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ABSTRACT In transient analysis (TA), the processing time (PT) and prediction accuracy (PA) are the
most significant indices be influenced the decision-making of grid operators to conduct timely-accurate
corrective actions. In fact, achieving low PT and high PA (high-performance TA) necessitates designing
the comprehensive feature selection scheme to select optimal transient point features (OTPFs). Hence, the
partial-injective trilateral hybrid (filter-wrapper) scheme called PITHS is introduced in this paper. First,
the transient dataset in the form of multivariate time series is constructed by an integrated programming
platform. Next, based on PITHS, the first univariate trajectory feature (UTF1) is entered into the nested
trilateral filter phase (NTFP) equipped with intertwined triple criteria of information theory for selecting
filter-OTPFs of UTF1 (f -1OTPFs). Then, f -1OTPFs are fed to the nested trilateral wrapper phase (NTWP)
for selecting filter-wrapper-1OTPFs (fw-1OTPFs). The NTWP is including the hyperplane-based predictive
approach accompanied by the triple kernel. After conducting NTWP, fw-1OTPFs are considered as the first
ultimate optimal point features (1UOPFs). Next, survived fw-1OTPFs injected into the subsequent trajectory
(UTF2), and the neo-formed trajectory (fw-1OTPFs plus UTF2) drives a new round of NTFP and NTWP
for finding fw-2OTPFs (2UOPFs). By conducting this procedure on the last neo-formed trajectory (the fw-
k−1OTPFs + UTFk), the fw-kOTPFs are obtained (kUOPFs). Finally, the 1:kUOPFs set is tested to verify
their efficacy for TA based on the cross-validation technique. The obtained results show that the proposed
framework has a prediction accuracy of 98.75% and a processing time of 152.591 milliseconds for TA.

INDEX TERMS Hybrid feature selection scheme, optimal transient point features (OTPFs), support vector
machine (SVM), transient stability assessment (TSA).

I. INTRODUCTION
Emerging wide-area monitoring systems (WAMS) like pha-
sormeasurement units (PMUs) caused soft-hard restructuring
in grid monitoring platforms, which has a direct impact
on the precise reliability assessment of power systems [1].
In fact, using the PMU-based monitoring dashboard depicts
the real-time variations of dynamic responses for grid
operators, which helps them to promote awareness of the
synchrony degree of the power system components [2]. In this
regard, one of the most significant concerns in the power
system exploitation process is related to the importance
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of maintaining synchronism of power system components
under severe and sudden disturbances, called transient
stability [3]. Hence, transient stability assessment (TSA)
to identify unstable conditions by mining on the dynamic
characteristics of system variables is a vital task. By detecting
the transient instability via TSA, makes it possible to take
corrective control action for the secure-adequate power
supply. However, such actions provide the potential oppor-
tunity to keep normal operations, if conducted in a timely
manner. An important point to note is that timely corrective
action requires the fast detection of transient stability
status (stable or unstable case), which is achieved through
applying robust lightweight predictive data mining (DM)
techniques on a small observationwindow (SOW) of transient
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features [4], [5]. Taking into cognizance these points, the
processing time of transient stability prediction (TSP), which
is included prediction and observation time must be less
than one second (<1 s) [6]. Besides the pay attention to
the time complexity of the classifier for labeling transient
samples, SOW plays a major role in reducing the processing
time of TSP. However, lack of consideration to the intrinsic
characteristics of existing transient features in picked SOW
negatively affected the training and testing procedure of
classification techniques, which leads to low accuracy on
TSP. In other words, selecting the most relevant transient
features in the form of the best-laid SOW is the necessary
concern to achieve high-performance (time and accuracy) on
TSP. This challenge can be solved via conducting the feature
selection process, which is known as the most prominent
category in DM technology. Hence, studies on designing
feature selection scheme (FSS) have become an interesting
research topic in the field of TSA and pattern recognition
in recent years. Generally, FSS-centric transient studies fall
under two categories: 1) Filter method; in Reference [7],
ReliefF-based feature selection algorithm is used to select the
most discriminative features for diagnosing fault of induction
motors. Also, dynamic stability features are selected by
the minimum-redundancy and maximum-relevance (mRMR)
for large-scale power systems transient stability assessment
in [8], [9]. In Reference [10], regarding transient stability
constraints, a feature pre-screening strategy for selecting
optimal features based on the fast correlation-based filter
method (FCBF) is used to achieve a high-performance
total transfer capability calculation model, and 2) filter-
wrapper method; In Reference [11], the optimal trajectory
cluster features are exploited from the large observations
of rotor angle and voltage magnitude by conducting hybrid
framework in the form of the Relief-support vector machine
for TSP. Also, extracting the most relevant features by
conducting a segment-oriented filter-wrapper method on
reactive power-based two-variate time series has been
considered for TSP in [12]. Also, in [13], the bi-mode hybrid
feature selection scheme (BMHFSS) finds optimal transient
features on multivariate time series by coupling the point
and trajectory-based filter-wrapper scheme. Focusing on the
structure of the above-mentioned classical FSS shows the
fact these approaches were designed based on vertically
integrated strategy. For example, in vertical-oriented hybrid
FSS, first, entire feature space [13] or fragmented feature
space (fragment1, fragment2 and so on) [12] is entered
into information theory-based approaches (filter), and then
selected primary optimal features are fed to predictive-based
algorithms (wrapper) for finding final optimal features. Such
a cohesive-mode strategy leads to the extraction of the
intrinsic characteristic of some transient multivariate time
series as optimal features. Although, the selected optimal
features based on vertical mode induced high accuracy in
TSP, relevant features of some trajectories (called optimal-
blurred features) are overshadowed based on this strategy.
In fact, such an approach may cause the loss of the

