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ABSTRACT Question-answering chatbots have tremendous potential to complement humans in various
fields. They are implemented using either rule-based or machine learning-based systems. Unlike the former,
machine learning-based chatbots are more scalable. Sequence-to-sequence (Seq2Seq) learning is one of
the most popular approaches in machine learning-based chatbots and has shown remarkable progress
since its introduction in 2014. However, chatbots based on Seq2Seq learning show a weakness in that
it tends to generate answers that can be generic and inconsistent with the questions, thereby becoming
meaningless and, therefore, may lower the chatbot adoption rate. This weakness can be attributed to three
issues: question encoder overfit, answer generation overfit, and language model influence. Several recent
methods utilize multitask learning (MTL) to address this weakness. However, the existing MTL models
show very little improvement over single-task learning, wherein they still generate generic and inconsistent
answers. This paper presents a novel approach toMTL for the Seq2Seq learningmodel called SEQ2SEQ++,
which comprises a multifunctional encoder, an answer decoder, an answer encoder, and a ternary classifier.
Additionally, SEQ2SEQ++ utilizes a dynamic tasks loss weight mechanism for MTL loss calculation and a
novel attention mechanism called the comprehensive attention mechanism. Experiments on NarrativeQA
and SQuAD datasets were conducted to gauge the performance of the proposed model in comparison
with two recently proposed models. The experimental results show that SEQ2SEQ++ yields noteworthy
improvements over the two models on bilingual evaluation understudy, word error rate, and Distinct-2
metrics.

INDEX TERMS Sequence to sequence learning, natural answer generation, multitask learning, attention
mechanism.

I. INTRODUCTION
Chatbots are online computer systems that canmimic humans
and converse with humans using natural language [1], [2].
Chatbots can be broadly categorized into two types, namely
transactional and conversational [3], [4]. The former ones
help humans perform specific tasks to achieve a specific goal,
such as booking a hotel, flight, or even performing a financial
transaction [5]. The latter ones act as companions for humans
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and can be further classified as either casual chatbots or
question-answering chatbots [3], [6]–[9].

Casual chatbots are based on language models and can
interact with users through a series of natural language
dialogs and interactions, either verbally or textually. On the
other hand, question-answering chatbots aim at automatically
providing answers to a single or series of questions posed by
users in natural language in a specific domain or area such
as customer support [12]. Such a chatbot can be modeled by
means of three approaches: answer extraction, answer gen-
eration, and answer selection (Figure 1). Answer extraction
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FIGURE 1. Chatbot types.

refers to the process of extracting the answer from a text for
a question. Answer selection refers to the selection of the
best answer for a question from a list of answers. Answer
generation refers to the task of generating the answer to a
question. The generated answer can be a new answer, which
is not seen in the existing training dataset.

There are two popular approaches in conversational chat-
bot modeling namely Transformer network-based models
such as [13]–[15] and recurrent neural network (RNN)-
based sequence to sequence learning (Seq2Seq) models such
as [16]–[22]. The Transformer network is based on the
feed-forward network [11], wherein sentences are processed
as a whole rather than word by word by utilizing a self-
attention mechanism, which can be highly parallelized. How-
ever, Transformer-based models need to handle sequence
processingwith positional embeddings to encode information
related to a specific position, and this requires very high
computational and memory cost because of their quadratic
memory usage and computational time complexity O(N 2)
costs where N is the sequence length [10], [14], [23]–[27].

The other popular and more suitable method for sequence
processing such as question answering is the RNN-based
Seq2Seq method [1], [28]. RNNs view input as a chain
structure whereby the next output depends on the previous
hidden state (sequential by design), thus making RNN-based
models have the capability to process sequences of variable
length. RNN-based models cannot be parallelized and thus
can be slow while processing long sequences [11]. How-
ever, unlike the Transformer network, RNN-basedmodels
require only linear number of O(N) of operations where
N is the sequence length and thus do not require high
computational and memory cost. This shows RNN-based
Seq2Seq method is still worthwhile to be investigated and
has great potential. It is to be noted that the Seq2Seq
learning approach has been extensively researched
for both single-turn and multiturn conversations [1],
[16]–[22], [28].

We focused on a single-turn (non-hierarchical) question-
answering (answer generation) using the RNN-based

FIGURE 2. Illustration of Seq2Seq learning. The question is converted to
embedding and then encoded to hidden states. Encoder hidden states are
used by the decoder to generate the answer.

Seq2Seq learning under Multitask Learning (MTL) frame-
work, similar to what is defined in our key benchmark
paper [18]. MTL is a machine learning approach where
multiple tasks are learned to improve answer generation
quality. MTL has shown success in many applications of
machine learning including NLP [29], [30]. MTL in the
Seq2Seq model was first explored for machine translation
problems [29], [31] and the success lent an impetus to other
researchers [18], [20], [32]–[36] to explore it for chatbot
answer generation to address the issue of generic and incon-
sistent answers by Seq2Seq model. Seq2Seq learning under
MTL has considerable potential because the MTL frame-
work provides an efficient mechanism to integrate multiple
enhancements as discussed further in this paper. [18] is
particularly of interest to us because it is the only paper
known to us that utilized the MTL framework for answer
generation without the requirement of a secondary dataset.
All other MTL frameworks such as [20], [32]–[36] require an
additional dataset, which may not available in all scenarios.

The Seq2Seq method utilizes an encoder and decoder
architecture [37], [38]. The encoder, which consists of an
RNN, aims to represent the meaning of the question sentence
by encoding the question sentence into a dense vector called
hidden states. Subsequently, the decoder, which is another
neural network, aims to generate an answer sentence based on
the encoder’s hidden states. Figure 2 shows a typical Seq2Seq
model.

However, findings of a number of studies [18]–[22]
have demonstrated that the Seq2Seq method [37] tends to
generate frequently occurring words in the answer, thereby
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compromising the quality of the generated answer. Generated
answers may be meaningless or irrelevant to the question
and, as a result, conversations with chatbots can be mean-
ingless, abruptly terminated by users, and eventually lower
the chatbot adoption rate. This weakness can be attributed
to three (3) key issues: language model influence, answer
generation overfit, and question encoder overfit. These issues
are described in further detail in the following sub-sections.

A. LANGUAGE MODEL INFLUENCE
The decoder in a Seq2Seq model, typically an RNN, also
behaves like a language model. A language model refers to
the ability to generate the next word on the basis of previously
generated words or words. As the decoding progresses,
the language model influence of the decoder becomes
stronger than the influence of the question. Consequently,
the decoder may generate answers that are irrelevant to the
question.

B. ANSWER GENERATION OVERFIT
Seq2Seq method learning occurs by optimizing the cross-
entropy loss function to find the best sequence of words that
form the answer. The goal of training is to minimize the
loss during training. However, uneven word frequency in
data causes the model to generate frequently occurring
words to minimize the loss during training, which results
in an answer generation overfit. The answer-generation
overfit causes the model to produce frequently occurring
words learned from the dataset.

C. QUESTION ENCODER OVERFIT
Question-answering models are typically trained with spe-
cific datasets in a domain, such as customer support logs
or question–answer pairs of an academic subject. However,
the availability of these data in these specific domains
may be limited. The question encoder overfit refers to the
situation in which the question encoder becomes overfit
owing to limited training data. Overfit occurs because the
model generates question encodings to minimize loss dur-
ing training. Question encoder overfit causes the model to
suffer when handling unseen questions.

In addition, most of the existingwork found in the literature
focuses only on addressing either the overfitting issue or
language model influence issue, but not both, thereby leaving
a gap and a great opportunity to address the weakness in a
more holistic manner.

In this paper, we study how to address all three issues
in an MTL setting. We introduce the SEQ2SEQ++, MTL-
based Seq2Seq model using RNN, which consists of a
multifunctional encoder (MFE), an answer decoder (AD),
an answer encoder (AE), and a ternary classifier (TC). MFE
performs question encoding, first-word prediction, and last-
word prediction. AD performs answer generation, and AE
performs answer decoding. The TC performs a three-class
classification of answers for a given question. Additionally,
our method utilizes a dynamic task loss weight scheme for

TABLE 1. Explanations on notation for Figure 3.

MTL loss calculation and a novel attention mechanism called
the comprehensive attention mechanism (CAM) for answer
generation.

The following works were considered for performance
benchmarking where two datasets namely NarrativeQA [39]
and SQuAD [40] are utilized:-

i) MTL-BC: AnMTLmodel that utilizes a binary classi-
fier as the auxiliary task and fixed task loss weighting,
as proposed in [18]. This is our key benchmark paper.

ii) STL: Single-task baseline Seq2Seq learning with
global attention mechanism [41]. This single-task
learning (STL) model is used as control method.

iii) MTL-LTS: A sequential MTL model that utilizes a
separate network to predict the first word, as proposed
by [42]. This is our key benchmark paper. This work
aims to compare effects of parallel MTL training pro-
posed in our work.

The key contributions of this paper are:-
i) A new MTL-based Seq2Seq model, called

SEQ2SEQ++, for question-answering
ii) Dynamic task loss weight mechanism for MTL:

A new computation method to calculate the task loss
weights automatically and dynamically

iii) CAM: a novel attention mechanism for answer
generation

II. RELATED WORK
In this section, we review the methods found in the extant
literature and identify the gaps.

A. LANGUAGE MODEL INFLUENCE ISSUE
A typical approach to address the language model influence
of the decoder is the attention mechanism. An attention
mechanism is a method that allows the decoder to focus
on certain parts of a question to decode the answer to that
question. The most prevalent and extensively utilized atten-
tion mechanism is the global attention mechanism (Figure 3,
Table 1), which computes the attention weights in accordance
with the encoder’s hidden states and decoders’ last hidden
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FIGURE 3. Answer generation based on the global attention mechanism
which uses only on the final hidden state of the decoder (st-1).

state [41]. These computed attention weights (ATTt) are then
used to compute the context vector Ct), which is then used for
subsequent computation to eventually generate the answer.

