows of connection ¢

!
—~|=2
O
&

Capacity of link [
T[] UMMF rate of connection ¢
T (/] UMMF rate assigned to subflow f

P*(f] Portion of the throughput of ¢(f) carried by subflow f, i.e.,
T[]/ T2 [e(f)]

z

S*(1] Saturation level of link !
R*[l] Set of subflows restricted at link [
N*[l] Set of subflows which traverse link I but are already re-

stricted at some other link

a destination host. For simplicity, there is only one connection
from a source host to a different destination host. Note that
multiple connections between a source and a destination may
be represented by multiple virtual sources and destinations.
It is assumed that, if there is a link from node a to node b,
then there is also a link from node b to node a.

Connections in the system may demand different maxi-
mum capacities from the network because they may be unable
to generate data at a higher rate. However, for the sake of
simplicity, connections are assumed to demand an infinite
capacity from the network. Thus, lower demands are repre-
sented by the link connecting the source host to its access
router having the capacity demanded by the connection.

A connection may use more than one route to send packets
to the destination. A route can be represented by a sequence of
links (or routers) that connect a source node to its correspond-
ing destination node. The available routes for each connection
are assumed to have been precalculated; therefore, the routing
is static. Thus, each subflow has a predetermined path, and
paths of the same connection may share routers or even links.
Each route corresponds to a different subflow. The set of
subflows of a connection c is denoted by F(c), and F =
U,ec F(c) denotes the set of all subflows in the system. The
connection to which a subflow f belongs is denoted by c(f).
Subflows from the same or different connections may share
any number of links. The set of subflows traversing link [ is
denoted by F ().

The UMMF rate of a connection c is denoted by T[c].
Likewise, the UMMEF rate of a subflow f is denoted
by Tf*[f], so that, for each connection ¢ € C, T}[c] =
Zfe Flo) TJEk [f1. Then, the portion of the throughput of each
connection c that corresponds to each of its subflows f € F(c)
is denoted by P*[f] = Tf*D‘]/TC*[c]. Thus, for all ¢ € C,
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> rer P*If1 = 1. Alink [ € L is said to be saturated if

K] = ZfeF(l) Tf*[f], unsaturated if k; > ZfeF(Z) Tfk[f] and
oversaturated otherwise. A rate allocation is feasible if no
link is oversaturated.

Intuitively, a feasible rate allocation is UMMEF if the rate
allocated to any connection cannot be increased, even if all
the connections that are allocated a larger rate are removed
from the system. This is slightly looser than the definition
of GMMF, which states that a feasible rate allocation is
GMMF if the only way to increase the rate assigned to a
connection is at the expense of connections with a lower or
equal rate.

Consider Scenario 1 in Section Il as an example. As shown
in Table 7, the GMMF rates for connections ¢, ¢; and
c3 are 1.3, 1.6 and 1.3 respectively, where fi > gets a rate
of 0 (i.e., a portion of 0), fi.1 and fi 3 get a rate of 0.6 each
(i.e., a portion of 1/2 each), fo.1 gets a rate of 1.6
(i.e., a portion of 1), f31 gets a rate of 0.3 (i.e., a portion
of 1/4), and f3» gets a rate of 1 (i.e., a portion of 3/4).
However, a rate assignment of 1.2 to connections ¢; and c3,
and 1.8 to ¢, where f1,1, f1,2 and f 3 get a rate of 0.4 each
(ie., a portion of 1/3 each), fo.1 gets a rate of 1.8
(i.e., a portion of 1), f3 1 gets a rate of 0.2 (i.e., a portion
of 1/6), and f3, gets a rate of 1 (i.e.,, a portion of 5/6),
is UMMF because, even removing connection ¢ (which has
the highest rate), it is not possible to increase the rate of any
flow of connections ¢; and c3, since all of them traverse at
least one saturated link. Those links are /3, lg and /{g. This
example shows that a UMMF rate allocation needs not be
GMME. Conversely, it is easy to see that every GMMF rate
allocation is UMMF.

The concept of bottleneck defined in [35] can be extended
to a system where connections may have several subflows,
each using a different (not necessarily disjoint) path to route
its packets.

Definition I [34]: A link [ € L is a bottleneck for a
subflow f € F(l)if is saturated and there is no other subflow
f' € F(l) such that T}[c(f")] > T}[c(f)].

The following theorem provides a very simple alternative
definition of UMMF.

Theorem 1 [27]: A feasible rate allocation is UMMEF if
and only if every subflow has at least one bottleneck.

Let us introduce now the concept of saturation level of
both subflows and links under a UMMEF rate allocation. The
saturation level of a subflow is the quotient T}2k [F1/P*[f1.

Definition 2: Let [ be a saturated link. Then, the saturation
level of link /, denoted by S*[/] is defined as the largest
saturation level of the subflows that traverse it, that is, S*[I] =
maxrerq) T [f1/P*[f]-

A subflow f € F(I) is saturated at link / under a UMMF
allocation if S*[I] = Tf* [f1/P*[f]. Otherwise (i.e., S*[I] >
7}* [f1/P*[f]), f is unsaturated at link / but, since the alloca-
tion is UMME, it must be already saturated at some other link
in its path. Then, the following property easily follows from
the previous definitions.
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Property 1: Let N*[I] be the set of subflows that are
saturated at some other link [/, and let R*[/] be the set of
subflows in F(l) saturated at link / under some UMMF
allocation. Then, F (/) = N*[I] U R*[I] and S*[I] = (k; —
2renvin TEUD/ Xpreren PPN

Property 1 can be applied to the development of algorithms
that compute UMMEF rates in the following way. The satura-
tion level of every unsaturated link is computed on the basis
of the currently saturated and unsaturated subflows (initially
no subflow is considered saturated). Then, the link (or links)
with the lowest saturation level is saturated as well as the
still unsaturated subflows that traverse that link, which get
the saturation level of this link. This process can be repeated
until every subflow is saturated. While the algorithm used by
IEWF has a running time which depends on the capacity of
the links, the saturation level allows to develop an algorithm
whose running time only depends on the number of different
saturation levels of the links. Besides, while the rates com-
puted using the approach of IEWF grow by discrete incre-
ments, what limits the precision of the computed rate, with
the saturation level approach, precise rates can be computed,
since rates are continuous instead of discrete.

First, a centralized algorithm is presented, which can be
executed offline to compute a UMMEF allocation for a static
set of connections in a multipath network. This algorithm
can be used in a static environment and can also be used as
a reference to validate the distributed protocols in practice.
Then, a distributed version was developed, that can be used
in a dynamic environment.

