
Received November 12, 2021, accepted December 2, 2021, date of publication December 6, 2021,
date of current version December 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133334

You Can’t Fool All the Models: Detect Adversarial
Samples via Pruning Models
RENXUAN WANG1, ZUOHUI CHEN 1, HUI DONG 2, AND QI XUAN 1, (Member, IEEE)
1Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou 310023, China
2College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Corresponding author: Qi Xuan (xuanqi@zjut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61973273, and in part by the Zhejiang
Provincial Natural Science Foundation of China under Grant LR19F030001.

ABSTRACT Many adversarial attack methods have investigated the security issue of deep learning models.
Previous works on detecting adversarial samples show superior in accuracy but consume too much memory
and computing resources. In this paper, we propose an adversarial sample detection method based on pruned
models and evaluate four different pruning methods.We find that pruned neural network models are sensitive
to adversarial samples, i.e., the pruned models tend to output labels different from the original model when
given adversarial samples.Moreover, the prunedmodel has an extremely small model size and computational
cost. Based on the detection result, we further propose a simple but effective defense approach to identify
the true label of the adversarial sample. Experiments show that, on average, four different pruning methods
outperform the SOTA multi-model based detection method (64.15% and 73.70%) by 28.65% and 18.73%
on CIFAR10 and SVHN, respectively, with significantly fewer models used. The FLOPs of our structured
pruned model are only 49.41% and 25.62% of the original model. Our defense approach achieves 68.60%
and 72.03% average classification accuracy on CIFAR10 and SVHN, exceeding other advanced defense
methods.

INDEX TERMS Adversarial sample detection adversarial defense adversarial attack DNN model pruning.

I. INTRODUCTION
Though Deep Neural Networks (DNN) have achieved great
success in various applications, e.g., computer vision [1],
natural language processing [2], and speech recognition [3],
the existence of adversarial samples [4] undermines their use
in safety critical areas and raises public concern. TheMachine
Learning (ML) community has proposed many approaches to
improveDNN robustness against adversarial samples, includ-
ing data augmentation [5], [6], adversarial training [7], [8],
and robust optimization [9]. These approaches can improve
the robustness of the model to a certain extent, but ask for
additional data and training, which cost intensive resources,
especially for those large models.

The other optional defense strategy is detecting adver-
sarial samples [10]. The ML community has observed that
adversarial samples are different from benign samples in
multiple aspects, including data distribution [11], [12], deci-
sion boundary [13], and neuron activating path [14]. The
model developer can distinguish adversarial samples by these

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Wei.

characteristics and stop them from attacking the model. The
software engineering community proposes the concept of
DNN testing that aims to detect bugs in the DNN model [5],
[15], [16]. Adversarial samples are a kind of bug hidden in
the DNN model. One of these testing methods for detecting
adversarial samples is mutation testing [17]. It generates mul-
tiple models by randomly shuffling neuron weights, adding
noise to the weights, or inversing the activation state of
neurons. They find that the generated models are sensitive
to adversarial samples, which means the outputs of gener-
ated models are different from the original model. For an
unknown sample, through the label changes of generated
models, we can distinguish whether it is adversarial.

We argue that distinguishing adversarial samples using
multiple models is a more reliable strategy for adversarial
sample detection. [18] shows that many defense methods,
including improving model robustness or detecting adversar-
ial samples, are vulnerable to certain attacks. In extreme
cases, such as the attacker grabbing both model details
and defense strategy, these methods can be even circum-
vented [19]. Most of the detection methods evaluated in [19]
use indicators from a single model. Since the indicator comes

163780
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1806-6676
https://orcid.org/0000-0002-2178-8795
https://orcid.org/0000-0002-1042-470X

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

from the victim model and the perturbation updated in the
attack also uses the output of the model or its gradient infor-
mation, it is possible to design an adaptive attack strategy
to circumvent these indicators [19] by adding constraints
in the attack objective. For the multiple-model method, the
indicator comes from various models, it is hard to guarantee
that the perturbation works on all the models.

However, mutation testing is barely practical because the
detection requires running dozens of models with almost the
same size as the original model. There are many redundant
parameters in a neural network, which do not contribute
much to reducing errors and generalizing the network during
training [20]. Generally, DNN pruning refers to the technique
of reducing the parameters that has the least effect on the
accuracy of DNN [20]. In this paper, we find that pruned
models are more sensitive to adversarial samples. Moreover,
pruning also reduces the model size, making the detection
feasible in practice. Since the adversarial sample is not able to
fool all the models, we can infer the true label from generated
models output. We conduct experiments on CIFAR10 [21]
and SVHN [22] datasets to prove the effectiveness of our
method. CIFAR10 is a small dataset for identifying universal
objects, which contains RGB images with 10 categories,
and SVHN is a real-world street view house numbers
dataset.

Specifically, we make the following contributions.
1) We propose a multi-model based adversarial detection

method via prunedmodels and analysis the influence of
different pruning methods on the results. Compare with
previous works, our method achieves the highest detec-
tion accuracy and at the same time greatly reduces the
required number of models and model size, achieving
a new SOTA performance.

2) Based on pruned models, we propose a simple but
effective multi-model defense approach to predict the
true label of the adversarial sample. The defense
is based on the detection result and requires no
extra DNNs.

3) We evaluate our detection and defense approaches
on CIFAR10 and SVHN datasets. Pruned models can
detect 92.80% and 92.43% adversarial samples on
CIFAR10 and SVHN, with 28.95 and 30.97 pruned
models, respectively. The accuracy of defending adver-
sarial samples is 68.60% and 72.03%.

Comparing with our previous work [23], we expanded our
work in the following aspects: 1) We investigated more
related works and presented them in Section II; 2) We
expanded our method with more pruning models, added the
corresponding experiment, and discussed the difference in
the experiment section; 3) We further proposed a defense
strategy based on our detection method, and compare it
with other advanced defense methods in the experiment. The
rest of paper is organized as follows. Section II presents
the related work, including adversarial attacks, adversarial
sample detection, and the relationship between sparsity and
robustness. Section III introduces how we prune the model

to detect and defense adversarial samples. Section IV gives
the experimental setup and results. Section V concludes the
paper.

