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ABSTRACT Translation rotation and scale invariants of Tchebichef moments are commonly used descrip-
tors in image analysis. Existing invariant algorithms either indirectly compute from geometric moments or
directly using Tchebichef moments. The former approach is relatively simple, but inefficient, especially
when the system consists only of Tchebichef moments. Likewise, the latter approach is complicated, mainly
because of the method used to formulate the invariant algorithm. Hence, in this paper, we introduce a new set
of translation, rotation and scale Tchebichef moment invariants (TRSI) using moment normalization, which
is much computationally efficient and accurate. This is achieved by formulating the recurrence relationship
of the descriptors and successfully resolve uniqueness issues of principal axis normalization. Experimental
studies show that the proposed method is computationally much faster and possesses higher discriminative
power in classification when compared with present invariant algorithms. The main contribution of this paper
is a novel fast computational algorithm that simplifies translation, rotation and scale invariant algorithms of
Tchebichef moments and a novel normalization scheme that preserve invariants’ orthogonality from the
moment functions. The technique can be deployed to derive affine invariants of Tchebichef moments, and
invariants for other orthogonal moments like Krawtchouk, Hahn, Racah moments etc.

INDEX TERMS Discrete orthogonal moment, fast computation, image normalization, Tchebichef moment,

translation rotation and scale invariant.

I. INTRODUCTION

Moments are commonly used shape descriptors in the field
of image analysis. Extensive applications can be found in
object recognition [1], [2], characters recognition [3] , image
watermarking [4], [5] , video processing [6] , medical imag-
ing [7]-[9] , fingerprint recognition [10] , pesticides analysis
[11] , image denoising [12] , etc. Hu [13] introduced geo-
metric moments and established invariant properties related
to the theory of algebraic invariants. However, geometric
moments and their extension in the form of radial and com-
plex moments [14] are regular non-orthogonal moments. Fea-
tures generated by these moments will therefore suffer from
information redundancy and sensitive to noise [15], [16].
Because of that continuous orthogonal moments like Legen-
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dre moments, Zernike moments Gaussian-Hermite moments
have been proposed and studied [16]-[19]. The continuous
orthogonal moments store image information with minimum
redundancy and hence image reconstruction is easy. However
the moment basis functions are defined in specific continuous
domain. The computation of orthogonal moments requires
coordinate transformations and integral approximations. This
has led to further computational complexity and discretiza-
tion errors.

Hence, discrete orthogonal moment functions based
on discrete Tchebichef polynomials are introduced by
Mukundan et al. [20]. This is then followed by introduc-
tion of Krawtchouk moments [21] and Hahn moments [22]
and several other family members of discrete orthogonal
moments [5], [23]-[25]. Due to the orthogonal property of the
kernel functions, information represented by discrete orthog-
onal moments are much more compact. In addition, such
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kernel functions are defined in discrete domain which allow
moment functions to be computed accurately without numer-
ical approximation. These have made the discrete orthogonal
moments an ideal feature extractors for patterns represented
in digital form.

An important property of moment functions is that
they should be invariant to translation, rotation and scale
which can lead to better performances in image analysis
[10], [26]-[29]. The translation, rotation and scale invari-
ants of discrete Tchebichef moments are formulated either
directly from the moment functions or indirectly from other
moments like geometric moments. The first translation, rota-
tion and scale invariants for discrete Tchebichef moments
using indirect approach is proposed by Batioua et al. [30]
for 3D patterns. The method is based on invariants pro-
posed by Yap et al. [21] for Krawtchouk moments. This indi-
rect approach is simple to formulate and thus has become
the most commonly used translation, rotation and scale
invariants for discrete orthogonal moments on 2D and 3D
patterns to date [21], [24], [25], [29]-[32]. However the
computation of transformed central-geometric moments is
relatively time consuming because of the appearance of
complicated quantities and repetitive calculations in the
expressions.

The rotation invariant of Tchebichef moments using
the direct approach is first proposed by Zhang ef al. [33]
and Goh et al. [34]. Both algorithms eliminate spatial dis-
placement and scale and rotational deformations by using
respectively central-Tchebichef moments and moment nor-
malization. Zhang et al. [33] removed rotational deforma-
tion using second order central-Tchebichef moments. On the
other hand Goh e al. [34] eliminate these deformations by
exploiting the geometric distortion properties. However,
as both algorithms involved the decomposition of hyperge-
ometric function and sequential computations, the invariant
algorithms are therefore complicated and computationally
intensive.