B. CENTRALIZED ALGORITHM

The proposed algorithm, which we call c-SLEN (centralized
Saturation Level Explicit Notification), iteratively adjusts the
throughput that each connection sends through each of its
subflows until it converges to a UMMEF rate assignment in
a manner analogous to the IEWF algorithm in [27]. Thus, its
correctness follows directly from the correctness of IEWF.
However, there is a notable difference between the IEWF and
our algorithm. IEWF approximates the bottleneck rates by
iteratively incrementing the assigned rates by a fixed amount,
whereas our algorithm works in the following way: for each
unsaturated link, its saturation level is computed and all links
with the lowest saturation level are saturated at once. This
guarantees that no link is oversaturated, and allows for faster
convergence to fair rates.

Algorithm 1 computes the UMMEF rate assignment for
each connection and subflow in the system. To do so, it uses
a few variables with per-connection, per-subflow, and per-
link information, which are summarized in Table 2. Thus,
P is an array that stores, for each subflow f, the portion of
the throughput of connection c(f) routed through subflow f.
Recall that, to be consistent, Y ¢p (., P[f1=1forall c € C.
Array T, stores the throughput assigned to each connection
in the system. Likewise, Ty stores the throughput assigned to
each subflow in the system. These variables will eventually
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TABLE 2. Static variables used by algorithm c-SLEN.

Variable | Description

P For each connection ¢ € C, for each subflow f € F(c),
P[f] is the portion of the throughput of connection ¢
carried by f

Te For each connection ¢, T [c] is the rate assigned to connec-
tion ¢

Ty For each connection ¢ € C, for each subflow f € F(c),
T [f] is the rate assigned to f

Algorithm 1 c-SLEN
1: forallc € C do

2. forallf € F(c) do

3 P[f] < 1/IF()

4:  end for

50 Tec] <0

6: end for

7: repeat

8: T «T.

9: Ty < ConnectionRates(P)
10. forallc € C do

11: T.lc] < ZfeF(c) Tr[f ]
12: for all f € F(c) do

13: PIf] < Ty[f1/T.lc]
14: end for

15:  end for
16: until 7, = T’

converge to P*, T} and T}Z-k respectively. Algorithm 1 resem-
bles IEWF, what ensures convergence to UMMF rates pro-
vided that connection rates are correctly computed at Line 9.
Initially, the throughput assigned to each connection is set
to 0 and the portion of that throughput routed through each of
its subflows is evenly distributed among them. Then, a loop
recomputes the throughput assigned to each connection and
subflow until an iteration yields the same former assign-
ment (kept in local variable T’), in which case the algorithm
has converged. For practical purposes, an approximation of
the equality is enough. At each iteration, a new throughput
assignment for each subflow is computed. Then, for each
connection, its throughput is computed as the sum of the
throughput of its subflows and, for each subflow, its portion is
computed as the quotient of its throughput and the throughput
of the connection to which it belongs, just like in [IEWF.
Function 1 computes and returns the throughput assigned
to each subflow in the system. It receives the current por-
tions of each subflow P (which are internally updated) and
returns their new rates. To do so, the following local variables
(summarized in Table 3) are used. Array R stores, for each
link, the set of subflows which are restricted at that link,
whereas Array N stores, for each link, the set of connections
which traverse that link but are restricted at some other link.
The set of links that are already saturated are stored in the
variable SatL. Likewise, SatF contains the set of subflows
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Function 1 ConnectionRates(P): T¢

Input: Old subflow portions
Output: New subflow rates
1: forall!/ € L do
22 R[]l < {f eF{):P[f]>0}
33 N[« {f eF):P[f]=0}
4: end for
5. SatF < J;c NI
6: SatL < {l € L : R[] = ¥}
7: for allf € F do
8 Tr[f]1 <0
9: end for
10: repeat
11: S < SaturationLevels(P, R, N, L \ SatL, Ty)
12: 7z < minjer\sar, S[I]
13:  forallf € F \ SatF do
4 Tylf] < Tylf]+ 2 % PIf]
15:  end for
16: L' <« {leL\Sar :S[l] =2z}
17. foralll € L' do

18: Satl, < SatL U {l}

19: for all f € R[I] do

20: SatF < SatF U {f}

21: Pl[f]1 <0

22: forall !’ € L(f)\ L' do
23: R[] < RII'I\ {f)
24: N[I'l < N[I'TU{f}
25: if R[l'] = ¢ then

26: SatL < SatL U {I'}
27: end if

28: end for

29: end for

30:  end for

31: P < NewPortions(P, SatF)
32: until SatF = F

33: return Ty

TABLE 3. Local variables used in function 1.

Variable | Description
R For each link I € L, RJ[l] contains the set of flows which
are restricted at link {
N For each link [ € L, N|l] contains the set of flows in F'(1)
which are not restricted at link {
S For each link | € L, S[I] contains the saturation level of
link [
SatL The set of already saturated links
r The set of links to be saturated at the current iteration
SatF The set of already saturated subflows
z The lowest saturation level among the unsaturated links

that are already saturated. Initially, a subflow f is considered
saturated if P[f] = O and is stored in N[/] for each link /
it traverses. Otherwise, it is stored in R[/] for each link [ it
traverses.

VOLUME 9, 2021



P. Ludena-Gonzalez et al.: Upward Max-Min Fairness in Multipath High-Speed Networks

IEEE Access

A link is considered saturated if all the subflows that
traverse it are already saturated. To start with, all subflows
are assigned a throughput of value 0. Then, in a loop, new
throughput assignments are incrementally recomputed for
each subflow until all subflows become saturated.

Each iteration of the main loop works as follows: First it
computes the saturation level of each link (using Function 2).
This is the essential difference with IEWF. While IEWF
performs small increments in all unsaturated flows (propor-
tionally to their assigned portion) until some unsaturated link
becomes saturated, c-SLEN computes the saturation levels of
the links directly. Then, it saturates the links with the lowest
saturation level, recomputing the throughput of each subflow
not previously saturated; finally, it recomputes the portions
that correspond to each subflow, in case they are needed for
a subsequent iteration (using Function 3).

In order to saturate the links with the lowest saturation
level, Property 1 is applied. Thus, all the subflows not previ-
ously saturated have their throughput increased by the low-
est saturation level times their assigned portion. Thus, the
increase in throughput is proportional to their portion and
it is guaranteed that all the links with the lowest saturation
level will get all their capacity consumed by the subflows that
traverse them without exceeding their capacity. It is easy to
see that this method is equivalent to the one used in IEWF,
but faster, more accurate and not depending on the capacity of
the links. Hence, its correctness follows from the correctness
of IEWF. Saturated links are included in SafL and all the
subflows restricted at those links are moved from R[/'] to
N[!'] at all links !’ they traverse, which are not yet saturated.
The links [’ that have all their traversing subflows in N[I'] (so
R[!'] is empty) are considered saturated (since no connection
may get more of their capacity).