Several other attention mechanisms have been proposed,
such as the local attention mechanism [43], hybrid attention
mechanism [44], and weighted attention mechanism [45].
However, similar to the global attention mechanism [41],
these attention mechanisms [43]–[45] also focus only on
the encoder’s hidden states and the decoder’s final hidden
state at each decoding step. Although the decoder’s final
hidden state represents all hidden states of previous time
steps, the representation of the answer words generated in
earlier time steps becomes diluted as it progresses in time
and thus increases the decoder’s language model influence,
which tends to generate irrelevant answers. This leaves a gap
in identifying an attention mechanism that can consider all
hidden states of the decoder during decoding to address the
language model influence more effectively.

B. ANSWER GENERATION OVERFIT ISSUE
The answer-generation overfit can be addressed by adding
one or more regularization terms to the cross-entropy loss
function to compute a new loss to be backpropagated.

One existing approach is to train the Seq2Seq method
in a reinforcement learning or adversarial framework. How-
ever, reinforcement or adversarial learning requires custom
reward functions or human interactions [46], which render
this approach less practicable for application in cross-domain
problems.

Another more practical approach to address overfitting
is training the Seq2Seq method in a ‘‘multi-task learning,’’
i.e., MTL framework. MTL is a machine learning approach
in which multiple tasks are learned in parallel to improve
the main task. For question-answering, the main task to

be improved is the answer-generation task. In MTL-based
Seq2Seq learning, in addition to the answer generation task
(main task), other tasks (usually referred to as auxiliary
tasks) are introduced during model training. The losses from
the auxiliary tasks are used as a regularization term to
reduce the overfitting of the main task of answer generation.
Equation (1) shows a generic form of multitask loss cal-
culation where LMTL is the total model loss, Lag is the
answer-generation task loss, Ln refers to the loss of an n-th
auxiliary task, and α refers to the task loss weight for each
task in MTL. The task loss weights determine the extent to
which the task influences learning and the extent to which the
task will be learned. Therefore, it is vital to identify suitable
auxiliary tasks. Moreover, in all existing MTL works for
Seq2Seq learning, a fixed-weight scheme is used to calculate
the MTL loss. In this fixed weight scheme, the auxiliary
task is typically assigned a small value, such as 0.001, 0.01,
or 0.1 [18]. However, determining the weight for the auxiliary
task loss is not an easy task, given that there are no specific
rules or formulas to determine the actual value to be used.
Arbitrary values must be assigned and tested before the final
weight for a task can be identified. Researchers have to
perform numerous experiments on the task loss weights on
a trial-and-error basis before settling for a specific value.
In addition, training different datasets may require different
values to be used. The task loss weight for a dataset may not
be effective for another dataset. This trial-and-error approach
is time-consuming and inefficient. It becomes even worse or
nearly impossible if there aremore than two tasks. This leaves
a gap in identifying a more efficient and effective approach
to determine the auxiliary task loss weights for an MTL.

LMTL = αagLag + αnLn (1)

C. QUESTION ENCODER OVERFIT ISSUE
There are three approaches for addressing the question
encoder overfit issue. The first approach is to provide addi-
tional embeddings or additional encodings of supporting
information such as emotions, topic, or facts that accompany
the question [19]–[22], [47], [48]. The underlying idea for
this approach is to reduce the overfitting of the encoder so
that it can generate a richer representation of the question
to be passed to the decoder to furnish relevant answers.
However, these approaches are skewed to a specific goal and
are also dependent on additional inputs such as facts, topics,
or emotions, which may not be available for all question-
answering scenarios or datasets. This leaves a gap in identify-
ing a method that can reduce the question encoder overfitting
without depending on any additional input.

The second approach is the MTL approach, wherein a
Seq2Seq model is trained to perform answer generation and
another task such as answer classification [18], [20]. The
underlying idea for this approach is to share the encod-
ing of the question encoder to perform both tasks so that
the question encoder overfit can be reduced. For example,
[6] utilized binary question–answer classification as an
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FIGURE 4. Multitask Learning consisting of answer generation and
answer classification.

TABLE 2. Sample qestion and answer.

auxiliary task (Figure 4). Binary classification refers to a
classification in which an answer is classified as either correct
or incorrect. However, classifying an answer as right or wrong
only (binary classification) may not be a natural classification
method. In NLP, a generated answer can also be categorized
as partially correct.

Referring to Table 2 as an example, the question is
‘‘What did you have for breakfast?’’ and the exact answer is
‘‘I had half-boiled egg and toasted bread for breakfast.’’ This
is a fully correct answer. Suppose ‘‘I had toasted bread for
breakfast’’ is given as an answer. It is not fully correct, but
at the same time, it is not completely wrong. In this scenario,
the given answer can be considered a partially correct answer.
However, in binary classification, this answer is classified as
incorrect. In line with this argument, binary classification is
not a ‘‘natural’’ classification of answers, which leaves a gap
in identifying an auxiliary task with a more natural answer
classification to be used in MTL-based answer-generation
model training.

The third approach to address the question encoder overfit
is to train the Seq2Seq model using a two-phased (sequential)
training approach [42]. During phase 1, this model learns to
perform first-word prediction, whereas during phase 2, the
model is trained to predict the answers, except for the first
word. The idea of first-word prediction as an auxiliary task
in MTL is a good idea to reduce model overfit. However,
performing sequential MTL suffers from an issue referred to
as a negative transfer. It is a situation where learning of the
first taskmay negatively affect the learning of the second task.

TABLE 3. Gaps in existing works.

This leaves a gap in identifying a more suitable approach to
add the first-word prediction as a task in theMTL framework.

Table 3 summarizes the gaps identified in the related
works, as discussed.

III. PROPOSED METHODS AND MODEL
In this section, we describe our proposed model,
SEQ2SEQ++ (Figure 5, Table 4), to address the issues and
gaps discussed in the previous section. SEQ2SEQ++ inte-
grates four newly proposed methods: the CAM, DL weight-
ing scheme, TC, and MFE in a single model.

The four newly proposed methods in this work are CAM,
DL, TC, and MFE.

i) CAM is an attention computation method proposed to
address the language model influence issue.

ii) DL is a dynamic tasks loss weight computation
method implemented during SEQ2SEQ++ training
and proposed to address the answer-generation overfit
issue.

iii) MFE and TC are proposed to address the question
encoder overfit issue.

By integrating all these methods, SEQ2SEQ++ performs
four tasks in parallel. These tasks are answer generation,
ternary classification, first-word prediction, and last-word
prediction tasks.

The details of each method are discussed in the following
sections.

A. COMPREHENSIVE ATTENTION MECHANISM
In this work, a new attention mechanism called the ‘‘compre-
hensive attention mechanism’’ or CAM, which considers all
the decoder’s previous hidden states during attention weight
computation, is proposed to address the language model
influence more effectively.

In CAM, the attention weights are computed in accor-
dance with all the encoder’s hidden states and the sum of
all the previous hidden states of the decoder. These com-
puted attention weights are then used to compute the con-
text vector. Subsequently, the decoder utilizes the context
vector to generate an answer. The CAM-based decoding
steps are the same as a typical decoding process to gener-
ate the answer, except for the computation of the attention
weights.
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FIGURE 5. SEQ2SEQ++ model. MFE performs question encoding and first word and last word predictions. AE perform
answer encoding. TC performs ternary classification of the answer. AD performs answer decoding (answer generation)
based on S =

∑
(s1, s2, . . . , st − 1) (Comprehensive Attention Mechanism).

TABLE 4. Explanations on notation for the SEQ2SEQ++ model.
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The decoding steps are as follows:-

i) First, during decoding, at time t, the decoder scores the
alignment based on all the question encoder hidden
states (h1 to hT) and the summation of all the decoder’s
previous hidden states (S) (Eq. 2)

ATT t = Softmax(Relu((WQ) · (h1, h2, . . . , hT )

+ (Wt1) · (S))) (2)

where:
h1, h2, . . . , hT are the hidden states of the encoder
t = decoding timestep
S =

∑
(s1, s2, . . . , st−1)

ii) Second, the context vector for decoding at time step
t(Ct ) is generated (Eq. 3)

Ct =
∑

(ATT t ∗ (h1, h2, . . . , hT )) (3)

where Ct is a weighted average context vector for
answer prediction.

iii) Next, the output context vector (Ot ) and decoder’s
hidden state at time step t, (st ) are computed based on
the concatenation of the generated context vector (Ct )
and supplied ground truth (yt−1) using GRU transfor-
mation (fGRU ). Ot is used for the prediction of the
next word and st is utilized for subsequent decoding
steps (Eq. 4).

Ot , st = fGRU (concat(C t ,Embed t−1) (4)

where
Ot is the output context vector generated by the GRU
transformation
st is the hidden state at time step, t generated by the
GRU transformation
Embedt−1 is the embedding of the supplied ground
truth word or the previous predicted word (yt−1).

iv) Finally, the conditional probability of the next
token is computed in accordance with the output
vector p(yt ) (Eq. 5).

p(yt ) = (Wt2) · (Ot ) (5)

where Wx are matrixes (learnable parameters) that is
be trained in the model.