Recently, based on orthogonality properties of Tchebichef
polynomials, Pee et al. [35] have successfully simplified
anisotropic scale and translation invariant (ASTI) algorithm
for Tchebichef moments which was initially proposed by
Zhu et al. [36]. The features from the ASTI method is invari-
ant to translation and scaling. However, the invariant algo-
rithm does not work when images are rotated. Hence, in this
paper we propose a formulation of a new set of transla-
tion, rotation and scale invariant algorithm for Tchebichef
moments (TRSI) to address the issue. The invariant algorithm
is not only more computationally efficient, generated features
will also preserve orthogonality from Tchebichef moments.
As such generated features will be more resilient to noise and
possess better discriminative power for classification. In the
empirical study, the proposed algorithm will be benchmarked
against the 2D translation, rotation, and scale Tchebichef
moment invariants using indirect approach (TRSI-ID) by
Batioua et al. [30] and the invariant algorithm based on direct
approach (TRSI-D) by Zhang et al. [33].
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In Section II a brief overview on the discrete Tchebichef
moments is given. This is followed by review of exist-
ing translation, rotation and scale invariant algorithms for
Tchebichef moments using indirect and direct approaches.
In Section III, a new TRSI algorithm is proposed for
Tchebichef moments. Section IV gives an empirical veri-
fication to support the theoretical frameworks. Section V
concludes the paper.

Il. REVIEW ON TCHEBICHEF MOMENTS AND

THE INVARIANT ALGORITHMS

A. TCHEBICHEF MOMENTS

The n-th order discrete Tchebichef polynomial tflv (x) is
defined as

N@) =1 =N)y3F(—n, —x,14+n;1,1 =N ;1),
nx=01,2---,N—=1 (1)

where

ap, az, az
3 < z

1 (@ (@)r(az) 2
by, by > = ot @

(kb k!
and the Pochhammer symbol (a); = a(a+ 1)(a+2)...(a+

k—1).
Tchebichef polynomials has the orthogonality condition

k=0

N-1
> N @th (x0) = p(n. N)Sum 3)
x=0

where the square-norm

N+n
= | = e —
p(n, N) = (2n)! <2n " 1) n=01,---,N-1 (4
However as mentioned in [20] the polynomial £ (x) grows
at a rate of N", and has caused numerical instability in the
computation. The orthonormalized Tchebichef polynomial
has thus been introduced to address the issue

t (x)
v p(n,N)

The (n4-m)-th order Tchebichef moment 7}, ,, for an image
f(x, y) having size N x N is defined as

;},Ilv(x) =

&)

N—-1N-1

Tom= Y Y I iy G) (x,) 6)

x=0 y=0
The three-term recurrence relation of Tchebichef polyno-
mial, i,llv (x), can be expressed as
N (x) = AY + BN (o) + CYEY 5 (x0)
n=2,3...,N—1 @)

1 B ~
and Y (x) = —, N x) = @AY + BN (x) 8)
0 \/N 1 1 17°0
where
y 2 [4n2 —1
N _
An = n\ N2 — 2 ©)
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_ 2 _
Bi:, ¢! N) /4n 1 (N 1) AN (10)
_ 2 —_1)2
(:,’]1\,: (n 1) [2n+1 /N (n 1) (11
2n—3 n?

Tchebichef polynomial 7V (x) is symmetric at G > D with

) =N —1-x) (12)

The recurrence formula (7) with initial conditions (8) and
the symmetric property (12) of Tchebichef polynomial are
commonly used to compute the basis of Tchebichef moments.
However, cumulative errors in the computation will cause
the algorithm to be unstable when the order becomes large.
Hence several techniques have been proposed to address the
issue [37]-[39].

B. TRANSLATION, ROTATION AND SCALE TCHEBICHEF
MOMENT INVARIANTS USING INDIRECT APPROACH

The (n+m)-th order of translation, rotation and scale invariant
Tchebichef moment using indirect approach TRSI-ID, has
expression

n m
L =20 ) e i (13)
k=0 j=0
where
‘ N2 N—-1IN
Mp.g = 200 Z f(x y)
x=0 y=0
x 1 [(x — X)cos(6y) + (y — y) sin(6p)]
P
N2 N-—1
X [
2my,0 2
x 3 [=(x = B)sin(0)) + (v — ) cos(0p)]
q
Al L=l (14)
2mp o 2
n
) =t (15)
1 2
0p = — tan"! (L) (16)
2 12,0 — 0,2
g= 0 g oy = TOL (17)
mo,0 mo,0
Here
N—1N-1
mpg =Y Y x"Yf(x,y) and (18)
x=0 y=0
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N—1N-1
pg =) D @ =DPO=9xy) (19
x=0 y=0
are respectively the geometric moment, and central-
geometric moments.
The angle 6, in (16) is further normalized so that w0 >
1o,2 and u3 0 > 0 to resolve ambiguities caused by principal
axis normalization.

