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ABSTRACT Optimization algorithms are one of the effective stochastic methods in solving optimization
problems. In this paper, a new swarm-based algorithm called Northern Goshawk Optimization (NGO)
algorithm is presented that simulates the behavior of northern goshawk during prey hunting. This hunting
strategy includes two phases of prey identification and the tail and chase process. The various steps of the
proposed NGO algorithm are described and then its mathematical modeling is presented for use in solving
optimization problems. The ability of NGO to solve optimization problems is evaluated on sixty-eight
different objective functions. To analyze the quality of the results, the proposed NGO algorithm is compared
with eight well-known algorithms, particle swarm optimization, genetic algorithm, teaching-learning based
optimization, gravitational search algorithm, grey wolf optimizer, whale optimization algorithm, tunicate
swarm algorithm, and marine predators algorithm. In addition, for further analysis, the proposed algorithm
is also employed to solve four engineering design problems. The results of simulations and experiments
show that the proposed NGO algorithm, by creating a proper balance between exploration and exploitation,
has an effective performance in solving optimization problems and is much more competitive than similar
algorithms.

INDEX TERMS Exploitation, exploration, northern goshawk, optimization, optimization problem.

I. INTRODUCTION
Optimization means choosing the best solution out of all
available candidate solutions for an optimization problem.
An optimization problem consists of three main parts:
decision variables, constraints (equality and inequality), and
objective functions [1]. From the general point of view,
optimization problem solving methods can be grouped into
deterministic methods and stochastic methods. Deterministic
methods implement the optimization problem-solving pro-
cess based on the use of information about the derivatives
of objective functions or based on information in the form
of the first-order and the second-order derivatives. This
information enables deterministic methods to effectively
find the exact optimal for linear or convex nonlinear prob-
lems. However, these methods fail to solve more complex
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problems, especially those with many local optimizations.
The time-consuming process of solving complex problems,
high-dimensional problems, non-convex problems, problems
for non-differentiable objective functions, problems with
random or unknown search space are other issues that
challenge deterministic methods [2]. Challenges and inability
of deterministic methods led to the introduction of stochastic
methods and optimization algorithms. Stochastic-based opti-
mization algorithms are efficient tools in solving optimization
problems that are able to provide suitable solutions to
optimization problems without using information about the
derivatives of the objective function and relying only on
random scanning of the search space and random opera-
tors [3]. The process of solving the optimization problem in
optimization algorithms is such that at first, a certain number
of solvable solutions are generated randomly as candidate
solutions. Then in an iteration-based process and based on
the steps of the algorithm, these candidate solutions are
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improved. After the full implementation of the algorithm,
the best candidate solution is selected as the solution to
the problem. The solution obtained from the optimization
algorithm is at best equal to the global optimal, otherwise it
must be very close to it. For this reason, the solutions obtained
from the optimization algorithms are called quasi-optimal [4].
The desire to achieve better quasi-optimal solutions and
closer to the global optimal has led to the design of numerous
optimization algorithms by researchers.

Optimization algorithms can be divided according to the
type of their inspiration in nature or society into four groups:
evolutionary-based, swarm-based, physics-based, and game-
based optimization algorithms.

Evolutionary-based optimization algorithms rely on the
simulation of biological sciences, genetics, and the use of
evolutionary operators such as natural selection. Genetic
Algorithm (GA) is one of the oldest evolutionary algorithms
developed based on the modeling of the reproductive process
and the use of selection, crossover, and mutation sequence
operators [5]. Differential Evolution (DE) algorithm is
another popular evolutionary optimization algorithm that
has a good ability to optimize non-differentiable nonlinear
functions, which has been introduced as a powerful and fast
way to optimize problems in continuous spaces [6].

Swarm-based optimization algorithms are introduced
based on modeling the natural behaviors of animals, insects,
aquatic animals, plants, and other living things. Particle
Swarm Optimization (PSO) is one of the most widely used
swarm-based algorithms, which is inspired by the intelligent
behavior of birds and fish [7]. Modeling ant swarm behavior
in finding the shortest path between the food source and the
nest has inspired the design of the Ant Colony Optimization
(ACO) [8]. Hierarchical leadership behaviormodeling aswell
as the strategy of gray wolves during hunting have been used
in the design of the Grey Wolf Optimization (GWO) [9].
In the design of the Whale Optimization Algorithm (WOA)
is inspired by the bubble net hunting method performed by
humpback whales [10]. Some other swarm-based algorithms
are Raccoon Optimization Algorithm (ROA) [11], Teaching-
Learning Based Optimization (TLBO) [12], Crow Search
Algorithm (CSA) [13], Grasshopper Optimization Algorithm
(GOA) [14], Tunicate Swarm Algorithm (TSA) [15], and
Marine Predators Algorithm (MPA) [16].

