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ABSTRACT The development of spectral efficient solutions for internet of things (IoT) face challenges
primarily due to the large-scale placement of an immense number of sensors and devices. Cognitive radio
(CR) technology is considered as a potential solution to resolve the spectrum scarcity problems of IoT.
Incorporation of CR in IoT encounters various challenges including fast response and efficient spectrum
sensing even in low signal to noise ratio. In this study we integrate the basic functionalities of the both CR
and IoT technology and present a five layered framework for CR enabled IoT. In addition to the framework
we also proposed and develop a spectrum sensing algorithm for CR-based IoT architecture, meeting the
efficiency and time sensitivity requirements. The proposed algorithm is more accurate, robust to noisy
environment and four times faster than existing approaches. The developed algorithm is compared with
existing blind spectrum sensing techniques in term of detection performance, optimization methods and
computational complexity. Experimental evaluations with real wireless microphone signals demonstrate the
effectiveness of the proposed scheme and show superiority over existing ones.

INDEX TERMS Cognitive radios, Internet of Things, principle component analysis, spectrum sensing.

I. INTRODUCTION
The interconnection of different objects via internet brings
the concept of IoT. These objects are integrated with different
sensors and the communication units [1], [2]. The commu-
nication range, data bandwidth, and the spectrum resources
are the key concerns for IoT [3], IoT applications generate
huge data to the network, most of it could be redundant and
causes spectrum and other resource wastage, cognitive radio
seems to be a potential solution to such issues due to its
cognition capability [4], [5]. CR is a key enabling technology
for next generation wireless communication networks, since
it offers a promising solution to address the problem of
the spectrum scarcity [6], [7]. Each node in CR network
has the ability of fast switching and keep knowledge about
the channel condition. Dynamic spectrum access (DSA)
empowers a CR node to adjust its parameters according to
network situations [8]. Spectrum sensing helps these nodes to
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utilize the spectrumwithout interfering to the licensed/primary
user (PU) [9]–[11].

Spectral efficient methods are required to be incorpo-
rated to improve connectivity and competent functioning of
massive number of heterogeneous devices in IoT networks.
Wi-Fi, mobile networks, and other technologies uses the
licensed free ISM bands and ever increasing IoT objects
causing ISM to be extremely crowded soon. CR ability in IoT
will help to provide enough spectrum for future networks.

CR-IoT will permit the current IoT to build the high-level
intelligence [12] and It can learn recent network conditions,
analyze the data, take smart decisions, and adapt accordingly
to maximize the network performance. CR capable sensor
nodes in an IoT network can reuse the spectrum and enhance
the spectrum utility efficiency.

CR-IoT devices would have better access to other net-
works and services that make the system more scalable [12].
IoT devices could achieve better connectivity as CR nodes
are capable of communicating to multi-frequency devices.
In addition, self-configuration property of the CR nodes can
make the IoTwireless networkmore efficient and robust [13].
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TABLE 1. List of acronyms.

Due to above discussed benefits, current research trends
are supporting the incorporation of CR into IoT to support
devices frommanufacturing, health care, smart grid, to build-
ings, and so on [14]. Considering the vigorous importance of
spectrum sensing in CR-IoT, this paper exploits the spectrum
sensing a vital part of this paradigm, analyze the existing
spectrum sensing techniques and present an efficient, robust
yet fast spectrum sensing algorithm that suits best for time
sensitive IoT applications [15], [16].

Paper presents the need of CR capability in IoT and
proposed a five layered framework for CR-IoT, comprises
of perception layer, virtual object layer, composite virtual
objects, communication layer, and consumer layer. Being a
vital component of CR spectrum sensing is an important
element of CR-IoT [4], [17]. We have examined the detection
performance and complexity of the blind detection techniques
based on principle component analysis (PCA) and Robust
PCA for low SNR scenarios, experienced by the various
IoT applications [18]. Moreover, a novel and more efficient
sensing algorithm is proposed considering a complex noise
model (i.e. mixture of Gaussian). In addition, experimental
test bed was established with USRP2 kit and GNU Radio to
evaluate the proposed algorithm. Specific contributions of the
paper are as follows.

A. CONTRIBUTIONS
� This paper discusses the standing of CR capability for
IoT network and investigates the two main issues faced
by CR-based IoT that is time sensitivity and spectrum
scarcity.

� Presented a five layered framework for CR-IoT, com-
prises of perception layer, virtual object layer, compos-
ite virtual objects, communication layer, and consumer
layer. The proposed framework integrates themain func-
tions of both CR and IoT.