discriminative transient features per univariate trajectory and
negatively affect the TSP performance in the presence of
severe transient space. Hence, designing the horizontally
integrated hybrid FSS, which considers all trajectories in
the generalized form, is essential for selecting the most
discriminative features. Applying the proposed hybrid FSS
based on the partial-injective scenario makes the opportunity
to find optimal-blurred features as best-laid SOW.

According to what was mentioned above, designing the
comprehensive FSS based on the proper strategy is one of
the main solutions to achieve key indices, namely processing
time (PT) and prediction accuracy (PA) on TSA. In fact,
achieving low PT and high PA based on the most discrimina-
tive transient features in the presence of the severe transient
space provides the necessary context to conduct timely-
accurate corrective actions in power systems. To this end,
as can be seen in Fig. 1, we consider the three-step scenario
for TSA, which is included: 1) transient dataset generation
based on transient simulation on the New England-New York
interconnection (NETS-NYPS) test case was considered in
the first step, 2) Next, the partial-injective trilateral hybrid
scheme (PITHS) based on horizontally integrated mode is
applied on transient multivariate trajectory features (TMTFs)
which consist of two nested trilateral phases: a) nested
trilateral filter phase (NTFP); TMTFs is entered into the
NTFP equipped with intertwined triple information theory
criteria for selecting filter-optimal transient point features
(f -OTPFs) and b) in the nested trilateral wrapper phase
(NTWP); the f -OTPFs is entered into the hyperplane-based
predictive approach based on the triple kernel to find the
filter-wrapper optimal transient point features (fw-OTPFs),
and 3) in the final step, performance evaluation on TSP
based on selected ultimate optimal point features (UOPFs)
is considered by cross-validation technique.

The rest of the paper is organized as follows: we describe
the structure of the PITHS in Section 2. Experimental results
of the proposed framework are presented in Section 3. Finally,
the conclusion is interpreted in Section 4.

II. OVERALL PITHS PROCEDURE
The conjoined steps of PITHS to select the best-laid SOW
in TMTFs for TSA are depicted in Fig. 2. Have a glance
at the structure of the proposed scheme show the fact that
the PITHS implements a partial-injective policy on transient
multivariate excursions during the feature selection process.
In fact, fw-1OTPFs of the first univariate trajectory feature
(UTF1) survived by conducting the first round of dual-phase
of PITHS (partial-manner) are considered as first ultimate
optimal point features (1UOPFs) and then accompanied by
subsequent univariate trajectory feature (UTF2) (injection)
for exerting new rounds of dual-phase for finding fw-
2OTPFs (2UOPFs). This horizontal integration will continue
until the last neo-formed trajectory (LnfT) (retrieved from
combination fw-k−1OTPFs and UTFk) is obtained. Next,
LnfT is entered into the final dual-phase of PITHS to select
fw-kOTPFs as kUOPFs. Regardless of the partial-injective

163298 VOLUME 9, 2021



S. A. Bashiri Mosavi: Finding Optimal Point Features in Transient Multivariate Excursions

FIGURE 1. Visual summary of the proposed framework for TSA based on PITHS.

FIGURE 2. The overall process of PITHS for selecting UOPFs set.

scenario coupled with PITHS to obtain UOPFs set
(green-face circles in Fig. 2), utilizing two nested trilateral
phases (filter and wrapper) called 2NTPs in PITHS
has a driven role for extracting UOPFs. The 2NTPs is
including the nested trilateral filter phase (NTFP) and nested
trilateral wrapper phase (NTWP). In NTFP, filter-optimal
transient point features called f -OTPFs are selected via
information theory-based triple criteria, namely relevance,

interdependence, and redundancy (RIR). The RIR analysis
is exerted based on basic ratios like entropy, conditional
entropy, mutual information (MI), and conditional MI. After
conducting RIR analysis, the NTWP is applied on f -OTPFs
for finding fw-OTPFs. In fact, the NTWP is considered
a supplementary phase in PITHS to cover the weakness
of the IRI analysis in ignoring supervised learning-based
analysis on feature selection process. In this regard, the
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FIGURE 3. The visual summary of NTFP.

hyperplane-based approach equipped with the elastic and
non-elastic kernels is considered in NTWP for selecting fw-
OTPFs. The detailed descriptions of the NTFP and NTWP
are considered in the following sections.