B. MULTIFUNCTIONAL ENCODER
MTL provides the means to add auxiliary tasks that can be
trained simultaneously with answer-generation tasks. By uti-
lizing auxiliary tasks that share the question encoder, it forces
the question encoder to balance and fine-tune the encodings
for all receiving tasks. This step ensures that all receiving
tasks can mitigate their respective prediction losses, such as
answer generation loss or answer classification loss. Because
each task in an MTL contributes to the overall model loss,
mitigating each task’s loss to is very important. Thus, by shar-
ing the question encoder, the question encoder overfit will
eventually be reduced. This can ensure that the answer gen-
eration bias toward high-frequencywords is reduced, and thus
a more meaningful answer can be generated.

The MFE is proposed to take advantage of the
parallel MTL. The question encoder is shared with two addi-
tional tasks: first- and last-word prediction. MFE performs its
tasks in two stages.

i) First, it takes in question embedding and generates
question encoding using the GRU transformation [37]
denoted as fGRU in Figure 5 and Eq. 6.

ii) Next, additional computations on the question encod-
ing (hidden states) are performed to make the
first word (shown as fFW in Figure 5), as shown
in (Eq. 7) to (Eq. 9) and last-word predictions (shown
as fLW in Figure 5), respectively, as shown in (Eq. 10)
to (Eq. 12).

The following computations are performed during the first-
word prediction (fFW ):-

i) First, self-attention weights are computed (Eq. 7).
ii) Next, the question context vector for first-word pre-

diction (CFW ) is computed as the weighted average of
the question encoder hidden states (Eq. 8).

Finally, the probabilities of each word in the vocabulary to be
the first word are computed (Eq. 9).

Similar computations are performed to predict the final
word. This is denoted as the fLW function in Figure 5. The
computations are shown in Eq. 10–12.

(h1, h2, . . . , hT ) = fGRU
(
EmbedQ

)
(6)

ATTFW = Softmax (Relu ((WFW1)

· (h1, h2, . . . , hT ) (7)

CFW =
∑

(ATTFW ∗ (h1, h2, . . . , hT ) (8)

p(first − word) = Softmax (WFW2) · (CFW ) (9)

ATTLW = Softmax (Relu ((WLW1)

· (h1, h2, . . . , hT ) (10)

CLW =
∑

(ATTFW ∗ (h1, h2, . . . , hT ) (11)

p (last − word) = Softmax (WLW2) · (CLW ) (12)

where:
h are the hidden states for all time steps,
T is the question sequence length,
EmbedQ is the question embedding
h1, h2, . . . , hT are the hidden states of the encoder
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t = decoding timestep
ATTFW and ATTLW are the self-attention weights
CFW is a weighted average context vector for first word

prediction
Wx are matrixes (learnable parameters) that is be trained in

the model
WFW1 andWLW1 are learnable matrix
CLW is weighted average

C. TERNARY CLASSIFIER
Similar to MFE, a TC is proposed to take advantage of
parallel MTL to reduce the question encoder overfit. The
TC classifies a question–answer pair as ‘‘correct,’’ ‘‘partially
correct,’’ or ‘‘wrong.’’

As illustrated in Figure 5, the TC performs the question–
answer classification task based on the question encodings
that are generated by the MFE, and answer encoding, which
is generated by the answer encoder (AE). Eq. 13 shows
the answer generation where EmbedA can be embedding for
correct, partially- correct or wrong answers. Answer-Hidden-
States can be one of the below: -

i) a1, a2 . . . , aU, hidden states for correct answer, U is
the correct answer length

ii) b1, b2 . . . , bV, hidden states for partially correct
answer, V is the partially correct answer length

iii) c1, c2 . . . , cW, hidden states for wrong answer, W is
the wrong answer length.

The question and answer context vectors are computed as
the weighted average of the question and answer encodings,
respectively (Eq. 14) to (Eq. 21). The probability for each
classification class is then computed on the concatenated
question and answer vectors (Eq. 22) to (Eq. 24).

Answer-Hidden-States

= fGRU (EmbedA) (13)

AttQ = Softmax
(
Relu

(
WQ

)
· (h1, h2, . . . , hT )

))
(14)

CQ =
∑(

AttQ ∗ (h1, h2, . . . , hT )
)

(15)

AttC = Softmax (Relu (WCl) · (a1,a2, . . . ,aU ))) (16)

CC =
∑

(AttC ∗ (a1,a2, . . . ,au)) (17)

AttP = Softmax
(
Relu (WPI ) ·

(
b1,b2, . . . ,bv

)))
(18)

CP =
∑(

AttP ∗
(
b1,b2, . . . ,bv

))
(19)

AttW = Softmax (Relu (WWI ) · (c1, c2 . . . , cW ))) (20)

CW =
∑

(AttW ∗ (c1, c2 . . . , cW )) (21)

p(class = ‘Correct’)

= Softmax
(
(WC2) ·

(
concat

(
CQ,CC

)))
(22)

p(class = ‘Partially− Correct’)

= Softmax
(
(WP2) ·

(
concat

(
CQ,CP

)))
(23)

p(class = ‘Wrong’)

= Softmax
(
(WW2) ·

(
concat

(
CQ,CW

)))
(24)

where:
ATTQ, ATTC and ATTP are the self-attention weights

CQ is the computed question context vector at time step, t
a1, a2, . . . , aU are the hidden states of the decoder for

correct answers
U is the correct answer length
CC is the computed correct answer context vector at time

step, t
c1, c2 . . . , cW, hidden states for wrong answer
W is the wrong answer length
b1, b2, . . . , bV are the hidden states of the decoder for

partially correct answers
V is the partially correct answer length
CP is the computed partially correct answer context vector

at time step, t
CW is the computed wrong answer context vector at time

step, t.

D. DYNAMIC TASKS LOSS WEIGHT SCHEME
In this work, a task loss weight scheme called the ‘‘dynamic
tasks loss weights scheme’’ is proposed. In this scheme, dur-
ingmodel training, the task loss weights for each task (answer
generation, answer classification, first-word prediction, and
last-word prediction) are automatically recalculated for the
second epoch. The new weights are based on the relative loss
of each task in comparison with the total loss of all tasks
during each epoch (Eq. 25), where αn is the task loss weight,
LTn is the loss of task-n, and N is the total number of tasks.
The weights represent the percentage contribution of each
task to the overallMTL loss. Therefore, the sum of all weights
should be 1, which represents 100%.

αn =
LTn∑N
n=1 LTn

(25)

Algorithm 1 delineates the steps to perform the
SEQ2SEQ++model training, which utilizes the DL scheme.
First, the shared question encoder performs question encod-
ing, and subsequently the first- and last-word predictions.
The model then computes the loss for each prediction (Lfw
and Llw). The question encoding is then passed to the answer
decoder to generate an answer using CAM. This model then
computes the answer-generation loss (lag). In addition, the
answer encoder performs the answer encoding. Both the
question encoding and answer encoding are then passed
to the TC to perform question–answer classification and
subsequently compute the ternary classification loss (Ltc).
The model then computes the MTL loss (LMTL) and updates
its weights (i.e., parameters). The formula for the MTL loss
calculation is shown in step 1.7 in Algorithm 1. Finally, the
model computes the new task loss weights to be used for
the next epoch. These steps are performed for each batch of
the question–answer pairs for the total epoch count,
as defined for training.

The variables αag, αtc, αfw, and αlw represent the task loss
weight for answer generation, the task loss weight ternary
classification, the task loss weight for the first-word predic-
tion, and the task loss weight for last-word prediction tasks.
At the start of the training, each weight is initialized to 0.25.
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Algorithm 1 SEQ2SEQ++ Training Algorithm
Input: {Question (X ), Answer (Y ), Label (L), First

Word (FW), LastWord (LW)} quintuplets,
Maximum answer length (T ),MaximumEpoch (E)

Steps:
Initialize Multi-functional Encoder (MFE), Answer

Encoder (AE), Answer Decoder (AD) and Ternary
Classifier (TC)

Initialize each losses LMTL = Lag = Ltc = Lfw = Llw = 0
Initialize each task loss weights αag = αtc = αfw = αlw =
0.25
For epoch 1 to Number of Epochs
1. For batch 1 to Number of Batches Do
1.1 Perform question encoding
1.2 Predict First Word and compute the first-word pre-

diction losses (Lfw)
1.3 Predict Last Word and compute the last-word pre-

diction losses (Lfw)
1.4 Perform answer encoding
1.5 Perform ternary classification and compute ternary

classification loss (Ltc)
1.6 Perform answer generation using CAMand compute

answer generation loss (Lag)
1.7 Compute multi-task loss:

LMTL = αag ∗ Lag+αtc ∗ Ltc+αfw ∗ Lfw + αlw ∗ Llw

1.8 Update the model parameters (neural network
weights)

1.9 For each task, tk ⊆ {ag, tc, fw, lw}: Calculate the
average loss (Ltk-avg)

End for Batch Looping
2. Calculate the total average loss for all tasks:

Lavg-total = Lag-avg + Ltc-avg + Lfw-avg + Llw-avg
3. For each task, tk ⊆ {ag, tc, fw, lw}

3.1 Calculate new task loss weight: αtk =

Ltk-avg/(Lavg-total)
End for Epoch Looping
Output: Trained SEQ2SEQ++ model

During each epoch, all the task loss weights (αag, αtc, αfw,
andαlw) are recalculated and updated for use in the next epoch
(step 3 of Algorithm 1).

Table 5 presents a sample calculation. The total MTL loss
is 4, and the answer generation loss is 2. Therefore, the new
task loss weight for answer generation (αag) is 2/4= 0.5. The
same calculation is performed to calculate the new task loss
weights for all tasks. The new task loss weights for each task
will be proportional to the total model loss. This means that
the influence of each task in each epoch is dynamically deter-
mined by the task loss in the previous epoch. Thus, model
overfitting can be effectively reduced using this dynamic
proportional task loss weight during training as compared
to using a fixed task loss weight approach, as in typical
MTL learning.