� Considering the requirements of CR-IoT nodes we put
effort to propose a spectrum sensing algorithm for

CR enabled IoT nodes which is fast (low convergence
time) and robust (RPCA with complex noise model).
The proposed algorithm employed Inexact ALM that is
five time faster than the existing approach with APG
to decompose the covariance matrix. Moreover, new
approach achieves higher precision and requires less
storage.

� Sensing ability of the proposed and existing RPCA algo-
rithms is analyzed under a low SNR (< −20 dB) sce-
nario with two different noise models (Gaussian noise
model and Complex noise model). The effect of number
of receive antennas and number samples on the sensing
performance is also analyzed. In addition, computational
complexity is computed and compared mathematically.

The rest of the paper is organized as follows. Cognitive
Radio-IoT Framework is presented in section II. A brief
discussion on the related work is presented in section III
Section IV describes the system model and the PCA based
existing spectrum sensing techniques. The proposed algo-
rithm is presented in Section V along with a discussion on
computational complexity of the algorithms. Details about
the experimental set up and the discussion on the results are
provided in Section VI. Finally, Section VII concludes the
paper with future research directions.

II. COGNITIVE RADIO ENABLED IOT FRAMEWORK
There are various frameworks for CR-IoT has been proposed
in the literature most of them focused on a specific applica-
tion, and existing literature yet to be merged into a reference
framework model. In this section we have discussed few
models and proposed a framework based on these references.

The research in [19] have proposed a CR-IoT architec-
ture and they have categorized the nodes into three lev-
els, device level nodes, gateway nodes and access nodes,
the gateway nodes are connecting the other two levels.
Al-Fuqaha et al. [20] have deliberated five-layer framework
for IoT, device layer, abstraction layer, service management
layer, application layer, business layer. Authors in [21] also
presented a five-tier model consisting of application, ser-
vice, communication, abstraction and perception layer and
discussed the functionalities of each layer. CR-based IoT
framework with three levels has been presented in [4]. First
level is the virtual objects (main elements are VO and VO
registry), second is the composite virtual objects (CVOs)
level consisting of the CVOs, CVO registry and perform task
related to situation, and the third level is the consumer level.

Various main functionalities of the IoT and the CR are
same, authors in [21] have identified and summarized
the similarities between the functionalities of the CR and
IoT paradigm.

We present a five layered framework for CR-IoT, com-
prises of perception layer, virtual object layer, composite
virtual objects, communication layer, and consumer layer as
depicted in Figure 1. The proposed framework integrates the
functionalities of both technologies CR and IoT. The layered
approach makes it easy to combine similar attributes and
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FIGURE 1. Cognitive radio-IoT framework.

help to make the development process independent. Each
layer consists of many sub-modules that performs the func-
tionalities of CR and IoT correspondingly. For example, the
spectrum sensing module in the perception layer is respon-
sible for finding the underutilized spectrums, and the things
acquisition module handles the similar type of functionalities
for IoT.

A. VIRTUAL OBJECT LAYER (VOL)
The main units of the VOL are virtual objects and its registry.
This layer hides the device heterogeneity, location mobility
issues from the other layers of the framework. VOL deals all
the sensors, actuators as a virtual object.

B. COMPOSITE VIRTUAL OBJECTS LAYER (CVO)
At this layer, CVOs & their registry, demand and state simi-
larity, and decision taking are the main elements.

C. COMMUNICATION LAYER
This layer handles the data transmission between the nodes
and connection to the internet. Communication layer is

responsible to provides intelligent routing, and managing
spectrum issues.

D. PERCEPTION LAYER
It comprises of two submodules named as things acquisition
and spectrum sensing. Things acquisition submodule is to
gather the information from the environment while spectrum
sensing is responsible to detect underutilized free spectrum
frequencies via any spectrum detection technique.

E. CONSUMER LAYER
This layer is responsible for application translation and situa-
tion acquisition, it also handles the creation and management
of the required services.

III. RELATED WORK
Spectrum sensing is necessary to determine the spectrum
capacity and to enable the IoT device communication over
unutilized radio spectrum. Work in [22] has discovered
underutilization of FM radio spectrum in urban areas, and
present it to be utilized by the low powered and short ranged
CR-IoT devices. The study in [23] considered the standing
of spectrum utilization by unlicensed user for the future
IoT infrastructures. [15] Introduce the concept of cognitive
M2M communication, started with motivate to integrate cog-
nitive radio technology in IoT from technical, applications,
industry support, and standardization aspects. Then, they
have proposed cognitive M2M network architecture.