A. NESTED TRILATERAL FILTER PHASE (NTFP)
In the filter phase of PITHS, we consider statistical and
intrinsic characteristics of the trajectory features based on the
information theory concept. In fact, three significant criteria
of information theory to measure of relatedness state of point
features per trajectory to the target class are considered in the
NTFP, which is the leading transient data analytic package in

each stage of PITHS (See Fig. 2). As can be seen in Fig. 3, the
NTFP of PITHS rounds consists of the nested steps as follow:

Step 1) Specifying the input trajectory: In the first stage of
PITHS, the input trajectory, including univariate of the first
trajectory called UTF1 (See Fig. 2), is entered into NTFP1.
In the next stage of PITHS (2nd round), trajectory input
involved fw-1OTPFs (optimal point features extracted based
on applying NTFP1 and NTWP1 (See Section 2.2) on UTF1)
and UTF2 are fed to NTFP2. This procedure will continue
until the k th UTF, where fw-k−1OTPFs and UTFk (called
LnfT) are entered into NTFPk in the last stage of PITHS.
So, we have (1), shown at the bottom of the page, where

input trajectory per round of PITHS

= fw-k−1OTPFs+ UTFk (general form)
1st round of NTFP in PITHS (NTFP1), k = 1; input trajectory = fw-0OTPFs(=nil)+ UTF1

= UTF1

2nd round of NTFP in PITHS (NTFP2), k = 2; input trajectory = fw-1OTPFs+ UTF2

...
...

28th round of NTFP in PITHS (NTFP28), k = 28; input trajectory = fw-27OTPFs+ UTF28

(1)
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k indicates the number of univariate time series constrained
{k|k = 1, 2, . . . , 28}.

Step 2) Calculating relevance rate: The first component
of RIR analysis, namely relevance rate is considered in this
step. To this end, symmetric uncertainty (SU) [14] is used for
selecting point features (PFs) from univariate trajectory input,
which has tightly relationwith the target class. In terms of SU,
entropy, conditional entropy, andmutual information (MI) are
the main factors to measure the value of information shared
between pf ∈ PFs of input trajectory and target class. In this
regard, the entropy H(pf) is defined as:

H (pf ) = −
∑
x∈pf

p(x) log p(x) (2)

where pf ∈ PFs be a discrete random variable and probability
density function p(x) = Pr{pf = x}. Also, conditional
entropy calculates the entropy of fp in the presence of target
class knowledge as follow:

H (pf |class) = −
∑
x∈pf

∑
c∈class

p(x, c) log p(x|c) (3)

Now, MI is defined as Eq. (4):

MI (pf ; class) = H (pf )− H (pf |class) (4)

Regarding Eqs. (2) to (4), The SU index is calculated as
normalized form ofMI, given by:

SU (pf , class) = 2
MI (pf ; class)

H (pf )+ H (class)
(5)

Step 3) After calculating SU per pf ∈ PFs of input
trajectory, by setting proper thresholds, each pf is situated in
one of the three bundles (high SU PFs, middle SU PFs, and
low SU PFs) according to its SU amount. The main reason for
making this decision is to avoid absolute reliance on obtained
results based on the SU index and the prevention of forced
removal of pf∈ PFs in themiddle and low SU bundles. In fact,
not content with SU-oriented analysis gives middle SU pf and
low SU pf a chance to be re-analyzed via the interdependence-
redundancy (IR) analysis and 1-persistence trilateral filter
(See Step 4).

Step 4) After bundling PFs of input trajectory, each
bundle (high SU PFs, middle SU PFs, and low SU PFs)
entered to complementary analysis based on IR index
as (6). In IR analysis, the effect of the presence of pfj
on information shared between pfi and the target class is
measured. If knowledge of pfj cause to increase in the
relevance ratio between pfi and the target class, two features
are interdependent. Also, joining pfj to pfi is considered
redundant, if knowledge of pfj causes a negative effect on the
relevance between the pfi and the target class.

IR(pfi, pfj) = 2
MI (pfi; class|pfj)−MI (pfi; class)

H (pfi)+ H (class)
− 1 ≤ IR(pfi, pfj) ≤ 1 (6)

Consequently, by following Step 1 to Step 4, the filter-
optimal transient point features (f-OTPFs) per bundle are

obtained (high SUf-OTPFs, middle SUf-OTPFs, and low SUf-
OTPFs). To better understand the details of RIR analysis,
consider the pseudo-code of the NTFP (Step 1 to Step 4) as
Table 1.

Step 5) The obtained high SUf-OTPFs, middle SUf-OTPFs,
and low SUf-OTPFs are joined together and entered into
function IR once again (1-persistence scenario) for selecting
f -OTPFs of input trajectory.

