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ABSTRACT Optimization algorithms are one of the effective stochastic methods in solving optimization
problems. In this paper, a new swarm-based algorithm called Northern Goshawk Optimization (NGO)
algorithm is presented that simulates the behavior of northern goshawk during prey hunting. This hunting
strategy includes two phases of prey identification and the tail and chase process. The various steps of the
proposed NGO algorithm are described and then its mathematical modeling is presented for use in solving
optimization problems. The ability of NGO to solve optimization problems is evaluated on sixty-eight
different objective functions. To analyze the quality of the results, the proposed NGO algorithm is compared
with eight well-known algorithms, particle swarm optimization, genetic algorithm, teaching-learning based
optimization, gravitational search algorithm, grey wolf optimizer, whale optimization algorithm, tunicate
swarm algorithm, and marine predators algorithm. In addition, for further analysis, the proposed algorithm
is also employed to solve four engineering design problems. The results of simulations and experiments
show that the proposed NGO algorithm, by creating a proper balance between exploration and exploitation,
has an effective performance in solving optimization problems and is much more competitive than similar

algorithms.

INDEX TERMS Exploitation, exploration, northern goshawk, optimization, optimization problem.

I. INTRODUCTION

Optimization means choosing the best solution out of all
available candidate solutions for an optimization problem.
An optimization problem consists of three main parts:
decision variables, constraints (equality and inequality), and
objective functions [1]. From the general point of view,
optimization problem solving methods can be grouped into
deterministic methods and stochastic methods. Deterministic
methods implement the optimization problem-solving pro-
cess based on the use of information about the derivatives
of objective functions or based on information in the form
of the first-order and the second-order derivatives. This
information enables deterministic methods to effectively
find the exact optimal for linear or convex nonlinear prob-
lems. However, these methods fail to solve more complex
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problems, especially those with many local optimizations.
The time-consuming process of solving complex problems,
high-dimensional problems, non-convex problems, problems
for non-differentiable objective functions, problems with
random or unknown search space are other issues that
challenge deterministic methods [2]. Challenges and inability
of deterministic methods led to the introduction of stochastic
methods and optimization algorithms. Stochastic-based opti-
mization algorithms are efficient tools in solving optimization
problems that are able to provide suitable solutions to
optimization problems without using information about the
derivatives of the objective function and relying only on
random scanning of the search space and random opera-
tors [3]. The process of solving the optimization problem in
optimization algorithms is such that at first, a certain number
of solvable solutions are generated randomly as candidate
solutions. Then in an iteration-based process and based on
the steps of the algorithm, these candidate solutions are
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improved. After the full implementation of the algorithm,
the best candidate solution is selected as the solution to
the problem. The solution obtained from the optimization
algorithm is at best equal to the global optimal, otherwise it
must be very close to it. For this reason, the solutions obtained
from the optimization algorithms are called quasi-optimal [4].
The desire to achieve better quasi-optimal solutions and
closer to the global optimal has led to the design of numerous
optimization algorithms by researchers.

Optimization algorithms can be divided according to the
type of their inspiration in nature or society into four groups:
evolutionary-based, swarm-based, physics-based, and game-
based optimization algorithms.

Evolutionary-based optimization algorithms rely on the
simulation of biological sciences, genetics, and the use of
evolutionary operators such as natural selection. Genetic
Algorithm (GA) is one of the oldest evolutionary algorithms
developed based on the modeling of the reproductive process
and the use of selection, crossover, and mutation sequence
operators [5]. Differential Evolution (DE) algorithm is
another popular evolutionary optimization algorithm that
has a good ability to optimize non-differentiable nonlinear
functions, which has been introduced as a powerful and fast
way to optimize problems in continuous spaces [6].

Swarm-based optimization algorithms are introduced
based on modeling the natural behaviors of animals, insects,
aquatic animals, plants, and other living things. Particle
Swarm Optimization (PSO) is one of the most widely used
swarm-based algorithms, which is inspired by the intelligent
behavior of birds and fish [7]. Modeling ant swarm behavior
in finding the shortest path between the food source and the
nest has inspired the design of the Ant Colony Optimization
(ACO) [8]. Hierarchical leadership behavior modeling as well
as the strategy of gray wolves during hunting have been used
in the design of the Grey Wolf Optimization (GWO) [9].
In the design of the Whale Optimization Algorithm (WOA)
is inspired by the bubble net hunting method performed by
humpback whales [10]. Some other swarm-based algorithms
are Raccoon Optimization Algorithm (ROA) [11], Teaching-
Learning Based Optimization (TLBO) [12], Crow Search
Algorithm (CSA) [13], Grasshopper Optimization Algorithm
(GOA) [14], Tunicate Swarm Algorithm (TSA) [15], and
Marine Predators Algorithm (MPA) [16].

Physics-based optimization algorithms have been devel-
oped based on the simulation of various laws and phenomena
in physics. One of the oldest algorithms in this group is Sim-
ulated Annealing (SA), which is inspired by the simulation
of the annealing process by melting and cooling operations
in metallurgy [17], [18]. Simulation of the gravitational
force that objects exert on each other at different distances
has led to the design of a Gravitational Search Algorithm
(GSA) [19]. Water Cycle Algorithm (WCA) is inspired by
the water cycle in nature by modeling the evaporation of
water from the ocean, cloud formation, rainfall, and river
formation, as well as modeling the overflow of water from
pits [20]. Some other physics-based algorithms are Artificial
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Chemical Reaction Optimization Algorithm (ACROA) [21],
Multi-Verse Optimizer (MVO) [22], Electromagnetic Field
Optimization (EFO) [23], Nuclear Reaction Optimization
(NRO) [24], Optics Inspired Optimization (OIO) [25],
Atom Search Optimization (ASO) [26], and Equilibrium
Optimizer (EO) [27].

Game-based optimization algorithms are based on model-
ing the behavior of players in different games and the rules
of these games. Simulation of competition and interactions
between teams in the game of volleyball, the coaching process
during the game, is employed in the design of the Volleyball
Premier League (VPL) algorithm [28]. Mathematical model-
ing of players’ behavior in tug-of-war game led to the Tug of
War algorithm Optimization (TWO) [29].

With the advancement of science and technology, engineer-
ing problems become more complex, which require effective
and efficient optimization methods. Therefore, this issue is
resolved by improving existing methods or introducing newer
optimization algorithms. An important issue in improving
the capability of optimization algorithms is to increase the
exploration power to global search the problem-solving space
and to increase the exploitation power to local search the
optimal area discovered, while a proper balance must be
struck between these two indicators [30].

A major question that arises in the study of optimization
algorithms is that given the existing optimization algorithms,
is there still a need to design new optimization algorithms?
The answer to this question lies in the No Free Lunch (NFL)
Theorem [31]. The NFL states that an algorithm that
provides effective performance in solving one or more
optimization problems has no guarantee that it will perform
effectively in solving other optimization problems and may
even fail. This means it cannot be claimed that a particular
optimization algorithm is the best optimizer for all problems.
It is always possible to design new algorithms that solve
optimization problems better than existing algorithms. The
NFL encourages researchers to be motivated to design newer
optimization algorithms that can solve optimization problems
more effectively. The concepts expressed in the NFL theorem
have also motivated the authors of this paper to develop a new
optimizer.

Northern goshawk is a bird of prey whose hunting strategy
represents an optimization process. In this strategy, the
northern goshawk first selects the prey and attacks it, then
hunts the selected prey in a chase process. However, to the
best of our knowledge of the literature, no optimization
algorithm has been developed based on northern goshawk
behavior. This research gap motivated the authors to develop
a new optimization algorithm by mathematically modeling
the northern goshawk strategy while hunting.

The novelty of this paper is in designing a new swarm-
based optimization algorithm called Northern Goshawk
Optimization (NGO) that mimics the behavior of northern
goshawks while hunting. The various steps of the proposed
NGO algorithm are expressed and then mathematically
modeled. Sixty-eight objective functions are employed to
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evaluate the capability of NGO. The performance of the
proposed NGO algorithm in optimization is compared with
the performance of eight well-known algorithms. In order
to analyze the NGO for solving real-world problems,
this algorithm has also been implemented on four design
optimization problems.

The structure of the paper is created in such a way that
the proposed NGO algorithm is introduced and modeled in
Section II. Simulation studies are presented in Section III.
The performance of NGO in solving engineering design prob-
lems is evaluated in Section IV. Conclusions and suggestions
for further study of this paper are provided in Section V.

Il. NORTHERN GOSHAWK OPTIMIZATION

In this section, the proposed Northern Goshawk Optimization
(NGO) algorithm is introduced and then its mathematical
modeling is presented.

A. INPIRATION AND BEHAVIOR OF NORTHERN
GOSHAWK

The northern goshawk is a medium-large hunter in the
family Accipitridae, which was first described by the current
scientific name, i.e., Accipiter gentilis by Linnaeus in his
Systema naturae in 1758 [32]. Northern goshawk is a member
of the Accipiter genus that hunts on a variety of prey,
including small and large birds and possibly other birds of
prey, small mammals such as mice, rabbits, squirrels, and
even animals such as foxes and raccoons. Northern goshawk
is the only member of this genus which is distributed in
Eurasia and North America [33]. The male is slightly larger
than the female. The male body length is 46 to 61cm, the
distance between the two wings is 89 to 105 cm and weighs
about 780 grams. Howeyver, the female species is 58 to 69 cm
long with a weight of 1220 grams and the distance between
the two wings is estimated at 108 to 127 cm [34], [35].
A photo of the northern goshawk is shown in Figure 1. The
northern goshawk hunting strategy consists of two stages,
so that in the first stage, after identifying the prey, it moves
towards it at a high speed, and in the second stage, it hunts
the prey in a short tail-chase process [36].