II. RELATED WORKS
A. ADVERSARIAL ATTACKS
We evaluate 7 most commonly used adversarial attacks
in this work, including Fast Gradient Sign Method [24]
(FGSM), Jacobian-based Saliency Map Attack [25] (JSMA),
Carlini Wagner Attack [26] (CW), Deepfool Attack [27]
(DF), Intermediate Level Attack [28] (ILA), Feature
Importance-aware Attack [29] (FIA), and Local Search
Attack [30] (LS).

1) FAST GRADIENT SIGN METHOD
FGSM assumes that DNN models are too linear to resist
adversarial attacks. Most of the DNN models are designed
in a linear form to facilitate training and save computational
costs. In this case, linear perturbation is sufficient for a suc-
cessful attack. The process of generating adversarial samples
is expressed as follows

x ′ = x + εsign(∇xJ (x, y)) (1)

where x is the original sample, x ′ is the adversarial sample,
J is the loss function, y is the original label, and ε is the
step size. Along the gradient direction of the loss function
J , FGSM adds noise to make it misclassified.

2) JACOBIAN-BASED SALIENCY MAP ATTACK
JSMA introduces L0 norm to measure the magnitude of
adversarial perturbation, which essentially limits the number
of disturbed pixels in the image. The adversarial saliencymap
in JSMA is based on the forward derivation of the neural
network. Assume a DNN model F with given input X , the
forward derivative matrix is

JF (x) =
∂F(X)
∂X

= [
∂Fj(X)
∂xi

] (2)

The saliency map is calculated as follows

S(X , t)[i] =

 0 if Jit (X) < 0 or
∑

j 6=t
Jij(X) > 0

Jit (X)|
∑

j 6=tJij(X)
| otherwise,

(3)

where i is the i-th feature in the input space, t is the target
label, j is the original model output label, and Jit (X) rep-
resents the elements of the forward derivative matrix. The
model output confidence on the target label will increase
if the corresponding saliency map S(X, t)[i] increases. The
final perturbation is added on the top-2 dominating features
(2 pixels) of the input, which is selected by

argmax (p1, p2)

 ∑
i=p1,p2

∂Ft (X)
∂Xi

∣∣∣∣∣∣
∑

i=p1,p2

∑
j 6=t

∂Fj(X)
∂Xi

∣∣∣∣∣∣ , (4)

where p1 and p2 are the candidate pixels.

VOLUME 9, 2021 163781

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

3) CARLINI WAGNER ATTACK
CW attack optimizes the adversarial perturbation with the
objective that minimizing the perturbation magnitude and
maximizing the target label probability. The problem can be
formulated as follows

minimize D(x, x + δ),

such that C(x + δ) = t, x + δ ∈ [0, 1]n (5)

where x is the original image, δ is the perturbation, C is the
victim model, and D is the distance measurement function.
Because C(x + δ) = t is highly nonlinear, CW defines an
objective function f , if and only if f (x + δ) ≤ 0, C(x + δ) =
t . For different distance measurement, i.e., L0, L2, and Linf,
CW uses different objective function f .

4) DEEPFOOL ATTACK
Deepfool aims to find the shortest distance from the normal
sample to the classification hyperplane. It first deduces the
minimal perturbation for binary classifier, then generalizes
the solution to multi-class classifier. We refer readers to [27]
for the details of exact derivations.

5) INTERMEDIATE LEVEL ATTACK
ILA increases the perturbation on the middle layer of the neu-
ral network to improve the attack transferability and effective-
ness. The idea is that increasing the norm of the perturbation
generally improves the effectiveness of the attack, however,
it contradicts the imperceptibility requirement of adversarial
attacks. Perturbations with large norm added on the middle
layer of the neural network will not increase the perceptibility
of the input, thus attacks can be enhanced with perturbation in
themiddle layer. ILA enhances adversarial samples generated
by other attacks by maximizing disturbance while maintain-
ing the original direction. The objective is

L(y′l, y
′′
l) = −α

||∇y′′l ||2
||∇y′l ||2

−
∇y′′l
||∇y′′l ||2

∇y′l
||∇y′l ||2

(6)

where y′′l is the enhanced adversarial sample and α is a
parameter to balance the disturbance direction and norm.

B. FEATURE IMPORTANCE-AWARE ATTACK
FIA achieves strong transferability by disrupting object-aware
features that dominate model decisions. The generated image
distracts the focus of the model from the object, making it fail
to capture the important features. The object-aware features
are obtained through the aggregate gradient. Specifically,
FIA uses random transformations to determine object-aware
features, since transformed images preserve structure and
texture information while non-semantic details vary with the
transformation.

1) LOCAL SEARCH ATTACK
Local search attack constructs numerical approximation to
the network gradient based on greedy local search and then
uses it to perturb a small part of pixels in the image. The

optimization problem is to minimize the confidence on the
original image label and generate the smallest possible distur-
bance. In each round of the optimization, local search attack
computes an implicit approximation to the gradient of the
current image by understanding the influence of the selected
pixels on the output, then uses the approximated gradient to
update the image.

C. ADVERSARIAL SAMPLE DETECTION
Adversarial sample detection has been proved to be effec-
tive in the arms race against adversarial attacks. The ML
community has found many differences between benign and
adversarial samples. Zhao et al. [31] found that adversarial
samples are less robust than benign samples. By attacking
the input sample and evaluating the cost, they can identify the
less robust inputs as adversarial. Yin et al. [13] observed that
adversarial samples are close to the decision boundary. They
partition the input space into subspaces and train binary clas-
sifiers in the subspaces by symmetrical adversarial training to
identify adversarial inputs. Ma and Liu [14] found that adver-
sarial samples will activate abnormal neurons in the forward
propagation. They define the distribution of the activation
values of two consecutive layers as the provenance invariant
of the layers. Then, adversarial samples can be identified by
checking invariant violations during DNN computation.