After conducting the above-mentioned steps, each NTFPk-
specific f -kOTPFs are fed to NTWPk (k= 1 to 28) (See Fig. 2
and Section 2.2) for finding NTWPk-specific fw-kOTPFs
at the end of each round of PITHS as kUOPFs (e.g.; last
round: k = 28; f -28OTPFs entered into NTWP28 for finding
fw-28OTPFs as 28UOPFs).

B. NESTED TRILATERAL WRAPPER PHASE (NTWP)
For more analysis on transient features, the outputs of NTFP
are fed to the predictive-oriented analysis called NTWP to
extract the most discriminative transient features. As can be
seen in Fig. 2, each NTFPk-specific f -kOTPFs are entered to
NTWPk (e.g.; first round: entering f -1OTPFs into NTWP1;
last round: entering f -28OTPFs into NTWP28), which is
considered as a complementary analysis in the proposed FSS.
The NTWP is equipped with a hyperplane-based classifier
accompanied by the triple kernel to evaluate the efficacy
of selected features via NTFP. In fact, the point features in
each NTFPk-specific f -kOTPFs inducing high performance
in TSP survive by NTWP. Generally, each NTWP in PITHS
is formed based on three components as follow:

1) THE WRAPPER APPROACH BASED ON
INCREMENTAL MECHANISM
Regardless of the effective role of the filter method in
selecting f -OTPFs, using the wrapper method in the form
of applying supervised learning models is the key approach
to evaluate the predictive capacity of f -OTPFs. In fact,
selecting the discriminative transient point features (DTPFs)
from the f -OTPFs that lead to the correct prediction of
unseen transient samples (stable or unstable) is the main goal
to incorporate this approach in the FSS process. However,
applying a mechanism that checks the performance rate
of the DTPFs subset for TSP in an incremental manner
is another important aspect of the wrapper phase. One of
the incremental-based mechanisms is incremental wrapper
subset selection (IWSS) [15] that regards the SU value of each
member of f -OTPFs as the criterion in arranging the entry
of features to the learning model in each iteration of IWSS.
In IWSS, first, the feature that has the highest SU is added
to the DTPFs subset, and it is fed to the learning algorithm.
Then, classification accuracy is recorded as the best result.
In the next iterations, the feature with the second-highest SU
is added to the DTPFs subset, and the training and testing
procedure is conducted based on existingmembers of DTPFs.
If by adding this feature to DTPFs, the prediction accuracy
increased against the preceding DTPFs subset accuracy, the
feature has remained in the DTPFs subset; otherwise, this
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TABLE 1. The pseudo-code of the NTFP (step 1 to step 4).

feature is removed, and the next feature is added to DTPFs
to be executed subsequent iteration of IWSS.

2) THE HYPERPLANE-BASED CLASSIFIER
Focusing on the type of classification algorithm embedded
in the IWSS iterations is a significant issue that affects the
learning process (train-test). This becomes doubly important
when we find out that the processing time (PT) in the
TA is a crucial concern. As mentioned in the introduction
section, the reasonable PT for TSP is less than one second
(<1s) which such PT constraint provides the necessary
condition for timely corrective control action in the power
grid. Two factors are influential in achieving low PT namely

observed length of transient cycles (observation window)
and the time complexity of the classification model. Taking
into cognizance these points, picking a small observation
window (SOW) and labeling transient samples in low time
is the only definitive solution to handle the PT bottleneck.
To this end, we need to apply the robust-lightweight classifier
that robust reflects the algorithm’s ability to precisely learn
the decision boundary in SOW (high accuracy prediction),
and lightweight refers to the algorithm capable of fast
detection of transient stability status (low time complexity).
As the best option, the support vector machine (SVM) [16]
is the robust learning model that employs a separating
hyperplane with low structural risk in the classification of
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TABLE 2. Transient multivariate time series features (28-variate).

the limited and not linearly separable transient feature space.
Furthermore, several kernels can be embedded in the SVM
classifier for optimal matching (point-based or trajectory-
based alignment) between transient samples, which increases
the generalization capacity of the learning model. On the

FIGURE 4. The visual summary of NTWP.

other hand, the kernel-based SVM capability to maximizes
prediction accuracy without overfitting training SOW indi-
rectly affects train-test computational complexity and turns it
into a lightweight classifier. Hence, this issue motivated us to
use SVM in the IWSS iterations. The optimization problem
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FIGURE 5. Transient dataset generation workflow (TDGW).

and the constraints of SVM are defined according to (7):

a∗ = argminα
1
2

l∑
i=1

l∑
j=1

αiαjyiyjK (xi, xj)−
l∑

k=1

αk ;

0 ≤ αi ≤ C,
l∑
j=1

αiyi = 0, i, j = 1, . . . , l (7)

The optimal separating surface in transient feature space is
solved by (8):

f (x) = sgn

(∑
i∈s

αiyiK (xi, x)+ b

)
;

b =
1
s

∑
i∈s

yi −∑
j

αjyjK (xj, xi)

 (8)

3) TYPE OF KERNEL FUNCTION
In (7) and (8), K (·, ·) indicates the kernel function plugged
into SVM to learn optimal decision boundary without
raising the computational complexity. In this regard, three
efficient kernel-based on elastic and non-elastic functions are
introduced as follow:

a: THE NON-ELASTIC KERNEL
Standard Gaussian radial basis function (Standard GRBF)
kernel [16]: The GRBF kernel works based on point to point
alignment as (9):

K (x, x ′) = exp
(
−
||x − x ′||2

2σ 2

)
(9)
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FIGURE 6. Single line diagram of NETS-NYPS test system.

