IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 3, 2021, accepted November 29, 2021, date of publication December 6, 2021,

date of current version December 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133338

A Deep Learning Framework Integrating the
Spectral and Spatial Features for Image-Assisted

Medical Diagnostics

SUSMITA GHOSH"'!, SWAGATAM DAS -,

AND RAMMOHAN MALLIPEDDI 2, (Senior Member, IEEE)

IElectronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata 700108, India

2Department of Artificial Intelligence, Kyungpook National University, Daegu 7027021, South Korea

Corresponding author: Rammohan Mallipeddi (mallipeddi.ram @ gmail.com)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education under Grant 2021R111A3049810. The work of Susmita Ghosh and Swagatam Das was supported by the Project
RAKSHAK under the Department of Science and Technology (DST), Government of India.

ABSTRACT The development of a computer-aided disease detection system to ease the long and arduous
manual diagnostic process is an emerging research interest. Living through the recent outbreak of the
COVID-19 virus, we propose a machine learning and computer vision algorithms-based automatic diagnostic
solution for detecting the COVID-19 infection. Our proposed method applies to chest radiograph that uses
readily available infrastructure. No studies in this direction have considered the spatial aspect of the medical
images. This motivates us to investigate the role of spectral-domain information of medical images along
with the spatial content towards improved disease detection ability. Successful integration of spatial and
spectral features is demonstrated on the COVID-19 infection detection task. Our proposed method comprises
three stages — Feature extraction, Dimensionality reduction via projection, and prediction. At first, images
are transformed into spectral and spatio-spectral domains by using Discrete cosine transform (DCT) and
Discrete Wavelet transform (DWT), two powerful image processing algorithms. Next, features from spatial,
spectral, and spatio-spectral domains are projected into a lower dimension through the Convolutional Neural
Network (CNN), and those three types of projected features are then fed to Multilayer Perceptron (MLP) for
final prediction. The combination of the three types of features yielded superior performance than any of the
features when used individually. This indicates the presence of complementary information in the spectral
domain of the chest radiograph to characterize the considered medical condition. Moreover, saliency maps
corresponding to classes representing different medical conditions demonstrate the reliability of the proposed
method. The study is further extended to identify different medical conditions using diverse medical image
datasets and shows the efficiency of leveraging the combined features. Altogether, the proposed method
exhibits potential as a generalized and robust medical image-assisted diagnostic solution.

INDEX TERMS Medical imaging, diagnostic solution, COVID-19 detection, discrete cosine transform,
discrete wavelet transform, deep learning, class imbalance, saliency map.

I. INTRODUCTION

The proper diagnosis of any medical condition plays an
important role in effective treatment and also in the preven-
tion of any infectious disease to spread out. Various Machine
learning-based diagnostic solution has been proposed to ease
such a process of manual diagnosis that requires domain
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expertise and long training time [1]. The recent outbreak
of Coronavirus disease 2019 (COVID-19) is the third sig-
nificant Coronavirus outbreak in less than 20 years. In this
context, a computer-based diagnostic solution with readily
available infrastructure even in rural areas around the globe
is the need of the hour. According to [2], a chest radiograph
of a COVID-19 infected person exhibit ‘patchy or diffuse
reticular—nodular opacities and consolidation, with basal,
peripheral and bilateral predominance’. Thus, the readily and
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widely available infrastructure for X-rays may be utilized for
primary and immediate assessment for detecting COVID-19
infection.

We aim to develop an automatic model using machine
learning algorithms that would aid the clinician as an adjunct
tool for the diagnosis of COVID-19 infection. We pose this
COVID-19 detection problem as a three-class classification
paradigm where the classes are Normal, Pneumonia (non-
COVID), and COVID-19 by utilizing deep learning algo-
rithms. The reason behind choosing Preumonia as one of
the classes is that Pneumonia and COVID-19 can be easily
confused with one another. Both non-COVID-19 Pneumonia
and COVID-19 may exhibit ground glass patterns in the
lung due to lung infiltration and consolidation. Over the
last decade, deep learning, a subfield of machine learning
has gained popularity in assisting as a diagnostic aid. The
successful application of deep learning can be found in diag-
nostic assessment of different biomedical conditions such
as arrhythmia detection [3], skin cancer classification [4],
breast cancer detection [5], brain disease classification [6],
Pneumonia detection from chest X-ray images [7] and lung
segmentation [8]. These studies on the application of deep
learning algorithms on medical imaging data show the effi-
ciency of a deep learning algorithm in expressing complex
patterns that are even difficult to capture in untrained eyes.
These studies motivate us to exploit deep learning algorithms
for characterizing such intricate, differentiating patterns to
identify the underlying medical condition.