TABLE 5. SEQ2SEQ++ - Sample task loss weights calculation.

TABLE 6. Experimented models.

IV. EXPERIMENT AND DISCUSSION
We developed eight models, and trained and tested each of
them on two datasets NarrativeQA [39] and SQuAD [40] to
gauge the effectiveness of our proposed methods to generate
meaningful and relevant answers for each dataset. All except
the STL model are MTL-based models. The STL model is
a single-task method, which has the answer-generation task
only and is used as a control method. The results of the
experiments are described in detail in this section.

A. MODELS
The models (summarized in Table 6) utilized for these exper-
iments are:-

i) MTL-BC: The MTL-BC model is an MTL-based
Seq2Seqmodel that utilizes the global attentionmech-
anism [41] during decoding and a binary classifier as
the auxiliary task [18]. This model is trained using
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FIGURE 6. MTL-BC model.

TABLE 7. Explanations on notation for the MTL-BC model.

Algorithm 2. It utilizes a fixed task loss weight scheme
for multitask loss calculation during training, whereby
the value of 0.1 is assigned as the binary classification
task loss weight. The architecture of the MTL-BC
model is shown in Figure 6. The notations are sum-
marized in Table 7. This model is the second and key
benchmark model.

ii) STL: The STL model is a single-task Seq2Seq learn-
ing model as proposed by Bahdanau et al. [41] and
utilizes the global attention mechanism [41] and is
trained using Algorithm 2. This model is the first
benchmark model. The architecture of the STL model
is shown in Figure 7. The notations are summarized
in Table 8.

iii) MTL-LTS: The MTL-LTS model is the third bench-
mark for this research work. It is a sequential MTL
model with a global attention mechanism that utilizes
a separate network as the auxiliary task to predict
the first word, as proposed in [42]. This model is
trained using Algorithm 4. The architecture of the
MTL-LTS model is shown in Figure 8. The notations
are summarized in Table 9.

Algorithm 2MTL-BC Model Training
Input: {Question (X ), Answer(Y ), Label(L))} triplets,

Maximum answer length (T ), Maximum
Epoch (E)

Steps:
Initialize Question Encoder, Answer Encoder (AE),
Answer Decoder (AD) and Binary Classifier (BC)
Initialize each loss LMTL = Lag = Lbc = 0
Initialize each task loss weights αag = 1.0; αbc = 0.1
For epoch 1 to Number of Epochs
For batch 1 to Number of Batches Do
1. Perform question encoding: Generate the hidden

states for each timestep
2. Perform answer encoding: Generate the hidden states

for each timestep
3. Perform binary classification and compute classifica-

tion loss (Lbc)
4. Perform answer generation using the weighted hid-

den states from Encoder and its own previously gen-
erated hidden state, and Compute answer generation
loss (Lag)

5. Compute multi-task loss:
i) LMTL = αag ∗ Lag + αbc ∗ Lbc

6. Update the model parameters (neural network
weights)

End for Batch Looping
End for Epoch Looping
Output: Trained MTL-BC model

FIGURE 7. STL model.

iv) MTL-BC-CAM: The MTL-BC-CAM model is a
modified version of MTL-BC where CAM is uti-
lized for attention computation during answer gen-
eration. This interim model is proposed to study
the effectiveness of CAM to address the language
model influence issue. This model is trained using
Algorithm 2. It utilizes a fixed task loss weight
scheme for multi-task loss calculation during training,
whereby the value of 0.1 is assigned as the binary
classification task loss weight. The architecture of the
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TABLE 8. Explanations on notation for the STL model.

FIGURE 8. MTL-LTS model.

FIGURE 9. MTL-BC-CAM model.

MTL-BC-CAM model is illustrated in Figure 9. The
notations are encapsulated in Table 10.

TABLE 9. Explanations on notation for the MTL-LTS model.

TABLE 10. Explanations on notation for the MTL-BC-CAM model.

FIGURE 10. MTL-TC model.

v) The MTL-BC-DL model is proposed by modify-
ing MTL-BC to utilize dynamic tasks loss weight
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TABLE 11. Explanations on notation for the MTL-TC model.

values for multi-task loss calculation during train-
ing. This model is trained using Algorithm 5. MTL-
BC-DL shares the same architecture is as MTL-BC
(Figure 6). This interim model is proposed
to study the effectiveness dynamic tasks loss
weight scheme to reduce answer generation
overfit.

vi) The MTL-TC model is a modified version of
MTL-BC that model that utilizes a TC as the auxiliary
task. This model is trained using Algorithm 2. It uti-
lizes a fixed-task loss weight scheme for multi-task
loss calculation during training, whereby the value
of 0.1 is assigned as the ternary classification task
loss weight. The architecture of the MTL-TC model
is shown in Figure 10. The notations are summarized
in Table 11.This interimmodel is proposed to study
the effectiveness ternary classification to reduce
question encoding overfit.

vii) MTL-MFE: This model utilizes MFE, global atten-
tion mechanism during answer decoding and dynamic
tasks loss weights for multi-task loss calculation.
This model is trained using Algorithm 6. MTL-MFE
architecture is illustrated in Figure 11. The nota-
tions are summarized in Table 12. This interim
model is proposed to study the effectiveness of
MFE, which performs first-word and last-word
predictions in parallel to reduce question encoding
overfit.

viii) SEQ2SEQ++: This is the ultimate model proposed
to address all three issues, as described in the problem
statement (language model influence issue, answer
generation overfit issue, and question encoder overfit
issue). SEQ2SEQ++ integrates all the newly pro-
posed methods, namely, CAM, DL, TC, and MFE
(Figure 5, Table 4). This model is trained using
Algorithm 1.

Algorithm 3 STL Model Training
Input: Question (X )-Answer(Y ) pairs, Maximum

Answer Tokens to Generate (T ), Number of
Epochs

Steps:
For epoch 1 to Number of Epochs
For the batch of question-answer pairs, X and Y

Do
1. Encoder: Perform question encoding, gener-

ate the hidden states for each timestep
2. Decoder:
2.1. Generate tokens with the highest probabil-

ity one by one by feeding weighted hid-
den states from Encoder, its own previously
generated hidden state and the ground-truth
token until maximum answer length is
reached, or end of sequence token is gen-
erated

2.2. Join all tokens to generate an answer (Y ′)
3. Calculate the cross-entropy loss (the differ-

ence between Y and Y ′)
4. Update the model parameters

End For
End For
Output: Trained Seq2Seq Model

TABLE 12. Explanations on notation for the MTL-MFE model.

B. DATASETS
All models were trained and tested on two datasets. The first
dataset, NarrativeQA [39] is a fiction-based dataset and was
proposed for reading comprehension evaluation; however,
we took the question and the first correct answer in our
experiments because we only need that part. The second one,
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Algorithm 4MTL-LTS Training
Phase 1
Input: {Question (X ), Answer(Y )} pairs, Maximum

Epoch (E)
Steps:
Initialize Question Encoder, First-Word Predictor
Initialize loss L1 = 0
For epoch 1 to Number of Epochs

ii) For batch 1 to Number of Batches Do
1.1 Perform question encoding: Generate the

hidden states for each timestep
1.2 Perform first word prediction compute loss

(L1)
1.3 Update the model parameters (neural net-

work weights)
End for Batch Looping
End for Epoch Looping
Output: Trained Learning-To-Start (LTS) model (first

word prediction)
Phase 2
Input: Question (X )-Answer (Y ) pairs, Maximum Answer
Tokens to Generate (T ), Number of Epochs
Steps:
Initialize Question Encoder, Answer Decoder
Initialize loss L2 = 0
For epoch 1 to Number of Epochs
For the batch of question-answer pairs, X and Y
Do

1. Encoder: Perform question encoding, generate the
hidden states for each timestep

2. Decoder:
2.1 For t > 1, generate tokens with the highest
probability one by one by feeding weighted hidden
states from Encoder, its own previously generated
hidden states and the ground-truth token until max-
imum answer length is reached, or end of sequence
token is generated
2.2 Join all tokens to generate an answer (Y ′)

3. Calculate the cross-entropy loss L2 (the difference
between Y and Y ′)

4. Update the model parameters
End For

End For
Output: Trained MTL-LTS Model

the SQuAD dataset (version 1.0) was published in 2006 by
Rajpurkar et al. [40]. SQuAD is a question–answer dataset
based onWikipedia articles. For our experiments, we selected
from SQuAD the questions that have answers, and we only
took the first answer. Table 13 presents the details of both the
datasets used in this experiment.

During training, the pairs of {questions, answers} are used
by all models to learn to generate answers. For example

Algorithm 5MTL-BC-DL Training
Input: {Question (X ), Answer (Y ), Label (L)}

triplets, Maximum answer length (T ),
Maximum Epoch (E)

Steps:
Initialize Question Encoder, Answer Encoder,
Answer Decoder and Binary Classifier
Initialize each loss LMTL = Lag = Lbc
Initialize each task loss weights αag = αbc = 0.5
For epoch 1 to Number of Epochs
1. For batch 1 to Number of Batches Do
1.1 Perform question encoding
1.2 Perform answer encoding
1.3 Perform binary classification and compute binary

classification loss (Lbc)
1.4 Perform answer generation using the weighted hid-

den states from Encoder and its own previously gen-
erated hidden state and compute answer generation
loss (Lag)

1.5 Compute multi-task loss:

LMTL = αag ∗ Lag + αbc ∗ Lbc

1.6 Update the model parameters (neural network
weights)

1.7 For each task, tk ⊆ {ag, bc}: Calculate the average
loss (Ltk-avg)

End For Batch Looping
2. Calculate the total average loss for all tasks:

Lavg-total = Lag-avg + Lbc-avg

3. For each task, tk ⊆ {ag, bc}
3.1 Calculate new task loss weight:

αtk = Ltkavg/(Lavg-total)

End for Epoch Looping

(Table 14), for the question ‘‘How are plants different from
animals?’’ the model will learn to produce the answer ‘‘Pri-
mary cell wall composed of the polysaccharides cellulose.’’