C. TRANSLATION, ROTATION AND SCALE TCHEBICHEF
MOMENT INVARIANTS USING DIRECT APPROACH
The present translation, rotation and scale invariants for
Tchebichef moments using direct approach TRSI-D is mainly
based on the algorithm proposed by [33]. To improve the
computational efficiency, we use algorithm proposed by [36]
to compute central-Tchebichef moments
n

Tn(cm Z Z Un, n— k(_x)vm m—j( T n—k ,m—j

k=0 j=0
,N—1 (20)

nm=20,1,---
where

Uy n—k (@)bp—k n—k

k
n—k+r
ZZ( r )bnn k+r<)r

r=0
k—1
En—u,n—an,n—u(a) (21)
u=0
L 4D =Ny
brnk = TN (= lR)? @2

and the falling factorial (a), =ax(a@—1)x---x(@a—n+1).
We next consider scale and rotation normalization.
Although the existing algorithm does not come with scale
invariant, it can easily be extended by incorporating the scale
normalization so that the generated features are translation,
rotation and scale invariants.
The (n + m)-th order of translation, rotation and scale

{1 .
invariant function, I,§ e ) , thus has expression

TR 53 3 30 b o (3 [ IRTTA

k=0 j=0 s=0 t=0 u=0 v=0
X a)m+”+2(cos 0,y +5 7! (sin K1~

x C dA]YH lej-‘rk s—t,v (23)
where
{c) (c)
0, = %tan*1 (p_;lc’)l _‘1;((2)0) (24)
2,0 0,2
aathe 2"
T Ty
and
Q,
w, = [ (26)
N x Tpo
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Here w, denotes scale normalization parameter where nor-
malized image has the mass value €2;.

IIl. PROPOSED TRANSLATION, ROTATION, AND SCALE
TCHEBICHEF MOMENT INVARIANTS

In this section we will present the new translation, rotation
and scale Tchebichef moment invariants (TRSI). The pro-
posed TRSI is based on the technique of image normalization.
In the following sub-sections, we will formulate recurrence
relations for fast computation of the invariant algorithms.
This is followed by the normalization scheme of TRSI.

A. FAST COMPUTATION USING RECURRENCE RELATIONS
Suppose the deformed pattern f(x, y) and normalized pattern
g(x’, y) are respectively in image spaces Ny x Ny and Ny x Ny
such that g(x’, y") = f(x, y) and

x’ ar a)\ [x as
= 27
(y’) <b1 bz) (y> i (bs) 7
Definition 1: Affine transformed Tchebichef moments

{T,ﬁf%l ) } are

No—1Ny—1

1Y D iVarx + azy + a3)

x=0 y=0

XN (b1x + bay + b3)f (x, y)

ai, az, a3, by, by, bz € N

n+m=0,1,--- ,min(Ny — 1, Ng, —1) (28)

T2 (g) =

where the Jacobian J = a1by — axb; # 0.
The recurrence relations of affine transformed Tchebichef
moments are given by the following theorem.

Theorem 1: The (n + m)-th order of affine transformed
Tchebichef moment T,ﬁa,lnn Vis given by

n+m n+m—k @ a. a
1, d2, d3
= |J] Z Z )\n m,k,j ( by, b3 }l\,()a NY) Tk,j

k=0 j=0
(29)

where hp .k j has two different recurrence relation expres-
sions with respect to directions of row and column.

Anmk.j

=1 arkeNo e

= n—1,mk+1,j418, 2% 42

Ng,No ~No ~N.
— Mtk jr102K, 5 5 CLO A A2 mk jCp*

n,j+2 “j+2
N, —1
)(al+az) ( > >:|

Ny.N
+ An—tmk j-102K, 0 (30)

No—
+ An— lmk]A |:a3+<

NN
+ At mk—1jar K,
)\n m,k,j
No A
= - 1kt1,01K O G,

No ~No AN,
- )\n m—1 kj+1b2 m1+2cj+2 + An m72,k,ijS

1
+ hmm g AN [b3+(N )(bl bz)—(N2 )}
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Ny.N Ny N
+ =1 k101K, 5+ A1k j—102K, 50 (B1)

NN Ag :
and Kp’j]’ 2 = IW (32)
q
Proof: Consider the basis of Téil)n '(g) using (8)
N <N No
B NI () = <ﬁ> VWi (33)

N

N
we get  10,0,0,0 = <FO> (34)
N

For ff/“' (x’ )?(I)V ('), we have
fiVS(x’)féVS(y’) = [(alx +ayy + ag)AIIVS + B"Ilvé]

X70* (a1x + azy + a3)iy* (b1x + bay + b3)
(35)

After some simplification using (8) we get
R @ 0)
No\ -
= aK}5M <—°> OIS
Ny

N N
NS No (VO \ ~No,_\=No 0
+ K — t + A

@ (NS) (x) 1 o) (Ns)

X |:a3 + —(Noz— 1)(a1 + az)——(Nxz_ 1)} xiévo(x)?g’o(y)

which implies that

N
A1,0,1,0 = a1K ) N No <ﬁ0> (36)
N
2,001 = @K}y NsNo (FO) (37)
_ 1 N, —1
A1,0,0,0 = AN ( > |: T)(al—i-az) - %]
(38)

Similarly, for ;(1)\/ S(x’ )i{v“ (), we get

N
ro,1,1,0 = blKN‘ Mo <—0> (39
N
N
*o,1,0,1 = szN‘ o <—0) (40)
Ny
N (No—1) Ny — 1)
M)loo—A“(NO)[bs—l- O+ bz)—sT]
N
(4D)
Suppose
;Ilavs(alx +ay + 613);(]1\]5(191)6 + byy + b3)
ptqptq—k N .
=Y hpr @) @)
k=0 j=0

is true for p < n and g < m. We now consider th(x’)th(y ).
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From the three-term recurrence relation of Tchebichef
polynomial (7), we have

e DI
{(a1x+a2y) An+1 } s (arx+ayy+az)is (b1x+bay+b3)
+ {03A71+1+Bn+1} PN (arx+azy+az)ins (b1x+byy+b3)
+ Gy (arx + axy + a3)in (bix + bay + b3) - (43)