Few recent studies have endeavored in detecting
COVID-19 infection from the chest X-ray images with the
help of deep learning algorithms. Wang and Wong [9] has
proposed a Convolutional Neural Network (CNN) based
architecture build using generative synthesis, referred to
as COVID-net which is trained on 13,975 CXR images
across 13,870 persons belongs to the categories of Nor-
mal, Pneumonia, and COVID-19 class. They have reported
achieving an overall test accuracy of 93.3% with sen-
sitivity and precision to COVID-19 class of 91.0% and
98.9% respectively. In another study [10], authors have
presented a two-stage network to classify four classes,
namely Normal, Bacterial, Tuberculosis (TB), and Viral
Prneumonia/COVID-19. They first trained an extended fully
convolutional
(FC)-DenseNet103 for image segmentation purposes, there-
after a patched-based CNN was trained by the segmented
403 lung images. The proposed method yields an accuracy
of 88.9% with a specificity of 96.4% on the test data com-
prising 99 samples. Their study is further extended to three-
class (Normal, Pneumonia, and COVID-19) classification
which yielded an accuracy of 91.9%. Though, this study
achieved high sensitivity for COVID-19 class (100%), the low
precision value (76.9%) for COVID-19 class is not appro-
priate for any practical scenario. The DarkNet model was
implemented using seven convolutional layers and various
filterings on each layer for automatic detection of COVID-19
using the raw chest X-ray images [11]. The model aimed
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at providing correct diagnostic predictions for binary clas-
sification (COVID vs. No-Findings) and multi-class clas-
sification (COVID vs. No-Findings vs. Prneumonia). This
system yielded a classification accuracy of 98.08 % for binary
classes and 87.02% for multi-class cases for a dataset of
a limited number of samples. The performances of various
neural architectures for detecting COVID-19 infection from
chest X-rays were evaluated in [12]. Their results indicated
that deep neural networks aided with X-ray imaging could
detect prominent biomarkers pertinent to COVID-19 infec-
tion, while the best accuracy, sensitivity, and specificity
obtained were reported as 96.78%, 98.66%, and 96.46%
respectively. Another study [13] claimed the superiority of
COVID-CAPS, a modeling framework based on Capsule
Networks with fewer trainable parameters over CNN-based
models for COVID-19 detection. COVID-CAPS obtained an
Accuracy of 95.7%, Sensitivity of 90%, Specificity of 95.8%,
and Area Under the Curve (AUC) of 0.97 for binary clas-
sifications. Another study [14] proposed CNN model with
end-to-end training process for classifying among the chest
x-ray images of Normal and COVID-19 classes. Integration
of deep learning-based features extractor with Support Vector
Machine (SVM) based classifier has achieved an accuracy
of 92.6%. However, the binary classification performances
were reported on very limited samples. Togacar et. al. [15]
employed the Fuzzy Color technique for preprocessing the
chest X-ray images followed by an image stacking operation
to eliminate the existing noises. The integration of deep learn-
ing architectures with SVM classifier led to an accuracy of
99.27% for three-class (Normal, Pneumonia and COVID-19)
classification. However, the proposed method was validated
on a dataset of a total of 458 chest radiograph images. Another
similar study [16] showed that the fusion of five deep learning
models via integration stacking achieved 99.08% accuracy on
limited samples.

The body of literature related to COVID-19 infection iden-
tification from chest X-rays shows the efficient application of
deep learning algorithms. Among the above-mentioned stud-
ies, few studies have achieved excellent performances, yet,
validation on a larger dataset is necessary. All the mentioned
studies have investigated the spatial domain characteristics
of chest x-rays. To the best of our knowledge, no studies
on COVID-19 from chest X-rays have reported investigat-
ing the spectral characteristics of the same. This motivates
us to investigate the unexplored spectral aspect of chest
x-ray towards the COVID-19 infection detection. We aim to
validate the hypothesis of the presence of complementary
information in the spectral and spatial domain of chest x-ray
that will improve disease detection ability. We employ two
popular tools for transforming images in spectral and spectral
as well as spatial domains namely, Discrete Cosine Trans-
form (DCT) and Discrete Wavelet Transform (DWT) to study
the spatio-spectral characteristics of the chest X-ray images.
The idea behind the usage of DCT and DWT transformation is
to capture any information which is complementary to spatial
information and might aid in discriminating among the three
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classes considered in this study. The DCT decomposes the
image into several spectral sub-bands with cosine function
as a basis function, whereas, DWT has the advantage of
assimilating both spatial and spectral domains simultane-
ously. Hence, chest radiograph images are studied in three dif-
ferent domains concurrently, namely, pixel, DCT, and DWT
to bring about the potential of each of the fields in charac-
terizing the considered medical conditions. The patterns that
characterize different medical conditions are complex and
intricate. State-of-the-art CNN shows notable efficiency to
model complex patterns in the domain of image classifica-
tion. Hence, we employ ResNet50, a state-of-the-art CNN
architecture to extract features from the pixel, DCT, and DWT
domain images. The features extracted in these three domains
are integrated and the final class prediction is performed
using a multilayer perceptron (MLP) network. The detailed
description of our proposed method is given in Section II.
Medical imaging datasets often have a limited number of
samples for comparatively uncommon disease classes. This
class imbalance usually directs to inferior performances cor-
responding to the minority class. Relevant techniques such as
class weight, unbiased validation performance metrics, has
been employed to prevent such undesired outcome and are
discussed in Section II in detail.

Furthermore, we extend our experiment to six other med-
ical imaging datasets. These datasets incorporate a vari-
ety in types of imaging techniques, number as well as
types of diseases to be detected, and class imbalance. The
purpose of this extended study is to validate the hypoth-
esis of the presence of complementary information in
the spectral and spatial domain of medical images. This
study overall indicates the generalization ability of the pro-
posed method towards a diagnostic solution using medical
images.

The contributions of this study are listed below.

« We propose an automatic computer vision and machine
learning-based diagnostic solution for medical images
developed on the complementary knowledge of the spa-
tial and spectral domain.

o The proposed method is validated by carrying out exper-
iments on eight diverse medical imaging datasets sug-
gesting its robustness and capability of generalization.

o The classification performances along with saliency
maps demonstrate the fusion of spatial, spectral, and
spatio-spectral domain features enhances the disease
detection capability of the classification model.

o Analyzing the classification performance on the
COVID-19 dataset reveals that the performance of the
proposed method is unbiased to age and gender factors.