FIGURE 1. Northern goshawk (take from Wikimedia Commons - Northern
Goshawk juv).

Northern goshawk behavior when hunting and catching
prey is an intelligent process. Mathematical modeling of the
mentioned strategy is the main inspiration in designing the
proposed NGO algorithm.
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B. ALGORITHM INITIALIZATION PROCESS

The proposed NGO is a population-based algorithm that
northern goshawks are searcher members of this algorithm.
In NGO, each population member means a proposed solution
to the problem that determines the values of the variables.
From a mathematical point of view, each population member
is a vector, and these vectors together form the population of
the algorithm as a matrix. At the beginning of the algorithm,
population members are randomly initialized in the search
space. The population matrix in the proposed NGO algorithm
is determined using (1).

The proposed NGO is a population-based algorithm that
northern goshawks are searcher members of this algorithm.
In NGO, each population member means a proposed solution
to the problem that determines the values of the variables.
In fact, from a mathematical point of view, each population
member is a vector, and these vectors together form the
population of the algorithm as a matrix. At the beginning of
the algorithm, population members are randomly initialized
in the search space. The population matrix in the proposed
NGO algorithm is determined using (1).

Xl x]’l xl,j xl’m
X=|X; = x1 - Xij o Xim ,
XN Nxm ANt AN ANy xm

ey

where X is the population of northern goshawks, X; is the
ith proposed solution, x; ; X;; is the value of the jth variable
specified by the ith proposed solution, N is the number
of population members, and m is the number of problem
variables.

As stated, each population member is a proposed solution
to the problem. Therefore, the objective function of the
problem can be evaluated based on each population member.
These values obtained for the objective function can be
represented as a vector using (2).

Fi1=F(Xy)
FX) = | Fi=FX) @)

FNZF(XN) Nxl

where F is the vector of obtained objective function values
and F; is the objective function value obtained by ith proposed
solution.

The criterion for deciding which solution is best is the
value of the objective function. In minimization problems,
the smaller the value of the objective function, and in
maximization problems, the larger the value of the objective
function, the better the proposed solution. Given that in each
iteration new values are obtained for the objective function,
the best proposed solution should be updated in each iteration.
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C. MATHEMATICAL MODELLING OF PROPOSED NGO
In designing the proposed NGO algorithm to update the
population members, the simulation of northern goshawk
strategy during hunting has been employed. The two main
behaviors of northern goshawk in this strategy, including

(1) prey identification and attack and

(ii) chase and escape operation

are simulated in two phases.

FIGURE 2. Scheme of prey selection and attacking it by northern
goshawk.

1) PHASE 1: PREY IDENTIFICATION (EXPLORATION)
Northern goshawk in the first phase of hunting, randomly
selects a prey and then quickly attacks it. This phase increases
the exploration power of the NGO due to the random selection
of prey in the search space. This phase leads to a global search
of the search space with the aim of identifying the optimal
area. A schematic of northern goshawk behavior in this phase
involving prey selection and attack is shown in Figure 2.
The concepts expressed in the first phase are mathematically
modeled using (3) to (5).

Pi=Xy,i=1,2,...,N,k=1,2,...,i—1,i+1,...,N,

(3)
new,P _ | Xij+r (pij—1I xij). Fp, <F; @)
Y xij+r(6j— pij),  Fp, = Fi

Xnew,Pl Fnew,Pl < F;
;=17 ‘ 5
B B¢ F M = F ©

where P; is the position of prey for the ith northern goshawk,
Fp, is its objective function value, k is a random natural
number in interval [1, N], X"*F! is the new status for the
ith proposed solution, x;' ov-Plis its jth dimension, F ! v Pl g
its objective function value based on first phase of NGO, r is
arandom number in interval [0, 1], and I is a random number
that can be 1 or 2. Parameters » and / are random numbers

used to generate random NGO behavior in search and update.

2) PHASE 2: CHASE AND ESCAPE OPERATION
(EXPLOITATION)

After the northern goshawk attacks the prey, the prey tries to
escape. Therefore, in a tail and chase process, the northern
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goshawk continues to chase prey. Due to the high speed
of the northern goshawks, they can chase their prey in
almost any situation and eventually hunt. Simulation of this
behavior increases the exploitation power of the algorithm
to local search of the search space. In the proposed NGO
algorithm, it is assumed that this hunting is closed to an
attack position with radius R. The chase process between
the northern goshawk and prey is shown in Figure 3. The
concepts expressed in the second phase are mathematically
modeled using (6) to (8).

xnew,P2 =X + R (2r —1 )x,-’j, (6)

i
) ; N

Y Xinew,PZ’ Finew,PZ < Fi’ (8)
Tx FroP? >

R =0.02 (1 -

N~

where ¢ is the iteration counter, 7" is the maximum number of
iterations, X" ew:P2 i< the new status for ith proposed solution,
X is its jth dimension, F' fex’P 2 is its objective function

.nefw,PZ
l!.
value based on second phase of NGO.

FIGURE 3. Scheme of the chase between northern goshawk and prey.

3) REPETITION PROCESS, PSEUDO-CODE, AND
FLOWCHART OF NGO

After all members of the population have been updated
based on the first and second phases of the proposed NGO
algorithm, an iteration of the algorithm is completed and
the new values of the population members, the objective
function, and the best proposed solution are determined. The
algorithm then enters the next iteration and the population
members update continues based on Equations (3) to (8)
until the last iteration of the algorithm is reached. At the
end and after the complete implementation of NGO, the
best proposed solution obtained during the iterations of
the algorithm is introduced as a quasi-optimal solution for
the given optimization problem. The various stages of the
proposed NGO algorithm are specified as pseudo-code in
Algorithm 1 and its flowchart is shown in Figure 4.

D. COMPYTIONAL COMPLEXITY

In this subsection, the computational complexity of the
proposed NGO algorithm is analyzed. The computational
complexity of the initialization of the NGO algorithm is equal
to O(N) where N is the number of population members of
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FIGURE 4. Flowchart of proposed NGO algorithm.

northern goshawks. Given that in the NGO, in each iteration,
each member of the population is updated in two phases
and its objective function is evaluated, the computational
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Algorithm 1 Pseudo-Code of Proposed NGO Algorithm

Start NGO.

1. Input the optimization problem information.

2. Set the number of iterations (7') and the number of
members of the population (V).

3. Initialization of the position of northern goshawks and
evaluation of the objective function.

4.Fort=1:T

6. Fori=1:N

7. Phase 1: prey identification (exploration phase)

8. Select the prey at random using (3).

9. Forj=1:m

10. Calculate new status of jth dimension using (4).

11. endj=1:m

12. Update ith population member using (5).

13. Phase 2: tail and chase operation (exploitation phase)

14.  Update R using (6)

15. Forj=1:m

16. Calculate new status of jth dimension using (7).

17. endforj=1:m

18.  Update ith population member using (8).

19. endfori=1: N

20. Save best proposed solution so far.

2l.endfort =1:T

22. Output best quasi-optimal solution obtained by NGO
for given optimization problem.

End NGO.

complexity of the update process is equal to O2T - N - m)
where T is the maximum number of iterations, and m is the
number of problem variables. Therefore, the computational
complexity of the proposed NGO algorithm is equal to O(N -
(1427 - m)).

IIl. SIMULATION STUDIES AND DISCUSSION
In this section, the performance of the proposed NGO
algorithm in solving optimization problems is tested. For this
purpose, NGO is implemented on sixty-eight different objec-
tive functions including unimodal, high-dimensional multi-
modal, fixed-dimensional multimodal [37], CEC2015 [38],
and CEC2017 [39]. The performance of the proposed NGO
algorithm is compared with eight well-known algorithms
PSO, GA, GSA, TLBO, GWO, WOA, MPA, and TSA. The
values set for the control parameters of these algorithms
are specified in Table 1. The proposed NGO algorithm and
each of the competing algorithms are implemented in twenty
independent executions on every objective function, while
each execution contains 1000 iterations. The optimization
results are reported using two indicators

(i) the average of the best proposed solutions and

(ii) the standard deviation of the best proposed solutions.

The experimentation has been done on Matlab R2020a
version using 64 bit Core i7 processor with 3.20 GHz
and 16 GB main memory.