Function 2 SaturationLevels(P, R, N, UnsatL, Tr): §

Input: Current subflow portions, Subflows restricted at
each link, Saturated subflows that traverse unsaturated
links, Subflow rates

Output: Saturation level of each unsaturated link

: for all [ € UnsatL do
P < ZfeR[l]P[f]

1

2

3 1< ZfeN[l] Tr[f1
4 S[] <« (x;—1t)/p
5

6

: end for
: return S

Function 2 computes the saturation levels of all unsaturated
links. The saturation level of a link is the factor by which
the throughput of its traversing subflows can be increased
(according to their portions) without exceeding its remaining
(not already assigned to any subflow) capacity. It is computed
as the quotient of the remaining capacity by the sum of the
portions of its traversing unsaturated subflows.

Function 3 computes the new portions that correspond
to each subflow, according to the current assignment.
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Function 3 NewPortions(P, SatF): P
Input: Current subflow portions, Already saturated
subflows

Output: New subflow portions
1: forallc € C do

22 F' <« F(c)\ SatF

3:  if F’ # (@ then

4 sum < 3 ccpr Plf]
5: forallf € F' do

6 P[f] < P[f]/sum
7 end for

8: endif

9: end for

10: return P

The portion assigned to each subflow is the quotient of its
assigned throughput by the global throughput assigned to
its corresponding connection. Only unsaturated subflows are
considered, since already saturated ones cannot change their
portion, as in [IEWF.

In essence, this algorithm is equivalent to IEWF, but
improves performance thanks to the application of the con-
cept of saturation level. In fact, the saturation level corre-
sponds to the number of iterations IEWF needs to saturate
a link. However, the saturation level needs not be an integer,
what results in more accurate rates and avoids oversaturating
any link. Thus, c-SLEN serves as a better starting point to
develop a distributed protocol.

C. DISTRIBUTED PROTOCOL

In this section we present a distributed protocol called
d-SLEN, which resembles the behavior of the centralized
algorithm. However, as shown below, it has several advan-
tages over the centralized version and other distributed pro-
tocols that compute UMME rates. For example, it keeps, for
each connection, the portions and rates assigned to each of its
subflows. In the system, separated data and control planes are
considered. Thus, control packets do not consume available
throughput in the data plane.

The primitives that provide the interaction between con-
nections and d-SLEN are as follows:

e APILJoin(): This call is used by a connection to notify

d-SLEN that it has joined the system.

o API Leave(): This call is used by a connection to notify

d-SLEN that it has terminated.

o APILRate(T): This upcall is used by d-SLEN to notify a

connection the rates granted to each of its subflows.

It is assumed that this primitives are invoked coherently,
i.e., APLJoin() is invoked once when a connection starts and
API Leave() is invoked once when the connection terminates.
Then, API.Rate(T) is invoked only while the connection is
active.

The behavior of d-SLEN is specified as a set of asyn-
chronous tasks executed at the source and destination of the
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TABLE 4. Fields of d-SLEN packets.

TABLE 5. Variables kept at the source of each connection c.

Field | Description Variable | Description
f Subflow identifier P For each subflow f € F(c), P[f][old] and P[f][new]
p plold] and p[new]: previous and current portion of subflow f store the previous and current portion of subflow f
t t[old] and t[new]: previous and current rate of subflow f T For each subflow f € F (¢), T(f][old] and T[f][new]
- store the previous and current rate granted of subflow f
b Set of potential bottlenecks of subflow f
— - B For each subflow f € F(c), B[f] stores the set of apparent
s Minimum saturation level for subflow f bottlenecks for subflow f
S For each subflow f € F(c), S[f] stores the minimum
saturation level found for subflow f
. . t Number of prob 1 leted at th t d
connections, and at the network routers, which deploy an o um er? PToDe Cycles comperer @ ‘ ¢ curren r(?un -
. . Th . hani leave TRUE if API.Leave() has been invoked during this
event-driven protocol. The basic mechanism used by d-SLEN round of probe cycles and FALSE otherwise

is the periodic execution of the probe cycles that obtain the
minimum saturation level for each subflow. Each cycle starts
at the source by sending a Probe packet downstream, that is,
towards the destination. Then, at the destination, a ProbeAck
packet is sent upstream, that is, towards the source. While
these packets traverse the links in the path, they are updated
and the information they carry is also used to update the
variables kept at the routers. When the probe cycle ends for
all the subflows of a connection, the portions and rates of each
subflow are recomputed and notified to the connection, and a
new round of probe cycles is started. A Leave packet is used to
notify that a subflow terminates; therefore, all the information
related to this subflow can be deleted. All these packets have
the same fields, which are summarized in Table 4.

At the sources, information about the connection param-
eters is kept. Table 5 summarizes the variables kept at each
connection source. More precisely, for each subflow, its cur-
rent and previous portion and rate are stored in two matrices P
and T, respectively, of size |F(c)| x 2. Thus, for each subflow
f € F(c), P[f]lold] is the previous portion of subflow f
and P[f][new] is the current portion. Likewise, T[f][old] is
the previous rate of subflow f and T'[f][new] is the current
rate. Additionally, the set of apparent bottlenecks for each
subflow is stored in (an array of sets of link identifiers) B
and their current saturation levels are stored in (an array
of numbers) S. Although the list of bottlenecks may be as
long as the path length, it is most likely to have a length
close to 1. Two auxiliary variables, cnt and leave are used
to count the number of subflows for which the probe cycle
has finished, and the fact that the connection has no more
data packets to send, so the network resources assigned to
that connection can be freed. Hence, the total information
needed per connection at the sources is limited to the sum of
the length of each subflow’s path in the worst case and linear
on the number of subflows in the best case, so d-SLEN also
scales well in space at the sources.

Task 1 specifies the asynchronous behavior of d-SLEN
at the sources. When a connection invokes the APILJoin()
primitive, SourceJoin (Procedure 1) is executed, which
starts a round of probe cycles. When a ProbeAck packet
(which completes a probe cycle) is received at the source,
SourceProcessProbeAck (Procedure 3) is executed, which
will eventually notify the rates assigned to each subflow
and start a new round of probe cycles. This goes on until
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the connection invokes API Leave() to indicate termination,
so SourceLeave() (Procedure 4) is executed to delete every
trace of that connection in the system.