However, in the worst case, i.e., the attacker grabs the full
model information and defense mechanism, detection can be
bypassed with the specially designed objective. Carlini and
Wagner [19] tested ten adversarial detection methods in the
past years. They found that most of them can be bypassed
with adaptive attacks, which means the attacker designs spe-
cific attack optimization targets for specific defense mech-
anisms. Most of the evaluated methods identify adversarial
samples based on a single attribute of the model, so they are
easy to break. We argue that adversarial samples are not
able to fool all the models since they have different decision
boundaries. We can exploit its unrobustness and identify it
with multiple models.

As far as we know, Model Mutation Testing [17] (MMT)
is the only approach to detect adversarial samples using
multiple completely different models (not part of the original
model). The other multi-model detection methods use models
intercepted from the original model [16]. The authors pro-
pose to build sub-models with the parameters and structure
inherited from the original model and use them to detect
adversarial samples. The number of sub-models can be as
many as the number of intermediate layers of the original
model. They argue that a normal sample should be predicted
with increasing confidence, which reflects on the output of
sub-models. Their method needs to retrain an output layer
based on the inherited layers, but the inherited layers are
frozen during training. In MMT [17], the authors propose
to generate mutated models through four operators, namely
weights fuzzing, weights shuffling, neuron switch, and neu-
ron activation inverse. The operators may cause a significant
decrease in accuracy, and the generated models are sensitive

163782 VOLUME 9, 2021

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

to adversarial samples. Their method usually takes dozens of
models to complete one detection, thus it is not practical in
real applications.

III. METHOD
A. SPARSITY AND ROBUSTNESS
Recent works on sparse DNN models [32]–[35] have proved
that pruning significantly promoted the robustness of DNN
models. These works focus on producing a more robust
model, while our work focus on detecting adversarial sam-
ples, and our defense is based on multiple models instead of
a single model. Wang et al. [36] showed that pruned DNNs
with high compression rates are more vulnerable to adver-
sarial attacks, which can be avoided through adversarial
training. Their conclusion is not general since their exper-
iments are conducted with a simple three-layer CNN on
MNIST dataset [37]. Wang et al. [38] proposed a robustness
enhancement method combined with model pruning and log-
its augmentation. Guo et al. [32] revealed the relationship
between sparsity and robustness. They found that sparse
linear classifier behaves differently under linf and l2 attack,
and the higher model sparsity is, the better the robustness
of nonlinear DNNs. Matachana et al. [39] found that com-
pressed models are resilient to universal adversarial pertur-
bations, which can generalize across various different inputs.
They observed that the robustness of compressed models is
also application dependant, i.e., the dataset has a significant
influence on the compressed model performance.

Generally, a DNN fθ () is trained by minimizing the loss L()
over the training dataset. The optimization problem is

argminθE(X ,Y)∼D[L(θ,X ,Y)], (7)

where X and Y are the training images and labels, following
the data distribution D, and θ is the model parameters. The
adversary aims to construct adversarial sample by

minimizeD(ε)

s.t.fθ (x + ε) 6= y, (8)

where ε is the added perturbation, x is an original benign
sample, and y is the true label. Model pruning can be divided
into structured and unstructured pruning. Structured pruning
removes the filters or layers in the model, while unstructured
pruning removes individual weights (mask with zero). Model
pruning aims to find the smallest model with the least accu-
racy loss, the optimization strategy is

argmin
θ̂
L(θ̂ ,X ,Y)

s.t.
||θ̂ ||0

||θ ||0
< 1− t, (9)

where θ̂ is the pruned model weights, θ is the original model
weights, and t is the fraction of pruned weights.

Without loss of generality, we assume all convolutional
kernels in the ith layer is the same size. The forward prop-
agation of layer i is initially

Ai = Wi ∗ Ai−1, (10)

Algorithm 1 Framework of Adversarial Sample Detection
Require: Original model: Mo; Pruned models: M =

m1,m2, . . . ,mn; Unknown sample: X ; accept and deny
probability ςa and ςd ; threshold ςh ;relax scale: σ .

Ensure: The property of sample (adversarial or not).
1: Set the pruned model size S equals to 1, i = 1, p0 =
ςh + σ and p1 = ςh − σ ;

2: probability ratio pr =
pz1(1−p1)

i−z

pz0(1−p0)
i−z

3: while S ≤ n and ςd − σ ≥ pr ≤ ςa + σ do
4: Feed X into Mo and mi, obtain the corresponding

outputs Mo(X) and mi(X);
5: Update the the number of models that output different

labels z;
6: Update pr ;
7: Feed X into mi;
8: S = S + 1 and i = i+ 1;
9: end while
10: if ςd − σ ≥ pr then
11: return X is a clean sample.
12: end if
13: if pr ≤ ςa + σ then
14: return X is an adversarial sample.
15: end if
16: return X is an adversarial sample.

FIGURE 1. The outputs of pruned models when fed with clean sample
and adversarial sample.

where Ai and Ai−1 represent the feature map of the ith and
(i − 1)th layer, ∗ is the convolution operator, and Wi ∈

RK ,W ,H ,C is theweights of ith layer.K ,W ,H ,C are the num-
ber of kernels, kernel width, kernel height, and kernel depth
respectively. After pruning, structured pruning reduces the
number of kernels, producing Ŵi ∈ RK̂ ,W ,H ,C , while unstruc-
tured pruning reduces the kernel width, kernel height, and
kernel depth, producing Ŵi ∈ RK ,Ŵ ,Ĥ ,Ĉ . With the change of
weights shape and retraining of the model, the pruned model
learns a different feature space compared with the original
model, thus adversarial perturbation is not guaranteed to be
effective in the new feature space.