By induction, (42) and (7), we get

N, INTN
TARED TGS
n+m-+1 n+m+1—k

oL

) o
- )»n,m,k,/al n+1 k+1B§cV+1

)Ln,m,kfl,jalKn_H k

) ~No
Anm k41 JalKn+1 k+2Ck+2

. Ng,No  pNo
)‘” m.k Jaan—i-l j+1Bj+l

=No
i 10K G| R 0)

+)Ln,m,k,jfla2Kn_,r_1 J

n+mn+m—k

~N, ~N
+Z Z )\nmk]{ n+1(13 +Bﬁl+1}tko(x)tj ')
k=0 j=0
n+m—1n+m—1—k

+ Z Y Mtk O W) (44)

j=0

After some simplifications we finally have

N,
)i
n+m+1 n+m+1—k
k=0  j=0
+ )\n,m,k—l,jalK +] k )+ An m k/ laZanH k

N No — Ny —1
+ )\n,m,k,jAn;+_1 az+ (a1+az)— )
_)‘n,m,kﬂ,jalKnH k+2Ck+2

R T T i ety EALSTATONINCS

N
)\n—l,m,k,jcnjrl

n+1 ]+2 42

By applying similar procedures we can get (31). The theo-
rem is proved. O

In the next section we investigate the characteristic of some
Tchebichef moments when the pattern is at the center of an
N x N image. This will later be used to derive normalization
parameters for TRSI Tchebichef moments.

B. TCHEBICHEF MOMENTS FOR PATTERNS AT THE
CENTER OF IMAGES

A pattern is at the center of a N x N image if its centroid is
at the center of the image i.e.

- - N—-1 N-1
(x,y)=<T,T> (46)
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It can then be easily shown that the centroid of a pattern in
terms of Tchebichef moments has expression

__ Tio—BYToo .
AT To0

To, 1 — BY Ty

= 47
A]lv To,0

This gives us the following lemma.
Lemma 2: Let f denote the pattern ina N x N image, the
first order Tchebichef moments

T1o=To1=0 (48)
if and only if

. N -1
X=y=

2

We next investigate Tchebichef moments values of a pat-
tern at the center of N x N image, rotated by angles +7 and
7 about centroid.

Lemma 3: Suppose f is a pattern at the center of N x N
image.

1) If g denotes the pattern f rotated by £7 about the

pattern centroid then

(49)

T2.0(8) — To.2(g) = — [T2.0() — To2(f)]  (50)

2) If g is the pattern of f rotated by w about the pattern
centroid, then

T3,0(8) = —T3,0() (51)
Proof: Given that g is the rotation of f by 7 about its
centroid, the moment 77 o(g) therefore have expression

woinetfeos () =5
T2’O(g):x2=:0y2=:0t2 _I_Sin(%)(y_y)_'_NT_l
—sm( )(x—x)-f-
il . NSl 6D
cos (5) 0 =9+ =5

Since f is at the center of the image and using symmetric
property in (12) we get

T20(8) = NZINZI B M) (N =1 =x)f (x, )
x=0 y=0
= To2(f) (53)
Similarly for To,2(g) = T2,0(f) (54)
Thus we have
T2,0(8) — To2(8) = — [T2.0(f) — To.2(f)] (55)

Following the same steps, if g denotes the f rotated by angle
—% about its centroid, will lead to same conclusion as indi-
cated by (50).
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Similarly if g is the rotation of f about its centroid by 7,
we can deduce that

N—1IN-1
Tiog) ==Y Y BN —1-xi ),y
x=0 y=0
= —T3,0(f) (56)
O

Lemmas 2 and 3 give the theoretical basis on how moment
values are related to the placement and orientations of a
pattern. With that we are now ready to formulate translation,
rotation and scale Tchebichef moment invariants.

C. NORMALIZATION SCHEME FOR TRANSLATION,

ROTATION AND SCALE TCHEBICHEF

MOMENT INVARIANTS

Following the setting of Subsection I/ —A, let T,, ,, denote the

(n + m)-th order Tchebichef moment of a deformed pattern f

in Nog x Ny image, and I,ifiz) be the proposed (n + m)-th order

translation, rotation and scale Tchebichef moment invariant

with normalized pattern g at the center of an Ny x Ny image.
Definition 2: The translation, rotation and scale Tchebichef

trs
moment invariants {In m } are defined as

](trs)

n,m
No—1Ny—1

=0’ Y Y f&y)

x=0 y=0

xff,VS (a)[( X — y)si NS2_1>

~N. =\ e - Nv_l
Xy (@ [=(x =) sin@)+ (=) cos(O)]+ ———
, min{No — 1, Ny — 1} (57)
Theorem 4.: Suppose 2 denotes the mass of normalized