Task 1 Source d-SLEN()
1: when APILJoin() do

2 SourceJoin()

3: end when

4: when API. Leave() do

5 SourceLeave()

6: end when

7

8

9

: when received ProbeAck(f,p,t, b, s) do
SourceProcessProbeAck(f, p, t, b, s)
. end when

Procedure 1 SourceJoin()
1: cnt <0

2: leave < FALSE

3: restart < FALSE

4: for allf € F(c) do

5. P[f]lold] < 0

6:  P[f]lnew] < 1/|F(c)|
7. T[f]lold] < 0O

8:  T[f][new] < O

9:  S[f] « o0

10  B[f]<« 0@

11:  send downstream Probe(f, P[f], T[f], BIf]1, SIf])
12: end for

Procedure 1 shows the code executed at the source when
a connection starts. It sets the number of probe cycles that
have already finished to zero and sets leave to FALSE to
indicate that this connection has not finished yet. Then, for
each subflow, the following is performed: The old and current
rates are set to zero, as well as the old portion. However, the
current portion is initially set to 1/|F(c)|, as in the central-
ized algorithm, since, initially, all subflows are considered to
carry the same portion. The first time a bottleneck is found
for a subflow, its current rate and subflow will be updated
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according to the saturation level of the first bottleneck. Thus,
at the links with higher saturation levels, a non-zero rate will
be considered, which allows for a more accurate saturation
level computation. As the rounds of probe cycles are com-
pleted, the portions and the rates are recomputed to converge
to a UMMF assignment. The initial saturation level is set to
infinity, since a minimum is computed during the subsequent
probe cycle. Initially, no bottlenecks have been discovered
yet, so the list of bottlenecks is left empty. As the probe
cycles finish, the list of bottlenecks is updated. For each
subflow, a probe cycle is started to discover the saturation
level corresponding to each subflow. These probe cycles are
performed concurrently.

Procedure 2 Sourceleave()
1: leave < TRUE

Procedure 2 shows the actions performed at the source
when the connection leaves the system. Since a new round
of probe cycles is started when the current round ends (and
probe cycles are always completed), variable leave is set to
TRUE, so when the current round ends, instead of starting a
new one, a Leave packet is sent to notify the routers and the
destination that this connection has left the network.

Procedure 3 SourceProcessProbeAck(f, p, t, b, s)
1: cnt < cnt + 1

2: S[f] < s

3: B[f] < b

4: T[f][old] < t[new]

5. if P[f][new] = O then

6: T[f]lnew] < 0

7. else

8:  T[f][new] < S[f] x P[f][new]
9: end if

10: if cnt = |F(c)| then
if leave then

—_
—_

12: doLeave()

13:  else

14: APIL Rate(T)

15: newProbeCycle()
16:  end if

17: end if

Procedure 3 is executed when a ProbeAck packet is
received at the source. The number of completed probe cycles
is incremented and the list of bottlenecks for the subflow and
its new saturation level are stored. The new rate that comes
in the packet is stored as the old one. A new rate is computed
by multiplying the new portion by the minimum saturation
level just stored for the subflow. However, if the portion is
zero, the saturation level might be infinite, which would yield
an indeterminate value. Hence, in the case of a zero portion,
the new rate is directly set to zero. Thus, if the subflow con-
figurations of the links in this subflow’s path did not change
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after the ProbeAck packed was processed at each node, the
new rate will not yield oversaturation of any link. Note that
as soon as a the subflow gets a zero portion, it will never
increase it, what might cause a temporary underutilization
of network capacity. Finally, if the current round of probe
cycles has finished and the connection has left the network,
Procedure 4 is executed. Otherwise, if the round has finished,
but the connection has not left the network, then a new round
starts executing Procedure 5.

Procedure 4 doLeave()
1: forallf € F(c) do
P[f1[old] < P[f][new]
3 P[f][new] < 0
4 T[f]lnew] < O
5. send downstream Leave(f, PIf]1, Tf], BIf], SIf]
6: end for

In Procedure 4, for each subflow, the old portion is set to
the new one, and the current portion and rate are set to 0 so
a Leave packet, which resembles the Probe packet, is sent
downstream. Thus, the resources already allocated to each
subflow are freed. The main difference in the processing of
the Leave packet is that it does not generate a ProbeAck at the
destination.

Procedure S newProbeCycle()
1: cnt <0
2t <« ZfeF(C) T[f][new]
3: for allf € F(c) do
4 P[f1lold] < P[f][new]
5 P[f][new] <« T[f][new]/t
6:  send downstream Probe(f, P[f], T[f]1, BIf], SIf])
7
8

: end for
: notify rates

When a new round of probe cycles must be started,
Procedure 5 is executed. First, it resets the counter cnt. Then,
the portions are updated for each subflow as follows: The
new portion of a subflow is computed by dividing its rate
by the sum of the rates of all the subflows of the connection
(i.e., its portion of the total) and a new round of probe cycles
is started. Finally, it notifies the new rates, so each subflow
can send data at the specified rate from then on, at least until
the new round of probe cycles ends.

At each link [, the protocol only needs to maintain a
constant number of values, summarized in Table 6, regardless
of the number of subflows traversing the link, what makes
it highly scalable in terms of space. These variables are the
sum of the portions of the subflows that are restricted at this
link p;, and the sum of the rates # and the sum of the
portions p; assigned to the subflows which are restricted at
some other link. The time needed to process each protocol’s
packet is constant; therefore, it also scales well in terms of
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TABLE 6. Variables kept at each link /.

Variable | Description

[ The sum of the portions of the subflows restricted at Link [,
initially O

pz The sum of the portions of the subflows restricted at some
other link, initially O

t The sum of the rates granted to the subflows restricted at
other links, initially O

s The saturation level of the link, dynamically computed
when needed

computation time. The key parameter of a link at each instant
of time is its saturation level s;, which is recomputed every
time it is needed.

Task 2 depicts the asynchronous processing carried out by
d-SLEN upon the reception of the three different types of
protocol packets.

Task 2 Router d-SLEN()

1: when received Probe(f, p, t, b, s) do

2 LinkProcessProbe(f, p, t, b, s)

3: end when
4: when received ProbeAck(f,p,t, b, s) do
5. LinkProcessProbeAck(f, p, t, b, 5)
6
7
8
9

: end when

: when received Leave(f, p, t, b, s) do
LinkProcessleave(f, p, t, b, s)

: end when

Function 4 SaturationLevel() : s;
1: if k; — 17 < 0 then
2 s; <0
3: else
4 sy < (k1 —1)/pi1
5: end if
6
7

2 sp < k1 /(pr +p))
: return max(s;, s;)

The saturation level of the link is estimated using
Function 4 as follows: Recall first that the capacity of a link is
distributed among the subflows that traverse it proportionally
to their portions. Thus, the saturation level of a link is the
amount by which the portion of a subflow may be multiplied
to obtain a rate that maximizes the utilization of the link
without exceeding its capacity. Note also that, if a subflow
is restricted in some other link, its minimum saturation level
must be lower than the saturation level of this link. However,
new subflows may arrive at this link, or some subflow may
leave, so it is possible that a subflow that was previously
restricted in some other link becomes restricted at this link,
i.e., its currently assigned rate exceeds the corresponding
value according to the current saturation level of this link.
To obtain an accurate estimation of the saturation level, the
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subflow for which the saturation level is being computed is
always considered to be restricted in this link. Besides, two
estimations are computed: s; is the estimation considering
that no subflow apparently restricted in some other link is
indeed restricted in this link (to avoid possible indeterminate
and precision errors, if k; —t; < 0, 57 is set to 0), and s; is the
estimation considering that all subflows that traverse this link
are restricted at this link. The final estimation is the maximum
of them, since s; might be smaller than it should because some
subflow apparently restricted at some other link might have
been assigned an excessive rate and it will be reduced in the
next probe cycle for that subflow.