B. ADVERSARIAL SAMPLE DETECTION
We detect adversarial samples by the outputs of pruned mod-
els. As shown in Fig. 1, a clean samplewith the label cat is still
cat in most outputs of additional models, but an adversarial
sample makes these models output various labels, e.g., cat,
plane, and bird. Because pruning and training rebuild the

VOLUME 9, 2021 163783

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

decision boundary of the pruned model, making it different
from the original model. The diversity of outputs can be
measured with Label Change Rate (LCR) and used to identify
adversarial samples, which is defined as

ς =

∑
s∈S E(f (x), s(x))
|S|

, (11)

where x is the input, f (x) is the original model output, s(x)
is the pruned-model output, |S| is the size of used pruned
models, and E(·) is defined as

E(x, y) =

{
0 if x = y,
1 otherwise.

(12)

A straightforward way to calculate LCR is using the
fixed-size sampling test, i.e., adopting a fixed number of
models and counting the outputs that are different from the
original model. To reduce the computational cost, we use
the Sequential Probability Ratio Testing [40] (SPRT) to
detect adversarial samples dynamically. Themutual exclusive
hypothesis in the testing is

H0 : pr(x) ≥ ςh,

H1 : pr(x) ≤ ςh, (13)

where ςh is a threshold determined by the LCR of clean sam-
ples (calculated by Eq. (11)). SPRT runs the pruned model
successively and calculate the probability ratio pr by

pr =
pz1(1− p1)

n−z

pz0(1− p0)
n−z , (14)

where z is the number of models that output different labels,
n is the total number of used models, p0 = ςh + σ , and p1 =
ςh − σ . We set a relax scale σ , which means when the LCR
falls in the region (ςh− σ, ςh+ σ), neither hypothesis can be
denied and the test continues. The accept LCR and deny LCR
are defined as follows

ςa = ln
β

1− α
,

ςd = ln
1− β
α

, (15)

where α and β denote the probability of false positive and
false negative, respectively. The test stops when one of the
hypothesis is accepted. The input is considered as a clean
sample if pr ≥ ςa, while it is adversarial otherwise. The
complete process is shown in Algorithm 1.

C. PRUNED MODEL GENERATION
Instead of using the original model structure and parame-
ters, we exploit four pruning method (as shown in Fig. 2)
to produce sub-models, including Random Channel prun-
ing [41] (RC), L1 Norm pruning [42] (L1N), Lottery Ticket
Hypothesis [43] pruning (LTH), and Subnetwork Extrac-
tion [44] (SE), where RC and L1N are structured pruning,
LTH and SE are unstructured pruning. Compared with the
mutatedmodels inMMT [17], the prunedmodel has a smaller
size and is more sensitive to adversarial samples. Our method

requires 28.95 and 30.97 models on CIFAR10 and SVHN
datasets respectively while MMT needs 62.65 and 51.78.
The pruned model runs faster than the mutated model with
the FLOPs of 274.9M and 78.6M on CIFAR10 and SVHN
respectively, while MMT is 556.65M and 314.03M.

1) RANDOM CHANNEL PRUNING
As shown in Fig. 2(a), channel pruning usually evaluates
the importance of different channels of a DNN layer and
removes all the input and output connections of the unim-
portant channels [41], [45], [46]. The advantages of channel
pruning include reduction of actual parameters and increase
of inference speed. We use random channel pruning to find a
set of small models with accuracy close to the original model.

In order to reduce the computational cost while ensuring
the pruned models’ accuracy and diversity, we set a fixed
overall pruning rate for each model and assign a random
number of channels to be pruned in each layer. Specifically,
every several layers with the same number of channels are
divided into a group. A group has an overall pruning rate (e.g.,
50%) and layers in a group will be assigned with two random
pruning rates (e.g., 30% and 20%), while the sum of which
equals the overall pruning rate.

2) L1 NORM PRUNING
In a DNN model, the relative importance of a filter in each
layer can be measured by calculating its L1 norm [42], i.e.,
the sum of its absolute weights. The magnitude of the output
feature map is mostly determined by this value. The smaller
the magnitude, the weaker the activation output, thus pruning
the small filters can reduce the model size and maintain the
model accuracy.

As shown in Fig. 2(b), for the original model, we sort the
filters in each layer with their corresponding L1 norm. Then,
we prune filters for each layer starting with the smallest L1
norm. The kernels in the next layer corresponding to the
pruned feature map are also removed. The pruning rate is
randomly set for each layer while keeping the overall pruning
rate the same for all models.

3) LOTTERY TICKET HYPOTHESIS PRUNING
The Lottery ticket hypothesis [43] implies that a randomly
initialized, dense neural network contains a subnetwork that
is initialized such that when trained in isolation it can match
the test accuracy of the original network after training for at
most the same number of iterations. As shown in Fig. 2(c),
it trains a network with a few epochs, then evaluates the
importance of neurons and removes those unimportant ones.
The subnetwork will be re-initialized with the same param-
eters, then repeat the training and pruning until meets the
pruning rate. The final subnetwork is the winning lottery.

In this work, we evaluate the neuron importance by their
absolute value. To produce diverse sub-models, as shown
in 2(c), each model is initialized with different parameters
and trained 6 epochs after initializing the network. Then we
remove the unimportant weights with a fixed pruning rate.

163784 VOLUME 9, 2021

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

FIGURE 2. Pruning methods used in our detection procedure.

4) SUBNETWORK EXTRACTION
An untrained randomly weighted network contains a subnet-
work (with random weights) that has similar performance to
a well-trained model with similar size [44]. Ye et al. [47] pro-
posed a greedy selection approach to proving that there exists
a small subnetwork inside the large network that performs
almost as well as the large network. Malach et al. [48] proved
that in a sufficiently over-parameterized model, there exists
a subnetwork with random weights that is roughly the same
accuracy as the target network. The subnetwork does not need
any further training and it is valid for every target model with
bounded weights on every bounded distribution.

We can find these subnetworks by training and learning the
importance of the connections between neurons. Specifically,
in the forward propagation, if the output of a neuron is aligned
with the negative direction of the gradient, we increase the
importance of this connection, otherwise, we reduce the
importance. As shown in Fig. 2(d), for each model, we ran-
domly set different initial weights and a fixed pruning rate.
Then we remove the unimportant connections according to
the pruning rate.