162063



M. Dehghani et al.: Northern Goshawk Optimization: New

IEEE Access

| Vi) Ve vl ' fimimmizinin -<]vo
5 HIH M H Vo 1
+ 08d +-0H 054 + +~--L—m |osd 1{osd 01054
ol
[ vSD IEim Pl VSO W] {vso " Mwwc. = [ { V8D
' ORIl 5 -Doal E H |oaw 22 = ¢ louL £
o = a0 Homo = 3 5 .
=1 il + o jown £ 2 I lono = + fvom 2§ HIORETE =
2 S , ) | I — e
+ Yol s RIS vom 2 4+ fvon 2 1ge {VsL i vom ' e
H0----+ fvsi v | {vse - 40 {van 4 vsL s
- Vel I VA | van P 1 {0DN Hvan =t T of1L
wy
) . HOON ) {OnN i loox = @ oz [ioon B + fomo
= S = = R m m = i B - Hvom
— . . ~1 — tn; . D
uonauny A1 [go uopouny aanoalgo uanoung 91309 qo uanouny aa13aa(go vonoun aaaalgo i3 e +|__|,_+ V5L
VJIW
rooN
VO anpl VO bo|vo +H+ o |vo +++-04vo CIE AR
08d HI - 4 08d “JHosd | q 0Sd | 108d uouIy danlye
vso I VSO - v-{IJ-+ |VSD + ¥ VsD +{vsD
1 =
+ ogL E D~ oaL £ # o8 £ # 0d1L E # oL £
- DT~ 5 == 2
g o OMO £ &, ++ fomo £ = Homo Eg| C—— |owE& HHoxo T
+H vom 3 } | vosm 2 Hvom & M- |vom & Fivom =
-+ VSl {4 fvse i 1 vt o+ Yol ;
' vut iy VAW v > + van o I I S/
HHD OON {0 - {0ON Hvan o f + + A fvan e v |osd
= z S ¥ ljoon X +  JOON SE 543 & o I {vsh
a2 = e a8 @ W o o o= & =2 ° o {l |od1L
wonouny aarpalgo ucnauny dardalgo uopoung aA123[qo uorouny aadalgo uorpouny aandalgo ] + |oxo
o A
+ H+{vom
+ Vo + 7 Fm+ o Vo Hvwo  F + i WiRasaa T Vel
+ 0Sd P T 1+ {0sd + 0sd H- + +Ojosd + o84 & bk
| VS0 1{vsn | VSO be- T |VSD I {VsD L
11 E - G 1 s %=a
o H ogL E Moa & o b o1l B -0 09 L E + joaiL g 7
a OMD S o == ] OMD S = = WO 2 uonoun] dandalgoe
von 5% Hono m_,F.-_._. o B + 4 — |lomo m_un | {oMD £
" iy w Hvom = M i = -+ vom 3 +  vOom 3
Hvsi H + | VI + |¥SL
. VI - HHF-- - - van # > o
1 {VdX VdA
Hoon I |oon
= = 100N = = || ooN +  jooN
- 2 g 2 8 2 ° - S T O g o et =
uonauny 212 fqo uonauny 2Anaalqo uanaung aa120lqo uanauny aA112[qo uonauny aa1algo s Tiakl -2
C T F-408d
L —
vo H =--{-4 Vo rT1+ Vo rH4 (VD +: 1 YO +
0q71L
Ly osd - k] 0sa LT3+ |0Sd H 4H0|osd s & i - 0sd ~ = 0MD
| & 41 vsn - | vsn Hvso I vsn ™ + lvom
+ oa1L E ) ool E {|oaiL E g £
z E E o {0aL 2 I Oa1L £ B P fo
= oM E "= L E =z~ k= RS
[ . + vom B o IH{omo €8 Homn E z e |omo T 2 + oMo 2 e vaw
! +vom 2 HHvom 2 2 + vom & ;
Ty vsL + (VoM 5 HHOON
-n_ VA —+1VSL || VSL + VsIL + YSL el T v X
oo 1 {vai RIEE VAN T | van + YN vonouny sanoalgo
En = | {ODN 11 ODN | 0ON
=) z = S v = i vi T N - O =
uonauny 2A1 o ucnouny aAndalqo uoTauny 2A12lqo ucratng aa3algo vonauny aandalgo

VOLUME 9, 2021

algorithm

algorithm

algorithm
FIGURE 5. Boxplot of performance of optimization algorithms on F1 to F23 test functions.
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TABLE 1. Parameter values for the competitor algorithms.

Algorithm Parameter Value

MPA

P=05

R is a vector of uniform random

Constant number

Random vector .
numbers from interval [0,1].

Fish aggregating devices

(FADs) FADs=0.2
Binary vector U=0orl
TSA
Prnin and Prnax 1,4
random numbers lying in the interval
s [0.1].
WOA
Convergence parameter ) )
@ a: Linear reduction from 2 to 0.
r is a random vector in
[0,1].
[ is a random number in
[-1,1]. [-1,1].
GWO
Convergence parameter . .
@ a: Linear reduction from 2 to 0.
TLBO
Ty teaching factor ~ Tr=round[1 + rand] [(1 + rand)]
random number rand is a random number from [0,1].
GSA
Alpha, Go, Ruom, Rpower 20, 100,2, 1
PSO
Topology Fully connected
Cognitive and social
c1=c,=2.
constant
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
GA
Type Real coded
Selection Roulette wheel (Proportionate)
Whole arithmetic (Probability = 0.8,
Crossover
oe [-0.5, 1.5]).
Mutation Gaussian (Probability = 0.05)

A. EVALUATION OF UNIMODAL OBIJECTIVE

FUNCTION (F1-F7)

The optimization results of F1 to F7 functions using the
proposed NGO algorithm and eight competitor algorithms are
reported in Table 2. The simulation results show that NGO
has been able to provide the optimal global for F6. The NGO
algorithm is the first best optimizer in solving F1, F2, F3, F4,
F5, and F7 functions. What can be deduced from the analysis
of the simulation results is that the proposed NGO algorithm
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has a superior and much more competitive performance than
the eight compared algorithms.

B. EVALUATION OF HIGH-DIMENSIONAL MULTIMODAL
OBJECTIVE FUNCTION (F8-F13)

The implementation results of the proposed NGO algorithm
and eight compared algorithms on the objective functions
of F8 to F13 are presented in Table 3. The NGO with its
high exploration power has been able to achieve the optimal
global value for F9 and F11. In the F8 function optimizer,
GA is the first best optimizer while NGO is the second best
optimizer for this function. GSA is the first best optimizer
and NGO is the second best optimizer for the F13 function.
The proposed NGO algorithm is the first best optimizer for
solving F10 and F12 functions. The simulation results show
that the proposed NGO algorithm has an acceptable ability to
solve high-dimensional multimodal optimization problems.

C. EVALUATION OF FIXED-DIMENSIONAL MULTIMODAL
OBJECTIVE FUNCTION (F14-F23)

The solving results of the objective functions F14 to F23
using the NGO and eight competitor algorithms are presented
in Table 4. The proposed NGO algorithm has been able to
converge to the global optimum for F14 and F17. The NGO
is the first best optimizer in solving F15 and F20 functions.
In optimizing the functions of F16, F18, F19, F21, F22, and
F23, the proposed NGO algorithm has the same performance
in the avg index as some competing algorithms. However,
in these functions, the proposed NGO algorithm has better
conditions in the std index. Analysis of the simulation results
shows that the proposed NGO algorithm has a high capability
in solving F14 to F23 functions and is much more competitive
than the eight compared algorithms.

The performance of NGO and eight competitor algorithms
in optimizing F1 to F23 functions is shown in the form
of a boxplot in Figure 5. The analysis of this boxplot
shows that the NGO has less width and a more efficient
center than competitor algorithms in optimizing most F1 to
F23 functions. This means that the NGO has offered close
and almost similar solutions in different implementations.
Therefore, NGO is able to provide more efficient solutions
to optimal problems.

D. STATISTICAL ANALYSIS

Comparison of optimization algorithms based on avg and std
criteria provides valuable information about their capabilities.
However, it may be a chance that one algorithm is superior to
another, even after twenty independent executions with the
least probability. Therefore, in this subsection, a statistical
analysis is presented to further analyze the performance of
the proposed algorithm in effectively solving optimization
problems than the eight competitor algorithms. For this
purpose, Wilcoxon rank sum test is used to show whether
the superiority of the proposed algorithm over the competing
algorithms is significant or not. In this test, a p-value is used to
show the superiority of one algorithm over another algorithm.

162065



IEEE Access

M. Dehghani et al.: Northern Goshawk Optimization: New

TABLE 2. Optimization results of NGO and other algorithms on unimodal test function.