Procedure 6 LinkProcessProbe(f, p, t, b, s)
: if [ € b then

1

2. pi < pi — plold] + p[new]
3 s; < SaturationLevel()
4 if s; > s then

5: if |b| = 1 then

6 § <S5

7 else

8 pi < pi — plnew]
9: p) < pj + plnew]
10: t) < t; + t[new]
11: b < b\ {l}

12: end if

13:  else

14: NIV

15:  end if

16: else

17: 1) < t; — t[old]

18:  p) < p; — plold]

19:  p; < p1 + plnew]

20:  §; < SaturationLevel()
21: if s; < s then

22: S <5

23: b < bU{l}

24: if 7[new] = O then
25: t[new] <— p[new] x s
26: end if

27:  else

28: p1 < p1 — plnew]
29: p) < p; + plnew]
30: t; < t; + t[new]
31:  end if

32: end if

33: send downstream Probe(f, p,t, b, s)

When a Probe(f, p, t, b, s) packet is received at a link [,
Procedure 6 is executed with the content of that packet. The
main task of the probe cycle is to compute the minimum
saturation level in the path. Note first that, when the previous
probe cycle was performed, either this link / was found to
restrict subflow f (and recorded in b and its portion added
to p;) or otherwise its old rate was added to # and its old
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portion to p;. In the case of the first probe cycle, b is empty
and t[new] = 0. Thus, two cases arise:

1) [ € b: This link was a bottleneck for this subflow, so its
old portion must have been accumulated in p;. Then,
since the portion that corresponds to the subflow may
have been updated at the source, p; must be recomputed
by subtracting the previous portion and adding the
current portion. Thus, the current saturation level of
link / may be recomputed according to the new portion
of subflow f. Then, two cases may arise now:

a) s; > s: Although this link was previously a
bottleneck for this subflow, it now seems not to be
such. However, if this was the only bottleneck for
this subflow, it must remain a bottleneck for this
subflow, but the saturation level must be updated
to the new (less restrictive) one. This may happen
if a subflow traversing this link has left the net-
work, or if some subflow has been restricted in
some other link, liberating capacity in this link.
Otherwise (i.e., there are other links restricting
this subflow), / should not be considered a bot-
tleneck of this subflow from now on. In this case,
its portion must be subtracted from p; (remember
that it was previously added to compute the satu-
ration level) and added to p;, and its current rate
is added to #;.

b) s; < s: This link remains being a bottleneck
for this subflow, and is now more restrictive than
before. Hence, the saturation level of the subflow
must be set to sj.

2) | ¢ b: This link was not a bottleneck for subflow f.
Then, to compute the new saturation level of this link,
it is necessary to subtract the old rate from #; and the
old portion from p;, and to add the new portion to p;.
This way, we can determine if this link has become a
bottleneck for this subflow. Recall that, if this is the
first probe cycle for this subflow, then the old rate is
zero and the saturation level is infinite.

a) If the saturation level of this link is as restrictive
or more than the currently estimated saturation
level of the subflow, then this link is added to
the list of bottlenecks for this subflow, and the
subflow’s saturation level is updated. Addition-
ally, if the current rate of this subflow is zero,
probably because this is the first probe cycle for
this subflow and this is the first link in the path,
the new rate is updated to the one corresponding
to this saturation level. Thus, in the following
links, this estimated rate will be the current rate
that will be accounted for in non-bottleneck links.
Note that, if the current portion of this subflow is
zero, the current rate will remain at zero.

b) Otherwise (i.e., this link is not a bottleneck of
this subflow), the subflow’s portion is subtracted
from p; and added to p}, and the subflow’s rate is
added to 1.
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Finally, the updated Probe packet is sent downstream, which
completes the processing of the Probe packet at this link.

Procedure 7 LinkProcessProbe Ack(f, p, ¢, b, s)

1: if [ € b then

2 s; < SaturationLevel()
3 if s; > s then

4 if |[b| = 1 then

5: s <S5

6 else

7 p1 < pi — plnew]
8 p; < p; + plnew]
9: ) < t; + t[new]
10: b < b\ {l}

11: end if

12:  else

13: s <5

14:  endif

15: else

16:  t; < t; — t[new]

17 p) < p; — plnew]

18:  pi < pi1 + plnew]

19:  s; < SaturationLevel()
20: if s; < s then

21: § <85

22: b<—bU{l}

23:  else

24: p1 < pi — p[new]
25: p) < p; + plnew]
26: t; < t; + t[new]
27:  end if

28: end if

29: send upstream ProbeAck(f,p,t, b, s)

The processing of the ProbeAck packets is specified in
Procedure 7. This is similar to Procedure 6. However, since
the corresponding Probe packet has already been processed in
this link, when the ProbeAck packet is processed, the portion
and rate that are recorded in p; or p; and #; respectively
are already the new ones and not the old ones, as was the
case for the processing of the Probe packet. Thus, Line 2
in Procedure 6 is not necessary in Procedure 7. Lines 17-18
in Procedure 6 have been changed for Lines 16-17 in
Procedure 7, since the rate already accumulated in #; and the
portion in p; are the new ones and not the old ones, as stated
above. Finally, the updated packet is sent upstream.

Procedure 8 depicts how Leave packets are processed at
the links. For orthogonality, the fields in the packet are the
same as those in the other protocol packets. However, the
only information needed is the list of bottlenecks and the old
portion in case the link was a bottleneck for the subflow,
and the old rate and portion in case the link was not a
bottleneck of the subflow. The purpose of this packet is to
clear any information concerning this subflow in all the links
of its path, so the subflow’s portion and rate are subtracted
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from p; or p; and #; respectively, depending on whether [ is a
bottleneck for f or not, what liberates the capacity assigned
to this subflow. Finally, the Leave packet is sent downstream.