There are constraints on the untrained randomly weighted
network. The size of the untrained randomly weighted net-
work affects the pruned model accuracy. A wide untrained
randomly weighted model produces more accurate subnet-
work [44]. A small initial model produces a subnetwork with
poor performance [44]. The impact of model size is reflected
in the experiment with 2 different models, our method is
effective on both of them.

D. ADVERSARIAL SAMPLE DEFENSE
Since the adversarial sample is generated for the original
model, in most cases, it can not fool the pruned model.
We assume that the true label exists in the output of pruned
models. Specifically, in the detection stage, we use a variable
number of models to calculate the LCR and identify adver-
saries. If the input is identified as adversarial, we take the
largest category of all model outputs as the true label. Note
that only models involved in the calculation of LCR will be
counted, thus there is no extra computational cost of any deep
learning models.

IV. EXPERIMENTS
A. DATASET AND MODELS
We evaluate our approach on CIFAR10 [21] and SVHN [22].
The former contains 50,000 images for training and 10,000
images for testing, while the latter are 73,257 and 26,032,
respectively. The image size of both two datasets is 32 ×
32 × 3. We adopt ResNet18 and VGGNet16 for CIFAR10
and SVHN, and their accuracy is 93.03% and 95.63%,
respectively.

B. PRUNING SETTING
For channel pruning methods, the pruning rate is set to 50%
for all the groups. The overall pruning rate (percentage of
parameters and channels removed) is listed in Table 1. The
pruning rate is calculated differently according to the pruning
type, the structured pruning rate (RC and L1N) is calcu-
lated by the number of removed channels (filters) while the

VOLUME 9, 2021 163785

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

TABLE 1. Overall Pruning Rates and FLOPs of the Generated Models.

TABLE 2. Average Model Accuracy of Different Pruning Methods (%).

unstructured pruning rate (LTH and SE) is determined by
the number of individual weights setting to zeros. We give
both pruning rates in Table 1. Under this setting, the pruned
model accuracy is above 89% as shown in Table 2, while
the model size is relatively small. The pruning is finished in
one step for RC and L1N since they do not need an iterative
search. For LTH and SE we set the max search steps 6
and 100 respectively, which is empirically enough to find
a good subnetwork. Note that LTH still needs training after
pruning, same as RC and L1N. SE does not require training
after pruning. The average model size after pruning is listed
in Table 3. We compare our approach with the MMT [17],
which is a SOTA adversary detection algorithm. There are
four mutation operators that can be used to generate mutated
models, we choose the best performers for comparison, i.e.,
Neuron Activation Inversion (NAI). We use the best parame-
ter setting, i.e., the mutation rate is 0.007. Both MMT and our
method use SPRT to test the generated models’ outputs. For
a fair comparison, we set the maximum number of available
models in SPRT to 100.

C. ADVERSARIAL SAMPLE GENERATION
We use seven typical adversarial attack methods and set
the attack parameters the same as MMT is tested for a fair
comparison. The parameters for each attack are summarized
as follows:

1) FGSM: the scale of perturbation is 0.03;
2) JSMA: the maximum distortion is 12%;
3) CW: adopt L2 attack, the scale coefficient is 0.6 and the

iteration number is 1000;
4) Deepfool (DF): the maximum number of iterations

is 50 and the termination criterion is 0.02;
5) One Pixel Attack (OP): the number of pixels for modi-

fication is 3 (in order to ensure that enough successful
samples are generated) and the differential algorithm
runs with a population size of 400 and a max iteration
count of 100;

TABLE 3. Average Model Size of MMT and Ours (MB).

6) Intermediate Level Attack (ILA): the baseline attack is
IFGSM, the number of iterations of IFGSM to perform
is 10, the learning rate of IFGSM is 0.005, the epsilon
of IFGSM is 0.03, the number of ILA to perform is 10,
the epsilon of ILA is 0.01, the coefficient of magnitude
loss in ILA attack is 1, and the learning rate of ILA is 1.

7) Local Search Attack (LS): the pixel complexity is 1,
the perturbation value is 1.5, the half side length of
the neighborhood square is 5, the number of pixels
perturbed at each round is 5 and the threshold for
k-misclassification is 1.

8) Feature Importance-aware Attack (FIA): maximum
size of adversarial perturbation is 0.03, number of iter-
ations is 10, step size is 1, momentum is 1, number of
randommask input is 30, and randomly mask probabil-
ity is 0.7.

D. METRICS
We evaluate the detection performance and defense perfor-
mance with the following metrics. Detection performance
is evaluated by how many adversarial samples are detected,
while the defense is evaluated by how many adversarial
samples are classified correctly when fed with all adversarial
samples.

a) AUROC: Our approach takes the LCR of normal sam-
ples as the threshold. In order to verify whether the feature
is suitable for distinguishing adversarial sample from the
normal sample, we calculate the area under the ROC curve to
determine whether LCR is an appropriate feature (the closer
the AUROC is to 1, the better the feature is).

b) Detection accuracy and the number of models used: in
addition to detection accuracy, we also evaluate the number of
models required for detection. The higher accuracy and fewer
models indicate a better method.

c) Classification accuracy: when fed with adversarial sam-
ples, the classification accuracy reflects how strong the
defense is. The higher the accuracy, the better the defense
ability.

E. RESULTS
As shown in Table 3, structured pruning strategy greatly
reduced the model size from 85.35MB and 112.45MB to
43.84MB and 27.59MB on CIFAR10 and SVHN, respec-
tively. Unstructured pruning and mutation operator do not
change the actual model size. The FLoating point OPera-
tions (FLOPs) of the generated models are listed in Table 1.
The pruning reduces the number of FLOPs from 556.65M
and 314.03M to 276.6M and 118.7M onCIFAR10 and SVHN
respectively on average. Note that the mutation operator does

163786 VOLUME 9, 2021

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

TABLE 4. AUROC of Different Methods and Attacks (%).

FIGURE 3. The adversarial sample detection accuracy (Accuracy) on
CIFAR10.