FIGURE 7. Stable and unstable sample based on F5 variations.

where ||x − x ′||2 is squared Euclidean distance between the
two time series feature.

b: THE ELASTIC KERNEL
DTW in GRBF kernel (DTW-GRBF kernel) [17]: Since the
pattern matching with DTW outperforms Euclidean distance
in most cases because of its non-linear alignment, using
DTW distance in the GRBF kernel can help to build the
high-performance SVM model for time series classification.

FIGURE 8. The relevancy rate (SU amount) for PFs-UTF1.

FIGURE 9. Selecting high SUf -OTPFs of high SU PFs-UTF1 via IR analysis.

Hence, the DTW-GRBF kernel is defined as (10):

K (x, x ′) = exp

(
−

[
distanceDTW(Ap1,B

q
1)
]

2σ 2

2)
(10)

where

distanceDTW(Ap1,B
q
1)

= d(a(p), b(q))+Min

 distanceDTW(Ap−11 ,Bq1)
distanceDTW(Ap−11 ,Bq−11 )
distanceDTW(Ap1,B

q−1
1 )


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FIGURE 10. Selecting middle SUf -OTPFs of middle SU PFs-UTF1 via IR
analysis.

c: THE ELASTIC KERNEL
Recursive edit distance kernel (REDK): Defining a positive
definite symmetric (PDS) kernel as a valid alternative to
conventional elastic kernel like DTW-based functions which
does not always satisfy PDS acceptable by SVM has been
considered in [18]. The function 〈·, ·〉 : U × U → R is
called REDK if, for any pair of trajectory.Ap1,B

q
1 there exists a

function f : R→ R such that the following recursive equation
is satisfied:

〈
Ap1,B

q
1

〉
=

∑


〈
Ap−11 ,Bq1

〉
f (0(A(p)→ 3))〈

Ap−11 ,Bq−11

〉
f (0(A(p)→ B(q)))〈

Ap1,B
q−1
1

〉
f (3→ B(q))

(11)

Let U be the set of finite trajectory; U = {Ap1|p ∈ N}. Ap1
is a sequence with a discrete index varying between 1 and p.
Also, 0(h) is the cost function for edit operation.

According to what was mentioned about the main com-
ponents of NTWP, the NTWP is exerted on f -OTPFs as
shown in Fig. 4. As can be seen in Fig. 4, each NTFPk-
specific f -kOTPFs are entered into the three stages of
NTWPk. In the first stage, f -kOTPFs are entered into IWSS-
SVMREDK. By applying SVMREDK in IWSS iterations, the
REDKfw-kOTPFs are obtained (See panel (a) of Fig. 4). Next,
the f -kOTPFs are fed to the IWSS-SVMDTW−GRBF and
consequently, the DTW−GRBFfw-kOTPFs is obtained as the
output of the second stage of NTWPk (See panel (b) of Fig 4).

FIGURE 11. Selecting low SUf -OTPFs of low SU PFs-UTF1 via IR analysis.

Unlike the previous two stages of the NTWPk which
plugged elastic kernel into SVM to feed IWSS iterations,
the obtained f -kOTPFs are entered into the non-elastic
face of NTWPk accompanied with IWSS-SVMGRBF. In this
way, the GRBFfw-kOTPFs are extracted as the DTPFs
subset of f -kOTPFs. Next, intersection of kernelfw-kOTPFs in
pairs ([REDKfw-kOTPFs ∩ DTW−GRBFfw-kOTPFs], [REDKfw-
kOTPFs ∩ GRBFfw-kOTPFs], and [DTW−GRBFfw-kOTPFs ∩
GRBFfw-kOTPFs]) are calculated and result with the most
members is considered as the fw-kOTPFs of NTWPk,
which is called the kUOPFs. Furthermore, if intersection
kernelfw-kOTPFs in pairs have the same length of members,
we combine their members as kUOPFs. Also, if the
difference in the prediction accuracy of each set compared
to the other two sets is more than 10%, the members of
that are added to kUOPFs (numeric example in Fig. 4,
UOPFs: pf1, pf2, pf3).