In addition to the answer-generation task, MTL-BC, MTL-
BC-CAM, MTL-BC-DL, MTL-TC, and SEQ2SEQ++
require additional data to perform the answer classification.

MTL-BC, MTL-BC-CAM, and MTL-BC-DL require
triplets of {question, correct answer, wrong answer} for
answer-classification training. Table 15 shows the sample
training data for the MTL-BC, MTL-BC-CAM, and MTL-
BC-DL. The training dataset was generated as described
in [18].

MTL-TC and SEQ2SEQ++ require quadruples of {ques-
tions, correct answers, partially correct answers, wrong
answers} for answer classification training. Table 16 sum-
marizes the sample training data for MTL-TC and
SEQ2SEQ++. The training dataset was generated using the
following approach.
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Algorithm 6MTL-MFE Training
Input: {Question (X), Answer(Y), First Word (FW),

Last Word (LW)}, Maximum answer length (T),
Maximum Epoch (E)

Steps:
Initialize Multifunctional Encoder (MFE), Answer

Decoder (AD)
Initialize each loss LMTL = Lag = Lfw = Llw = 0
Initialize each task loss weights αag = 0.34, αfw = αlw =
0.33
For epoch 1 to Number of Epochs
1. For batch 1 to Number of Batches Do
1.1 Perform question encoding
1.2 Predict First Word and compute the first-word pre-

diction losses (Lfw)
1.3 Predict Last Word and compute the last-word pre-

diction losses (Lfw)
1.4 Perform answer generation and compute answer

generation loss (Lag)
1.5 Compute multi-task loss (LMTL):

LMTL = αag ∗ Lag + αfw ∗ Lfw + αlw ∗ Llw

1.6 Update the model parameters (neural network
weights)

1.7 For each task, tk ⊆ {ag, fw, lw}: Calculate the aver-
age loss (Ltk-avg)

End for Batch Looping
2. Calculate the total average loss for all tasks:

Lavg-total = Lfw-avg + Llw-avg + Lag-avg
3. For each task, tk ⊆ {ag, fw, lw}

3.1 Calculate new task loss weight:

αtk = Ltk-avg/(Lavg-total)

End for Epoch Looping
Output: Trained MTL-MFE model

i) The original answer (gold answer) to the question
which represents the correct answer is labeled as
‘‘Correct.’’ It had a BLEU score of 1.

ii) The original answer is then manipulated by removing
or adding one or more words to obtain a BLEU score
of more than 0 and less than 1 as compared to the gold
answer and labeled as ‘‘Partially Correct.’’

iii) Then, to find the third class to represent the
wrong (negative) answer, any answer that belongs to
another question in the dataset and has a BLEU score
of 0 as compared to the gold answer, is randomly
selected and labeled ‘‘Wrong.’’

C. EVALUATION METRICS
A total of three (3) evaluation metrics were used in this
study tomeasure the performance of eachmodel from various
angles. They are: -

TABLE 13. Dataset details.

TABLE 14. Sample training data for answer generation.

TABLE 15. Sample training data for MTL-BC.

1) BILINGUAL EVALUATION UNDERSTUDY (BLEU)
The BLEU metric [49] is the most popular metrics utilized
in answer generation works such as but not limited to [18],
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TABLE 16. Sample training data for SEQ2SEQ++.

[22], [34], [50], [51] and utilized in [18], one of our key
reference works.It is used to measure the quality of machine
translation versus human translation. It calculates an N-gram
precision between the two sequences and imposes a com-
mensurate penalty for a machine sequence that is shorter
than the human sequence. In addition to its original pur-
pose, BLEU is used extensively for other text generation
evaluations, including natural answer generation (NAG),
and is reported to have a high correlation with human
judgments of quality [49]. Here, BLEU-2 corresponding
to bi-gram versions of the approach is used to evaluate the
generated answer versus the gold answer. The BLEUmetric
measures the correctness of the systems being evaluated
and gives a score between 0 and 1. The higher the BLEU
rate, the better is the model. In other words, a higher BLEU
score indicates the generation of answers that are relevant to
the question.

2) WORD ERROR RATE
Word error rate (WER) [52] measures the ‘‘mistakes’’ of the
model. It measures the rate of wrongly generated words
against the overall generated word. It gives a score of 0–1.
A lower score indicates fewer errors. In other words, a low
WER score indicates the generation of fewer high-frequency
and generic words. The formula is given as (26).

WER complements BLEU; we added it to obtain a more
holistic measurement of each model’s performance.

WER =
∑

WCwrong/
∑

WC total, (26)

where WCwrong is wrongly generated word count, WCtotal is
total generated word count

TABLE 17. Generic experiment settings.

3) DISTINCT-2
In addition to evaluating the correctness of the model using
BLEU and error rate using WER metrics, the diversity of the
answers generated by each model was also measured using a
technique proposed in [53] and utilized in our key reference
work [18]. Here, the Distinct-2 metric is used to measure
diversity. Distinct-2 is the number of distinct bigrams divided
by the total number of bigrams generated by the model. It has
a value between 0 and 1. The higher the score, the more
diverse the answers. In other words, generating more diverse
answers indicates the generation of less high-frequency and
generic answers. The formula is given as (27).

Distinct-2 =
∑

Unique Bigrams/
∑

Bigrams (27)

D. EXPERIMENTAL SETTINGS
All models were implemented using Python version 3.6, and
TensorFlow [54] version 1.15.0, which provides a server-
less Jupyter notebook environment with GPUs for interactive
development [55]. Each model was run for a maximum of
250 epochs and batches of 32 training pairs. The checkpoint
with the lowest validation loss was used for the testing (exper-
iments). For all models, the diverse beam search technique
proposed in [56] was implemented during testing. Several
combinations of group size and beam size were used, and
the best outcome for each model is taken for performance
comparison. Table 17 summarizes the settings.

Additionally, model-specific settings were used for the
experiments. There are as follows:

i) MTL-BC [18] performs answer generation using the
global attention mechanism and binary answer clas-
sification, and fixed weights are used to calculate the
MTL loss during training.

ii) STL [41] is a single-task model, and it only performs
an answer generation task by utilizing the global atten-
tion mechanism

iii) MTL-LTS [42] performs first-word prediction and
then answer generation using the global attention
mechanism.
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iv) MTL-BC-CAMperforms answer generation using the
CAM method and binary answer classification, and
fixed weights are used to calculate the MTL loss
during training.

v) MTL-BC-DL performs answer generation using the
global attention mechanism and binary answer classi-
fication. It utilizes dynamic tasks loss weight calcula-
tions during model training.

vi) MTL-TC performs answer generation using the global
attention mechanism and ternary answer classifica-
tion, and fixed weights are used to calculate the MTL
loss during training.

vii) MTL-MFE performs answer generation using the
global attention mechanism and first- and last-word
predictions. It utilizes dynamic tasks loss weight cal-
culations during model training

viii) SEQ2SEQ++ performs answer generation using
CAM, first- and last-word predictions, and ternary
answer classification. It utilizes dynamic tasks loss
weight calculations during model training.

Table 18 presents a succinct summary of the model-
specific settings.

E. EXPERIMENTS RESULTS AND ANALYSIS
This section focuses into the experiment settings and analysis
of the results based on (i) the comparison of interim mod-
els (MTL-BC-CAM, MTL-BD-DL, MTL-TC, and MTL-
MFE) versus the benchmark models (STL and MTL-BC),
and (ii) SEQ2SEQ++ against the benchmark models (STL
and MTL-BC). The NarrativeQA and SQuaD datasets, and
BLEU, WER and Distinct-2 metrics are used. We also report
the analysis, signifance testing and case study for each issue.

1) INTERIM MODELS VERSUS BENCHMARK MODELS
This section presents and analyzes the experimental results
of our interim models against specific benchmark models
for each issue (language model influence, answer generation
overfit, question encoder overfit andMTL-MFE versusMTL-
LTS). These interim models were developed and tested to
gauge the effectiveness of each of our proposed methods
individually in addressing a specific issue as discussed in
more details in the following sections.

a: LANGUAGE MODEL INFLUENCE
To understand the effectiveness of CAM versus the global
attentionmechanism for answer decoding, we compareMTL-
BC-CAM with MTL-BC. Tables 19 and 20 show the experi-
ment result for MTL-BC-CAM versus MTL-BC.

NarrativeQA DATASET
For the BLEU metric, MTL-BC-CAM scored 0.6390 which
is 11.9% higher than MTL-BC’s score of 0.5709. As for
WER, MTL-BC-CAM scored 0.2839 which is 18.7%
lower than MTL-BC which scored 0.3492. However, for
Distinct-2, MTL-BC-CAM scored 0.79 which is lower

TABLE 18. Experimented models and their settings.