FIGURE 4. The adversarial sample detection accuracy (Accuracy) on SVHN.

not change the model size nor the FLOPs, thus models gen-
erated by MMT are the same size as the original model.

AUROC scores are summarized in Table 4 with the best
results marked in bold. Pruned models outperform mutated
models for all kinds of attacks on CIFAR10 and SVHN.
It implies that pruned models are better in distinguish-
ing clean samples and adversarial samples. Among all the
attacks, the Local Search (LS) attack has the lowest AUROC,
because it is a kind of black-box attack and relatively further
away from the decision boundary compared with white-box
attacks.

Fig. 3 and Fig. 4 show the adversarial sample detec-
tion accuracy. Fig. 5 and Fig. 6 show the number of used
models. For all the pruned models, the average detection

FIGURE 5. The number of used models (#Models) on CIFAR10.

FIGURE 6. The number of used models (#Models) on SVHN.

accuracy on CIFAR10 and SVHN are 92.80% and 92.43%,
exceeding MMT (64.15% and 73.70%) 28.65% and 18.73%.
All detection methods achieve over 90% accuracy on JSMA
and DeepFool generated samples (CIFAR10), which indi-
cates samples generated by the two methods are closer to the
decision boundary than other attack methods. MMT shows
low detection accuracy, which implies the mutation operator
generated models are less diverse on par with pruning. All the
detection methods show the lowest detection accuracy on
Local Search attack (CIFAR10), which is consistent with the
result of AUROC. It indicates that LS generated samples are
the farthest from the decision boundary compared with other
attacks. Overall, Random Channel pruning has the highest
detection accuracy of 95.00% and 94.58% overall attacks on
CIFAR10 and SVHN, respectively.

When applied to clean samples, our method shows a low
false positive rate, i.e., most of the clean samples are correctly
classified as clean samples. As shown in Table 5, we test
MMT and our method with 1,000 clean samples. All prun-
ing methods achieve detection accuracy over 85% on clean
samples. On average, our approach uses only 28.95 and 30.97
pruned models for all attacks, while MMT requires 62.65 and
51.78 mutated models for CIFAR10 and SVHN, respectively.

To demonstrate the robustness of our method, we test our
method with adaptive attacks. For detections using a single
indicator or another classifier, Carlini et al. [19] showed that
they can be circumvented by adding new optimization objects
in the generation of perturbation. However, for multi-model

VOLUME 9, 2021 163787

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

FIGURE 7. The classification accuracy (Accuracy) with defense on
CIFAR10.

FIGURE 8. The classification accuracy (Accuracy) with defense on SVHN.

based detection, there is no explicit indicator to optimize
the perturbation. We argue that the potential threat for
multi-model based detection is transferable attacks, which
may be able to fool all the pruned models. We utilize the most
advanced transferable attacks, i.e. Feature Importance-aware
Attack [29] (FIA) under white-box setting to evaluate the
detection performance. The attacker knows the model param-
eters and uses model gradients. We generate 905 and 545
adversarial samples for CIFAR10 and SVHN respectively.
The experimental result is shown in Table 6. Pruned models
detect 95.13% and 92.33% adaptive adversarial samples on
CIFAR10 and SVHN respectively. There is no performance
decrease compared with detecting other adversarial samples.
MMT shows a significant decrease in performance, with the
detection accuracy of 48.25% and 69.9% on CIFAR10 and
SVHN respectively.

We compare our defense method with four advanced
defense algorithms [49]–[52]. Guo et al. [49] used models
trained on Transformed Images (TI) to improve robust-
ness. Their transformation contains image cropping and
rescaling, bit-depth reduction, JPEG compression, total vari-
ance minimization, and image quilting. Madry et al. [50]
proposed Projected Gradient Descent (PGD), which
is the strongest first-order adversarial attack method.
Models trained on PGD generated images will be robust
to other first-order adversarial attacks. Zhang et al. [51]
designed a defense method, TRADES, to trade adversarial
robustness off against accuracy. Their methodology won

TABLE 5. Detection Accuracy on Clean Samples (%).

TABLE 6. Detection Accuracy Against Adaptive Attacks (%).

TABLE 7. The classification accuracy with defense on CIFAR10 and
SVHN (%).

TABLE 8. Defense Against Adaptive Attacks (%).

first place in NeurIPS 2018 Adversarial Vision Challenge.
Wong et al. [52] found that combined with the random ini-
tialization, the performance of adversarial training with the
FGSM is similar to PGD based training (FGSM-RI), while
the cost is significantly lower. They identified the reason for
previous failed attempts using FGSM adversarial training,
which is catastrophic overfitting.

As shown in Table 7, for all types of adversarial samples,
our method has the highest average accuracy compared with
other advanced defense methods. Note that the defense is
based on the models used in the detection, there is no extra
cost of running deep learning models. The detailed perfor-
mance of different pruning methods is shown in Fig. 7 and
Fig. 8. With the defense strategy, pruning models achieve
classification accuracy over 95% in the best case (DF attack
on CIFAR10). The best case of MMT is 57.2% with the
same attack and dataset. Using the best pruning method
(SE), the average classification accuracy of pruned models
is 68.60% and 72.03% on CIFAR10 and SVHN respectively,
while MMT is 22.51% and 24.26%. On SVHN, structured
pruning methods achieve significantly higher accuracy than
unstructured, while their performance on detection is almost
the same. This phenomenon did not appear on the CIFAR10
dataset, which indicates the data complexity has an impact on
defense performance. In general, pruned models significantly
outperform mutation operators.

In the case of defending against adaptive attacks, our
method fails FIA as shown in Table 8. Though our method
can not classify FIA adversarial samples correctly, it can still
detect them with high accuracy and prevent the model from
attacks.