The rest of the paper is structured as follows. Along with
the detailed description of the datasets, the methodology
used in this study is presented in Section II. The experi-
mental results and relevant discussion is given in Section III.
Section IV concludes our study along with the possible future
directions.
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TABLE 1. Number of samples and patients belonging to Normal,
Pneumonia and COVID-19 class.

Number of Samples ~ Number of Patients

Normal 8851 8851
Pneumonia 6052 6034
COVID-19 573 394
Total 15476 15279

Il. METHODS AND MATERIALS

A. DATASET DETAILS

We validate our hypothesis primarily on a dataset comprising
15476 chest x-ray images from 15279 persons which belong
to any three of the categories representing three types of medi-
cal conditions namely —Normal, Pneumonia and COVID-19.
Images belongs to COVID-19 category has been taken from
these four sources [17]-[20] whereas, samples of Pneumonia
and Normal class been collected from these sources [19],
[21]. This dataset is referred COVID-19 dataset. Collecting
samples from more than one source leads to diversity in
the nature of the images. Thus, the experimental results on
this dataset are robust and close to a practical scenario. The
number of samples and the number of patients that belong
to each of the three classes are stated in Table.1. Among the
15279 patients considered in this study, the ages and gender
of 15029 and 15112 patients are known respectively. The
age distribution of the subjects in each category and gender
distribution in each class is shown in Figure.l. The dataset
suffers from the problem of class imbalance. The imbalance
ratio (p) defined by the ratio of the number of samples in the
majority class to that of the minority class is 15.45. The chest
X-ray images are of different sizes, thus in the preprocessing
step, we resized it to the size of 224 x 224 x 3 where
the third dimension represents the number of channels. The
results reported in this study are yielded by five-fold cross-
validation. Out of the five folds, one is kept for testing,
another for validation purposes while the rest of the folds are
used to train the model. While partitioning the data into five-
folds, it is always ensured that samples from one patient are
never groped into two or more folds to maintain the integrity
of the reported result.

Additionally, seven medical imaging datasets of different
modalities e.g. X-ray, histopathology, mammography, etc,
and medical conditions are also used for the validation of
the hypothesis. The diversity in the number of classes i.e.
the medical conditions, image modalities, and the imbalance
ratio makes the experiment more robust. A detailed descrip-
tion of each of the datasets used in this study is presented
in Tab. 2. We have used a subset of these original CBIS-
DDSM [22], DR [23] and BHI [24] datasets as they comprise
a large number of samples. Each dataset is split into training
and testing samples maintaining an 80:20 ratio, except for
Chestxray1 [9] where 100 test samples are provided for each
of the three classes.
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TABLE 2. Detailed description of medical imaging datasets used in this study.

Dataset Type of data Disease Type Number of classes ~ Number of Training samples ~ Imbalance ratio
CBIS-DDSM [22] Breast mammography images ~ Abnormality in breast tissue 2 8941 6.55
DR [23] Eye images Diabetic Retinopathy 2 13052 1.33
Colorectal Histology [25] Histology images Colorectal cancer tissue type 8 4000 1
ISIC18 [26] Dermoscopic images of skin Skin disease 7 8166 58.86
Chestxray1 [9] Chest x-ray images COVID-19 3 13898 16.84
Chestxray?2 [27] Chest x-ray images Pneumonia 2 5232 2.88
BHI [24] Breast Histopathology images Invasive Ductal Carcinoma 2 12952 2.79
1 Normal over the segmented patches of size 8 x 8. Thus, the dimension
10007 E= Pneumonia of the DCT images is the same as the input images.
[ CovID-19
n 800
8 C. DISCRETE WAVELET TRANSFORM
g 600 1 The discrete wavelet transform (DWT) uses multiresolution
g filter banks to perform the wavelet analysis [29]. It represents
S 400 the signal in terms of the wavelet coefficients from which
= it is possible to reconstruct the original signal once again.
200 4 The signal is represented in various frequency bands by the
wavelet coefficients. There can be several ways to process
0 20 20 €0 50 these coefficients, thus, endowing DWT with attractive prop-
Age (years) erties over linear filtering.
The DWT is applied to the image X of size (N x N)
5000 to achieve four decomposed subband images of (N/2 x
] 1 Male . . . .
== Fomale N /2) dimension. The process 1ncludes.apphcat10n of a set
2000 4 of half-band low pass and high pass filters to the rows of
the image and followed by the decimation by a factor of 2.
. 30004 The same procedure is applied to the two subband images
% obtained in the previous step but this time along the columns.
“ 5000 4 Thus, it results in decomposed images in four different fre-
quency bands which can be mathematically expressed as
1000 1 follows,
e LL(x,y) = ) ) ho(m — 20)ho(n — 2)X(m, n), (2)
0 T
Normal Pneumonia COVID-19 m.n

FIGURE 1. Age and gender distribution of persons belong to Normal,
Pneumonia and COVID-19 classes are presented in upper and lower
panel of the figure respectively.

B. DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform (DCT) of an image is a real
transformation that transforms the image from spatial domain
to frequency domain by linear combinations of weighted
basis functions pertinent to its frequency components [28].
DCT of an image X of dimension N x N is given by the
following equation.