[24] discusses the recent advance in cognitive M2M com-
munications from a protocol stack perspective. They cover
the standardization and the latest developments on proto-
cols for cognitive M2M networks for IoT. [25] Investigate
implementation of CR technology for a narrowband IoT.
They elaborate the important of reducing the spectrum sens-
ing overhead to maximizing the network throughput, authors
derive a set of optimal sensing parameters to get the max-
imum throughput of a narrowband cognitive radio IoT net-
work. Authors in [26] presented a short review on the
most recent spectrum sensing methods. They analyze and
express the conditions when spectrum sensing is an appro-
priate and cost-effective option especially in the future intel-
ligent IoT systems [27] Proposed an energy and spectrum
efficient architecture of CR sensor networks for IoT. Their
approach enables the IoT nodes to access the spectrum oppor-
tunistically and harvest energy via ambient radio-frequency
sources. [28] present a comprehensive survey on spectrum
sensing techniques for cognation radio networks with a
particular focus on wide band sensing. They also present
the narrow band spectrum sensing techniques and their pro
and cons. As we proposed the spectrum sensing for
CR enabled IoT systems using blind sensing techniques that
are covariance based, previous work in that direction is dis-
cussed below.

Blind detection methods are quite useful for signal detec-
tion in low signal to noise ratio (SNR) because they
did not require any prior knowledge about the signal or
channel [6], [10], [29].

165998 VOLUME 9, 2021



Z. Idrees et al.: Fast and Robust Spectrum Sensing for Cognitive Radio Enabled IoT

To overcome the issue of noise power uncertainty, the
covariance based detection (CBD) algorithms were sug-
gested in [30]. Signal and noise generally have different
statistical covariance, this property has been exploited for
covariance-based spectrum sensing in [10]. When the PU is
absent, off diagonal elements of the covariance matrix is zero,
while it is non-zero when the signal is present. This technique
did not require prior information of the primary user signal,
channel or noise [31]. Recently, principle component anal-
ysis (PCA) has been used for spectrum sensing and signal
classification in cognitive radio networks [32].

The objective of the PCA is to reduce dimensionality of
the data and to identify new underlying meaningful vari-
ables. The work in [33] used the PCA to enhance the
spectrum sensing by deriving the new SNR attained after
applying PCA. It can be taken as a pre-processing step for a
classical Spectrum Sensing algorithm PCA is also exploited
in modulation classification, [34] suggested an advance auto-
matic modulation classification method for CR using PCA.
Authors used two-dimensional property of the spectral cor-
relation function (SCF) to recognize the modulation of the
signal. In energy based spectrum sensing (EBSS), the pro-
cedure for the threshold computation lacks the clarity and
defined steps; an effort has been made in [35] to improve the
conventional BESS technique using PCA. A correction factor
is proposed to the conventional PCA. The covariance matrix
of the white noise is similar to the identity matrix while signal
has a low rank matrix. In [36] a PCA based spectrum sensing
algorithm was proposed that uses the dimension reduction
property of the PCA to reduce the sensing time. Dimension
reduction is achieved by discarding the data that did not
impart much about the signal’s presence or absence. This
dimension reduction saves the sensing time but also degrade
the sensing efficiency. RPCA has been used to recover the
low-rank matrix in [37]. Spectrum sensing using RPCA was
also presented in previous studies that is further discussed and
analyzed in Section 4.

IV. SPECTRUM SENSING USING PCA AND RPCA
A. SYSTEM MODEL
SISO (single input single output) and SIMO (single input
multiple output) antenna systems considered in this paper are
represented in Figure 2. Let us define the received signal as
y(n) = y(nTs) and the primary users signal as s (n) = s (nTs)
while w(n) = w(nTs) represents the Additive white Gaussian
noise. Assuming that W is the bandwidth of the received
signal, the sample rate is defined as fs � W . Equation (1)
shows the complex baseband samples. Where N is the total
number of samples for SISO system.

Y = [y1 (n) , y1 (n− 1) , . . . , y1 (n− N + 1)] (1)

N Complex baseband samples with M RF front ends can be
represented as [29].

Y = [y1(n), . . . , yM (n), y1(n− 1), . . . , yM (n− 1),

y1(−N/M + 1), . . . , yM (−N/+ 1)] (2)

FIGURE 2. a) SISO system, b) SIMO system.

The spectrum sensing needs to discriminate the two hypothe-
sesH1 that indicate the primary user’s signal andH0 specify
absence of PU is as define below.

y (n) =

{
H0 : w (n)
H1 : s (n)+ w (n) .