163788 VOLUME 9, 2021

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

V. CONCLUSION
In this paper, we propose an adversarial sample detection
algorithm based on pruned models. Compared with muta-
tion operators, pruning greatly reduces the model size and
improves the model sensitivity to the adversarial samples.
We use SPRT to test the pruned models outputs and detect
adversarial samples through the label changing rate. A simple
but effective defense mechanism based on pruned models is
proposed. Experimental results show that our method out-
performs MMT in AUROC, the number of used models,
model size, detection accuracy, and defense success rate. The
average AUROC of our method outperforms MMT (90.06%
and 90.65%) 7.92% and 7.53% on CIFAR10 and SVHN,
respectively. Using only 28.95 and 30.97 models, the average
detection accuracy of our method on CIFAR10 and SVHN
are 92.80% and 92.43%, while MMT needs 62.65 and 51.78
models with accuracy 64.15% and 73.70%. After adding the
defense, the average classification accuracy of adversarial
samples reaches 68.60% and 72.03%onCIFAR10 and SVHN
respectively, surpassing other advanced adversarial training
methods, while MMT only reaches 22.51% and 24.26%
under the same mechanism.

ACKNOWLEDGMENT
(Renxuan Wang and Zuohui Chen contributed equally to this
work.)

REFERENCES
[1] H. Pham, Z. Dai, Q. Xie,M.-T. Luong, andQ. V. Le, ‘‘Meta pseudo labels,’’

2020, arXiv:2003.10580.
[2] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ 2020,

arXiv:2005.14165.
[3] J. Pan, J. Shapiro, J. Wohlwend, K. J. Han, T. Lei, and T. Ma, ‘‘ASAPP-

ASR: Multistream CNN and self-attentive SRU for SOTA speech recogni-
tion,’’ 2020, arXiv:2005.10469.

[4] X. Fang, Z. Li, and G. Yang, ‘‘A novel approach to generating high-
resolution adversarial examples,’’ Appl. Intell., vol. 51, pp. 1–17, 2021.

[5] Y. Tian, K. Pei, S. Jana, and B. Ray, ‘‘DeepTest: Automated testing of deep-
neural-network-driven autonomous cars,’’ in Proc. 40th Int. Conf. Softw.
Eng., May 2018, pp. 303–314.

[6] A. Kurakin, I. Goodfellow, and S. Bengio, ‘‘Adversarial machine learning
at scale,’’ 2016, arXiv:1611.01236.

[7] F. Yu, Z. Xu, Y. Wang, C. Liu, and X. Chen, ‘‘Towards robust train-
ing of neural networks by regularizing adversarial gradients,’’ 2018,
arXiv:1805.09370.

[8] Y. Li, B. Wu, Y. Feng, Y. Fan, Y. Jiang, Z. Li, and S. Xia,
‘‘Toward adversarial robustness via semi-supervised robust training,’’
2020, arXiv:2003.06974.

[9] Z. Deng, C. Dwork, J. Wang, and L. Zhang, ‘‘Interpreting robust optimiza-
tion via adversarial influence functions,’’ in Proc. Int. Conf. Mach. Learn.,
2020, pp. 2464–2473.

[10] J. Martin and C. Elster, ‘‘Detecting unusual input to neural networks,’’ Int.
J. Speech Technol., vol. 51, no. 4, pp. 2198–2209, Apr. 2021.

[11] H. Li, S. Shan, E.Wenger, J. Zhang, H. Zheng, andB. Y. Zhao, ‘‘Blacklight:
Defending black-box adversarial attacks on deep neural networks,’’ 2020,
arXiv:2006.14042.

[12] S. Chen, N. Carlini, and D. Wagner, ‘‘Stateful detection of black-box
adversarial attacks,’’ in Proc. 1st ACM Workshop Secur. Privacy Artif.
Intell., Oct. 2020, pp. 30–39.

[13] X. Yin, S. Kolouri, and G. K. Rohde, ‘‘Adversarial example detec-
tion and classification with asymmetrical adversarial training,’’ 2019,
arXiv:1905.11475.

[14] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, ‘‘NIC: Detecting adver-
sarial samples with neural network invariant checking,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[15] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, ‘‘DeepMutation: Mutation testing of deep
learning systems,’’ in Proc. IEEE 29th Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2018, pp. 100–111.

[16] H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, ‘‘Dissector: Input validation
for deep learning applications by crossing-layer dissection,’’ in Proc.
ACM/IEEE 42nd Int. Conf. Softw. Eng., Jun. 2020, pp. 727–738.

[17] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, ‘‘Adversarial sam-
ple detection for deep neural network through model mutation testing,’’
in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019,
pp. 1245–1256.

[18] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, and
X. Yi, ‘‘A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability,’’
Comput. Sci. Rev., vol. 37, Aug. 2020, Art. no. 100270.

[19] N. Carlini and D. Wagner, ‘‘Adversarial examples are not easily detected:
Bypassing ten detection methods,’’ in Proc. 10th ACM Workshop Artif.
Intell. Secur., Nov. 2017, pp. 3–14.

[20] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, ‘‘A compre-
hensive survey on model compression and acceleration,’’ Artif. Intell. Rev.,
vol. 53, no. 7, pp. 5113–5155, Oct. 2020.

[21] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech. Rep.,
2009.

[22] Y. Netzer, T.Wang, A. Coates, A. Bissacco, B.Wu, andA. Y. Ng, ‘‘Reading
digits in natural images with unsupervised feature learning,’’ in Proc. NIPS
Workshop Deep Learn. Unsupervised Feature Learn., 2011, pp. 1–9.

[23] Z. Chen et al., ‘‘Adversarial sample detection via channel pruning,’’ in
Proc. ICML Workshop Adversarial Mach. Learn., 2021, pp. 1–5.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ 2014, arXiv:1412.6572.

[25] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372–387.

[26] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ inProc. IEEE Symp. Secur. Privacy (SP),May 2017, pp. 39–57.

[27] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘DeepFool: A simple
and accurate method to fool deep neural networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574–2582.

[28] Q. Huang, I. Katsman, Z. Gu, H. He, S. Belongie, and S.-N. Lim,
‘‘Enhancing adversarial example transferability with an intermediate level
attack,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 4733–4742.

[29] Z. Wang, H. Guo, Z. Zhang, W. Liu, Z. Qin, and K. Ren, ‘‘Feature
importance-aware transferable adversarial attacks,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis., Oct. 2021, pp. 7639–7648.