. trs) . . . . . .
image, I,i,m> is translation, rotation and scale invariant with
parameters

nm=0,1,-.-

° (58)
To,0No
and
tan(26)
) (No—l —)?) (No—l _ -> Ao,
2 7 y)Aap 10,0
+2 <N°2_1 —56) To1 +2 (N02—1 —ﬁ) T
2T 4
+AT°
Bl 1 2 2 (59)
Ao [(%21 ~%) - (M - 5) :|T00
—2(M - F) Tio+2 (M - 5) To.
Do _ Toa
N, Y
A0 A0
if it satisfies the following normalization conditions
Q
(trs)
L. Iy, =— (60)
0,0 N,
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2. 1% =0=17 (61)
3. 1% =0 (62)
4. 1y > 15 and (63)
5. 1'% >0 (64)

Proof: We first resolve size deformation. From Defini-
tion 2, using the first normalization condition given in (60),
the zero order moment
(trs) __ 2N 0 _ Q2
Iny 1) N, To.0 N (65)
we get (58).

Lemma 2 gives the necessary and sufficient conditions that
when the first order moments are equal to zero, the pattern
centroid will be at the center of Ny x N image. Thus, the
second normalization condition in (61) resolved the spatial
displacements issues of deformed images.

We next find the angle 6. From Theorem 1 and the defini-

tion of I,%Z) given in (57) we can then deduce that

Lo | (No=1 2\ (No—1
Esm( ) < 3 x> +< 5 y)
+cos(20) (N‘)z—l —)'c) (N02—1 —y>
~ 2 /N
x> (AIIVS> (ﬁ(j) To.0

(trs)
11 ,1

in(26) <N°_1 )
— S1n — X
+ KNy 2AN‘<N0) N Tio
Ns +cos(29)< . —;)
in(26) (No -1 _
N sin -y
Ng,No 2 7%Ng 0
+K A (N ) NO -1 TO,I
§ + cos(20) 5%
+cos(29)( KM NO) W*TY
1 N N N No,2 No
— = sin0)K KM T
28111( ) N, 2,0
No
+sin0)K," K5 N0 w? (N > To (66)
N

By using the third normalization condition as stated in (62),
thus, we get (59).

However, the solutions (59) are not unique. The normalized
angle 6 has multiple solutions each separated by 7 x n, where
n € Z. Hence additional constraints (63) and (64) which
have been derived using Lemma 3 are used to resolve the
ambiguities. An angle 7 will be added to 6 if the constraint
(63) is not satisfied. Similarly, an angle 7 will be added to 6
if the invariant functions failed to satisfy the constraint (64).
The theorem is proved. U

There is a setback in the proposed normalization scheme.
Due to the fact that the basis of Tchebichef moment f,jlv “(x) x
?,],\,’"(y) is symmetric at the center of image N; x Nj, large
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numbers of odd-order invariant descriptors generated from
symmetric patterns will therefore have values equal or near to
zero. This is because patterns have been shifted to the center
by the constraint (61). As such, classification tasks will be
difficult, especially for symmetric patterns. Hence, skewed
parameters are added to the TRSI model to address this issue.

D. SKEWED PARAMETERS FOR TRANSLATION, ROTATION
AND SCALED TCHEBICHEF MOMENT INVARIANTS

Skewed parameters for TRSI are introduced to enhance the
discriminative power of the moment invariants.

n+mn+m—k
a, az, as
Y =0 > hnmkj , Ny ) x Ti,
n,m n,m,k,j by, by, b3 0 s k,j

k=0 j=0
(67)
where
a; = wcosh ap = wsinb,
Ny —
az = —a»"ccos@—w&sin@—i—AT—i—tx
by = —wsinf by = wcosb,
. _ Ny —1
b3 =wxsm6’—a)ycost9+T+ty (68)

and the skewed parameters (z, f,) are denoted as the spatial
displacements transformation in unit of pixel from the center
of normalized image Ny x Nj.

IV. EXPERIMENTAL RESULTS

In this section, experimental results for the translation, rota-
tion and scale invariant algorithms are provided. The pro-
posed TRSI is benchmarked against TRSI-D by Zhang et al.
and Zhu et al. [33], [36] in Sub-section II-C and TRSI-ID in
Sub-section II-B. The first experiment evaluates the accuracy
of the translation, rotation and scale invariants of the proposed
model. The second experiment evaluates the computational
performance of proposed invariant algorithm. Finally, the
classification performance of the proposed algorithm is eval-
uated in non-noise and noisy environments.The accuracy of
the algorithms is measured using relative standard devia-
tions (RSD) in the percentage spread

RSD(%) = |“—| x 100% (69)
m

where 1 and o denote the mean and standard deviation of
feature values, respectively.