) N—1IN-1
DT, (u, v) = - Ca)C() Z Z X(m, n)
m=0 n=0
7(2m+ Du 7(2n+ 1)v
|cos|
2N 2N

where, X(m, n) denotes the pixel value X in (m, n) coor-
dinate, v = 0,....N — 1, v = 0,...,N — 1 and
1 .
—= k=0,
cawy=1va k=
1 otherwise.
In this study, images are of dimension 224 x224 x3. DCT is

applied to the images by considering each channel separately

xcos|

L@
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HL(x,y) = Y > hom — 2)hi(n — 2)X(m, n), (3)

LH(x.y) = » > hi(m — 2)ho(n — 2y)X(m. n), (4)

m

HH(x,y) = Y > hi(m—2)hi(n — 20)X(m. n). (5)

Here, hy and h; are half band low and high pass filters
respectively. Thus, LL subband approximates the image i.e.
low-frequency content of the image, whereas, three other
bands i.e. LH,HL, and HH subbands contain the details i.e.
the high-frequency content of the image. The four subband
images of size N/2 x N /2 are arranged in the manner as
shown in Figure 2 to form one image of size N x N. Similar
to DCT, DWT is also applied individually on each of the
channels of images and the transformed image dimension is
also the same as the input image dimension.

D. PERFORMANCE METRICS

Let, C be the confusion matrix for n-class classification
where element C;; indicate the number of samples of i" class
predicted as of j”* class. The following metrics presented
in terms of the elements of the confusion matrix are used
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FIGURE 2. Schematic diagram of the classification framework.

to quantify the classification capability of machine learning
models.

Sensitivity; = <21 (6)
Zj Gij
. Cii
Precision; = @)

> G

2 x Sensitivity; * Precision;
F1-score; = — — . 8)
(Sensitivity; + Precision;)

Along with the above-mentioned performance metrics,
three other measurements are also used to quantify the
performances of models — average class-specific accu-
racy/sensitivity (ACSA), average class-specific precision
(ACSP), and an average class-specific Fl-score (ACSF)
respectively indicating sensitivity, precision, and F1-score
averaged over all the classes, thus imparting equal priority
to all the classes. Hence, these metrics quantify the model
performances without being influenced by the existing class
imbalance. The mean absolute deviation of the F1-score
(MADF) is also reported along with ACSF to quantify the
spread of individual class wise F1-scores.

1

1 1
MADF = — Fl-score; — — F1l-score;]|. 9
-2 - Z i O

E. MACHINE LEARNING FRAMEWORK

The block diagram presented in Figure 2 shows an outline of
the complete framework for the proposed diagnostic system.
The proposed system consists of three stages — projection
by using DCT and DWT, complex feature extraction, and
prediction. In the first stage, the images are projected to
spectral as well as spatio-spectral domain by the application
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Complex Feature Extraction through CNN

Final Prediction

of DCT and DWT respectively as described in Section II-B
and Section II-C respectively. Hence, at the end of this stage,
we get three types of images of equal dimension in three dif-
ferent domains — pixel, DCT, and DWT (shown in Figure 2).

The objective of the second stage is to extract the features
from output images of the previous stage. The underlying pat-
tern that distinguishes one medical condition from another is
intricate in nature. Convolutional Neural Network (CNN) can
extract complex features from input images. ResNet50 is one
of the widely used CNN architectures in the domain of image
categorization. Thus, we choose to employ ResNet50 to
serve the purpose of extracting complex features. Moreover,
the reasonable number of trainable parameters of ResNet50
makes it suitable for medical image classification tasks where
there are limited training samples available. Three separate
ResNet50 models are trained for three different types of
images. The output feature is extracted from an intermediate
layer of trained ResNet50 models which results in com-
plex features of dimension 1024. For training each of the
ResNet50 models, the categorical cross-entropy loss function
is optimized with the Adam optimization algorithm with a
learning rate of 0.0001 for 300 epochs with a batch size
of 32. The model with the best validation ACSA (defined in
Section II-D) is chosen for feature mapping. ACSA is chosen
for this purpose as this measure is unbiased to class imbalance
present in the training data.

The third stage comprises feature level fusion followed
by final prediction using a classification head. Three types
of feature vectors, each of dimension 1024 are combined in
all seven possible combinations by the concatenation oper-
ation. The dimension of the concatenated feature vector is
presented in Table 3. The resulting feature vector is fed to
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TABLE 3. All possible combination of pixel, DCT and DWT features and
corresponding integrated feature vector's dimension.

Combination Type  Dimension of Feature Vector

pixel 1x1024
DCT 1x1024
DWT 1x1024
pixel+DCT 1x2048
pixel+DWT 1x2048
DCT+DWT 1x2048
pixel+DCT+DT 1x3072

a classification head for final prediction. The Multilayer Per-
ceptron (MLP) is chosen as the classification head because
of its efficiency to model complicated nonlinear relation-
ship between input and output vectors. The MLP network
comprises one input layer, two hidden layers with 256 and
64 nodes, and one output layer. The leaky ReLU activation
function is applied after each layer except the last layer which
uses softmax as the activation function. To train the MLP
network, the mean square error loss function is optimized
with the Adam optimization algorithm with a learning rate
of 0.0002 for 300 epochs with a batch size of 32. The
model with the best training ACSA is evaluated with the test
data.

The effect of class imbalance present in the datasets is
handled by incorporating the penalty factor of class weights
computed as N/(c * N;) to the loss function while training
the ResNet50 model and MLP model, where c¢ is the number
of classes, N and N; is the number of total samples and the
number of samples that belong to i class respectively.