NGO TSA MPA WOA GWO GSA TLBO GA PSO
F Ave| 6.65E-181 7.71E-38 | 3.2715E-21 | 2.1741E-09 1.09E-58 2.0255E-17 | 8.3373E-60 13.2405 1.7740E-05
std 0 7.00E-21 | 4.6153E-21 | 7.3985E-25 | 5.1413E-74 | 1.1369E-32 | 4.9436E-76 | 4.7664E-15 | 6.4396E-21
F Ave 4.04E-93 8.48E-39 1.57E-12 0.5462 1.2952E-34 | 2.3702E-08 | 7.1704E-35 2.4794 0.3411
std 4.20E-93 5.92E-41 1.42E-12 1.7377E-16 | 1.9127E-50 | 5.1789E-24 | 6.6936E-50 | 2.2342E-15 | 7.4476E-17
Fs Ave 1.36E-46 1.15E-21 0.0864 1.7634E-08 | 7.4091E-15 279.3439 2.7531E-15 1536.8963 589.4920
std 5.93E-46 6.70E-21 0.1444 1.0357E-23 | 5.6446E-30 | 1.2075E-13 | 2.6459E-31 | 6.6095E-13 | 7.1179E-13
Fi Ave 8.18E-77 1.33E-23 2.6E-08 2.9009E-05 | 1.2599E-14 | 3.2547E-09 | 9.4199E-15 2.0942 3.9634
std 8.89E-77 1.15E-22 9.25E-09 1.2121E-20 | 1.0583E-29 | 2.0346E-24 | 2.1167E-30 | 2.2342E-15 | 1.9860E-16
Fs Ave 22.9681 28.8615 46.049 41.7767 26.8607 36.10695 146.4564 310.4273 50.26245
std | 4.6701E-15 | 4.76E-03 0.4219 2.5421E-14 0 3.0982E-14 | 1.9065E-14 | 2.0972E-13 | 1.5888E-14
Fe Ave 0 7.10E-21 0.398 1.6085E-09 0.6423 0 0.4435 14.55 20.25
std 0 1.12E-25 0.1914 4.6240E-25 | 6.2063E-17 0 4.2203E-16 | 3.1776E-15 | 7.5612E-04
F, Ave| 2.1716E-04 | 3.72E-04 0.0018 0.0205 0.0008 0.0206 0.0017 5.6799E-03 0.1134
std 1.05E-21 5.09E-05 0.0010 1.5515E-18 | 7.2730E-20 | 2.7152E-18 | 3.87896E-19 | 7.7579E-19 | 4.3444E-17
TABLE 3. Optimization results of GMBO and other algorithms on high dimensional test function.
NGO TSA MPA WOA GWO GSA TLBO GA PSO
Fs Ave | -7994.3973 | -5740.3388 | -3594.16321 | -1663.9782 | -5885.1172 | -2849.0724 | -7408.6107 | -8184.4142 | -6908.6558
std | 370.6706 41.5 811.32651 716.3492 467.5138 264.3516 513.5784 833.2165 625.6248
Fo Ave 0 5.70E-03 140.1238 42011 8.5265E-15 16.2675 10.2485 62.4114 57.0613
std 0 1.46E-03 26.3124 4.3692E-15 | 5.6446E-30 | 3.1776E-15 | 5.5608E-15 | 2.5421E-14 | 6.3552E-15
Fio Ave| 5.68E-15 9.80E-14 9.6987E-12 0.3293 1.7053E-14 | 3.5673E-09 0.2757 3.2218 2.1546
std 1.74E-15 4.51E-12 6.1325E-12 1.9860E-16 | 2.7517E-29 | 3.6992E-25 | 2.5641E-15 | 5.1636E-15 | 7.9441E-16
Fii Ave 0 1.00E-07 0 0.1189 0.0037 3.7375 0.6082 1.2302 0.0462
std 0 7.46E-07 0 8.9991E-17 | 1.2606E-18 | 2.7804E-15 | 1.9860E-16 | 8.4406E-16 | 3.1031E-18
Fiy Ave| 1.27E-10 0.0368 0.0851 1.7414 0.0372 0.0362 0.0203 0.0470 0.4806
std | 6.84E-11 1.5461E-02 0.0052 8.1347E-12 | 4.3444E-17 | 6.2063E-17 | 7.7579E-16 | 4.6547E-17 | 1.8619E-16
Fis Ave 0.0649 2.9575 0.4901 0.3456 0.5763 0.0020 0.3293 1.2085 0.5084
std | 1.0673E-15 | 1.5682E-12 0.1932 3.25391E-12 | 2.4825E-15 | 4.2617E-14 | 2.1101E-14 | 3.2272E-14 | 4.9650E-15
TABLE 4. Optimization results of GMBO and other algorithms on fixed dimensional test function.
NGO TSA MPA WOA GWO GSA TLBO GA PSO
Fua Ave| 0.9980 1.9923 0.9980 0.9980 3.7408 3.5913 2.2721 0.9986 2.1735
std 0 2.6548E-07 | 4.2735E-16 | 9.4336E-16 | 6.4545E-15 | 7.9441E-16 | 1.9860E-16 | 1.5640E-15 | 7.9441E-16
Fis Ave| 0.0003 0.0004 0.0030 0.0049 0.0063 0.0024 0.0033 5.3952E-02 0.0535
std | 4.44E-16 | 9.0125E—04 | 4.0951E-15 | 3.4910E-18 | 1.1636E-18 | 2.9092E-18 | 1.2218E-17 | 7.0791E-18 | 3.8789E-16
Fie Ave| -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
std | 2.28E-16 | 5.6514E-16 | 4.4652E-16 | 9.9301E-16 | 3.9720E-16 | 5.9580E-16 | 1.4398E-15 | 7.9441E-16 | 3.4755E-16
Fir Ave| 0.3978 0.3991 0.3979 0.4047 0.3978 0.3978 0.3978 0.4369 0.7854
std 0 2.1596E-16 | 9.1235E-15 | 2.4825E-14 | 8.6888E-16 | 9.9301E-16 | 7.4476E-16 | 4.9650E-14 | 4.9650E-15
Fis Ave 3 3 3 3 3.0000 3 3.0009 4.3592 3
std | 5.09E-16 | 2.6528E-15 | 1.9584E-15 | 5.6984E-15 | 2.0853E-15 | 6.9511E-16 | 1.5888E-15 | 5.9580E-16 | 3.6741E-15
Fro Ave | -3.86278 -3.8066 -3.8627 -3.8627 -3.8621 -3.8627 -3.8609 -3.85434 -3.8627
std | 2.28E-15 | 2.6357E-15 | 4.2428E-15 | 3.1916E-15 | 2.4825E-15 | 8.3413E-15 | 7.3483E-15 | 9.9301E-14 | 8.9371E-15
Fao Ave| -3.322 -3.3206 -3.3211 -3.2424 -3.2523 -3.0396 -3.2014 -2.8239 -3.2619
std | 4.56E-16 | 5.6918E-15 | 1.1421E-11 | 7.9441E-16 | 2.1846E-15 | 2.1846E-14 | 1.7874E-15 | 3.97205E-11 | 2.9790E-12
Fay Ave| -10.1532 -5.5021 -10.1532 -7.4016 -9.6452 -5.1486 -9.1746 -4.3040 -5.3891
std | 4.07E-15 | 5.4615E-13 | 2.5361E-11 | 2.3819E-11 | 6.5538E-15 | 2.9790E-14 | 8.5399E-15 | 1.5888E-12 | 1.4895E-13
Fa Ave | -10.4029 -5.0625 -10.4029 -8.8165 -10.4025 -9.0239 -10.0389 -5.1174 -7.6323
std | 3.51E-16 | 8.4637E-14 | 2.8154E-11 | 6.7524E-15 | 1.9860E-15 | 1.6484E-12 | 1.5292E-14 | 6.2909E-15 | 7.5888E-15
Fas Ave| -10.5364 -10.3613 -10.5364 -10.0003 -10.1302 -8.9045 -9.2905 -6.5621 -6.1648
std | 3.43E-16 | 7.6492E-12 | 3.9861E-11 | 9.1357E-15 | 4.5678E-15 | 7.1497E-14 | 6.1916E-15 | 3.8727E-15 | 2.7804E-15

The results of statistical analysis of the proposed NGO
algorithm against eight competitor algorithms are presented
in Table 5. According to the results of the Wilcoxon rank sum

test, in cases where a p-value is less than 0.05, the proposed
NGO algorithm is significantly better than all competitor
algorithms. According to Table 5, the NGO has a significantly
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TABLE 5. p-values obtained from Wilcoxon rank sum test.

Compared Algorithms|Unimodal High-Multimodal|Fixed-Multimodal
NGO vs. MPA 0.015625 0.0625 0.019531
NGO vs. TSA 0.015625 0.03125 0.003906
NGO vs. WOA 0.015625 0.03125 0.007813
NGO vs. GWO 0.015625 0.03125 0.011719

NGO vs. TLBO 0.015625 0.03125 0.005859
NGO vs. GSA 0.03125 0.15625 0.019531
NGO vs. PSO 0.015625 0.03125 0.003906

NGO vs. GA 0.015625 0.4375 0.001953
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FIGURE 8. Schematic view of the pressure vessel problem.
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FIGURE 10. Schematic view of the welded beam problem.

superiority over each of the competitor algorithms in optimiz-
ing unimodal and fixed-dimensional multimodal functions.
Also, NGO has a significant superiority in optimizing
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FIGURE 13. Convergence analysis of the NGO for the
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FIGURE 14. Schematic view of the speed reducer design problem.

high-dimensional multimodal functions compared to MPA,
TSA, WOA, GWO, TLBO, and PSO.

E. SENSITIVITY ANALYSIS

The proposed NGO algorithm is a population-based algo-
rithm that solves optimization problems in a repetition-based
process. Therefore, the two parameters of the population,
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TABLE 6. Sensitivity analysis of the NGO for the number of population members.

Objective Function

Number of Population Members

20 30 50 80
F, 4.6E-169 1.2E-176 6.6E-181 1.4E-182
F, 1.33E-89 4.23E-92 4.04E-93 3.68E-93
F; 1.18E-36 8.03E-42 1.36E-46 1.11E-46
Fs 8E-74 2.08E-75 8.18E-77 2.05E-77
Fs 25.58091 24.44535 22.96812 22.45099
Fs 0 0 0 0
F; 0.000521 0.000297 0.000217 0.000177
Fsg -7540.92 -7774.39 -7994.4 -8249.67
Fy 0.147311 0 0 0
Fio 7.11E-15 5.68E-15 5.68E-15 5.15E-15
Fui 0 0 0 0
Fi» 0.005314 3.04E-07 1.27E-10 1.56E-11
Fi3 1.162429 0.220698 0.064956 0.019496
Fia 1.784076 0.998004 0.998004 0.998004
Fis 0.001356 0.000307 0.000307 0.000307
Fis -1.03163 -1.03163 -1.03163 -1.03163
Fy; 0.397887 0.397887 0.397887 0.397887
Fig 3 3 3 3
Fio -3.86278 -3.86278 -3.86278 -3.86278
Fy -3.31011 -3.322 -3.322 -3.322
Fy -9.3885 -9.8983 -10.1532 -10.1532
Fa -9.27172 -10.4029 -10.4029 -10.4029
Fa; -9.6605 -10.2660 -10.5364 -10.5364

TABLE 7. Sensitivity analysis of the NGO for the maximum number of iterations.
Obiective Functi Maximum Number of Iterations
Jective Function 100 500 800 1000

F, 2.56E-14 1.86E-88 9.1E-144 6.6E-181
F, 4.06E-08 8.44E-46 3.53E-74 4.04E-93
F; 0.103703 9.24E-22 1.05E-36 1.36E-46
Fy4 1.58E-06 1.86E-37 2.78E-61 8.18E-77
Fs 28.27281 25.49215 23.86167 22.96812
Fs 0 0 0 0
F; 0.002592 0.000518 0.000272 0.000217
Fs -4827.65 -7774.62 -7984.27 -7994.4
Fy 6.75E-10 0 0 0
Fio 3.33E-08 5.68E-12 6.39E-15 5.68E-15
Fu 6.81E-14 0 0 0
Fiy 0.058359 1.98E-07 3.8E-09 1.27E-10
Fi3 1.012204 0.071563 0.057661 0.064956
Fiq 0.998004 0.998004 0.998004 0.998004
Fis 0.000449 0.000307 0.000307 0.000307
Fis -1.03163 -1.03163 -1.03163 -1.03163
Fi; 0.397887 0.397887 0.397887 0.397887
Fig 3 3 3 3
Fio -3.86278 -3.86278 -3.86278 -3.86278
Fy -3.32199 -3.322 -3.322 -3.322
Fy -10.1532 -10.1532 -10.1532 -10.1532
Fn -10.4029 -10.4029 -10.4029 -10.4029
Fy -10.5364 -10.5364 -10.5364 -10.5364

number of northern goshawks (N) and the maximum number
of iterations (7T) affect the performance of the proposed
NGO algorithm. Therefore, in this subsection, the sensitivity
analysis of the NGO to the two parameters N and T is
presented.