(3)

Performance of the spectrum sensing process is evaluated
by two important parameters names as the probability of
detection Pd and the probability of false alarm Pf . Pd and
Pf are defined as the probability to declare H1 when the
PU exists (H1) or does not exist (H0).

Pd = P
(
H1

H1

)
(4)

Pf = P
(
H1

H0

)
(5)

B. PU DETECTION WITH PCA
Principal component analysis was performed for PU signal
detection by using the following steps [38]:
• Calculation of the sample covariance matrix as Sx =

1
Ns

∑Ns
i=1 xix

T
i

• Decomposition of the covariance matrix into
eigenvectors.

• Generation of the principal components. Cji = FT xi
Where F contains the most significant eigenvectors.

• Calculation of the test statistic D as in equation 4.
• Decision between H1 and Ho by comparing the D with
the threshold ψ (predetermined at the desired Pf ).

The test statistic D which is used to discriminate between
PU signal and noise is calculated as follows [32].

D =
1
N

g∑
j=1

C2
j1 + C

2
j2 + C

2
j3 + · · · + C

2
jN > ψ (6)

whereC2
ji is the i

th element of the jth principal component and
ψ is the detection threshold. PU is detected if D > ψ .
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C. PU DETECTION WITH RPCA
Suppose that M is the sum of low rank matrix L and a
sparse matrix S. An entirely corrupted low rank matrix
can be recovered with a theoretical frame work namely
RPCA [39]. Both low-rank and sparse matrices are recover-
able with PCs, pursuit from their summation under very broad
conditions (low SNR, interference and other environmental
effects) [40], [41]. The covariance matrix of the signal at
receiver is the combination of a sparse and a low-rank matrix
under hypothesis H1 with the assumption that signal and
white noise are independent [37], [42].

Let x̂ (n) is a concatenation of L consecutive received
vectors and is defined as

x̂ (n) =
[
xT (n) , xT (n−1) , . . . , xT (n−L+1)

]T

=


H0
H1
...

HL−1




s (n)

...

s (n− L − Nch + 1)



+



1 (n)
...

M (n)
...

1 (n− L + 1)
...

M (n− L + 1)



= Ĥ


s (n)

...

s (n− L − Nch + 1)



+



1 (n)
...

M (n)
...

1 (n− L + 1)
...

M (n− L + 1)


Ĥs (n)+ (n) = s̄ = (n)+ (n) (7)

Size of x̂ (n) isM×L and the channel matrixH isM×L+Nch
is Further, the three different approaches are discussed below
to apply RPCA in spectrum sensing scenario.

1) FIRST APPROACH (RPCA-1)
Sample covariance matrix (SCM) Sx (Ns) is derived as
defined in equation (8) where Ns is number of samples.
The received signal is partitioned into two segments and the

RPCA is applied to recover the low rank matrices.

Sx (Ns) =
1
Ns

L−2+Ns∑
n=L−1

x̂ (n) x̂† (n) (8)

Sx1 =
1
Ns

L−2+Ns∑
n = L − 1

x̂1 (n) x̂
†
1 (n) (9)

Sx2 =
1
Ns

∑L−2+Ns
n = L − 1 x̂2 (n) x̂

†
2 (n) (10)

Sx1, Sx2 represents the SCM for each segment and the low
rank matrices recovered from Sx1, Sx2 by RPCA are S̃s1, S̃s2.
The divergence between S̃s1 and S̃s2 should be insignificant
when primary signal exists, hence the PU is detected if [43].∥∥∥(S̃s1/ ∥∥∥S̃s1∥∥∥

F
)(S̃s2/

∥∥∥S̃s2∥∥∥
F
)
∥∥∥
F
< TRPCA (11)

where ‖�‖F is the Frobenius norm of the matrix and TRPCA is
a pre-defined threshold at 10% probability of the false alarm.

2) SECOND APPROACH (RPCA-2)
Here RPCA is adopted as a de-noising process for the SCM
of the received signal. In case of H1 the recovered low-rank
matrices S̃s1 and S̃s2 are nearly equal to the SCM of the
PU signal. The leading eigenvectors σ̃1 and σ̃2 of low rank
matrices S̃s1 and S̃s2 are derived by eigen-decomposition. The
PU signal will be identified if [44], [45].

max
l=0,1,....d

∣∣∣∣∣
d∑
k=1

σ̃1 [k] σ̃2 [k + l]

∣∣∣∣∣> TRPCA−le (12)

where TRPCA−le is the threshold value and the dimen-
sion d = 32.