All the experiments (Python scripts) are executed using
Keras with TensorFlow as backend on a computer with Intel
core i5 processor running at 2.40 GHz using 16 GB of RAM
and NVIDIA GeForce RTX 2060 GPU with 6 GB RAM.

IIl. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present the results obtained by applying
our proposed method to the medical imaging datasets.

A. RESULT ON COVID-19 DATASET

Due to the severity of the COVID-19 outbreak, the primary
focus is paid on the elaborated study that is conducted
COVID-19 dataset (described in Section 1). The result
obtained from the above-mentioned experiment (Section 2)
is presented in Table 4. The classification performances are
quantified by class-wise sensitivity, precision, and F1-score.
Additionally, we also present sensitivity, precision, and
Fl-score averaged over the different classes to measure
overall performance. They are mentioned as ACSA, ACSP,
and ACSF, and these metrics are defined in Section II-D.
Table 4 compares the performance of the seven feature com-
binations as listed in Table 3. By comparing the performances
of three types of features (pixel, DCT, and DWT) when
used individually, pixel and DWT feature yields better results
than DCT features. However, the fusion of any two types of
features shows greater performance than any of the features
while used solely for classification. Furthermore, the best
classification performance is achieved when all three types of
features i.e. pixel, DCT, and DWT are combined altogether
(pixel+DCT+DWT). The corresponding value of ASCA,
ACSP, ACSF are 93.78%, 91.30% and 92.42% respectively.
It is important to note that the above-mentioned feature com-
bination also yields the best sensitivity to the COVID-19 class
which is 95.28% as we aim to detect COVID-19 infection
with sensitivity as high as possible. These observations sug-
gest the presence of complementary information in pixel,
DCT, and DWT features. To validate the above-said state-
ment from a statistical perspective, the Wilcoxon rank-sum
test is performed on the ACSA, ACSP, and ACSF values.
Table 5 summarises the result obtained from tests, where

TABLE 4. The classification performances all possible combination of pixel, DCT and DWT features in detection of Normal, Pneumonia and COVID-19

classes are presented. Performances are quantified by sensitivity, precision. Average class specific sensitivity, specificity and F1-score (ACSA, ACSP, and
ACSF) are also reported. All the performance metrics are reported on 5-fold cross-validation. Comparing among different feature combination, best value
of each metrics are marked in bold.

Sensitivity(%)

Precision(%)

F1-Score(%)

Feature ACSA ACSP ACSF
Combinations Normal  Pneumonia COVID-19 Normal  Pneumonia  COVID-19 Normal  Pneumonia COVID-19

Pixcl 94.55 90.26 92.60 92.47 93.89 92.04 84.78 90.24 94.21 91.14 88.44 91.26
(+0.94) (+0.65) (+03.59) (x01.49)  (x0.53) (+01.25) (x03.1) (x01.4) (x0.55) (+0.75) (x02.79) (x01.30)

DCT 93.15 87.21 80.93 87.10 91.66 89.40 81.18 87.41 92.39 88.27 80.82 87.16
(+0.70) (*01.72) (+04.58) (x01.21)  (x0.69) (+0.96) (+04.86) (+01.6) (x0.42) (+0.68) (+01.81) (£0.76)

DWT 95.06 89.75 92.15 92.32 93.51 92.79 84.93 90.41 94.28 91.24 88.30 91.27
(+0.43) (+0.98) (+02.38) (x0.88) (+0.52) (+0.56) (x05.20) (01.72)  (x0.39) (+0.63) (+03.12) (x01.14)

Pixel+DCT 95.18 90.27 93.25 92.90 93.93 9291 85.34 90.72 94.55 91.56 89.02 91.71
(£0.56) (£0.96) (£03.41) (#01.19)  (20.56) (x0.74) (+03.65) (£01.44)  (+0.49) (£0.81) (£02.41) (£01.06)

Pixcl+DWT 95.15 90.91 94.86 93.64 94.30 93.04 86.39 91.24 94.72 91.96 90.32 92.33
(+0.99) (+0.64) (+02.75) (x0.94) (+0.44) (+01.23) (x04.91) (+01.86)  (x0.58) (+0.85) (+02.47) (x01.08)

DCT+DWT 95.31 89.72 93.03 92.69 93.51 93.04 86.45 91.00 94.40 91.34 89.58 91.77
(+0.55) (+01.38) (+01.89) (x0.63) (+0.82) (+0.71) (x03.21) (x01.29)  (x0.52) (+0.87) (+02.25) (x0.93)

Pixel+DCT+DWT 95.49 90.58 95.28 93.78 94.13 93.51 86.26 91.30 94.80 92.01 90.45 92.42
(£0.85) (£0.80) (£2.52) (£0.78)  (£0.49) (£1.08) (£4.12) (£1.62)  (£0.53) (£0.85) (£1.74) (£0.86)
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TABLE 5. Statistics and p-value obtain in Wilcoxon rank-sum test with
performance of pixel+DCT+DWT feature combination is compared with
that of the rest of the feature combinations. The statistics indicating
superiority of pixel+DCT+DWT feature combinations are marked with *.