To evaluate the sensitivity analysis to parameter N, the
proposed NGO algorithm for different values of population
members equal to 20, 30, 50, and 80 has been implemented
on the functions F1 to F23. The results of the sensitivity
analysis of the NGO with respect to parameter N are
reported in Table 6. The simulation results show that

162070

increasing the number of population members has improved
the performance of the NGO and the values of the objective
functions have decreased. The behavior of the convergence
curves of the NGO in the study of this analysis is shown
in Figure 6. These convergence curves show that increasing
the number of population members leads to an increase in
the exploratory power of NGO in identifying the optimal
area more quickly and thus converging to more appropriate
solutions.

In order to evaluate the sensitivity analysis for the T
parameter, the NGO for different values of the maximum
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TABLE 8. Evaluation results of CEC2015 objective functions.

PSO

GA

GSA

TLBO

GWO

WOA

TSA

MPA

NGO

CEC1

Ave

1.50E+05

3.20E+07

7.65E+06

6.06E+05

1.47E+06

4.37E+05

2.02E+06

2.28E+06

1.23E+05

std

1.21E+06

8.37E+06

3.07E+06

5.02E+05

2.63E+06

4.73E+05

2.08E+06

2.18E+06

1.12E+06

CEC2

Ave

6.70E+06

4.58E+03

7.33E+08

1.43E+04

1.97E+04

9.41E+03

5.65E+06

3.13E+05

5.54E+05

std

1.34E+08

1.09E+03

2.33E+08

1.03E+04

1.46E+04

1.08E+04

6.03E+06

4.19E+05

1.00E+06

CEC3

Ave

3.20E+02

3.20E+02

3.20E+02

3.20E+02

3.20E+02

3.20E+02

3.20E+02

3.20E+02

3.20E+02

std

1.16E-03

1.11E-05

7.53E-02

3.19E-02

9.14E-02

8.61E-02

7.08E-02

3.76E-02

2.35E-03

CEC4

Ave

4.10E+02

4.39E+02

4.42E+02

4.18E+02

4.26E+02

4.09E+02

4.16E+02

4.11E+02

5.69E+02

std

5.61E+01

7.25E+00

7.72E+00

1.03E+01

1.17E+01

3.96E+00

1.03E+01

1.71E+01

3.28E+01

CEC5

Ave

9.81E+02

1.75E+03

1.76E+03

1.09E+03

1.33E+03

8.65E+02

9.20E+02

9.13E+02

8.74E+02

std

2.06E+02

2.79E+02

2.30E+02

2.81E+02

3.45E+02

2.16E+02

1.78E+02

1.85E+02

3.18E+02

CEC6

Ave

2.05E+03

3.91E+06

2.30E+04

3.82E+03

7.35E+03

1.86E+03

2.26E+04

1.29E+04

2.09E+03

std

1.05E+04

2.70E+06

2.41E+04

2.44E+03

3.82E+03

1.93E+03

2.45E+04

1.15E+04

1.27E+04

CEC7

Ave

7.02E+02

7.08E+02

7.06E+02

7.02E+02

7.02E+02

7.02E+02

7.02E+02

7.02E+02

7.02E+02

std

5.50E-01

1.32E+00

9.07E-01

9.40E-01

1.10E+00

7.75E-01

7.07E-01

6.76E-01

3.16E-02

CEC8

Ave

1.47E+03

6.07E+05

6.73E+03

2.58E+03

9.93E+03

3.43E+03

3.49E+03

1.86E+03

1.40E+03

std

2.34E+03

4.81E+05

3.36E+03

1.61E+03

8.74E+03

2.77E+03

2.04E+03

1.98E+03

1.01E+03

CEC9

Ave

1.00E+03

1.00E+03

1.00E+03

1.00E+03

1.00E+03

1.00E+03

1.00E+03

1.00E+03

1.00E+03

std

1.51E+01

5.33E+00

9.79E-01

5.29E-02

2.20E-01

7.23E-02

1.28E-01

1.43E-01

1.64E+01

CEC10

Ave

1.23E+03

3.42E+05

9.91E+03

2.62E+03

8.39E+03

3.27E+03

4.00E+03

2.00E+03

1.18E+03

std

2.51E+04

1.74E+05

8.83E+03

1.78E+03

1.12E+04

1.84E+03

2.82E+03

2.73E+03

4.41E+04

CECl11

Ave

1.35E+03

1.41E+03

1.35E+03

1.39E+03

1.37E+03

1.35E+03

1.40E+03

1.38E+03

1.34E+03

std

1.41E+01

7.73E+01

1.11E+02

5.42E+01

8.97E+01

1.12E+02

5.81E+01

2.42E+01

1.20E+01

CECI12

Ave

1.30E+03

1.31E+03

1.31E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

std

7.50E+00

2.05E+00

1.54E+00

8.07E-01

9.14E-01

6.94E-01

6.69E-01

7.89E-01

5.34E+00

CEC13

Ave

1.30E+03

1.35E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

1.30E+03

std

6.43E-05

4.70E+01

3.78E-03

2.43E-04

1.04E-03

5.44E-03

1.92E-04

2.76E-04

4.39E-07

CEC14

Ave

3.22E+03

9.30E+03

7.51E+03

7.34E+03

7.60E+03

7.10E+03

7.29E+03

4.25E+03

3.15E+03

std

2.12E+03

4.04E+02

1.52E+03

2.47E+03

1.29E+03

3.12E+03

2.45E+03

1.73E+03

1.76E+03

CEC15

Ave

1.60E+03

1.64E+03

1.62E+03

1.60E+03

1.61E+03

1.60E+03

1.61E+03

1.60E+03

1.60E+03

std

5.69E+01

1.12E+01

3.64E+00

1.80E-02

1.13E+01

2.66E-07

4.94E+00

3.76E+00

3.44E+01

x10™ Objective space

61\ | Speed Reducer Design | A

Best score obtained so far

10° 10! 102 10

Iteration

FIGURE 15. Convergence analysis of the NGO for the speed reducer
design problem.

number of iterations equal to 100, 500, 800, and 1000 is
employed to solve the functions of F1 to F23. The results of
this analysis are presented in Table 7. Sensitivity analysis of
the NGO to parameter 7 shows that as the maximum number
of iterations increases, the value of all objective functions
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decreases. The behavior of the convergence curves of the
proposed NGO algorithm under the influence of different
values of the 7' parameter is presented in Figure 7. These
convergence curves show that increasing the value of T
gives the NGO more opportunity to converge towards better
solutions.

F. EVALUATION OF IEEE CEC2015 (CEC1-CEC15)

The results of optimization of CEC2015 functions using
the NGO and eight competitor algorithms are presented in
Table 8. The simulation results show that the NGO has better
results than the eight competitor algorithms in CEC1, CEC3,
CEC7, CECS8, CEC9, CEC10, CECI11, CEC12, CEC13,
CECl14, and CECI15 functions. In optimizing CECS5 and
CEC6 the WOA performed better. However, the proposed
NGO is the second best optimizer to solve these functions.

G. EVALUATION OF IEEE CEC2017 (C1-C30)
The performance results of the proposed NGO and eight
competitor algorithms on the CEC2017 objective functions
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TABLE 9. Evaluation results of CEC2017 objective functions.