Procedure 8 LinkProcessLeave(f, p, t, b, s)
1: if [ € b then
2: p; < p;—plold]
3: else

4: 1) < 1 — t[old]

5

6

7

p; < p; —plold]
. end if
: send downstream Leave(f, p, t, b, s)

When a Probe packet reaches the destination, it is trans-
formed into a ProbeAck packet with the same content, and
sent upstream to complete the probe cycle, as shown in
Task 3. When a Leave packet is received at the destination,
the subflow is closed, and the packet is discarded.

Task 3 Destination d-SLEN()
1: when received Probe(f, p, t, b, s) do
2:  send upstream ProbeAck(f,p,t, b, s)
3: end when

lIl. EXPERIMENTAL EVALUATION

In this section, we describe the evaluation of the proposed
algorithms in practical scenarios as well as the comparison of
their performances with those of other algorithms. Various
parameters, such as fairness and convergence speed, were
evaluated.

A. SCENARIOS
To test how the proposed algorithms behave in practice, three
scenarios with different and typical network problems were
deployed. Connections are identified with different colors.
The hosts are represented by squares and routers by cir-
cles. The source and destination nodes of a connection are
given a label that starts with s and d, respectively, and a
unique number that identifies that connection. Connections
are identified by letter ¢ and a unique number that identifies
the source and destination of that connection. For example,
connection c¢; goes from host s; to host d;. Subflows are
identified by letter f, a connection number, and a subflow
number (unique per connection). For example, subflow f ;
is a subflow of connection c;. Router nodes are identified by
a label formed by letter 7 and a unique number. Inter-router
links are represented by black arrows with their labels (letter
plus a unique number) and capacity (in Mbps). The links that
connect hosts to routers have infinite capacity, so only inter-
router links limit the available throughput of the connections.
The paths used by each connection are identified by the color
of the connection.

In Scenario 1 [32], there are eight routers and three con-
nections with three, one, and two subflows, respectively.
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SCENARIO 2. Connections with the same number of subflows [34].

The subflows follow these routes (represented by the
sequence of routers traversed) fi,1 = [r1, 12, 13, 14, 15, Fel,
Sra=Ilri,r2, 3,16l f1,3 =[r1,ra, 15, 161 fo,1 = [r7, 181, /3,1 =
[r7, 18, 2,13, ra, rs], and f3 o = [r7, rg, rs]. Note that subflows
share more than one link with subflows of other connections,
which complicates the dependencies among them and, con-
sequently, among connections. Subflows that belong to the
same connection can also share links. For example, subflow
/1.1 shares a link with subflow fi 2, and another link with fj 3.
Besides, both links are shared with subflow f3 1.

Scenario 2 corresponds to scenario a) in [34]. It has four
connections, all of which have two subflows (paths). There
is a link shared by three subflows, and one shared by two
subflows. The other links are used only by one subflow each.
Note that the capacities of the links are much more varied
than in the previous case. The subflows follow these routes
Sia =11, ra, r3, ral, fi2 = [r1, s, 16, 14l 21 = [r7, 75,
re, 13), f2.2 = [r7, r9, r10, ri2l, 3.1 = [r11, ro, rio, ri2l 32 =
[r11, 113, r1a, ri2l, far = [r1s, ro, 10, ri6l, and fa 2 = [r1s, 117,
ris, ri6l-

In addition, a larger scenario was used to test the dis-
tributed protocols. This scenario aims to emulate a more
realistic environment through the specification of a high-
speed, high-density network consisting of 110 routers.
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They were randomly arranged according to a transit stub
topology. Transit routers are interconnected by 50 Mbps
links. Stub routers are connected to other routers by 10 Mbps
links. The speed of links connecting hosts to stub routers
was set to 10 Gbps to ensure that they were not bottlenecks.
However, because these links connect only one host, they
can be used to simulate the maximum rate demanded by a
connection. In this scenario, 40 connections (pairs of source-
destination hosts) were randomly configured to spawn during
the first 5 microseconds of the simulation. The connections
behave as follows. Each of them is randomly assigned a
certain amount of data (between 1 MB and 10 MB) to be sent.
Once the connection has transmitted all the data, it leaves
the system. Thus, the protocol must be able to react to these
changes and recompute the new subflow (and connection)
rates when connections join or leave the network.

Due to their small size, in Scenarios 1 and 2, connections
use all available routes between a source and a destination.
In the case of Scenario 3, a configuration parameter k (which
was set to 5 for the experiments) limits the maximum number
of routes that can be used by a connection during the simu-
lations. Then, the number of subflows of each connection is
selected randomly between 1 and k. The routes are computed
using Yen’s algorithm, which discovers the k shortest loopless
paths between a source and a destination [36]. The version of
Yen’s K Shortest Path used for the experiments was that in
JGraphT [37].

B. SIMULATION

The results obtained for the centralized algorithms were col-
lected by simulating the scenarios using MATLAB [38] and
GNU Octave [39].

The results obtained for the distributed protocols were
collected using an improved version of Peersim discrete event
simulator [40]. To configure a scenario, first the network
topology was generated using the GT-ITM (Georgia Tech
Internetwork Topology Models) topology generator. Thus,
the output obtained can be used as many times as necessary
for multiple runs with the same network configuration. The
start time and the amount of data to be transmitted for each
connection were randomly generated and stored so that they
could also be used for multiple runs.

Several characteristics regarding the network links must
be highlighted. First, a connection is established through
the creation of two links in opposite directions between the
two target nodes. Thus, we allow for both downstream and
upstream traffic to be transmitted simultaneously and cor-
rectly routed, emulating a full-duplex communication system.
The link queues are unlimited, to avoid packet losses. Second,
separate queues were established at the link level for the
transmission of control and data packets. This decision has
been made for the sake of simplicity, and taking into con-
sideration that advances in software-defined networks show
the effectiveness of separating the control plane from the data
plane [41]. Finally, as the simulation runs, data regarding the
state of the network were collected periodically and recorded

VOLUME 9, 2021

TABLE 7. UMMF Rate allocation per connection and subflow in
Scenario 1.

Connection | Subflow GMMF Algorithm UMMF
c-SLEN IEWF

fi1 0.6 0.40 0.40
c1 fi2 1.3 | 0.0 | 1.20 | 040 | 1.20 | 0.40
f1,3 0.6 0.40 0.40
c2 f21 1.6 | 1.6 | 1.80 | 1.80 | 1.75 | 1.75
cs f3,1 13 0.3 120 0.20 125 0.23
f3,2 1.0 1.00 1.02

Total throughput 4.3 4.20 4.20

in alogging file. This file is then processed to extract different
information, for example, the number of packets in each link
queue, which can be used as evidence of congestion, or the
rate assigned to each subflow and connection, which can be
used to evaluate the speed at which the algorithm is able to
converge to the fair rates.