ACSA ACSP ACSF
Statistics ~ p-value  Statistics  p-value  Statistics  p-value

Pixel -5.04* <0.05 -2.53* <0.05 -4.37* <0.05

DCT -8.61* <0.05 -2.82* <0.05 -8.62* <0.05

DWT -7.05* <0.05 -0.25 0.80 -4.82% <0.05
Pixel-DCT -4.55* <0.05 -1.09 0.27 -2.67* <0.05
Pixel-DWT -0.12 .90 -8.50* <0.05 -0.68 0.5
DCT-DWT -6.38* <0.05 -0.62 0.53 -3.03* <0.05

the null hypothesis is that the performance of three features
combined together (pixel+DCT+DWT) is equivalent to that
of other combinations of the features. The null hypothesis
is rejected when the p-value is less than 0.05, confirming
that the samples belong to different distributions whereas a
larger p-value suggests that the two distributions are simi-
lar. Furthermore, if test-statistics comes out to be negative
with a p-value less than 0.05, we infer that the performance
of pixel+DCT+DWT is superior to that of the other fea-
ture combination considered in the test. Table 5 shows that
the test-statistics is never positive indicating performance of
pixel+-DCT+DWT is superior (in most of the cases, marked
by *) or comparable (in a few cases) with the performance
of the rest of the feature combinations. Thus, the outcome
indicates that both DCT and DWT features capture informa-
tion complementary to that of pixel feature that enhances the
discriminating capability among the three classes considered
in this study. Hence, our hypothesis of the existence of com-
plementary information in the spatial and spectral domain of
medical images is validated for the COVID-19 dataset.

The number of the hidden layers and the number of nodes
in hidden layers of the MLP network are similar for all
the combination of features types. However, the number
of nodes in the input layers varies with the type of fea-
ture integration. For example, the number of nodes in the
input layer of MLP is 1024 for pixel, DCT, DWT features,
2048 for Pixel4+-DCT, pixel +DWT, and DCT+DWT feature

combination, and 3072 for pixel+DCT+DWT feature com-
bination. Consequently, the number of trainable parameters
also increases with the number of nodes in the input lay-
ers. Thus, the question may arise that whether the superior
performance of the combined pixel+DCT+DWT features
is due to the integration of the features or the increased
number of trainable parameters of the model. In search for
the answer, we performed another experiment, where the
considered architecture of the model is the same as it is
used for pixel+DCT+DWT features. We construct the new
feature vector for pixel by concatenating the pixel feature
thrice so that the dimension of the new pixel feature vector
becomes 1 x 3072 vector. A similar operation is applied
to DCT and DWT features also. The performances of these
new feature vectors are evaluated on the above-mentioned
MLP individually. Table 6 compares these performances
with pixel+DCT+DWT features (last row of Table 4). The
test-statistics obtained from Wilcoxon rank-sum tests confirm
the superiority of the performance of combined features con-
cerning that of single features where the model complexity is
kept unchanged.

1) INTERPRETING CLASSIFICATION MODEL

In this section, we attempt to understand how information
from DCT and DWT domains contributes to enhancing the
discriminative potential of the model. For this purpose, the
saliency map i.e. the gradient of the class activation func-
tion concerning the input images is visualized. Thus, the
saliency map for a particular class quantifies the amount of
change in classification score caused by the small change in
image pixel [30] indicating the decisive regions in the image.
In Figure 3(a), the saliency map produced by the proposed
model is shown for one image and its corresponding DCT
and DWT images from each class. It confirms that all three
types of images contribute to decoding the classes. Moreover,
the saliency map of our model for each class validates its
reliability as the highlighted regions from each of the images
lie in the lung and its surrounding area. It is also noticed that
the subband of DWT that represents the higher frequency
component of the images does not contribute significantly
towards disease detection.

TABLE 6. The performances of the new pixel, DCT, and DWT features evaluated on the MLP model that has similar architecture as used in the case of
piexel+DCT+DWT features. The new pixel, DCT, and DWT feature vectors are constructed by concatenating each type of feature three times.

Sensitivity(%)

Precision(%)

F1-Score(%)

ACSA ACSP ACSF
Feature Normal Pneumonia COVID-19 Normal Pneumonia COVID-19 Normal Pneumonia COVID-19

Pixel 94.84 90.10 93.65 92.86 93.96 92.66 81.85 89.49 94.39 91.35 87.30 91.02
(£1.22) (£0.54) (£3.80) (£1.54) (£0.23) (£1.81) (#4.17) (£1.69) (x0.61) (£0.80) (£3.28) (*£1.47)

DCT 93.08 86.91 83.64 87.88 91.72 89.65 77.69 86.35 92.38 88.24 80.25 86.96
(+0.72) (£1.69) (+3.55) (+0.84) (20.58) (x1.08) (£7.11) (£2.34) (+0.41) (£0.66) (+2.92) (x1.22)

DWT 94.86 90.01 92.42 92.43 93.77 92.62 83.31 89.90 94.30 91.28 87.53 91.04
(+0.81) (£1.23) (+2.82) (+1.06) (£0.65) (x1.01) (£5.76) (x1.9) (+0.42) (£0.68) (+3.81) (x1.37)

Pixel+DCT+DWT 95.49 90.58 95.28 93.78 94.13 93.51 86.26 91.30 94.80 92.01 90.45 92.42
(£0.85) (£0.80) (£2.52) (£0.78) (£0.49) (£1.08) (£4.12) (£1.62)  (£0.53) (£0.85) (£1.74) (£0.86)
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TABLE 7. Comparison of performance of proposed method with COVID-net ( [9]).