PSO GA GSA TLBO GWO WOA TSA MPA NGO
cl Ave | 0.00E+00 7.75E+05 3.30E+06 6.16E+04 1.57E+05 2.12E+05 4.47E+04 2.38E+05 2.70E+04
std 0.00E+00 3.17E+07 8.47E+07 5.12E+06 2.73E+07 2.18E+07 4.83E+06 2.28E+07 1.21E+07
I Ave | 0.00E+00 7.43E+07 4.68E+03 1.53E+04 1.07E+03 5.75E+05 9.51E+03 3.23E+04 5.82E+05
std 0.00E+00 2.43E+09 1.19E+04 1.13E+05 1.56E+05 6.13E+07 1.18E+05 4.29E+06 3.41E+09
3 Ave | 0.00E+00 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02
std 0.00E+00 7.63E-03 1.21E-06 3.29E-03 9.24E-03 7.18E-03 8.71E-03 3.86E-03 2.38E-05
ca Ave | 5.62E+01 4.52E+02 4.49E+02 4.28E+02 4.36E+02 4.26E+02 4.19E+02 4.21E+02 3.40E+01
std 4.88E+01 7.82E+02 7.35E+02 1.13E+02 1.27E+02 1.13E+02 3.06E+01 1.81E+02 4.62E+02
cs Ave 1.64E+01 1.86E+03 1.85E+03 1.19E+04 1.43E+04 9.30E+02 8.75E+02 9.23E+02 1.40E+01
std 3.46E+00 2.40E+03 2.89E+03 2.91E+03 3.55E+04 1.88E+03 2.26E+03 1.95E+03 2.19E+03
c6 Ave 1.09E-06 2.40E+04 3.01E+05 3.92E+04 7.45E+03 2.36E+03 1.96E+03 1.39E+04 2.17E+04
std 2.62E-06 2.51E+05 2.80E+07 2.54E+04 3.92E+04 2.55E+05 1.03E+04 1.25E+05 2.13E+05
7 Ave | 6.65E+01 7.16E+02 7.18E+02 7.12E+03 7.12E+02 7.12E+02 7.12E+03 7.12E+02 7.12E+02
std 3.47E+00 9.17E-02 1.42E+01 9.50E-02 1.20E+01 7.17E-02 7.85E-02 6.86E-02 4.49E-02
cs Ave 1.70E+01 6.83E+03 6.17E+04 2.68E+04 9.03E+03 3.59E+04 3.53E+03 1.96E+03 1.56E+01
std 3.14E+00 3.46E+04 4.91E+08 1.71E+04 8.84E+05 2.14E+04 2.87E+04 1.08E+04 3.00E+04
9 Ave | 0.00E+00 1.10E+03 1.10E+04 1.10E+03 1.10E+04 1.10E+04 1.10E+03 1.10E+04 1.10E+03
std 0.00E+00 9.89E-02 5.43E+01 5.39E-03 2.30E-01 1.38E-02 7.33E-02 1.53E-02 1.50E+02
c10 Ave | 3.14E+03 9.01E+04 3.52E+04 2.72E+03 8.49E+04 4.10E+04 3.37E+03 2.10E+03 1.32E+03
std 3.67E+02 8.93E+04 1.84E+06 1.88E+04 1.22E+05 2.92E+04 1.94E+04 2.83E+04 1.50E+04
cl1 Ave | 2.79E+01 1.45E+04 1.51E+03 1.49E+04 1.47E+04 1.50E+04 1.45E+03 1.48E+03 1.45E+01
std 3.33E+00 1.21E+03 7.83E+02 5.52E+02 8.07E+02 5.91E+02 1.22E+03 2.52E+02 2.76E+01
cl2 Ave 1.68E+03 1.41E+03 1.41E+06 1.40E+05 1.40E+03 1.40E+03 1.40E+04 1.40E+04 1.40E+03
std 5.23E+02 1.64E+01 2.15E+01 8.17E-02 9.24E-02 6.79E-02 6.04E-02 7.99E-02 6.79E+00
c3 Ave | 3.06E+01 1.40E+04 1.45E+02 1.40E+03 1.40E+04 1.40E+06 1.40E+03 1.40E+02 1.40E+01
std 2.12E+01 3.88E-04 4.80E+02 2.53E-05 1.14E-04 1.02E-05 5.54E-04 2.86E-05 5.49E-06
Cl4 Ave | 2.50E+01 7.61E+03 9.40E+03 7.44E+04 7.70E+04 7.39E+03 7.20E+03 4.35E+04 3.33E+03
std 1.87E+00 1.62E+04 4.14E+03 2.57E+04 1.39E+04 2.55E+04 3.22E+04 1.83E+04 2.00E+03
Cls Ave | 2.39E+01 1.72E+06 1.74E+06 1.70E+03 1.71E+06 1.71E+04 1.70E+03 1.70E+03 1.70E+03
std 2.49E+00 3.74E+01 1.22E+01 1.90E-03 1.23E+02 4.04E+01 2.76E-05 3.86E+01 9.86E+01
Cl6 Ave | 4.51E+02 8.65E+05 4.20E+06 7.06E+05 2.47E+05 3.02E+06 5.37E+05 3.28E+05 2.46E+04
std 1.38E+02 4.07E+09 9.37E+09 6.02E+09 3.63E+09 3.08E+09 5.73E+08 3.18E+09 3.20E+08
c17 Ave | 2.83E+02 8.33E+06 5.58E+03 2.43E+05 2.97E+04 6.65E+06 8.41E+04 4.13E+04 8.48E+05
std 8.61E+01 3.33E+07 2.09E+03 2.03E+03 2.46E+04 7.03E+05 2.08E+04 5.19E+04 7.03E+06
Cl18 Ave | 2.43E+01 4.20E+02 4.20E+03 4.20E+03 4.20E+02 4.20E+02 4.20E+02 4.20E+02 4.20E+02
std 2.02E+00 8.53E-04 2.11E-07 4.19E-04 8.14E-04 8.08E-04 9.61E-04 4.76E-04 7.47E-05
c19 Ave 1.41E+01 5.42E+02 5.39E+03 5.18E+03 5.26E+02 5.16E+02 1.09E+01 5.11E+03 4.05E+02
std 2.26E+00 8.72E+02 8.25E+02 2.03E+02 2.17E+02 2.03E+02 4.90E-01 2.71E+02 5.60E+02
C20 Ave 1.40E+02 2.76E+04 2.75E+03 2.09E+03 2.33E+03 8.20E+02 7.65E+02 8.13E+03 1.11E+02
std 7.74E+01 3.30E+02 3.79E+01 3.81E+01 4.45E+02 2.78E+00 3.16E+01 2.85E+01 4.07E+01
21 Ave | 2.19E+02 3.30E+04 4.91E+06 4.82E+04 8.35E+04 3.26E+04 2.86E+03 2.29E+03 3.02E+03
std 3.77E+00 3.41E+04 3.70E+07 3.44E+04 4.82E+03 3.45E+05 2.93E+03 2.15E+04 2.16E+04
Iooy) Ave 1.49E+03 8.06E+03 8.08E+02 8.02E+03 8.02E+02 8.02E+03 8.02E+02 8.02E+02 8.02E+02
std 1.75E+03 8.07E-02 2.32E+00 8.40E-01 2.10E+01 8.07E-01 8.75E-01 7.76E-01 5.47E-02
3 Ave | 4.30E+02 7.73E+03 7.07E+04 3.58E+03 8.93E+04 4.49E+04 4.43E+04 2.86E+03 3.35E+03
std 6.24E+00 4.36E+04 5.81E+06 2.61E+04 9.74E+04 3.04E+04 3.77E+04 2.98E+04 1.31E+03
o4 Ave | 5.07E+02 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04
std 4.13E+00 8.79E-02 6.33E+01 6.29E-03 3.20E-02 2.28E-02 7.23E-03 2.43E-02 6.76E+01
C25 Ave | 4.81E+02 8.91E+04 4.42E+06 3.62E+04 9.39E+04 5.00E+04 4.27E+04 3.00E+04 2.22E+02
std 2.80E+00 6.83E+04 2.74E+06 2.78E+04 2.12E+05 3.82E+04 2.84E+04 3.73E+04 6.46E+05
26 Ave 1.13E+03 2.35E+04 2.41E+04 2.39E+04 2.37E+04 2.40E+04 2.35E+05 2.38E+04 1.00E+03
std 5.62E+01 2.11E+03 8.73E+02 6.42E+02 9.97E+02 6.81E+02 2.12E+03 3.42E+02 2.26E+01
27 Ave | 5.11E+02 2.31E+04 2.31E+04 2.30E+04 2.30E+04 2.30E+04 2.30E+04 2.30E+04 2.30E+04
std 1.11E+01 3.54E+01 3.05E+00 9.07E-02 8.14E-02 7.69E-02 7.94E-02 8.89E-02 1.40E+00
78 Ave | 4.60E+02 5.30E+04 5.35E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04
std 6.84E+00 4.78E-04 4.70E+02 3.43E-05 2.04E+04 3.92E-05 6.44E-04 3.76E-05 6.11E-06
29 Ave | 3.63E+02 8.51E+03 8.30E+04 8.34E+04 8.60E+03 8.29E+03 8.10E+04 5.25E+04 3.20E+02
std 1.32E+01 2.52E+04 5.04E+03 3.47E+05 2.29E+05 3.45E+04 4.12E+04 2.73E+04 4.66E+03
C30 Ave | 6.01E+05 2.62E+04 2.64E+04 2.60E+04 2.61E+04 2.61E+04 2.60E+04 2.60E+04 2.60E+04
std 2.99E+04 4.64E+01 2.12E+02 2.80E-03 2.13E+02 5.94E+01 3.66E-04 4.76E+01 5.55E+01
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TABLE 10. Comparison results for the pressure vessel design problem.

Algorithm Optimum Variables Optimum Cost
Ts Th R L
NGO 0.7781779 0.3846819 40.31963 200 5885.4958
TSA 0.8303737 0.4162057 42.75127 169.3454 6048.7844
MPA 0.779035 0.384660 40.327793 199.65029 5889.3689
WOA 0.778961 0.384683 40.320913 200.00000 5891.3879
GWO 0.845719 0.418564 43.816270 156.38164 6011.5148
TLBO 0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11550.2976
PSO 0.752362 0.399540 40.452514 198.00268 5890.3279
GA 1.099523 0.906579 44.456397 179.65887 6550.0230
TABLE 11. Statistical results for the pressure vessel design problem.
Algorithm Best Mean Worst SD Median
NGO 5885.4958 5888.0206 5890.1952 1.0215 5886.9142
TSA 6048.7844 6052.6241 6071.2496 2.893 6050.2282
MPA 5889.3689 5891.5247 5894.6238 13.910 5890.6497
WOA 5891.3879 6531.5032 7394.5879 534.119 6416.1138
GWO 6011.5148 6477.3050 7250.9170 327.007 6397.4805
TLBO 6137.3724 6326.7606 6512.3541 126.609 6318.3179
GSA 11550.2976 23342.2909 33226.2526 5790.625 24010.0415
PSO 5890.3279 6264.0053 7005.7500 496.128 6112.6899
GA 6550.0230 6643.9870 8005.4397 657.523 7586.0085
TABLE 12. Comparison results for the welded beam design problem.
Algorithm Optimum Variables Optimum Cost
h l t b
NGO 0.20576 3.471 9.0361 0.20577 1.725202
TSA 0.205563 3.474846 9.035799 0.205811 1.725661
MPA 0.205678 3.475403 9.036964 0.206229 1.726995
WOA 0.197411 3.315061 10.00000 0.201395 1.820395
GWO 0.205611 3.472103 9.040931 0.205709 1.725472
TLBO 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
PSO 0.164171 4.032541 10.00000 0.223647 1.873971
GA 0.206487 3.635872 10.00000 0.203249 1.836250

are presented in Table 9. What is clear from the analysis
of the results is that the proposed NGO algorithm offers
better quasi-optimal solution for objective functions C4,
G5, C8, C10, Cl11, C12, C13, C20, C22, C25, C26,
C29, and C30.