C. CENTRALIZED ALGORITHMS

In this section, the proposed c-SLEN algorithm is com-
pared with IEWF [27], which is the reference algorithm for
centrally computing UMMF rates in a multipath network.
Scenarios 1 and 2 were used for the comparison.

IEWF assigns rates to connections as multiples of a unit
of subflow. The smaller the unit of subflow, the more precise
the convergence, but more iterations are required to converge
to the fair rates. Note also that the oversaturation induced on
a link depends on this unit of subflow and the subflows that
traverse it; IEWF never undersaturates a bottleneck. For the
experiments, the unit of subflow was set to 0.05 Mbps, which
represents 5% of the capacity of the link with the smallest
capacity.

In the simulations, the rates are considered stable when,
for each connection, its current rate differs from its previous
rate by less than 0.001 Mbps. Therefore, it is possible that
the rate allocations did not reach the UMMEF rates even when
they were considered stable.

The rate allocations produced by the two algorithms for
Scenario 1 are compared with the MMF rates in Table 7.
Note that, although the rates calculated by IEWF seem to
be closer to the MMF rates, the rate assigned to connection
c3 incurs oversaturation of the three links, as shown in Table 8
in red color. This oversaturation is a consequence of the
unit of subflow used and can be reduced at the expense of
longer convergence times. However, c-SLEN never incurs
oversaturation, which is guaranteed by computing the rates as
a function of the minimum saturation level for each subflow.
In this scenario, the UMMF assignments do not reach the
MMF utility, although they are reasonably close to it. Recall
that UMMEF is a relaxation of MMF, so they are not always
the same.

Table 9 lists the rate assignments for Scenario 2. The
overall results are similar and closer to the MMF rates than
those for Scenario 1. However, c-SLEN is slightly closer to
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TABLE 8. Saturation in bottleneck links in Scenario 1.

Link | Capacity Throughput

c¢-SLEN | IEWF

l1 1 0.80 0.80

l2 1 0.40 0.40

I3 1 1.00 1.03
la 1 0.60 0.63
ls 1 0.80 0.80
le 1 1.00 1.03
l7 1 0.80 0.80
ls 3 3.00 3.00
lg 1 0.20 0.23
l1io 1 1.00 1.02

TABLE 9. UMMF Rate allocation per connection and subflow in
Scenario 2.

Connection | Subflow | GMMF Algorithm UMMF

¢-SLEN IEWF
e fia 8.00 go1 | 600 | g5 | 603
f1,2 2.01 2.12
co F21 800 | 800 | &% | g10 | &%
f2,2 1.01 1.20
c3 fan 800 | 7.99 | 2% | 795 | >
f3,2 4.00 4.05
ca fan 800 | 7.99 | 2% | 795 | 293
fa2 5.00 5.02

Total throughput 32.00 32.00 32.15

TABLE 10. Saturation in bottleneck links in Scenario 2.

. . Throughput
Link | Capacity SLEN | IEWF
1 6 6.00 6.03
l2 9 9.00 9.02
I3 8 8.00 8.03
la 4 4.00 4.05
ls 5 5.00 5.02

the MMF rates, when the rates are considered stable. In this
case, the MMF utility is achieved by both c-SLEN and IEWF.
Although IEWF seems to improve that utility, it is just a
result of the oversaturation produced on all the bottlenecks,
as shown in Table 10. As expected, this saturation was due to
the subflow unit used.

Let us now focus on the running time of the algorithms.
c-SLEN and IEWF were compared in terms of the running
times. To do so, at each iteration of the main loop of each
algorithm, the running time and current rate assignments were
traced. Both algorithms were run on an Intel(R) Core(TM)
i9-10900 CPU @ 2.80GHz with 32 GiB RAM, under
UBUNTU 20.04 using GNU Octave, version 5.2.0. The
results obtained are shown in Figures 1 and 2.

For both scenarios, c-SLEN converges faster than IEWF,
although this is more evident in the case of Scenario 2.
Although it is not shown, it is easy to see that the convergence
speed of IEWF depends on the capacity of the links and
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the unit of subflow (which has a clear impact on the rate’s
accuracy), whereas the convergence speed of c-SLEN does
not depend on the capacity of the links and its accuracy is
always maximal.

The overall conclusion is that c-SLEN achieves good uti-
lization of network capacity, fairness and fast convergence,

while never oversaturating any link.

D. DISTRIBUTED PROTOCOLS
In this section, the d-SLEN protocol is compared with a
distributed protocol that computes the UMMEF rates in a
multipath network, proposed by Vo et al. [34]. We refer to
this protocol as Vo-Le-Tran (called after their authors). These
protocols were evaluated in the three proposed scenarios.
The Vo-Le-Tran protocol relies on a constant y; to mod-
ulate the amplitude of the possible oscillations until conver-
gence is reached. Its value was set to 0.002, as proposed by
the authors [34].
Figure 3 shows, for each connection, how its rate allocation
evolves over time, since it joins the system, until it leaves once
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it has transmitted all its data. The most notable difference
between both protocols is that, whereas d-SLEN is able to
react almost immediately to connections joining or leaving
the network, Vo-Le-Tran converges slowly to target rates.
Note also the oscillating nature of its design.

Oscillations on subflow allocations are shown in Figure 4.
This figure also shows that, while connection ¢, ends first
(since it converges slowly to the fair rates from above) in the
case of Vo-Le-Tran, connection c3 (the last to leave) in green,
ends first in the case of d-SLEN.

As shown in Figure 5, the link queues reach a maximum
length of 3 (the maximum number of subflows per link) in the
case of d-SLEN, whereas in the case of Vo-Le-Tran, they are
even larger when only one connection remains in the system.

The evolution of the rate allocations in Scenario 2 is shown
in Figure 6. As shown in [34], the rate assignments of Vo-Le-
Tran oscillate for several seconds in this scenario. However,
as shown in Figure 7, d-SLEN converges rapidly to fair rates,
with almost no oscillation.

The oscillations of subflow rates in the case of Vo-Le-
Tran are even more evident than those of connection rates,
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as shown in Figures 8 and 9, whereas only one subflow
oscillates slightly once in the case of d-SLEN.

Regarding the evolution of queue lengths in the links
(see Figure 10), as in Scenario 1, the queue lengths in the case
of d-SLEN remain extremely small, whereas they are several
times larger in the case of Vo-Le-Tran.
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Figures 11 and 12 show the evolution of the rate allocations
per connection for the d-SLEN and Vo-Le-Tran protocols,
respectively. During stable periods, both protocols allocated
the same rates to the connections. However, d-SLEN reacts
immediately to connection leaves, while Vo-Le-Tran needs
half a second in several cases to reach a stable rate. There are
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even cases in which the connection leaves before reaching a
stable rate.