3) THIRD APPROACH (RPCA-3)
This methodology combines the power of low-rank (L) and
sparse matrix (S). RPCA via Accelerated Proximal Gradi-
ent (APG) is used to decompose a sample covariance matrix
of the received signal into signal and noise components [37].
Let us define covariance matrix as

S_x = E[x̄(n)x̄(n)†] (13)

Sx = Ss̃ + Sη (14)

Sx is the sum of signal and noise, where, Ss̃ and Sη are defined
as,  Ss̃ = E[s̄ (n) s̄

(
n)†
]

Sη = E[η (n) η
(
n)†
] (15)

Rx (Ns) =
1
Ns

L−2+Ns∑
n=L−1

x̂ (n) x̂† (n) (16)

After decomposing the covariance matrix into L and S that
is low rank and sparse matrices respectively, power ratio
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TABLE 2. Comparison of the optimization techniques of RPCA algorithm
with rank 20.

between L and S is calculated as [43],

T =
tr
(
LL†

)
tr
(
SS†

) . (17)

The PU signal is detected if

T > γ,

where γ is empirically calculated at a desired Pf .

V. PROPOSED SPECTRUM SENSING ALGORITHM
(RPCA-CN)
All the PCA based spectrum sensing techniques (discussed
in section 4) considered the Gaussian noise model or the
sparse noise, which makes them flabby for the real time IoT
applications, as in the real environment the noise is much
more complex [46]. For the efficient detection of the PU there
is a need to consider that complex nature of the noise. The
proposed algorithm is based on the RPCA while considering
complex noise (mixture of Gaussian (MOG)) model to make
the sensing more efficient and well working in all kinds of
real environments. Before going to the details of proposed
methodology, a brief overview of the optimization methods
for RPCA and synthetic data analysis of noisemodels (in term
of relative reconstruction error) has been be discussed.

The optimization methods for RPCA were compared
with the intention to choose the best one. APG, Aug-
mented Lagrange Multiplier (ALM) Method, Dual Method
and Singular Value Thresholding (SVD) were considered
in the assessment, details of these methods could be found
in [47], [48]. All the methods are compared in term of relative
reconstruction error and the convergence time as presented
in Table 2. The relative reconstruction error and the con-
vergence time are important parameters in the context of
sensing time [49]. Algorithmswere tested on a rank-20matrix
with 5% of its entries corrupted by the enormous errors.
It could be observed in Table 2 that the Inexact ALM has
the least relative error in estimation and faster convergence
as compared to other methods. Due to its fast convergence
and accuracy, Inexact ALM has been incorporated in our
proposed methodology.

Relative reconstruction error for PCA, RPCA and MOG-
RPCA under different noise models is presented in Table 3.

It is clear from the Table that MOG-RPCA has the least
RRE under complex noise models. RPCA work well with
sparse and Gaussian case as compare to MOG-RPCA, while

TABLE 3. Synthetic data analysis in term of RRE (relative reconstruction
error).

with no noise case PCA is better than all other approaches,
but this scenario does not exist in real environment.

We proposed RPCA under a Bayesian frame work by
assuming noise as a mixture of Gaussian. Such noise mod-
eling presented in [42], [50]. MOG is the universal approx-
imation to any continuous probability distribution, the use
of such complex noise model in spectrum sensing scenario
makes it able to suite a widespread series of noise such as
Laplacian, Gaussian, Sparse and a mixture of these. Sup-
pose that M is the sum of low rank matrix L and a sparse
matrix S. The covariance matrix of the signal at receiver is
the combination of a sparse and a low-rank matrix under
hypothesis H1 with the assumption that signal and noise are
independent [37], [42].

Let x̂ (n) is a concatenation of L consecutive received
vectors and is defined as

x̂ (n)=
[
xT (n) , xT (n−1) , . . . , xT (n− L+1)

]T

=


H0
H1
...

HL−1




s (n)

...

s (n− L − Nch + 1)



+



1 (n)
...

M (n)

...

1 (n− L + 1)
...

M (n− L + 1)



= Ĥ


s (n)

...

s (n− L − Nch + 1)



+



1 (n)
...

M (n)
...

1 (n− L + 1)
...

M (n− L + 1)


Ĥs (n)+ (n)= s̄=(n)+ (n)
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Size of x̂ (n) is M × L and the size of the channel matrix H
is M × L + Nch.
Considering RPCA as generative model with Y the original

data matrix, L the low rank components matrix and E the
sparse component matrix.