[30] N. Narodytska and S. Kasiviswanathan, ‘‘Simple black-box adversarial
attacks on deep neural networks,’’ inProc. IEEEConf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jul. 2017, pp. 1310–1318.

[31] Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, and J. Sun, ‘‘Attack as
defense: Characterizing adversarial examples using robustness,’’ 2021,
arXiv:2103.07633.

[32] Y. Guo, C. Zhang, C. Zhang, and Y. Chen, ‘‘Sparse DNNs with improved
adversarial robustness,’’ 2018, arXiv:1810.09619.

[33] T. Dinh, B. Wang, A. Bertozzi, S. Osher, and J. Xin, ‘‘Sparsity meets
robustness: Channel pruning for the Feynman-Kac formalism principled
robust deep neural nets,’’ in Proc. Int. Conf. Mach. Learn., Optim., Data
Sci., 2020, pp. 362–381.

[34] S. Ye, K. Xu, S. Liu, H. Cheng, J.-H. Lambrechts, H. Zhang, A. Zhou,
K. Ma, Y. Wang, and X. Lin, ‘‘Adversarial robustness vs. model com-
pression, or both?’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 111–120.

[35] S. Kundu, M. Nazemi, P. A. Beerel, and M. Pedram, ‘‘DNR: A tun-
able robust pruning framework through dynamic network rewiring of
DNNs,’’ in Proc. 26th Asia South Pacific Design Autom. Conf., Jan. 2021,
pp. 344–350.

[36] L.Wang, G.W.Ding, R. Huang, Y. Cao, andY. C. Lui, ‘‘Adversarial robust-
ness of pruned neural networks,’’ in Proc. ICLRWorkshop, Vancouver, BC,
Canada, 2018, pp. 1–5.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

VOLUME 9, 2021 163789

R. Wang et al.: You Can’t Fool All Models: Detect Adversarial Samples via Pruning Models

[38] S. Wang, X. Wang, S. Ye, P. Zhao, and X. Lin, ‘‘Defending DNN adversar-
ial attacks with pruning and logits augmentation,’’ in Proc. IEEE Global
Conf. Signal Inf. Process. (GlobalSIP), Nov. 2018, pp. 1144–1148.

[39] A. G. Matachana, K. T. Co, L. Muñoz-González, D. Martinez, and
E. C. Lupu, ‘‘Robustness and transferability of universal attacks on com-
pressed models,’’ 2020, arXiv:2012.06024.

[40] A. Wald, Sequential Analysis. Chelmsford, MA, USA: Courier Corpora-
tion, 2004.

[41] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very deep
neural networks,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1389–1397.

[42] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710.

[43] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ 2018, arXiv:1803.03635.

[44] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Raste-
gari, ‘‘What’s hidden in a randomly weighted neural network?’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11893–11902.

[45] X. Gao, Y. Zhao, Ł. Dudziak, R.Mullins, and C.-Z. Xu, ‘‘Dynamic channel
pruning: Feature boosting and suppression,’’ 2018, arXiv:1810.05331.

[46] Z. Zhuang,M. Tan, B. Zhuang, J. Liu, Y. Guo, Q.Wu, J. Huang, and J. Zhu,
‘‘Discrimination-aware channel pruning for deep neural networks,’’ 2018,
arXiv:1810.11809.

[47] M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu, ‘‘Good subnet-
works provably exist: Pruning via greedy forward selection,’’ in Proc. Int.
Conf. Mach. Learn., 2020, pp. 10820–10830.

[48] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, ‘‘Proving the
lottery ticket hypothesis: Pruning is all you need,’’ inProc. Int. Conf. Mach.
Learn., 2020, pp. 6682–6691.

[49] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, ‘‘Countering adversar-
ial images using input transformations,’’ 2017, arXiv:1711.00117.

[50] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
‘‘Towards deep learning models resistant to adversarial attacks,’’ 2017,
arXiv:1706.06083.

[51] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, ‘‘Theoret-
ically principled trade-off between robustness and accuracy,’’ in Proc. Int.
Conf. Mach. Learn., 2019, pp. 7472–7482.

[52] E. Wong, L. Rice, and J. Z. Kolter, ‘‘Fast is better than free: Revisiting
adversarial training,’’ 2020, arXiv:2001.03994.

RENXUAN WANG received the B.S. degree in
automation from Anhui Polytechnic University,
Wuhu, China, in 2019. He is currently pursuing the
master’s degree in control theory and engineering
with the Zhejiang University of Technology. His
current research interests include computer vision
and AI security.

ZUOHUI CHEN received the B.S. degree in
automation from the Zhejiang University of Tech-
nology, Hangzhou, China, in 2019, where he is
currently pursuing the Ph.D. degree in control the-
ory and engineering. His current research interests
include computer vision, AI application, and AI
security.

HUI DONG received the Ph.D. degree in automa-
tion from Zhejiang University, Hangzhou, China,
in 2007. He is currently a Professor with the
College of Information Engineering, Zhejiang
University of Technology, Hangzhou. His current
research interests include intelligent robot and
industrial internet.

QI XUAN (Member, IEEE) received the
B.S. and Ph.D. degrees in control theory
and engineering from Zhejiang University,
Hangzhou, China, in 2003 and 2008, respec-
tively. From 2008 to 2010, he was a Postdoctoral
Researcher with the Department of Information
Science and Electronic Engineering, Zhejiang
University, and a Research Assistant with the
Department of Electronic Engineering, City Uni-
versity of Hong Kong, Hong Kong, in 2010 and

2017. From 2012 to 2014, he was a Postdoctoral Fellow with the Department
of Computer Science, University of California at Davis, Davis, CA, USA.
He is currently a Professor with the College of Information Engineer-
ing, Institute of Cyberspace Security, Zhejiang University of Technology,
Hangzhou. His current research interests include network science, graph data
mining, cyberspace security, machine learning, and computer vision.

163790 VOLUME 9, 2021