A. EXPERIMENT ON ACCURACY OF TRANSLATION,
ROTATION, AND SCALE INVARIANTS

In this subsection, we evaluate the accuracy of translation,
rotation and scale invariants algorithms. A set of images
with different complexity represented by groups of numbers,
letters, symbols, Chinese characters and gray scale images are
used in this experiment. Figure 1 shows the selected patterns
with size 90 x 90 , in image space Ny x Ng = 200 x 200,
are scaled uniformly by factors of 0.75, 1.00, 1.25 and 1.5,
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(w,0°) Original (0.75,70°) (1.25,170°)  (1.50,220°)
(a3,b3) — (-5,0) 0,-5) 0,0)
Image he-1 he-2 he-3 he-4
(w,0°) Original (0.75,160°)  (1.25,260°)  (1.50,310°)
(as,b3) — (0,3) (3,0 (3.3)
Image ice-1 ice-2 ice-3 ice-4
(w,0°) Original (0.75,130°)  (1.25,230°)  (1.50,280°)
(a3,b3) — (-5,3) (0,0 0.3)
Image man-1 man-2 man-3 man-4

FIGURE 1. Selected test images used by the experiment on the accuracy
of translation, rotation and scale invariants.

rotated by angles 0°, 10°, - - -, 350° and translated vertically
and horizontally from center of image by —5, 0, and 3. The
normalized image size of the TRSI is Ny x Ny = 120 x 120,
the mass of normalized image is 2 = Ny x Ny x 0.08 and
the skewed parameters are (ty, ty) = (—2, 3). The selected
orders of invariant descriptors of TRSI are listed in Table 1.
RSD in percentile of invariant features up to 7 orders each
calculated from 1,296 deformed images are recorded in the
table.

RSDs of TRSI shown in Table 1 are mostly below 1%.
This is not only due to accuracy of proposed normalization
schemes, since the skewed parameters also play an important
role in the accuracy of invariant features. With the spatial
displacement caused by skewed parameters, most invariants
including odd order features are deviated from zero for sym-
metric and non-symmetric images. This not only improves
the computational accuracy, but it also enhance the discrim-
inative power of these features. This is because since most
of the features are non-zero, they are able to extract and
represent more information out from the given patterns.

B. NUMERICAL COMPUTATION EFFICIENCY

In this subsection, we evaluate the numerical performance
of the proposed algorithm. The algorithms have been imple-
mented in Matlab 2014b, on Intel processor i7-7700HQ with
2.8GHz and RAM 32GB. A gray scale and a binary patterns
“cameraman’ and ‘““deer”’ [40] shown in Figure 2 in sizes of
45 x 45, 90 x 90, 140 x 140 are mapped to the center of
images 100 x 100, 200 x 200, and 300 x 300, respectively.
The images are used to generate deformed images that uni-
formly resized by factors 0.75, 1.0 and 1.25, rotated by angles
0°,60°, - -- ,300° and translated horizontally and vertically
by —1 and 2. For each specific image space stated above,
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TABLE 1. Selected orders of skewed-TRSI features from the translation,
rotation and scale deformed images.

Image I 2%) I 1? I 2<Ir2s I 5m6 I oug I 2“5: )
he-1 —14.357 —0.382 11.206 2.245 0.779  1.089
he-2 —14.358 —0.382 11.204 2.251 0.773 1.085
he-3 —14.358 —0.383  11.207 2.243 0.782 1.091
he-4 —14.358 —0.383  11.207 2.245 0.780  1.089
RSD(%) 0.006 0.276 0.023 0.183 0.655  0.350
ice-1 —14.051 —1.140 11.279 1.247 —-0.864 0.215
ice-2 —14.046 —1.139 11.269  1.241 —0.860 0.212
ice-3 —14.054 —1.140 11.282  1.248 —0.861 0.215
ice-4 —14.052 —1.140 11.280 1.247 —0.865 0.216
RSD(%) 0.027 0.024 0.035  0.229 0.642 0.581
man-1 —13.339  —1.129 9.983 1.328 —1.386  0.070
man-2 —13.337 —1.128 9.985 1.327 —1.385  0.069
man-3 —13.338 —1.128 9984 1.328 —1.385 0.071
man-4 —13.339  —1.129 9.984 1.328 —1.385 0.070
RSD(%) 0.007 0.030 0.017 0.084 0.391  2.146
la
cameraman deer

FIGURE 2. Selected images used for evaluation of numerical
computation.

a total of 144 deformed images have been generated from the
2 patterns. For direct approach, Tchebichef moments are first
generated from deformed images. This is followed by com-
putation of invariant descriptors from Tchebichef moments
to produce descriptors up to orders 5, 10, 20, and 30. The
deformed and normalized images are to be identical in size
No x Ngo = N x N;. The mass of normalized images for
TRSI, and TRSI-D are 2 = Q; = Ng x Ngp x 0.18 and
skewed parameters (#,, t,) = (0, 0). For indirect approach,
invariant descriptors of TRSI-ID are computed directly from
the transformed central-geometric moments using (13 — 16).
The average CPU elapse times in millisecond were recorded.
Table 2 denotes the comparison of CPU elapse time between
TRSI, TRSI-D and TRSI-ID.