Y = L + E (18)

It is assumed that the entries of E are drawn independent
of a Laplacian distribution and the singular values of the
L are drawn from another Laplacian distribution.
RPCA can be interpreted as a MAP estimation with the
Laplacian noise. Noise components are modeled with the
assumption that each eij in E follows MOG distribution as
in [47].

eij ∼
K∑
k=1

5kN
(
eij
∣∣∣µk , τ−1k

)
, (19)

where, 5k is mixing portion with value greater than zero
and

∑K
k=15k = 1, K is Gaussian component number and

N
(
eij
∣∣∣µk , τ−1k

)
is Gaussian distribution with µ mean and

τ precision. To complete the Bayesian model conjugate pri-
ors over the parameters of Gaussian component µk , τk and5
as:

µk , τk ∼ N (µk
∣∣∣µ0

(
β0τ
−1
k

)
)Gam (τk |c0 , d0) , (20)

5 ∼ Dir(π |α0) , (21)

where, Gam(τk |c0 , d0) is the Gamma distribution with
parameters c0 and d0, and Dir(π |α0) denotes the Dirichlet
distribution. This Distribution is parameterized by α0 =
α01, α02, . . . , α0k . Low rank component modeling is done via
ARD (automatic relevance determination) due to its speed
and scalability.

Dx = Ak + Ek (22)

The mathematical model for approximating the low-
dimensional subspace is to discover a low rank matrix A from
the observation matrix D, while minimizing the discrepancy
between A and D. The proposed RPCA-CN could be summa-
rized as follow.

• Obtaining the sample covariance matrix

Dx =
1
Ns

L−2+Ns∑
n=L−1

x̂ (n) x̂† (n)

• Recovery of low rank matrix Ak and error matrix Ek
from the sample covariance matrix Dx of the received
signal with RPCA via Inexact ALM as described
in Algorithm 1.

• Calculation of the detection test static

S =
tr
(
AkA

†
k

)
tr
(
EkE

†
k

)

• PU signal will be detected if

S =
tr
(
AkA

†
k

)
tr
(
EkE

†
k

) > γ, (23)

where, threshold γ is calculated empirically at a
pre-defined Pf . In our experiments we consider two cases
for Pf that is Pf = 1% and Pf = 10%.

Algorithm 1 : RPCA via Inexact ALM

Input: observations matrix Dx ∈ Rm×n, λ
1: Y0 = D

J(D) ;E0 = 0;µ0 > 0; σ > 1; k = 0.
2: while not converged do
3: // step 4-5 solve Ak+1 = argminL (A,Ek ,Yk , µk)
4: (U , S,V ) = svd

(
D− Ek + µ

−1
k Yk

)
;

5: Ak+1 = USuk − 1[S]V T

6: // step 7 solve Ek+1 = argminL (Ak+1,E,Yk , µk)
7: Ek+1 = USuk − 1[D− Ak+1 + µ

−1
k Yk ]

8: Yk+1 = Yk + µk (D− Ak+1 + Ek+1)
9: Update µk to µk+1
10: k ← k + 1
11: end while
Output: (Ak ,Ek )

A. COMPUTATIONAL COMPLEXITY
Complexity of the PCA based spectrum sensing algorithm
comes from two phases, first is the calculation of the SCM
and the second is the decomposition of the SCM. In first
part (M2FNs) multiplications and O(M2F(Ns− 1)) additions
are required, here M represent the number of antennas at
the receiver, while F is smoothing factor and number of
samples are represented by Ns. In the second step O(M3F3)
multiplications and additions are involved [39], [51]–[53].
We can summaries as,

Complexity of the PCA: O(M2FNs) + O(M3F3
+ V 2).

Complexity of the RPCA:O(M2FNs)+O(M3F3). Complex-
ity of the RPCA per iteration with MOG:
O((m+ n)R3 + KmnR+ mnR2) Where,
• m is the dimensionality.
• n size of the input data.
• K MOG number.
• R is the Rank.

The complexity of the proposed method is slightly high as
compare to the existing RPCA algorithms however, modern
day devices are can afford this complexity.

VI. EXPERIMENTAL RESULTS
To validate the proposed algorithm and evaluate its perfor-
mance, we perform a series of experiment using both simu-
lated and real microphone signals in this section.

A. EXPERIMENTAL SETUP
Two receiver systems SISO and SIMO were setup for the
reception of correlated signals, transmission constraints were
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FIGURE 3. Correlated signal reception system.

fixed as in [54]. USRP2 is a high performance SD, it con-
tained a single pair of Tx and Rx antenna and keeps a
widespread range of 50 MHz to 2.2 GHz [54]. The two
USRPs were connected in a master/slave configuration, the
master USRP was connected with the personal computer via
the ethernet interface. They were inter-linked with a MIMO
cable, that ensured fully coherent signal reception. Synchro-
nization between USRPs is established with two reference
signals at the master USRP, one is a 10MHz signal to provide
a single frequency reference and the other is 1 PPS signal to
synchronize the sample time across the USRPs.