TABLE 19. MTL-BC-CAM vs MTL-BC.

by 2.3% than MTL-BC’s score of 0.8078. This experi-
ment on NarrativeQA shows a mixed result whereby MTL-
BC-CAM performed better than MTL-BC in two (2) met-
rics which are BLEU and WER. MTL-BC-CAM performed
worse thanMTL-BC in terms of Distinct-2 score. This means
MTL-BC-CAM can produce answers with higher correct-
ness (represented by a higher BLEU score) and lower errors

164964 VOLUME 9, 2021



K. Palasundram et al.: SEQ2SEQ++: Multitasking-Based Seq2seq Model to Generate Meaningful and Relevant Answers

TABLE 20. Percentage improvements MTL-BC-CAM vs MTL-BC.

(represented by a lower WER score). However, in terms
of diversity MTL-BC performed better than MTL-BC-CAM
which is represented by a higher Distinct-2 score.

SQuaD DATASET
For the BLEU metric, MTL-BC-CAM scored 0.6888 which
is 1.8% higher than MTL-BC’s score of 0.6769. As for
WER, MTL-BC-CAM scored 0.2622 which is 9.4% lower
than MTL-BC which scored 0.2893. For the Distinct-2
metric, MTL-BC-CAM scored 0.8956 which is 0.6% higher
thanMTL-BC’s scorewhich is 0.8907. This experiment result
on the SQuaD dataset shows MTL-BC-CAM performed
better than MTL-BC in all the metrics. This means
MTL-BC-CAM can produce answers with higher correct-
ness (represented by higher BLEU score), lower errors
(represented by lower WER score), and higher diversity
(represented by higher Distinct-2 scores).

ANALYSIS
MTL-BC-CAM scored higher than MTL-BC in two
(2) metrics for NarrativeQA dataset (BLEU: 11.9% and
WER: 18.7%) and in all the metrics for SQuAD dataset
(BLEU: 1.8%,WER: 9.4% andDistinct-2: 0.6%). This exper-
iment outcome shows that by utilizing CAM,MTL-BC-CAM
can capture the representation of the answer more precisely
without loss of important information which is the question
and generated answer words during each decoding step. Thus,
CAM is a more effective attention mechanism than the global
attention mechanism to address the language model influence
issue. This demonstrates that answer generation is more
effective by utilizing all the decoder’s previously generated
hidden states which represent the decoder’s generated words.

SIGNIFICANCE
To evaluate whether the performance of MTL-BC-CAM ver-
sus MTL-BC scores is statistically significant or not, the
paired Student’s t-test statistical tests were performed on the
BLEU and WER scores for both datasets. Results (Table 21)
indicate that MTL-BC-CAM performed significantly bet-
ter than MTL-BC on three (3) measurements which are
BLEU-NarrativeQA, WER-NarrativeQA, and WER-SQuaD.
BLEU-SQuaD measurement shows an insignificant differ-
ence. Student’s t-test could not be performed for Distinct-2,
as Distinct-2 is an overall score of model diversity and is not
based on individual answers generated.

TABLE 21. Significance test MTL-BC-CAM versus MTL-BC.

CASE STUDY
Table 22 shows two sample questions and the corresponding
generated answers by each of the experimented models. Col-
umn ‘‘BLEU score’’ shows the BLEU score of the respective
answers generated by each model. Column ‘‘Frequency of
term/phrase’’ shows the frequency of selected words in the
respective datasets.

Sample 1 output shows that MTL-BC failed to generate the
correct answer because halfway through the answer genera-
tion, it generated the word ‘‘plans’’ which has a frequency
of 36 instead of ‘‘patient’’ which has a frequency of 18. For
Sample 2, MTL-BC generated the end token (‘‘〈end〉’’) too
soon. The end token has a very high frequency of 24,819
compared to ‘‘of’’ which is 4078.

The result shows that MTL-BC-CAM can generate correct
answers for both questions even though MTL-BC failed to
generate the correct answers.

b: ANSWER GENERATION OVERFIT
To understand the effectiveness of the dynamic-task loss
weights scheme versus the fixed-task loss weights scheme in
reducing answer generation overfit, we compare MTL-BC-
DL with MTL-BC. Tables 23 and 24 show the experiment
result for MTL-BC-DL versus MTL-BC using the Narra-
tiveQA and SQuaD dataset.

NarrativeQA DATASET
For the BLEU metric, MTL-BC-DL scored 0.5979 which is
4.7% higher than MTL-BC’s score of 0.5709. As for WER,
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TABLE 22. Sample output MTL-BC-CAM versus MTL-BC.

MTL-BC-DL scored 0.3183, which is 8.9% lower thanMTL-
BC which scored 0.3492. For the Distinct-2 metric, MTL-BC
scored slightly higher (0.6%) than MTL-BC-DL. MTL-BC’s
score was 0.8078 against MTL-BC-DL’s score of 0.8029.
This experimental result on the NarrativeQA dataset confirms
that MTL-BC-DL performed better than MTL-BC in the
BLEU and WER metrics. MTL-BC fared better than MTL-
BC-DL. This means MTL-BC-DL can produce answers with
higher correctness (represented by a higher BLEU score) and
lower errors (represented by a lower WER score). On the
other hand, MTL-BC generated a higher diversity (repre-
sented by higher Distinct-2 scores).

SQuaD DATASET
For the BLEU metric, MTL-BC-DL scored 0.6878 which
is 1.6% higher than MTL-BC-DL’s score of 0.6769. As for
the WER metric, MTL-BC-DL scored 0.2807 which is 3.0%
lower than MTL-BC which scored 0.2893. For the Distinct-2
metric, MTL-BC scored slightly higher (0.7%) than MTL-
BC-DL. MTL-BC’s score was 0.8907 against MTL-BC-DL’s

TABLE 23. MTL-BC-DL vs MTL-BC.

TABLE 24. Percentage improvements MTL-BC-DL vs MTL-BC.

TABLE 25. Significance test MTL-BC-DL versus MTL-BC.

score of 0.8842. This experiment results on the SQuaD
dataset show MTL-BC-DL performed better than MTL-BC
in the BLEU and WER metrics. MTL-BC fared better than
MTL-BC-DL. This is a similar result to the experiment on the
NarrativeQA dataset. The result shows that MTL-BC-DL can
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produce answers with higher correctness (represented by a
higher BLEU score) and lower errors (represented by a lower
WER score). On the other hand, MTL-BC produced higher
diversity (represented by higher Distinct-2 scores).

ANALYSIS
MTL-BC-DL scored higher than MTL-BC in two (2) metrics
for both NarrativeQA (BLEU: 4.7% and WER: 8.9%) and
SQuAD datasets (BLEU: 1.6% and WER: 3.0%) respec-
tively. This is because MTL-BC-DL utilizes the Dynamic
Tasks Loss Weights Scheme (DL) which recalculates each
of the task’s loss weights during each epoch and assigns
the new values to be used for the next epoch. A task’s loss
represents the difference between the predicted value against
the actual value. Higher the loss means the task is not per-
forming well relatively and has to do a lot more learning
to improve its prediction to reduce the loss. A relatively
higher task loss weight for a task means the task contributes
more to the MTL loss. A higher loss will ensure model
learning continues and doesn’t stop early. There will be big-
ger updates to the neural network weights accordingly to
ensure the model can predict better in future epochs. Thus,
answer generation overfit issue which occurs in fixed tasks
loss weight scheme can be avoided or reduced effectively by
utilizing DL.

SIGNIFICANCE
To evaluate whether the performance of MTL-BC-DL versus
MTL-BC scores is statistically significant or not, the paired
Student’s t-test statistical tests were performed on the BLEU
andWER scores for both datasets. Results (Table 25) indicate
that MTL-BC-DL performed significantly better than MTL-
BC on the WER-NarrativeQA measurement. Other measure-
ments show insignificant differences.

CASE STUDY
Table 26 shows two (2) sample questions and the correspond-
ing generated answers by each of the experimented models.
Column ‘‘BLEU score’’ shows the BLEU score of the respec-
tive answers generated by each model. Column ‘‘Frequency
of term/phrase’’ shows the frequency of selected words in the
respective datasets.

Sample 1 output shows that MTL-BC generated the word
‘‘father’’ which has a higher frequency of 359 instead of
the word ‘‘cousins’’ with a frequency of 31. For Sample 2,
MTL-BC generated the common word ‘‘the’’ which has a
very high frequency of 7479. The correct word that should
be generated is ‘‘battle.’’ question. In both cases, MTL-BC-
DL can generate the correct answer. This outcome shows
that by utilizing the dynamic tasks loss weight scheme, the
performance of an MTL model can be further improved.

c: QUESTION ENCODER OVERFIT
To understand the effectiveness of our proposed methods in
reducing the question encoder overfit against the benchmark

TABLE 26. Sample output MTL-BC-DL versus MTL-BC.

TABLE 27. MTL-TC vs MTL-BC.

TABLE 28. Percentage improvements MTL-TC vs MTL-BC.

models, we compareMTL-TCwithMTL-BC andMTL-MFE
with MTL-LTS.
MTL-TC Versus MTL-BC: Tables 27 and 28 show the

experiment result of MTL-TC and MTL-BC on NarrativeQA
and SQuAD datasets.
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TABLE 29. Significance test MTL-TC versus MTL-BC.

NarrativeQA DATASET
For the BLEU metric, MTL-TC scored 20.5% higher than
MTL-BC. MTL-TC and MTL-BC scored 0.0.6880 and
0.5709 respectively. As for theWERmetric, MTL-TC scored
0.2482 which is 28.9% lower than MTL-BC which scored
0.3492. For the Distinct-2 metric, MTL-TC scored more than
MTL-BC. MTL-TC’s score was 0.815 against MTL-BC’s
score of 0.8078. This experiment result on the NarrativeQA
dataset shows MTL-TC performed better than MTL-BC in
all the evaluation metrics. This means MTL-TC can pro-
duce answers with higher correctness (represented by higher
BLEU score), lower errors (represented by lower WER
score), and higher diversity (represented by higher Distinct-2
scores) than MTL-BC.