IV. NGO APPLICATION FOR ENGINEERING

DESIGN PROBLEMS

In this section, the performance of the NGO in solving
problems in real-world applications is evaluated. For this
purpose, the NGO is implemented on four optimization
problems, namely pressure vessel design, welded beam
design, tension/compression spring, and speed reducer
design.

A. PRESSURE VESSEL DESIGN OPTIMIZATION PROBLEM

The mathematical model used was adapted from [40].
Figure 8 shows the schematic view of the pressure vessel
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problem. In this design, T is the thickness of the shell, 7}
is the thickness of the head, R is the inner radius, and L
is the length of the cylindrical section without considering
the head. Tables 10 and 11 report the performance of the
NGO and other algorithms. The NGO provides an optimal
solution at (0.7781779, 0.3846819, 40.31963, 200.00000)
with a corresponding fitness value of 5885.4958.

Figure 9 presents the convergence analysis of the NGO for
the pressure vessel design optimization problem.

B. WELDED BEEM DESIGN OPTIMIZATION PROBLEM

The mathematical model of a welded beam design was
adapted from [10]. Figure 10 displays the schematic view of
the welded beam problem. In this design, h is the thickness
of weld, 1 is the length of the clamped bar, t is the height
of the bar, and b is the thickness of the bar. The results to
this optimization problem are presented in Tables 12 and 13.
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TABLE 13. Statistical results for the welded beam design problem.

Algorithm Best Mean Worst SD Median
NGO 1.725202 1.725312 1.725496 0.0000106 1.725284
TSA 1.725661 1.725828 1.726064 0.000287 1.725787
MPA 1.726995 1.727128 1.727564 0.001157 1.727087
WOA 1.820395 2.230310 3.048231 0.324525 2.244663
GWO 1.725472 1.729680 1.741651 0.004866 1.727420
TLBO 1.759173 1.817657 1.873408 0.027543 1.820128
GSA 2.172858 2.544239 3.003657 0.255859 2495114
PSO 1.873971 2.119240 2.320125 0.034820 2.097048
GA 1.836250 1.363527 2.035247 0.139485 1.9357485

TABLE 14. Comparison results for the tension/compression spring design problem.

Algorithm Optimum Variables Optimum cost
d D P
NGO 0.0523593 0.372854 10.4093 0.012672000
TSA 0.051144 0.343751 12.0955 0.012674000
MPA 0.050178 0.341541 12.07349 0.012678321
WOA 0.05000 0.310414 15.0000 0.013192580
GWO 0.05000 0.315956 14.22623 0.012816930
TLBO 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
PSO 0.05010 0.310111 14.0000 0.013036251
GA 0.05025 0.316351 15.23960 0.012776352
TABLE 15. Statistical results for the tension/compression spring design problem.
Algorithm Best Mean Worst SD Median

NGO 0.012672000 0.012682410 0.012702561 0.0000204 0.012678261

TSA 0.012674000 0.012684106 0.012715185 0.000027 0.012687293

MPA 0.012678321 0.012697116 0.012720757 0.000041 0.012699686

WOA 0.013192580 0.014817181 0.017862507 0.002272 0.013192580

GWO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237

TLBO 0.012709667 0.012839637 0.012998448 0.000078 0.012844664

GSA 0.012873881 0.013438871 0.014211731 0.000287 0.013367888

PSO 0.013036251 0.014036254 0.016251423 0.002073 0.013002365

GA 0.012776352 0.013069872 0.015214230 0.000375 0.012952142

The NGO provides an optimal solution at (0.20576, 3.471,
9.0361, 0.20577) with a corresponding fitness value equal:
1.725202. Figure 11 presents the convergence analysis
of the NGO for the welded beam design optimization
problem.

C. TENSION/COMPRESSION SPRING DESIGN
OPTIMIZATION PROBLEM

The mathematical model of this problem was adapted
from [10]. Figure 12 displays the schematic view of
the tension/compression spring problem. in this design,
d is the wire diameter, D is the mean coil diameter,
and P is the number of active coils. The results to this
optimization problem are displayed in Tables 14 and 15.
The AMBOA provides the optimal solution at (0.0523593,
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0.372854, 10.4093) with a corresponding fitness value of
0.012672. Figure 13 shows the convergence analysis of
the NGO for the tension/compression spring optimization
problem.

D. SPEED REDUCER DESIGN OPTIMIZATION PROBLEM

This problem is modeled mathematically in [41], [42].
Figure 14 displays the schematic view of the speed reducer
design problem. In this design, b is the face width, m is
the module of teeth, p is the number of teeth in the pinion,
l1 is the length of the first shaft between bearings, I is
the length of the second shaft between bearings, d; is the
diameter of first shafts, and d> is the diameter of second
shafts. The results of the optimization problem are presented
in Table 16 and 17. The optimal solution was provided by the
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TABLE 16. Comparison results for speed reducer design problem.

Algorithms Optimum variables Optimum cost
b m p 1 b di d2
NGO 3.50122 0.7 17 7.3 7.8 3.334208 5.26535 2994.2471
TSA 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
MPA 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
WOA 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763
GWO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
TLBO 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
PSO 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561
GA 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002
TABLE 17. Statistical results for speed reducer design problem.
Algorithms Best Mean Worst SD Median
NGO 2994.2471 2997.481 2999.091 1.78090 2996.317
TSA 2998.5507 2999.640 3003.889 1.93193 2999.187
MPA 3001.288 3005.845 3008.752 5.83794 3004.519
WOA 3005.763 3105.252 3211.174 79.6381 3105.252
GWO 3002.928 3028.841 3060.958 13.0186 3027.031
TLBO 3030.563 3065.917 3104.779 18.0742 3065.609
GSA 3051.120 3170.334 3363.873 92.5726 3156.752
PSO 3067.561 3186.523 3313.199 17.1186 3198.187
GA 3029.002 3295.329 3619.465 57.0235 3288.657
TABLE 18. Unimodal objective functions.
Objective Function Range Dim Fin
m
FX)=>x [~100,100] 30 0
i=1
m m
BOO =Y w4 [ Il [-10,10] 30 0
i=1 i=1
m i 2
Fy(X) = Z <Z xi> [~100,100] 30 0
i=1 j=1
F,(X) = max{|x;|}, 1<i<m [-100,100] 30 0
m-1 2
Fs(X) = Z [100(x141 = x2)° + (x; — D) [-30,30] 30 0
i=1
m
Fo(O) = ) (I + 05]) [-100,100] 30 0
i=1
F7(X)
"
= ix* + 7,
Zi:lle ’ [—1.28,1.28] 30 0

where r is a random real number in the range 0 to 1

NGO at (3.50122, 0.7, 17, 7.3, 7.8, 3.334208, 5.26535) with
a corresponding fitness value equal to 2994.2471. Figure 15
presents the convergence analysis of the NGO for the speed
reducer design optimization problem.
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V. CONCLUSION AND FUTURE WORKS

In this paper, a new intelligence swarm-based algo-
rithm called Northern Goshawk Optimization (NGO) was
designed, which its main inspiration is to simulate the
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TABLE 19. High-dimensional multimodal objective functions.

Objective Function

Range Dim Fonin

m
Fg(X) = Z —x; sin(y/|x;) [-500,500] 30 ~12569
i=1
m
Fo(X) = Z [ x? — 10 cos(2mx;) + 10] [-5.12,5.12] 30 0
i=1
1 m 1 m
Fio(X) = —20exp (—0.2 —Z xlz> — exp (—Z cos(ani)) +20+e [—32,32] 30 0
méai=q médai=
Fi1(X) ! Zm 2 nm (xi) +1 [—600,600] 30 0
=— x; — cos|— —600,
H 4000 Luj=y ™ =1 Wi
F(X) = % {10sin(my,) + X% (v — D?[1 + 10 sin®(my;, )] + (0, — 1)?} +
?;1 u(xi, 10,100,4),where
k(x; — a)™, x; > a; [—50,50] 30 0
vy, =1 +xiT+1,u(xi,a, i,n) = 0, —a< x <a
k(=x; —a)™, x < -—a,
Fiz(X) =
0.1{sin?(3mxy) + XM, (x; — D2[1 + sin?@rx; + D] + (x,, — 1)? [1 + sin?Qrx,, )]} +
Y, u(x;, 5,100,4), where
[~50,50] 30 0
k(x; —a)™, x> a;
u(x;,a,i,n) = 0, —a< x <a
k(—x; —a)™, x; < —a.

behavior and strategy of northern goshawk while hunting.
Mathematical modeling of the proposed NGO algorithm was
presented and then its performance in optimization was tested
on sixty-eight objective functions. The optimization results
indicate the ability of NGO to provide desired quasi-optimal
solutions for optimization problems. The performance of
NGO in optimization was compared with eight well-known
algorithms including PSO, GA, GSA, TLBO, GWO, WOA,
MPA, and TSA. The analysis of the simulation results
showed the obvious superiority of the proposed NGO
algorithm over the eight competitor algorithms. In addition,
the implementation of NGO on four design problems showed
that the proposed algorithm was highly capable of solving
real-world problems.

The authors make several suggestions for future studies
of this paper. Attempts to design the binary as well as the
multi-objective version of the proposed NGO algorithm are
among the main study potentials for the future. In addition,
the application of NGO in solving optimization problems
in different sciences and comparing it with other existing
algorithms are other suggestions for further studies in line
with this paper.