Figure 3 shows the block diagram of the signal reception
system. The data sets are the synchronized signals from
both I and Q channels of the two different RF front ends.
Testbed setup comprises of USRPs is depicted in the Figure 4.

The PU is a FM (frequency modulation) signal with
410 MHz frequency and a bandwidth of 200 kHz. R and S
SMF100A microwave signal generator was used to trans-
mit the signal. The SNR was varied by tuning the transmit
power at the signal generator. The sampling rate is set to
6.25 Mega samples/sec. The received signals were fed into
the host computer and stored into MATLAB readable files
with the help of GNU radio, where the detection and per-
formance analysis was done, Figure 5 and Figure 6 shows
the GNU radio environment and GNU radio companion flow
graph respectively. FFT plot of the received signal is shown
in Figure 7.

SNR of the recorded signal was calculated by turning off
the signal generator and measuring the noise at each RF front
end. The power of the signal atMth front end is estimated by
equation 24 and the SNR is calculated as in equation 25.

PM =
1

N
∑N

n=1 |XM (n) |
2

(24)

SNRM = 10log10

[
PM ,1 − PM ,0

PM ,0

]
(25)

PM ,1 and PM ,0 represent the power of signal and the
noise respectively. After collecting the data set we addition-
ally incorporate different noise distributions (as detailed in
section 5) to the data matrix to generate the different data

FIGURE 4. Testbed setup, USRPs master/slave configuration.

FIGURE 5. GNU radio environment.

FIGURE 6. GNU radio companion flow graph for SIMO system.

FIGURE 7. FFT plot of the received signals.

sets for evaluation. Evaluations for Pd were performed for
N = 60, 000 and L = 6 at 10% and 1% probability
of false alarm. Noise uncertainty U = 0.5 and is defined
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FIGURE 8. Pd at 10 % Pf , with single and multiple antennas (M = 1, 2).

in equation 26 where σ 2
n is the actual noise variance and

σ̂ 2
n is the estimated noise variance.

U = sup
∣∣∣10 log (σ̂ 2

n )/(σ
2
n )
∣∣∣ (26)

Threshold is calculated empirically at a desired probability of
false alarm that is 0.1 and 0.01.

B. RESULTS AND DISCUSSIONS
This subsection provides the results of the experiments which
compare the performance of the proposed RPCA-CN algo-
rithm with existing spectrum sensing techniques. Existing
PCA and RPCA based approaches presented in section IV
are evaluated in term of Pd at 10%Pf . Figure 8 shows the
detection ability of the existing algorithms in term of Pd
at various SNR with single and multiple receive antenna
(one and two receive antennas considered in this paper). Here
M show the number of receive antennas, It can be seen that
there is significant improvement in probability of detection,
as it moved from single to double receive antenna config-
uration because this configuration improved the correlation
between the samples. In this analysis RPCA-3 (with APG)
out performs other approaches.

Figure 9 illustrate the comparison of the performance
under Gaussian noise model for Pd Vs SNR at 10% proba-
bility of false alarm, N = 60000 and M = 2. Similar exper-
iment was conducted for 1%Pf and the results are shown
in Figure 10. PCA has better detection ability in Gaussian
noise model than RPCA-3 and RPCA-CN as in this case
there are no utilization of parameters (µk , τk and 5) that
are incorporated in RPCA. Evaluations under complex noise
model for ofPd at 10%Pf is demonstrated in Figure 11, under
complex noise model PCA is not able to performwell and has
quite low Pd in low SNR range (−25 to −15 dB).

PCA try to express most possible variability caused
by the noise and has sensitivity to outliers. Outliers are
the inordinately enhanced classical measures of variance,
as PCA follows the maximum variance therefore outlier

FIGURE 9. Pd at 10% Pf , under gaussian noise model, N = 60000
and M = 2.

FIGURE 10. Pd at 1% Pf , under gaussian noise model, N = 60000
and M = 2.

FIGURE 11. Pd at 10% Pf , under complex noise model, N = 60000
and M = 2.

has the capability of artificially increasing the variance in
an uninformative direction [39]. In this regard, scaling is
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FIGURE 12. Pd at 1% Pf , under complex noise model, N = 60000
and M = 2.