III. EXPERIMENTAL DESIGN
A. TRANSIENT DATASET GENERATION
As can be seen in Fig. 1, transient dataset generation based
on dynamic contingency simulation is the preliminary step
of the proposed framework for TSP. For implementing this
step, the transient dataset generation workflow (TDGW),
including two parts followed as Fig. 5. In the first part
of TDGW, Python technology, SIEMENS power system
simulator for engineering (PSS/E) planning tools, and case
study (top-funnel in Fig. 5) triangulated to record transient
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FIGURE 12. Selecting f -1OTPFs of UTF1.

data from output channels of basic features (OCBF-X). The
X in OCBF-X is the symbol of basic features, including bus
voltages (VOLT), voltage phase angle (VANGLE), machine
active power (PELEC), machine reactive power (QELEC),
and reactive power consumption (QLOAD) [19]. In this
part, the transient sequence of OCBF-X is recorded based
on coupling Python script and PSS/E application program
interface (API) routine [20], which is executed on 68-Bus
New England-New York interconnection system (NETS-
NYPS) (See Fig. 6) [21]. An important point to note
is that the obtained transient data of OCBF-X is related
to applying several disturbances like substation outages,
generator outages, and line outages on the NETS-NYPS
grid case. In terms of simulation time, the fault duration

time is set to 0.23 seconds (the time step is 0.0167
seconds). Also, the fault clearing time is set after the
end of fault duration time. Furthermore, for recording
severe transient samples, different load characteristics are
considered by converting the constant MVA load for a
specified grouping of network loads to a specified mixture of
the constant MVA, constant current, and constant admittance
load characteristics. In the second step of TDGW, OCBF-
X-specific univariate trajectories accompanied with required
add-ons are entered into MATLAB-based feature calculation
module (bottom-funnel in Fig. 5) which leads to construct
transient multivariate trajectory features (TMTFs). The math
formula of 28 univariate trajectory features (28-variate tra-
jectory) [12], [13], [22] listed in Table 2 (e.g., OCBF-PELEC
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FIGURE 13. The NTWP1 for selecting fw-1OTPFs (1UOPFs).
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FIGURE 13. (Continued.) The NTWP1 for selecting fw-1OTPFs (1UOPFs).

plus Pmax: F
tm
1 = Max([PELECi

/
Pmaxi]i=1:Ngenbus)). Con-

sequently, 800 × 28 transient samples were gathered based
on TDGW, which is 9 cycles (0.1503 seconds) per univariate
time series are observed after fault clearing time (we have:
800 (No. transient samples) × 28 (No. features) × 9 (No.
observed cycles)]. For example, Fig. 7 shows the fluctuations
of the F5 univariate trajectory (variance [proportion of
QELEC to the Qmax]) for stable and unstable samples of the
NETS-NYPS test case.

B. UOPFs SET
The UOPFs set (1UOPFs to 28UOPFs) obtained by applying
2NTPs (NTFP and NTWP) in each round of PITHS (rounds
1 to 28) is elaborated in this section. According to (1),
in the first round of PITHS, UTF1 is entered into NTFP.
According to was what mentioned about the NTFP scenario
(See Section 2.1), based on the first three steps of NTFP,
the PFs of UTF1 (9 cycles) based on relevance rate (SU
measure) fall into the three bundles, namely high SU, middle
SU, and low SU (Lines 1-10 of Table 1). As can be
seen in Fig. 8, which is depicted the SU amounts of PFs-
UTF1, based on setting proper thresholds, {pf1, pf6, pf7}
is situated in high SU PFs bundle, middle SU PFs bundle
including {pf3, pf5, pf8}, and {pf2, pf4, pf9} is considered as
the low SU PFs.

After bundling PFs of UTF1 in the form of high SU
PFs, middle SU PFs, and low SU PFs, each bundle is fed
to IR analysis (See Step 4 of Section 2.1; Line 1-13 of
Table 1 (function IR)). By conducting IR analysis, the filter-
optimal transient point features per bundle called high SUf-
OTPFs, middle SUf-OTPFs, and low SUf-OTPFs are obtained
(See Fig. 3). The Fig. 9 to Fig. 11, shows how level SUf-OTPFs
is selected by IR analysis. As can be seen in Fig. 9 to Fig. 11
{pf1, pf7}, {pf3, pf5}, and {pf2, pf9} are selected as high SUf-
OTPFs, middle SUf-OTPFs, and low SUf-OTPFs, respectively
(See green-border point explosion in 3-D pies).

As the final step of NTFP (Step 5 of Section 2.1), the
members of high SUf-OTPFs, middle SUf-OTPFs, and low SUf-
OTPFs combined ({pf1, pf2, pf3, pf5, pf7, pf9}) and then
entered into the 1-persistence scenario of IR analysis for
selecting f -OTPFs of UTF1 (f -1OTPFs) as the final output of
the NTFP1. As can be seen in Fig. 12, five PFs, namely {pf1,
pf2, pf3, pf5, pf7} are selected from level SUf-OTPFs members
(six PF s) as the f -1OTPFs.
After conducting the NTFP1 on UTF1 for select-

ing f -1OTPFs, the f -1OTPFs are fed to NTWP (See
Section 2.2) for finding NTWP1-specific fw-1OTPFs at
the end of the first round of PITHS as 1UOPFs. To this
end, by applying IWSS-SVMREDK, IWSS-SVMDTW−GRBF,
and IWSS-SVMGRBF, the REDKfw-1OTPFs ({pf7}:80.48%
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TABLE 3. Results of PITHS round # (NTFP).
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TABLE 4. Results of PITHS round # (NTWP).