SQuaD DATASET
For the BLEUmetric, MTL-TC scored 0.6954 which is 2.7%
higher than MTL-BC’s score of 0.6769. As for the WER
metric, MTL-TC scored 0.2720 which is 6% lower than
MTL-BC’s score of 0.2893. For the Distinct-2 metric, MTL-
BC and MTL-TC’s scores were almost the same with only
a very marginal difference of 0.01%. This experiment result
on the SQuAD dataset showsMTL-TC performed better than
MTL-BC in all the BLEU and WER metrics. This means
MTL-TC can produce answers with higher correctness (rep-
resented by a higher BLEU score) and lower errors (repre-
sented by a lower WER score) than MTL-BC.

FIGURE 11. MTL-MFE model.

FIGURE 12. BLEU scores.

ANALYSIS
MTL-TC scored higher than MTL-BC in all the metrics
for NarrativeQA dataset (BLEU: 20.5%, WER: 28.9% and
Distinct-2: 0.9%) and two (2) metrics for SQuAD datasets
(BLEU: 2.7%, and WER: 6.0%). This experiment outcome
shows that by utilizing a slightly more complex task (ternary
classification) as compared to binary classification, the ques-
tion encoder needs to fine-tune its encoding to ensure the
receiving networks can perform their tasks well.

SIGNIFICANCE
To evaluate whether the performance of MTL-TC versus
MTL-BC scores is statistically significant or not, the paired
Student’s t-test statistical tests were performed on the BLEU
andWER scores for both datasets. Results (Table 29) indicate
that MTL-TC performed significantly better than MTL-BC
in two (2) measurements which are BLEU-NarrativeQA and
WER-NarrativeQA. Other measurements showed insignifi-
cant differences.

In this case, the question encoding is passed to the answer
decoder and ternary classifier. This demonstrates that answer
generation is more effective when question encoding over-
fit can be reduced by utilizing a slightly more complex
question-answer classification method.

CASE STUDY
Table 30 shows two (2) sample questions and the correspond-
ing generated answers by each of the experimented models.
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TABLE 30. Sample output MTL-TC versus MTL-BC.

Column ‘‘BLEU score’’ shows the BLEU score of the respec-
tive answers generated by each model. Column ‘‘Frequency
of term/phrase’’ shows the frequency of selected words in the
respective dataset.

In Sample 1, an incorrect answer was generated
by MTL-BC because it generated the word ‘‘women’’ which
occurs 61 times in the dataset instead of the correct word
‘‘atmosphere’’ which occurs only 5 times in the dataset.
Sample 2 output shows that MTL-BC generated the word
‘‘and’’ which has a very high frequency in the dataset which
is 3867 instead of the correct word which is ‘‘technology’’
which has a frequency of 34 only. In both samples, MTL-
TC can generate the correct answers. The MTL-TC which
uses ternary classification tasks during training can generate
correct answers as compared to when using a binary clas-
sification task. This shows by training an MTL model with
ternary classification can reduce question encoding overfit
and thus reducing the occurrence of frequently occurring
words in answers.

d: MTL-MFE VERSUS MTL-LTS
Tables 31 and 32 show the experiment result of MTL-MFE
and MTL-LTS on NarrativeQA and SQuAD datasets.

NarrativeQA DATASET
For the BLEU metric, MTL-MFE scored 34.2% higher than
MTL-LTS. MTL-MFE and MTL-LTS scored 0.7604 and
0.5665 respectively. As for the WER metric, MTL-MFE
scored 0.1706 which is 48.7% lower than MTL-LTS which

TABLE 31. MTL-MFE vs MTL-LTS.

TABLE 32. Percentage improvements MTL-MFE vs MTL-LTS.

scored 0.3323. For the Distinct-2 metric, MTL-MFE scored
slightly higher (0.4%) than MTL-LTS. MTL-MFE’s score
was 0.8283 against MTL-LTS’s score of 0.88247. This exper-
iment result on the NarrativeQA dataset shows MTL-MFE
performed very much better than MTL-LTS in all the evalu-
ation metrics. This means MTL-MFE can produce answers
with higher correctness (represented by higher BLEU
score), lower errors (represented by lower WER score), and
higher diversity (represented by higher Distinct-2 scores)
than MTL-LTS.

SQuaD DATASET
For the BLEU metric, MTL-MFE scored 0.7708 which is
45.8% higher than MTL-LTS’s score of 0.5288. As for the
WER metric, MTL-MFE scored 0.2069 which is 52.5%
lower than MTL-LTS’s score of 0.4353. For the Distinct-2
metric, MTL-MFE scored higher (1.2%) than MTL-LTS.
MTL-MFE’s score was 0.8939 against MTL-BC-DL’s
score of 0.8837. This experiment result on the SQuAD
dataset shows MTL-MFE performed very much better
than MTL-LTS in all the evaluation metrics. This means
MTL-MFE can produce answers with higher correct-
ness (represented by higher BLEU score), lower errors
(represented by lower WER score), and higher diversity (rep-
resented by higher Distinct-2 scores) than MTL-LTS.

ANALYSIS
MTL-MFE scored higher than MTL-LTS in all the
metrics for both NarrativeQA dataset (BLEU: 34.2%,
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TABLE 33. Significance test MTL-TC versus MTL-BC.

WER: 48.7% and Distinct-2: 0.4%) and SQuAD datasets
(BLEU: 45.8%, WER: 52.5% and Distinct-2: 1.2%). This
experiment outcome shows that the MTL-MFE model which
is trained in parallel mode is more effective to reduce question
encoder overfit as compared to MTL-LTS training which is
based on sequential mode training. By training in parallel
mode, the question encoder needs to fine-tune its encoding to
ensure all the receiving networks can perform their tasks well.
In this case, the question encoding is passed to the answer
decoder, first-word predictor, and last-word predictor. This
demonstrates that answer generation is more effective when
question encoding overfit can be reduced by utilizing a multi-
functional encoder and performing training in parallel mode.

SIGNIFICANCE
To evaluate whether the performance of MTL-MFE ver-
sus MTL-LTS scores is statistically significant or not, the
paired Student’s t-test statistical tests were performed on the
BLEU and WER scores for both datasets. Results (Table 33)
indicate that MTL-MFE performed significantly better than
MTL-LTS in all the measurements.

CASE STUDY
Table 34 shows two (2) sample questions and the correspond-
ing generated answers by each of the experimented mod-
els. Column ‘‘BLEU score’’ shows the BLEU score of the

TABLE 34. Sample output MTL-MFE versus MTL-LTS.

respective answers generated by each model. Column ‘‘Fre-
quency of term/phrase’’ shows the frequency of selected
words in the respective dataset.

Sample 1 output shows that MTL-LTS generated the word
‘‘her’’ which has a very high-frequency count of 58,556 in
the dataset instead of the word ‘‘Christianity’’ which has
a frequency of 11 only. Similarly, for Sample 2, a shorter
and incorrect answer was generated by MTL-LTS because it
generated the end token (‘‘〈end〉’’) too early. The end token
has a very high frequency of 24819 compared to the word
‘‘public’’ which is only 153. The MTL-MFE can generate
correct answers as compared to MTL-LTS. This shows by
training the auxiliary tasks in parallel, question encoding
overfitting can be reduced.

2) SEQ2SEQ++ VERSUS BENCHMARK MODELS
This section presents the analysis of improvements by
SEQ2SEQ++ against the benchmark models (MTL-
BC [18], STL [41], and MTL-LTS [42]) for each dataset
utilized in this study. The results are presented in
Tables 35 and 36.

a: EXPERIMENT ON NarrativeQA DATASET
For the BLEU metric (Figure 12), SEQ2SEQ++ scored
the highest at 0.8245. This score is much higher than
the benchmark models STL, MTL-BC, and MTL-LTS,
which only scored 0.5399, 0.5709, and 0.5665, respectively.
SEQ2SEQ++ scored 44.4% higher than MTL-BC, which is
the next best model in terms of BLEU score for NarrativeQA.

As for the WER metric (Figure 13), SEQ2SEQ++ had
the lowest score of 0.1368. This score is much lower
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TABLE 35. SEQ2SEQ++ versus benchmark models.

FIGURE 13. WER scores.

than the benchmark models STL, MTL-BC, and MTL-
LTS, which scored 0.3701, 0.3492, and 0.3323, respectively.
SEQ2SEQ++ scored 58.9% lower than MTL-LTS, which
is the next best model in terms of the WER score for
NarrativeQA.

For the Distinct-2 metric (Figure 14), SEQ2SEQ++
scored the highest with 0.8264, followed by MTL-LTS
with 0.8247, MTL-BC with 0.8078, and STL with 0.7838.
For this metric, the score of the SEQ2SEQ++ model is only
slightly higher (0.2%) than the MTL-LTS score.

b: EXPERIMENT ON SQuaD DATASET
For the BLEU metric (Figure 12), SEQ2SEQ++ scored
the highest at 0.7941. This score is much higher than

FIGURE 14. Distinct-2 scores.

TABLE 36. Percentage improvements SEQ2SEQ++ versus benchmark
models.

the benchmark models STL, MTL-BC, and MTL-LTS,
which only scored 0.5087, 0.6769, and 0.5288, respectively.
SEQ2SEQ++ scored 17.3% higher than MTL-BC, which is
the next best model in terms of BLEU score for the SquaD
dataset.