One extreme case is that of connection c1. Figure 13 shows
how its subflow rates keep oscillating during the first 0.5 sec-
onds. In fact, these rates never become stable, as shown in
Figure 12. In contrast, d-SLEN exhibits no oscillations and
immediately reaches stable rates.

An example where Vo-Le-Tran does not oscillate is shown
in Figure 14. It shows the last seconds before the connection
leaves the system. In this case, the convergence to the stable
rates is very slow in the case of Vo-Le-Tran, compared to that
of d-SLEN.

Finally, in Figure 15, the maximum queue length in the
links is shown. In this case, the maximum queue lengths in the
case of Vo-Le-Tran are one order of magnitude higher than
those of d-SLEN. In fact, the maximum number of packets
in a link queue is of the order of the number of subflows that
traverses it, which is the optimal length. Therefore, d-SLEN
effectively avoids congestion while achieving fairness and
high utilization of network capacity.
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IV. DISCUSSION

Traditionally, connections linearly increase their transmission
rates until they detect congestion and then, drastically reduce
their rates. This yields oscillations in transmission rates and
packet losses. This reactive nature has some major limita-
tions: it does not prevent congestion, generates fluctuations in
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throughput, is not able to use the full capacity of the network
links and requires long packet queues in the routers to try to
avoid packet losses. Therefore, proactive congestion control
is a good alternative, as long as it does not involve long delays
and provides a good balance between fairness and network
utilization.

Since the network may offer many possible paths to route
the packets of a connection, to get the most out of the net-
work, it is desirable to be able to use multiple paths for each
connection and not to be restricted to just one.

Although MMF can be achieved with low-cost algorithms
in single-path networks [17]-[20], that is not the case when
dealing with multipath, where algorithms require solving a
series of linear programming problems with non-negligible
computational cost [28], [33], [42]. Thus, UMMEF [27] has
been proposed as a relaxation of max-min fairness that can be
achieved by purely combinatorial algorithms, which makes
this fairness criterion a better candidate for use in multipath
networks.

In [27], a centralized algorithm (IEWF) to compute the
UMMF rates for a set of connections in a multipath envi-
ronment was proposed. This algorithm is a generalization
of the waterfilling algorithm [35] and iteratively increments
the rates of the subflows until a link becomes saturated.
However, centralized network control is not always a valid
option. In addition, the accuracy of IEWF is at odds with
its convergence speed. When this algorithm is adapted to a
distributed environment, some issues may arise, as in [34].
The protocol proposed in [34] depends on a parameter that
needs to be tuned and not always the best convergence time
and/or accuracy is achieved with the same value. Since rates
are iteratively incremented until the links become saturated,
the convergence time increases with the capacity of the net-
work. This protocol also suffers large fluctuations in rates and
has large convergence time.

The introduction of the concept of saturation level opens
a new method to solve this problem. Knowing the minimum
saturation level for a subflow, its rate can grow directly to
the maximum possible without the need for small increments.
Thus, the convergence time does not depend on the capacity
of the network. A subflow may compute the minimum sat-
uration level in its path in one probe cycle, that is, in one
RTT, it is possible to compute the throughput available to
a subflow, so it can start sending data from the first RTT at
the computed rate knowing that it will not oversaturate the
network, provided that the workload does not change. In fact,
as d-SLEN does, when a round of probe cycles for all the
subflows of a connection ends, the new portions and rates are
computed, and a new round of probe cycles may start. Thus,
the minimum saturation level is recomputed after one RTT,
allowing a quick reaction to changes in workload.

d-SLEN can be used to provide proactive congestion avoid-
ance and fairness among connections in many different con-
texts where fairness is required or desirable and multipath is
available. This type of protocol is often blamed for requir-
ing multiple RTTs to achieve convergence; therefore, short
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connections can be unnecessarily delayed. However, d-SLEN
allows the subflows to start sending packets at a secure rate
after the first probe cycle, that is, the first RTT. Thus, it can
be used even in short connections.

Now, consider the case of different companies with sev-
eral large data centers located at many different places all
around the world, which are connected through a backbone
of one or various providers. It is likely that all the traffic
between any two data centers could be treated as a single
connection (since it could be transmitted through a tunnel)
and will last long. In this case, d-SLEN can be used to fairly
share the available capacity among the different tunnels using
multiple paths for each of them, preventing congestion and,
therefore, improving performance by avoiding packet losses
and retransmissions.

Since a connection may have a limited capacity to generate
traffic, it is interesting for connections to be able to explicitly
demand the highest rate at which they can transmit, so the
allocated bandwidth will not exceed that value. This can
be easily simulated by a virtual link at the source with the
requested capacity, so that d-SLEN can be used directly in
such an environment.

As the number of subflows that cross a router grows, it is
prohibitive for routers to store individual information per sub-
flow. Therefore, for a congestion protocol to be of practical
use, it must not need to store information about individual
subflows at the routers. However, aggregated information
can be stored and maintained, because it requires a constant
amount of memory and processing time. Thus, d-SLEN meets
the requirements for practical use.

The case of single-path networks is a particular case of
multipath, where each connection has just one subflow with
a portion of 1. Therefore, this protocol can also be directly
applied to single-path networks.

If QoS needs to be used to prioritize traffic, a way to
apply it could be to introduce a multiplying factor 0 <
f < 1 to the portion assigned to a subflow at the source,
so it would get a smaller portion of the capacity of the
links it traverses, with respect to other subflows with higher
priority (and equal portions). A protocol based on the
concept of saturation level (such as d-SLEN) is able to
directly apply this QoS mechanism since only the sources are
affected.

V. CONCLUSION

The concept of saturation level allows for the development
of new congestion control protocols, for multipath networks,
whose convergence time to the optimal rates does not depend
on the capacity of the network.

The first centralized algorithm (c-SLEN) based on this
concept is proposed. This algorithm exhibits a much faster
convergence to UMMEF rates than its predecessor IEWF.

A distributed version of this algorithm (d-SLEN) was
developed. This protocol does not need to keep information
per subflow at the routers, and the time needed to pro-
cess each of its packets is constant, so this protocol scales
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well, which makes it a good candidate for real deployments.
By simulation, we have shown that d-SLEN produces
a remarkable improvement over state-of-the-art protocols.
It converges almost immediately to stable rates and can be
used in a dynamic environment where connections arrive
and leave the network at any time. It achieves fairness
(UMMF). It is able to keep queue sizes as small as possible,
which shows its effectiveness in avoiding congestion. Thus,
it seems to be a good alternative for many types of high-speed
networks.

The proposed design has differentiated data and control
planes. However, for future work, it might be interesting to
consider the possibility of eliminating this distinction, thus
routing control and data packets together.
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