Columns 3, 4 and 5 of Table 2 denote the total times
required to generate invariant descriptors from an image
using algorithms TRSI, TRSI-ID and TRSI-D, respectively.
As shown in columns 3 and 4 of Table 2, TRSI reduced
computation times of TRSI-ID by 74.5% to 87.3% when
generating features from 100 x 100 images with orders are
up to 5, 10, 20 and 30. When the image size is increased to
300 x 300, the computation time to generate the features is
reduced when compared to TRSI-ID by 88.0% to 90.0% for
orders no more than 5, 10, 20 and 30. Generally TRSI is more
numerically efficient relative to TRSI-ID and will perform
even better when the image size is larger. On the other hand,
as shown in columns 3 and 5 of Table 2, TRSI reduced com-
putation time of TRSI-D by 0.0% to 59.1% when generating
features with orders up to 5 and 10. In addition, TRSI reduced
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TABLE 2. Comparison of CPU elapse time (ms) for translation, rotational
and scale descriptors.

Image Order  TRSI  TRSI-ID TRSI-D
100x 100 5 2.0 16.0 2.0
10 7.3 54.2 17.6
20 37.5 215.1 1,174.9
30 1238 486.1  20,490.9
200 % 200 5 7.4 61.2 7.5
10 24.1 217.4 34.6
20 96.4 863.6 1,237.7
30  250.2 1,950.9  20,697.3
300 x 300 5 16.5 137.3 16.5
10 52.4 493.2 62.8
20 1954 1,958.6 1,338.4
30 4628 4,426.4  20,947.2

FIGURE 3. Binary images as training set for experiment of characters
recognition.

computation time of TRSI-D by 85.4% to 99.4% when gen-
erating invariant features with orders no more than 20 and
30. Hence, the performance of TRSI and TRSI-D is nearly
identical when generating features up to order 5. However,
TRSI is much numerically efficient compared to TRSI-D
when generating higher order invariant descriptors. These
show that TRSI is superior in computation performance when
compared with the most commonly used translation, rotation
and scale invariant algorithms for Tchebichef moments to
date.

We next examine the discriminative power and noise sen-
sitivity of the TRSI features.

C. EXPERIMENT ON OBJECT RECOGNITION
In this experiment, a set of Chinese characters as listed in
Figure 3 are used as training set. Each training pattern size
is 60 x 60 in the image space Ngp x No = 120 x 120. The
testing set is generated from training set by transforming the
images with scale factors 0.8, 1.0 and 1.2, rotated by angles
of 0°, 20°, ---, 340° and displaced vertically and horizon-
tally by —2, 0, and 2. Excluding images similar to training
images, the testing set consists of 9,700 deformed images.
This is followed by adding of salt-and pepper noise around the
deformed patterns with different noise densities. The noise
area is about 1.25 times of the size of deformed patterns.
Figure 4 shows some of the testing images contaminated by
10% of salt-and-pepper noise.

The following sets of features are used for recognition task

V() =[ho.102,13,0. 11,2, 12,1, Io.3] (70)
V() =[ho. 102,130, 12. 1,1, 10,3, 12, 15,0, I 1,

Lo, D3, 1ia Ios] (71)
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FIGURE 4. Part of the images in the testing set.

V() =[ho.102. 13,0, 112. 12,1, 10,3, 122,150,141, 13,2, I3,
Liados, Ieo. Is1. 1a2, 133, a1t s, 106,152,125 ]
(72)

where I, », is the invariant defined in previous sections and
V(3), V(5) and V(7) denote the selected invariant features up
to orders 3, 5 and 7, respectively.

In this experiment, Euclidean distance is utilized as the
classification measure and is given as follows

d(vy, v = Z(vs, — ) (73)
j=1

where V; is the T-dimensional scaled feature vectors of the
test sample, and Vt(k) is the scaled training vector of class k.
The scaled feature vectors are used mainly to remove the large
dynamic range of the feature values. The scaled formula is as
follows:

k)

tj

(k) — min v(k>
k t.J

Vs ]—mmv
k

Vsj = (74)

max V
k

The recognition accuracy,n, is defined as

Number of correctly classified images

=T . - (75)
e total number of images used in the test

In this experiment, TRSI(nA), TRSI(nB), TRSI-D(n) and
TRSI-ID(n) represent feature sets generated by TRSI using
normalization schemes A & B, by TRSI-D and TRSI-ID, with
orders n = 3, 5, 7 defined in (70 — 72). The normalization
scheme A transforms deformed patterns to a point near to the
image center by skewed parameters (#y, ty) = (—4.3, —=9.1).
The normalization scheme B on the other hand transforms the
deformed images to the image origin via skewed parameters

(te, ty) = (= (NY? ,— (Nf] )) The size of normalized
images for proposed TRSI are identical to deform images
ie. Ny x Ny = Ng x Ng. The mass of normalized pattern
is 2 = Ng x Ny x 0.16.

The classification performances of the proposed TRSI,
TRSI-D and TRSI-ID are recorded in Table 3. As shown in
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TABLE 3. Classification of Chinese characters with translation, rotation
and scaling invariants.