TABLE 5. UOPFs set.

TABLE 6. The performance metrics.

TSP accuracy), DTW−GRBFfw-1OTPFs ({pf7}:87.80% TSP
accuracy), and GRBFfw-1OTPFs ({pf7}:87.80% TSP accu-
racy) are obtained, respectively. Next, REDKfw-1OTPFs ∩
DTW−GRBFfw-1OTPFs (pf7), REDKfw-1OTPFs ∩ GRBFfw-
1OTPFs (pf7), and DTW−GRBFfw-1OTPFs ∩ GRBFfw-1OTPFs

(pf7) are calculated and pf7 is considered as the fw-1OTPFs
of NTWP1. A graphical report of how fw-1OTPFs (1UOPFs)
are selected based on the NTWP1 is shown in Fig. 13.
The performance metric (12) is considered to evaluate
IWSS-SVMkernel performance via fine-tuning on learning
parameters (C and σ in SVM and its plugged kernels). The
C and σ in SVMkernel are selected from {C = 2i|i =
0, 1, . . . , 5} and {σ = 2j| j = −3,−2, . . . , 4}.

Accuracy(Acc)

= (TP+ TN )/(TP+ TN + FP+ FN ){
P : stable sample; T : predicted correctly
N : unstable sample; F : predicted incorrectly

(12)

In each iteration of IWSS based on SVMkernel, the maximum
value of the Acc package (retrieved by optimal pair of
learning parameters) is recorded. In Fig. 13, we depicted the
IWSS-SVMkernel Acc variations based on learning parame-
ters (C, σ ) related to selected kernelfw-1OTPFs. For example,
the illustration of SVMREDK performance variations (Acc)
in the selected iteration of IWSS is shown in panel (a) of
Fig. 13 (in the first iteration: pf7 as REDKfw-1OTPFs).
Also, SVMDTW−GRBF and SVMGRBF performance variations
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TABLE 7. Results of TSP based on UOPFs set.

TABLE 8. Processing time for TSP based on UOPFs set.

related to DTW−GRBFfw-1OTPFs (first iteration with pf7) and
GRBFfw-1OTPFs (first iteration with pf7) are shown in panel
(b) and (c) of Fig. 13, respectively.

An important point to note is that the obtained 1UOPFs are
considered as the final output of the first round (NTFP1 and
NTWP1) of PITHS and will be injected into the second round
of PITHS (Refer to (1)). For more clarity, the round-specific
results related to 2nd to 28th rounds of PITHS are shown in
Table 3 (including input and outputs of NTFP per round) and
Table 4 (including input and outputs of NTWP per round).
In the final step of PITHS, the obtained fw-OTPFs (UOPFs)
per round of PITHS (See the last column of Table 4) are joined
together to obtain the UOPFs set. The members of the UOPFs
set including selected cycles of each UTF that will be used
for transient stability prediction (See Section 3.3) are listed
in Table 5.

C. TSP BASED ON UOPFs SET
After selecting the UOPFs set based on PITHS, the per-
formance evaluation of UOPFs set in TSP based on cross-
validation technique which is accompanied with SVMGRBF

was exerted on the transient dataset. In the learning scenario
(SVMGRBF) plugged into the cross-validation technique, for
finding the optimal value of learning parameters (C , σ ) to
achieve high-performance prediction in each fold (train-test
in fold 1 to fold 10), values of C and σ were selected
from {C = 2i|i = 0, 1, . . . , 15} and {σ = 2j| j =
−5,−4, . . . , 15}, respectively. Furthermore, for performance
evaluation of TSP in each fold, three metrics were considered
in this section as Table 6.

After conducting the above-mentioned train-test proce-
dure, the value of the Acc index per fold in TSP is shown
in Table 7. The Acc results per fold are related to the
maximum value of Acc variations. For more details of

Acc variations based on the different values of learning
parameters, we depicted Acc variation of some folds as
Fig. 14. Also, TPR and TNR related to obtained Acc per
fold are considered for in-depth analysis on UOPFs set
capacity in TSP. Also, the mean value of Acc, TPR, and
TNR in 10-folds are given in Table 7 (in the last row)
as the final report of UOPFs set efficacy on TSP. As can
be seen in Table 7, the classification accuracy based on
the UOPFs set shows the high-performance capacity (high
PA) for TSP (Acc: 98.75 %, TPR: 98.75%, and TNR:
98.75%). In addistion to PA analysis, the PT index, including
observation time and prediction time was considered in the
performance evaluation process. Regarding selected cycles
of UTFs caused to construct UOPFs set show this fact that
the maximum observing time for recording UTF cycles will
not take more than 9 cycles (e.g., 9th cycle of UTF23 and
UTF25, in the rest of UTF, the observation window will take
less than 9 cycles). Hence, the observation window (OW)
is equal to 9 cycles (150.3 milliseconds (ms)). Also, the
prediction time based on applied SVMGRBF on UOPFs is
2.291 ms. Consequently, the processing time is 152.591 ms
(See Table 8) which in this way, suitable time conditions
are provided for the system operator to take corrective
actions.