Sensitivity(%) ACSA Precision(%) ACSP F1-Score(%) ACSF
Normal Pneumonia COVID-19 Normal Pneumonia COVID-19 Normal Pneumonia COVID-19
COVID-net 95.00 94.00 91.00 93.33 90.50 91.30 98.90 93.57 92.70 92.63 94.79 93.37
Proposed 94.80 91.80 94.30 93.63 91.60 92.55 96.92 93.69 93.17 92.17 95.59 93.64
Normal l Normal

Pneumonia

covip-19
(a)

Pneumonia

CoviD-19

(b)

FIGURE 3. (a) Saliency maps corresponding to Normal, Pneumonia and COVID-19 classes are presented for chest X-ray image(left panel), DCT
image (middle panel) and DWT image (right panel). The highlighted regions play important role in characterizing the three classes. (b) Saliency
maps of chest X-ray images sampled down from three classes are presented.

Moreover, we inspect the saliency map of chest X-ray
images to learn if there is any apparent pattern corresponding
to each class and correlate them with existing literature in
the medical domain. Four such maps from each class are
presented in Figure 3(b). While, saliency map of Normal
class shows a wide variety in the area of chest X-ray that
is highlighted, in case of Pneumonia class, the influential
pixel cluster around the lower lobes of the both or either
lung. On the other hand, along with the other lung regions,
the upper lobe (bilateral) area of the lung is found to be
persistently dominating in the case of COVID-19 class. The
bilateral Ground-glass opacities (GGO) have been reported
in COVID-19 chest x-ray whereas the unilateral and cen-
tral distribution of GGO has been found in chest x-ray of
Pneumonia patients [11]. This characteristics are consistent
with the patterns shown the saliency maps of COVID-19 and
Pneumonia classes.

2) EFFECT OF AGE AND GENDER ON CLASSIFICATION
PERFORMANCE

The ages of the patients considered in this study varied from
as low as 1 year to as high as 94 years Figure 1. To ana-
lyze if there is any biasedness of age on the classification

VOLUME 9, 2021

performance, we carry out an analysis by clustering samples
into five age groups — 0-20 years, 20-40 years, 40-60 years,
60-80 years, and 80-100 years. For each class, we inves-
tigated how the performance of the classifiers varies over
different age groups. Figure 4(b) depicts the fraction of sam-
ples of a particular class classified as Normal, Pneumonia,
and COVID-19 classes. It is observed that over different age
groups, the proposed method yields a similar trend suggest-
ing that the age factor does not influence our classification
results.

Furthermore, another similar analysis is executed to inves-
tigate the effect of gender of the patients on the classification
result. The outcome of the analysis is shown in Figure 4(b)
which demonstrates that the gender of the patients does not
behave as a factor in classification performance. All the clas-
sification performances, reported in this section are yielded
using the combined features (i.e. pixel, DCT, and DWT).

3) COMPARISON WITH COVID-NET

We compare our result with the state-of-the-art experimen-
tal result reported in [9]. For this purpose, we apply our
methodology to the same dataset as mentioned in [9]. The
comparison in terms of sensitivity, precision, and F1-score is
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FIGURE 4. Age wise and gender wise classification performance is shown in (a) and (b) respectively. Norm, Pne, and COVD- represent Normal,
Pneumonia, and COVID-19 respectively. The height of the three stacked up bars indicate the fraction of a particular class that belongs to three
classes. For instance, the green, red and blue bars in the leftmost bar of panel (a) indicate the fraction of Normal samples (of 0-20 years age

group) that is classified as Normal, Pneumonia and COVID-19 class.

TABLE 8. The performances of pixel, DCT, DWT, and pixel+DCT+DWT in identifying different medical condition for different datasets as listed in Table 2.

Pixel DCT DWT Combined
Combination
Dataset ACSA ASCP ASCF MADF ACSA ASCP ASCF MADF ACSA ASCP ASCF MADF Type ACSA ASCP ASCF MADF
BHI 89.32 90.44 89.85 5.09 87.15 87.00 87.07 6.33 85.52 86.47 85.97 7.02 pixel+DCT+DWT, 89.86 90.98 90.40 4.81
(20.53)  (0.44)  (£0.28)  (x0.18)  (#0.51) (x0.34)  (x0.21)  (*0.18)  (x0.45) (0.57) (*0.33)  (0.18) SF (£0.3) (#0.23)  (20.17)  (%0.1)
CBIS_DDSM 91.19 94.59 92.79 5.36 71.58 80.46 78.82 15.78 86.60 87.58 87.05 9.51 pixel+DCT+DWT,  91.98 94.17 93.00 5.17
- (#0.52)  (x0.3) (0.26)  (x0.21)  (£1.55)  (*1.42) (20.43) (0.53) (x0.89) (x0.82) (*0.26)  (0.23) FF (*1.24)  (#1.14)  (x048) (x0.37)
CH 95.28 95.42 95.32 3.34 92.36 9238 9233 5.07 94.05 94.03 94.02 4.04 pixel+DWT, 95.63 95.67 95.62 2.96
(#0.34)  (20.25)  (#0.32) (20.33)  (0.42) (£0.29) (20.36)  (x0.42) (0.2) (*0.19)  (x0.2) (£0.28) FF (£0.24)  (x0.21)  (x0.23)  (0.24)
CHESTXRAY 1 89.97 90.31 90.00 1.04 87.33 88.30 87.34 0.82 91.23 91.37 90.02 91.95 pixel+DCT+DWT,  93.63 93.69 93.64 1.44
(x0.46)  (x0.42)  (2045) (x021) (£047) (x0.38) (20.49) (x0.24) (x0.45) (x0.46) (£045) (x0.22) FF (£0.43)  (x0.42)  (x0.43)  (£0.34)
CHESTXRAY2 71.62 86.31 72.87 12.44 68.90 85.41 69.58 14.57 74.46 88.00 76.18 10.49 pixel+DWT, 74.68 88.08 76.42 10.35
” (x1.86)  (20.58)  (#2.17)  (£1.37)  (£1.28) (x0.37) (x1.44) (20.89) (*1.35) (x0.4) (x1.51)  (£0.93) SF (£1.28)  (#0.37)  (x1.44)  (x0.89)
DR 69.62 69.42 69.49 4.24 60.17 60.28 60.14 6.67 65.02 64.79 64.73 4.19 pixel+DCT, 70.08 69.76 69.84 3.80
(x0.41)  (20.35)  (20.36)  (£0.3) (£0.48)  (x0.35)  (x045)  (x1.51) (20.77)  (%0.58)  (20.67)  (x1.3) FF (£0.68)  (x0.63)  (x0.64)  (*0.38)
ISIC18 75.89 76.40 75.86 9.49 62.70 66.97 64.51 13.93 63.44 65.81 64.03 15.17 pixel+DCT+DWT,  78.53 71.55 77.69 9.69
(#0.63)  (x1.53) (x0.87) (x0.44) (¥0.97) (x0.89) (x0.76)  (x0.82) (x1.99) (x¥1.36) (x1.21) (20.74) FF (*1.38)  (x1.35)  (x0.79)  (*0.75)