As for the WER metric (Figure 13), SEQ2SEQ++ had
the lowest score of 0.1815. This score is much lower
than the benchmark models STL, MTL-BC, and MTL-
LTS, which scored 0.4145, 0.2893, and 0.4353, respectively.
SEQ2SEQ++ scored 37.3% lower than MTL-BC, which is
the next best model in terms of the WER score for SquaD.

For the Distinct-2 metric (Figure 14), SEQ2SEQ++
scored the highest with 0.8972, followed by MTL-MC with
0.8907, MTL-LTS with 0.8837, and STL with 0.809. For this
metric, the score of the SEQ2SEQ++ model is only slightly
higher (0.7%) than the MTL-BC’S score.

c: ANALYSIS
SEQ2SEQ++ achieved the best performance
(Figures 11,12 and 13) for all the evaluation metrics and for
both datasets as compared to all the benchmark models STL,
MTL-BC, and MTL-LTS. Table 36 shows the percentage dif-
ference of the SEQ2SEQ++ model against each benchmark
model. This result indicates that SEQ2SEQ++ can address
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TABLE 37. Significance test SEQ2SEQ++ versus benchmark models.

all three issues (language model influence, answer generation
overfit, and question encoding overfit) more effectively than
the benchmark models. It can generate answers with higher
quality (highest BLEU score), lower error rate (lowest WER
score), and higher diversity (highest Distinct-2 score) in
comparison with all the other benchmark models.

3) SIGNIFICANCE
To evaluate whether the SEQ2SEQ++ model’s scores
against the second-best benchmark model are statistically
significant, Student’s t-test statistical tests were performed
for BLEU and WER scores. The results (Table 37) indicate
that the performance difference in terms of BLEU and WER
scores of the SEQ2SEQ++ model against the next best
models is statistically significant. Student’s t-test could not
be performed for Distinct-2, as Distinct-2 is an overall score
of model diversity and is not based on individual answers
generated.

4) CASE STUDY
This section studies samples of answers generated by each
model as a case study to highlight the advantages of each of
the novelmethods and the SEQ2SEQ++model in addressing
the issues in Seq2Seq learning. One (1) sample is shown
from each dataset. The column ‘‘Frequency of term/phrase’’
provides details on the frequency of selected words in the
dataset.

Table 38 shows four (4) samples of generated answers by
SEQ2SEQ++ and benchmark models (STL, MTL-LTS, and

TABLE 38. Sample output SEQ2SEQ++ versus benchmark models.

MTL-BC). SEQ2SEQ++ model can reduce overall model
overfitting by not generating frequently occurring words as
part of the answers as the other models did and eventually
improves the answer generation quality.

For example, in sample 1, incorrect answers were gen-
erated using benchmark models. STL generated the word
‘‘tree’’ which has a higher frequency of 99 instead of
the word ‘‘guard.’’ MTL-BC performed slightly better than
STL because it can generate the word ‘‘Guard’’ correctly
but incorrectly generated the end token ‘‘〈end〉’’ too early.
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The end token has a frequency of 24,000 for NarrativeQA.
MTL-LTS generated the wrong word ‘‘death’’ instead of the
word ‘‘guard.’’ Similar outcomes were observed in the other
samples.

This experiment shows that, while the other models gen-
erated frequently occurring words or tokens such as ‘‘〈end〉,’’
the comma, ‘‘,’’ ‘‘a,’’ ‘‘in,’’ and ‘‘the,’’ SEQ2SEQ++ avoided
them to generate the correct words/tokens according to the
respective questions.

V. CONCLUSION AND FUTURE WORK
Question-answering chatbots that provide concise answers
to specific user questions and queries are rapidly gaining
popularity in many domains, such as customer support and
education. Neural network-based chatbot models equipped
with domain knowledge can scale much faster than humans
and can be utilized around the clock. It can be continuously
trained with additional new data to be updated with the latest
knowledge to be served to users.

The Seq2Seq natural answer generation method is one
of the most popular methods for implementing question-
answering chatbots. In this method, a question or answer is
treated as a sequence of words or tokens. During training,
the model learns to generate a sequence of words as answers
given the question, which is also a sequence of words.
Although the Seq2Seq based chatbots can provide answers
to most questions, they tend to generate frequently occurring
words in the answer; hence, the generated answer may not be
relevant to the question. Some generated answers also ended
abruptly, whichmeans that it is not a complete answer. Conse-
quently, the generated answers may be meaningless or unsat-
isfactory for the user. This Seq2Seq method’s weakness can
be attributed to three key issues: language model influence,
answer generation overfit, and question encoding overfit.

The existing methods exhibit some gaps. First, existing
attention methods only use the final hidden state of the
decoder for decoding, and this may not be adequate to address
the language model issue. Second, existing MTL models
rely on fixed task loss weights for auxiliary tasks, which are
not sufficient to reduce the answer generation overfitting.
Third, the binary classification utilized by MTL-BC, which
classifies an answer as positive or negative, is not natural.
Amore natural classification of the answer given a question is
correct, partially correct, or incorrect. The MTL-LTS, which
is the sequential MTL model, could not fully harness the
power of the MTL as compared to the parallel MTL approach
to reduce the question encoding overfit issue.

We propose four new methods to fill the gaps of Seq2Seq
learning issues. CAM is a new attention mechanism that
is utilized for decoding. The CAM considers all previous
hidden states of the decoder during decoding. CAM can
balance the gaps between languagemodel influence and ques-
tion influence. By creating this balance, the occurrence of
high-frequency words can be reduced, and thus the model
can generate a correct and meaningful answer. MFE per-
forms first- and last-word prediction tasks in parallel with the

answer-generation task. MFE, which is based on a parallel
learning approach, has shown significant improvement over
the sequential approach. Similarly, by utilizing TC, which
performs ternary classification of the answer given a question,
the question encoder overfit can also be reduced. Models
that utilize MFE and TC can improve the answer generation
quality by reducing the generation of high-frequency words
incorrectly. CAM, MFE, and TC are integrated into a new
MTL model called SEQ2SEQ++, which utilizes the DL
weight mechanism, which calculates the task loss weights for
each of the tasks in the MTL framework during the epoch
and automatically uses it for the next epoch. This ensures that
each task contributes accordingly to the overall model learn-
ing and ensures that model learning does not end prematurely.

We developed eight models and trained and tested each
of them on two published research datasets to gauge the
effectiveness of our proposedmethods (CAM, DL,MFE, TC)
and also our final model SEQ2SEQ++, which combines all
our proposed methods to generate meaningful and relevant
answers.

The results showed that our proposed methods (CAM, DL,
MFE, TC) achieved better results than the benchmark mod-
els. The final experiment result showed that SEQ2SEQ++
achieved the best performance compared to the benchmark
models in natural answer generation. SEQ2SEQ++ can pro-
duce answers with higher correctness (highest BLEU scores),
lower errors (lowestWER scores), and higher diversity (high-
est Distinct-2 scores) on both datasets.

The significance of this research is three-fold:-
i) First, a comprehensive attention mechanism is pro-

posed. CAM is generic and does not require addi-
tional input, so it can be used by researchers in other
Seq2Seq-based tasks such as caption generation or
question generation.

ii) Second, a DL weights scheme and a new DL-based
MTL training algorithm. In an MTLmodel, determin-
ing the weight for each task’s weight loss is not easy.
Multiple arbitrary values must be assigned and tested
before the final weight for a task can be identified.
This trial-and-error approach is time-consuming and
inefficient. It becomes even worse or nearly impos-
sible if there are more than two tasks. Utilizing a
dynamic task loss weight scheme is not only efficient
but also highly effective in producing a better learn-
ing approach, as proved in this study. Moreover, this
finding can encourage other researchers to further
improve existing MTL models with more than one (1)
auxiliary task. The DL-based MTL training algorithm
can be readily adapted to any other parallel MTL
framework.

iii) Third, this study confirms how additional tasks such
as answer classification, first-word and last-word
prediction tasks can be combined in a parallel MTL
setting to improve the performance for the Seq2Seq
learning-based answer generation. MFE shows how
the question encoding overfit issue can be directly

VOLUME 9, 2021 164973



K. Palasundram et al.: SEQ2SEQ++: Multitasking-Based Seq2seq Model to Generate Meaningful and Relevant Answers

addressed by performing further tasks on the just-
on-the-question encoding alone without any need for
additional data. TC shows how the answer can be
classified in a more natural manner, which is effec-
tive in reducing question encoding overfit and is
also valuable for natural language generation tasks.
SEQ2SEQ++ is both a model and framework. As a
model, researchers can utilize SEQ2SEQ++ to train
their question–answer system in another domain or
dataset. They can also perform their Seq2Seq-based
NLP-based research in other areas such as ques-
tion generation and translation. SEQ2SEQ++ is
also a flexible framework. The existing auxiliary
tasks (question–answer classification, first-word pre-
diction, and last word prediction) can be replaced with
other tasks, if needed. CAM can also be replaced
with another attention mechanism that may be newly
developed. This work also provided all the algorithms
and formulas utilized for all the models implemented
in this study. Researchers can replicate and implement
them for benchmarking and further investigations.

In the future, we may devote our efforts to investigating
SEQ2SEQ++ for multiturn conversations and other natural
language tasks, such as question generation and summariza-
tion. We may even investigate how to further improve our
model to show a much more significant improvement in
diversity compared to other models. We are also interested
in exploring pretrained language models such as the gener-
ative pretrained language models and embeddings such as
BERT [23], GPT-3 [10], Word2Vec [57], and Glove [58] to
be integrated into SEQ2SEQ++.
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