Accuracy of Translation Rotation and Scale Invariant Algorithms

o
8]
8,
9
L
g8
c
2
Eo
o<
o
]
14
<
ol
0 4 6 8 10
Salt and Pepper Noise (%)
—&— TRSI(7TA) —+ TRSI(7B) —— TRSI-ID(7)—&— TRSI-D(7)
—— TRSI(5A) —— TRSI(5B) —&— TRSI-ID(5)—— TRSI-D(5)
—— TRSI(3A) —#— TRSI(3B) —+— TRSI-ID(3)—&— TRSI-D(3)
Recognition Accuracy (%)
Salt & pepper  No Noise 2% 1% 6% 8% 10%
TRSI (7A) 100 90.00 84.90 79.49 75.53 71.78
TRSI (5A) 100 89.15 81.23 70.91 59.54 49.53
TRSI (3A) 100 86.06 63.60 45.59 33.78 27.21
TRSI(7B) 100 66.66 41.98 30.78 24.64 21.41
TRSI(5B) 100 67.52 42.76 31.03 24.87 21.53
TRSI(3B) 100 63.37 38.42 26.46 19.98 15.46
TRSI-ID(7) 100 74.73 54.46 41.92 35.04 28.22
TRSI-ID(5) 100 82.85 64.03 48.91 39.43 32.48
TRSI-ID(3) 100 87.37 73.86 58.80 46.89 38.52
TRSI-D(7) 36.44 29.62 20.44 16.92 14.47 13.04
TRSI-D(5) 34.96 30.52 23.39 18.91 16.27 14.59
TRSI-D(3) 43.87 35.67 27.69 22.43 19.37 16.76

graph of Table 3, TRSI-D(n) is lowest in classification per-
formance. This is mainly because the principal axis normal-
ization ambiguities have caused larger intra class variability
among the generated features and therefore compromise the
accuracy of the recognition system. To correct this we pro-
pose TRSI(nB). Similar to TRSI-D(n), the TRSI(nB) trans-
formed the deformed patterns to image origin. In addition
principal axis normalization ambiguities have been success-
fully resolved by Theorem 4. Hence, as shown in the graph
of Table 3, TRSI-(nB) achieve much better recognition rate
when compared with TRSI-D under low or non-noisy con-
ditions. However the classification performance degraded
much faster when we increase the noise level. This can be
explained by the skew effect in the normalization process.
According to our study, for Tchebichef moment invariants,
when an image is skewed further away from the center of
image, inter-class variability of invariant descriptors will be
reduced significantly. As such features will be very sensitive
to noise because a small deviation caused by noise will erode
the feature’s inter-class variability and hence cause misclassi-
fication. This is especially noticeable in higher order features.
As such, we can see that, there is not much improvement or
the classification performance gets worse when higher order
descriptors are added as feature descriptors to TRSI(nB) or
TRSI-D(n).
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Since TRSI-ID(3) maps patterns to the center of image
space the performance is therefore comparable or even bet-
ter than TRSI(3A). However in higher order of TRSI-ID(n)
where n = 5 and 7, the performance degraded signifi-
cantly. This can be explained by the fact that transformed
central-geometric moments like geometric moments, are sen-
sitive to noise when the order of moment increases. Thus
TRSI-ID(5) and TRSI-ID(7) suffered more due to noise com-
pared to TRSI-ID(3) and hence compromise the classification
performance.

The normalized patterns of TRSI(nA) are at the center of
images. The inter-class variability of this feature set is wider
and therefore has better in discriminative power. Furthermore,
higher order features generated by TRSI(nA) are relatively
less sensitive to noise when compared to TRSI-ID(n). This is
mainly due to the normalized images are within the canonical
space of basis functions and invariant descriptors are calculate
directly from Tchebichef moments using direct approach.
As such invariant descriptors will inherit some important
characteristics of discrete orthogonal moments such as com-
pact information representation and better noise resistance.
Hence significant improvement of classification performance
can be achieved by TRSI(7A) for non-noisy and noisy images
where up to 7-th order invariant features are used in the
experiment. The algorithm also allows us to fine tune the
skewed parameters so that better accuracy can be achieved
for the particular set of deformed images. As such a slight
deviation from image center will further enhance features
discriminative power and classification systems performance.

V. CONCLUSION

In this paper, a new translation and rotation invariant algo-
rithm (TRSI) has been proposed for Tchebichef moments.
The algorithm consists of a set of recurrence relations
for faster computations of affine transformed Tchebichef
moments and a new normalization scheme for the invariant.
The proposed algorithm is computationally efficient to obtain
the Tchebichef moment invariants when compared to exist-
ing methods. Furthermore, when the image size and order
increases, the computational speed of the proposed method
is a lot faster than existing methods. The features of the
proposed TRSI are found to possess higher discriminative
power with better classification performance in non-noisy
and noisy conditions when compared to current invariant
descriptors. The derivation can be extended to formulate
affine invariants of Tchebichef moments or invariants for
other orthogonal moment functions. The disadvantage of the
proposed method is that since the fast computation is based
on recurrence formulas, computation of higher order invari-
ants can lead to cumulative errors with subsequent loss in
accuracy.
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