presented in table 7. The main aim of this study is to detect the
COVID-19 class with as high sensitivity as possible and also
maintain reasonably high precision at the same time. Though
the value of the average class-specific accuracy, precision,
and F1-score obtained in the proposed method is comparable
with the result presented in [9], however, the higher sensitivity
to COVID-19 class of the trained model makes our proposed
method more suitable for practical implementations.

B. RESULT ON ADDITIONAL DATASETS

We validate our proposed method on other medical imag-
ing datasets as described in section 1. These datasets com-
prise different modalities, medical conditions as well as class
imbalance ratios. Since the number of classes varies in the
range from two to eight, instead of showing class-specific
metrics, we present average class-specific metrics. Addition-
ally, the mean absolute deviation of the F1-score (MADF)
is used to quantify the spread of the individual class-wise
F1-score. The lower the value of MADF indicates lower dis-
persion among the F1-score of each class. Table 8 presents the
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classification performance for seven datasets listed in Table 2
for Pixel, DCT and DWT features individually. The effi-
ciency of these features is also tested by performing feature
level fusion (FF) and also score level fusion (SF). The best
result obtained in feature level fusion or score level fusion is
reported in Table 8. It is observed that the combination of two
or three types of features among pixel, DCT, and DWT has
surpassed the result obtained while using the each of features
separately. Moreover, the lower MADF with higher ASCF of
combined features also indicates the superiority in handling
class imbalance. Thus, the result obtained in this experiment
supports our hypothesis of the presence of complementary
information in spatial and spectral domains in medical images
that assist in decoding the underlying medical condition.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this study, we present a novel medical image-based
diagnostic solution for the detection of various under-
lying medical conditions. Along with the spatial infor-
mation of the medical images, we exploited the less
explored spectral-domain information of the medical images.
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We aspire to achieve an enhancement in disease detection
performance by integrating the features from spatial, spectral,
and spatio-spectral space. Our proposed system comprises
three stages — conversion of a spatial image into the spectral
and spatio-spectral domains, feature mapping from higher to
lower dimension using CNN architecture, and final classifi-
cation using MLP. The potential and the robustness of the
proposed method are demonstrated by using eight diverse
medical imaging datasets of different modalities, diseases to
be identified, and class imbalance ratio.

The results suggest that the spatial, spectral and
spatio-spectral domain features are solely capable of rep-
resenting distinguishing characteristics of the underlying
medical conditions. However, integration of those three types
of features results in a significant increment in classifica-
tion performance, suggesting that all three types of features
possess complementary information. The saliency maps also
validate the integrity of our proposed model. A detailed study
on COVID-19 shows that the performance of our method
is unbiased to gender and age factor. In comparison to the
method proposed in [9] for COVID-19 detection, our method
achieved significantly higher sensitivity to COVID-19 class
and also marginal improvement in average class-specific
accuracy, precision, and Fl-score. Altogether, our study
demonstrates a novel approach in identifying various diseases
using the medical images that can assist the healthcare worker
in the primary screening process.

This study can be extended to other types of available
medical images for generalization purposes. The implemen-
tation of other deep learning algorithms for feature extraction
purposes can be explored towards the enhancement of the
performance. Three separate ResNet50 networks are trained
for extracting features from pixel, DCT, and DWT images.
As a future research direction of this study, we consider
overcoming this limitation. We have used an iterative train-
ing approach for updating the parameters of both CNN
and MLP networks. The adaptation of non-iterative learn-
ing mechanism as used in Neural Networks with Random
Weights (NNRW) [31]-[33], semi-random learning mecha-
nism as used in Bidirectional stochastic configuration net-
work (BSCN) [34] for updating the weights of the models
should reduce the training time significantly. It will be inter-
esting to study how the performance of the proposed method
will be influenced by such non-iterative training. Future
research direction may consider the interesting aspect of
non-iterative training.
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