FIGURE 13. Pd vs N at 10% Pf , under gaussian noise model
at SNR = −20dB.

worth discussing, it has some unwanted effects due to sim-
ilar weights of each variable for PCA, because of it, noise
got equal importance as of the variables which represent
the actual signal. In such scenario it becomes terrible for
PCA to differentiate between useful and redundant informa-
tion [6], [55]. These factors cause inaccurate results which
ultimately degrade the performance in the form of low prob-
ability of detection and high probability of false alarm that
can be observed from Figure 11. Figure 12 also demonstrate
that the RPCA-CN outperforms both PCA and RPCA-3 even
in low SNR (−25 dB) and 1%Pf . As RPA-CN employed the
IALM (Algorithm 1) that uses significantly smaller number
of partial SVDs as compare to exact ALM that is incorporated
by RPCA-3 with similar convergence speed, experimental
results show that IALM is at least five times faster than APG
referring to Table 2. IALMcomputes the number of non-zeros
in error matrix E more accurately than APG, as APG leave
several small non-zero terms in E which leads to low Pd .

The effect of varying the number of samples N is ana-
lyzed under both noise models, Figure 13 shows the effect of

FIGURE 14. Pd vs N at 10% Pf , under complex noise model
at SNR = −20dB.

varying numbers of samples under Gaussian noise model for
a fixed Pf = 10% and SNR=−20dB. Increasing the number
of samples improve the spectrum sensing performance. With
large N PCA performs better than RPCA. Figure 14 demon-
strate the effect of N under complex noises model at a fixed
Pf = 10% and SNR = −20dB. In this experiment proposed
algorithm outperform the PC and RPCA-3 even at highest and
lowest number of samples.

Other factor that makes the proposed method more robust
and superior than other competitors is that all the parame-
ters involved in the model, including U ,V and their ranks
can be automatically inferred from the observed data under
easy non-informative settings of hyper parameters. Instead of
assuming zero-mean data noise in traditional RPCAmethods,
Vks is the means of all noise components, left as to-be-
estimated parameters, which further enhances the adaptabil-
ity of our algorithm to real asymmetric noise and results in
high Pd .

Percentage of detection efficiency is calculated using equa-
tion (27) at SNR −25, −20 and −15dB, RPCA-CN is
18.37% more efficient than RPCA-3 approach even at lowest
SNR while as SNR improves to −15 there is less differ-
ence between the detection efficiency of the two approaches.
As the proposed approach incorporate the IALM for the low
rank matrix recovery that has the least convergence time
as compare to SVD and APG that are incorporated by the
comparative approaches PCA and RPCA-3. If we compare in
term of convergence time the proposed approach is four times
faster than RPCA-3, as mentioned in Table 3 convergence
time for APG is 8 seconds and for IALM is 2 seconds.
These evaluations support the statement that the proposed
algorithm is fast and more robust in all noise environments
and can perform better in real scenario as demanded by the
IoT applications.

Ę = [(Pd(RPCA−CN ) − Pd(RPCA−3) )/Pd(RPCA−3) ]100 (27)
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At SNR = −25

Ę =
[
0.58− 0.49

0.49

]
× 100 = 18.37

At SNR = −20

Ę =
[
0.90− 0.82

0.82

]
× 100 = 9.7

At SNR = −15

Ę =
[
1− 0.97
0.97

]
× 100 = 3.09

VII. CONCLUSION AND FUTURE WORK
IoT objects with cognitive capabilities can efficiently uti-
lize spectrum and fulfill real time applications require-
ments. Spectrum sensing is the key component of CR and
demands special demands when it comes to IoT, including
fast and efficient detection of PU. This work presents the
need of CR in IoT and a robust spectrum sensing algorithm
for CR-based IoT architecture. Proposed algorithm uses the
IALM for RPCA with MOG noise model, we made eval-
uations in real scenario with wireless microphone signals
over the air. To validate the improved results, existing RPCA
approaches were compared in term of probability of detection
and complexity. The performance of the included sensing
techniques is also evaluated under varying number of sam-
ples. The proposed scheme is more efficient, robust and
performs well under actual noise conditions that make it suit-
able for time sensitive IoT applications. Experimental results
and mathematical evaluations demonstrate that the proposed
approach is 10.7% improved in term of detection efficiency
and at least 4 times faster than existing techniques. Com-
plexity of the proposed RPCA-CN is comparable to existing
approaches, which can be one of its limitation. Future work
could be done on the complexity reduction of the proposed
approach that would be very useful for its implementation on
low power IoT devices. We hope that this article would give
the readers an insight to the concept of CR based IoT which
could help them to follow this emerging research direction.
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