D. COMPARISON OF EXPERIMENTAL METHODS: PITHS
SCHEME VS. VERTICALLY INTEGRATED FSSs
For more clarity on the efficacy of horizontally integrated
PITHS, we compare it with vertically integrated feature
selection methods in this section. Hence, we consider
four vertical-oriented FSS (4vFSS), including ReliefF [7],
minimum redundancy maximum relevance (mRMR) [8], fast
correlation-based filter (FCBF) [10], and bi-mode hybrid
feature selection scheme (BMHFSS) [13], which are applied
on transient data in FSS-based TSA studies. First, optimal
transient features of 28-variate trajectory features are selected
by 4vFSS [13]. Next, the selected optimal cycles by 4vFSS
are entered into the SVMGRBF classifier for TA. Based on
obtained results (See Table 9), survived features by PITHS
have better performance in TSP than selected features by
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FIGURE 14. Acc variations based on learning parameters in some folds for TSP based on UOPFs set.

4vFSS with regarding same train-test scenario (ignoring only
0.25% less than TNR than ReliefF and FCBF; TNR equal
to BMHFSS). The obtained results of Table 9 show that
PITHS in the presence of 24-cycles of 18-variate trajectory
(See Table 5) has better performance (Acc, TPR, and TNR)
than mRMR, which uses 9-cycle of 4-variate trajectory
features [13]. In the case of the FCBF, ReliefF, and BMHFSS
methods, the selected cycles via PITHS leading to high Acc

and TPR than FCBF, ReliefF, and BMHFSS schemes (9-cycle
of 3-variate trajectory features selected by FCBF, ReliefF,
and BMHFSS [13]). Also, based on a 9 cycles observation
window, PITHS has higher processing time (152.591 ms)
than 4vFSS (mRMR: 68.793 ms, FCBF: 68.930 ms, ReliefF:
68.910 ms, BMHFSS: 52.948 ms), which uses a four-cycle
observation window for TSP [13] (See Table 10). However,
the processing time of PITHS causes the system operator to
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TABLE 9. Results of TSP based on selected optimal cycles by 4vFSS schemes.

TABLE 10. Processing time for TSP based 4vFSS schemes.

have enough time to take corrective actions. For more details
on the processing time of PITHS and 4vFSS, refer to Table 8
and Table 10 [13].

IV. CONCLUSION
This study aimed to achieve high prediction accuracy
and low processing time on transient stability assessment
based on data mining technology. In this paper, to satisfy
coupled indices, the horizontally integrated feature selection
scheme is introduced for finding discriminative transient
point features. We propose the partial-injective trilateral
hybrid scheme (PITHS), including the nested trilateral
filter phase (NTFP) and nested trilateral wrapper phase.
In NTFP, information theory-based analysis by relevance,
interdependence, and redundancy (RIR) criteria and in
NTWP, the supervised learning-based analysis by non-linear
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support vector machine (SVM) applied on 28-variate tra-
jectory features. According to two nested trilateral phases
(2NTPs) mounted on the partial-injective scenario, the first
univariate trajectory feature (UTF1) is entered into the NTFP
for selecting filter-OTPFs of UTF1 (f -1OTPFs). Next, the
obtained f -1OTPFs are fed to NTWP for finding filter-
wrapper-1OTPFs (fw-1OTPFs) as 1UOPFs. After conducting
the first round of PITHS, the new round is triggered by
feeding the fw-1OTPFs and UTF2 to 2NTPs for finding fw-
2OTPFs (2UOPFs). By conducting the 28th 2NTPs of PITHS
on the last input (fw-27OTPFs plus UTF28), the survived fw-
28OTPFs are considered as final UOPFs (28UOPFs). Finally,
1:28UOPFs set are tested to verify their efficacy for TSP based
on the cross-validation technique. The obtained results show
that the survived UOPFs based on the PITHS have a high
performance (Acc 98.75%, TPR 98.75%, TNR 98.75%, and
processing time of 152.591 ms) for TSP. Also, to evaluate the
effectiveness of the PITHS, we compared it with the other
vertically integrated feature selection schemes regarding the
same train-test condition. The obtained results show that the
selected UOPFs by PITHS have better performance than
selected optimal features by mRMR, ReliefF, FCBF, and
BMHFSS algorithms on TSP.
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