APPENDIX A
See Tables 18-22.
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APPENDIX B
PRESSURE VESSEL DESIGN PROBLEM
Consider X = [x1, x2, x3, x4] = [Ty, Th, R, L].
Minimize f (x) = 0.6224x1x3x4 + 1.778x2x§ +
3.1661x7x4 + 19.84x7x3.
Subject to:

g1 (x) = —x1 +0.0193x3 <0,
g2 (x) = —x2 +0.00954x3 < 0,
4
g3 () = —mxixg — gmg + 1296000 < 0,
g4 (x) = x4 —240 < 0.
With
0 < x1,x <100, and10 < x3, x4 < 200.
APPENDIX C
WELDED BEAM DESIGN PROBLEM
Consider X = [x1, xp,x3,x4] = [h, I, ¢, b].

Minimize f (x) = 1.10471x12x2 + 0.04811x3x4(14.0 4 x7).
Subject to:

g1 (x) = t(x) — 13600 < O,
g2 (x) = o (x) — 30000 < 0,
g x) =x1—x4 <0,
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TABLE 20. Fixed-dimensional multimodal objective functions.

Objective Function Range Dim Finin
1 25 1 -
Fia(X) = (— + —) [-65.53,65.53] 2 0.998
B 500 Zf:lf + 32— ay)”
11 x1(b? + b; xz) -55 4 0.00030
Fis(0 = Z [a‘ b2 + byxs + x4 [=5:5]
1
Fio(X) = 4x? —2.1-x} + §x16 + X2, — 4%3 + 4x3 [-5,5] 2 -1.0316
5.1 5 2 1
Fuy(X) = ( Xy =y xf 2 = 6) +10 (1 - §) cosx; + 10 [-5,10] X [0,15] 2 0398
Fig(X) = [1+ (xq + x5 + 1)2(19 — 14x; + 3x% — 14x, + 6x,x, + 3x2)]
[30 + (2x; — 3x,)%(18 — 32x; + 12x% + 48x, — 36X, %, + 27x2)] [=55] 2 3
4 3 2
Fio(X) = _Zi=1 ciexp(— Zj=l ai(x = pi;)") [0,1] 3 —3.86
4 6 2
FZO(X) = —ZileieXp(— ijl a”(xj _pi}') ) [0,1] 6 -3.22
5
Fpy(X) = — Z [(X —a) - (X — a)T + 6¢,] [0,10] 4 101532
i=1
7
Fpp(X) = — Z [(X —a) - (X — a)T + 6] [0,10] 4 -104029
i=1
10
Fps(X) = — Z [(X —a) - (X — a)T + 6] [0,10] 4 -105364
i=1
g4(x) = 0.10471x% + 0.04811x3x4(14 + x2) — 5.0 < 0, J=2lanva _2 (Xl +x3>2
gs(x) = 0.125 —x; <0, 12 2 ’
g6(x) = 8(x) — 0.25 < 0, o () = 504000
g7(x) = 6000 — pe(x) < 0. X463
65856000
where S(x) =

(30 - 100) xgx3

2.6
T(x) = \/‘L’ + (er/) + ("3, o) = 4.013 (30 10) y/ ¢! -5 30 10°
€000 Pe %) = 196 28\ 4(12 - 105)

/!
T =

«/le)CQ ’ With
y MR
" = - 0.1 < x1,x4 <2and0.1 < xp,x3 < 10.
M = 6000 (14 + %) , APPENDIX D
5 TENSION/COMPRESSION SPRING DESIGN PROBLEM
R [, (Fitx Consider X = [x1,x2, x3] = [d, D, P].
4 2 ’ Minimize f (x) = (x3 +2) xlez.
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TABLE 21. IEEE CEC-2015 benchmark test functions.

Functions Related basic functions Dim  Fmin
CEC1 Rotated Bent Cigar Function Bent Cigar Function 30 100
CEC2 Rotated Discus Function Discus Function 30 200
CEC3  Shifted and Rotated Weierstrass Function Weierstrass Function 30 300
CEC4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 30 400
CEC5 Rotated Katsuura Katsuura Function 30 500
CEC6 _ Shifted and Rotated HappyCat Function HappyCat Function 30 600
CEC7 Shifted and Rotated HGBat Function HGBat Function 30 700
CECS Shifted and Rot.ated Expanded Griewank’s plus Griewank’s Functior.l 30 200
Rosenbrock’s Function Rosenbrock’s Function
CEC9 Shifted and Rotated Expanded Scaffer’s F6 Function Expanded Scaffer’s F6 Function 30 900
Schwefel’s Function
CEC10 Hybrid Function 1 (N = 3) Rastrigin’s Function 30 1000
High Conditioned Elliptic Function
Griewank’s Function
. . Weierstrass Function
CECI11 Hybrid Function 2 (N =4) Rosenbrock’s Function 30 1100
Scaffer’s F6 Function
Katsuura Function
HappyCat Function
. . Expanded Griewank’s
CEC12 Hybrid Function 3 (N = 5) Rosenbrock’s Function 30 1200
Schwefel’s Function
Ackley’s Function
Rosenbrock’s Function
High Conditioned Elliptic Function
CEC13 Composition Function 1 (N =5) Bent Cigar Function 30 1300
Discus Function
High Conditioned Elliptic Function
Schwefel’s Function
CEC14 Composition Function 2 (N = 3) Rastrigin’s Function 30 1400
High Conditioned Elliptic Function
HGBat Function
Rastrigin’s Function
CEC15 Composition Function 3 (N =5) Schwefel’s Function 30 1500
Weierstrass Function
High Conditioned Elliptic Function
Subject to: APPENDIX E
SPEED REDUCER DESIGN PROBLEM
G () =1-— x§x3 _ <0, Consider
T1785x] X = [x1,x2, X3, x4, X5, X6, X7]
. fal.l 1=, = (b.m,p. 1y, b, dy, ).
12566(x2x7)  5108x; Minimize
140.45x,
g =1- - — <0, f (x) = 0.7854x;x3 (3.3333x32 + 14.9334x3 — 43.0934)
2
P S, — 1508x; (32 +33) +7.4777 (33 + 47
= +0.7854(xsxg + x5%3).
With

0.05 <x1 2,025 <xy <1.3and2 < x3 < 15.

162078

Subject to:

27
X1XZX3
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TABLE 22. IEEE CEC-2017 benchmark test functions.

functions fmin
Cl Shifted and Rotated Bent Cigar Function 100
C2 Shifted and Rotated Sum of Different Power Function 200
C3 Shifted and Rotated Zakharov Function 300
C4 Shifted and Rotated Rosenbrock’s Function 400
C5 Shifted and Rotated Rastrigin’s Function 500
C6 Shifted and Rotated Expanded Scaffer’s Function 600
C7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700
C8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
C9 Shifted and Rotated Levy Function 900
C10 Shifted and Rotated Schwefel’s Function 1000
Cl1 Hybrid Function 1 (N = 3) 1100
Cl12 Hybrid Function 2 (N = 3) 1200
C13 Hybrid Function 3 (N = 3) 1300
Cl4 Hybrid Function 4 (N = 4) 1400
C15 Hybrid Function 5 (N =4) 1500
Cl6 Hybrid Function 6 (N =4) 1600
C17 Hybrid Function 6 (N =5) 1700
C18 Hybrid Function 6 (N =5) 1800
C19 Hybrid Function 6 (N =5) 1900
C20 Hybrid Function 6 (N = 6) 2000
C21 Composition Function 1 (N = 3) 2100
C22 Composition Function 2 (N = 3) 2200
C23 Composition Function 3 (N =4) 2300
C24 Composition Function 4 (N =4) 2400
C25 Composition Function 5 (N =5) 2500
C26 Composition Function 6 (N =5) 2600
C27 Composition Function 7 (N = 6) 2700
C28 Composition Function 8 (N = 6) 2800
C29 Composition Function 9 (N = 3) 2900
C30 Composition Function 10 (N = 3) 3000
397.5 .
g (x) = —-1=<0, With
X1X5X3
1.93x] 26 <x1 <3.6,07<x<08,17 <x3 <28,
X2X3X¢ 73 <x4<83,78<x5<83,29<x6=<3.9, and
1.93x3 5<x7<55
ga () = ——5 —1<0, ==
X2X3X5
1 745x5\ 2 ACKNOWLEDGMENT
g5 = —— < 4) +16.9x 10° -1 <0, The authors would like to thank Eva Trojovskd for her help
110xg X243 with the graphic design and Diego Marques for providing
1 745x5 2 some ideas for improving the research.
g6(xX) = — ( ) +157.5 x10° = 1 <0,
85x3 X2X3
X2X3 REFERENCES
g1 (x) = ——-1=<0, e o o
40 [1] T. Ray and K. M. Liew, “Society and civilization: An optimization
S5x 2 algorithm based on the simulation of social behavior,” IEEE Trans. Evol.
gg(x) =——-1< 0, Comput., vol. 7, no. 4, pp. 386-396, Aug. 2003.
X1 [2] S.Mirjalili, “The ant lion optimizer,” Adv. Eng. Softw., vol. 83, pp. 80-98,
X 1<0 May 2015.
89 (x) - 12)62 =% [3] R. G. Rakotonirainy and J. H. van Vuuren, “Improved metaheuristics for
the two-dimensional strip packing problem,” Appl. Soft Comput., vol. 92,
210 (x) = Lixe+19 Jul. 2020, Art. no. 106268.
X4 -7 [4] K. Iba, “Reactive power optimization by genetic algorithm,” IEEE Trans.
1.1x7 + 1.9 Power Syst., vol. 9, no. 2, pp. 685-692, May 1994.
g11 x) = Rt —— <0. [5] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
X5 learning,” Mach. Learn., vol. 3, nos. 2-3, pp. 95-99, 1988.
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