Physics-based optimization algorithms have been devel-
oped based on the simulation of various laws and phenomena
in physics. One of the oldest algorithms in this group is Sim-
ulated Annealing (SA), which is inspired by the simulation
of the annealing process by melting and cooling operations
in metallurgy [17], [18]. Simulation of the gravitational
force that objects exert on each other at different distances
has led to the design of a Gravitational Search Algorithm
(GSA) [19]. Water Cycle Algorithm (WCA) is inspired by
the water cycle in nature by modeling the evaporation of
water from the ocean, cloud formation, rainfall, and river
formation, as well as modeling the overflow of water from
pits [20]. Some other physics-based algorithms are Artificial

Chemical Reaction Optimization Algorithm (ACROA) [21],
Multi-Verse Optimizer (MVO) [22], Electromagnetic Field
Optimization (EFO) [23], Nuclear Reaction Optimization
(NRO) [24], Optics Inspired Optimization (OIO) [25],
Atom Search Optimization (ASO) [26], and Equilibrium
Optimizer (EO) [27].

Game-based optimization algorithms are based on model-
ing the behavior of players in different games and the rules
of these games. Simulation of competition and interactions
between teams in the game of volleyball, the coaching process
during the game, is employed in the design of the Volleyball
Premier League (VPL) algorithm [28]. Mathematical model-
ing of players’ behavior in tug-of-war game led to the Tug of
War algorithm Optimization (TWO) [29].

With the advancement of science and technology, engineer-
ing problems become more complex, which require effective
and efficient optimization methods. Therefore, this issue is
resolved by improving existingmethods or introducing newer
optimization algorithms. An important issue in improving
the capability of optimization algorithms is to increase the
exploration power to global search the problem-solving space
and to increase the exploitation power to local search the
optimal area discovered, while a proper balance must be
struck between these two indicators [30].

A major question that arises in the study of optimization
algorithms is that given the existing optimization algorithms,
is there still a need to design new optimization algorithms?
The answer to this question lies in the No Free Lunch (NFL)
Theorem [31]. The NFL states that an algorithm that
provides effective performance in solving one or more
optimization problems has no guarantee that it will perform
effectively in solving other optimization problems and may
even fail. This means it cannot be claimed that a particular
optimization algorithm is the best optimizer for all problems.
It is always possible to design new algorithms that solve
optimization problems better than existing algorithms. The
NFL encourages researchers to be motivated to design newer
optimization algorithms that can solve optimization problems
more effectively. The concepts expressed in the NFL theorem
have also motivated the authors of this paper to develop a new
optimizer.

Northern goshawk is a bird of prey whose hunting strategy
represents an optimization process. In this strategy, the
northern goshawk first selects the prey and attacks it, then
hunts the selected prey in a chase process. However, to the
best of our knowledge of the literature, no optimization
algorithm has been developed based on northern goshawk
behavior. This research gap motivated the authors to develop
a new optimization algorithm by mathematically modeling
the northern goshawk strategy while hunting.

The novelty of this paper is in designing a new swarm-
based optimization algorithm called Northern Goshawk
Optimization (NGO) that mimics the behavior of northern
goshawks while hunting. The various steps of the proposed
NGO algorithm are expressed and then mathematically
modeled. Sixty-eight objective functions are employed to
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evaluate the capability of NGO. The performance of the
proposed NGO algorithm in optimization is compared with
the performance of eight well-known algorithms. In order
to analyze the NGO for solving real-world problems,
this algorithm has also been implemented on four design
optimization problems.

The structure of the paper is created in such a way that
the proposed NGO algorithm is introduced and modeled in
Section II. Simulation studies are presented in Section III.
The performance of NGO in solving engineering design prob-
lems is evaluated in Section IV. Conclusions and suggestions
for further study of this paper are provided in Section V.

II. NORTHERN GOSHAWK OPTIMIZATION
In this section, the proposed Northern GoshawkOptimization
(NGO) algorithm is introduced and then its mathematical
modeling is presented.

A. INPIRATION AND BEHAVIOR OF NORTHERN
GOSHAWK
The northern goshawk is a medium-large hunter in the
family Accipitridae, which was first described by the current
scientific name, i.e., Accipiter gentilis by Linnaeus in his
Systema naturae in 1758 [32]. Northern goshawk is a member
of the Accipiter genus that hunts on a variety of prey,
including small and large birds and possibly other birds of
prey, small mammals such as mice, rabbits, squirrels, and
even animals such as foxes and raccoons. Northern goshawk
is the only member of this genus which is distributed in
Eurasia and North America [33]. The male is slightly larger
than the female. The male body length is 46 to 61cm, the
distance between the two wings is 89 to 105 cm and weighs
about 780 grams. However, the female species is 58 to 69 cm
long with a weight of 1220 grams and the distance between
the two wings is estimated at 108 to 127 cm [34], [35].
A photo of the northern goshawk is shown in Figure 1. The
northern goshawk hunting strategy consists of two stages,
so that in the first stage, after identifying the prey, it moves
towards it at a high speed, and in the second stage, it hunts
the prey in a short tail-chase process [36].

FIGURE 1. Northern goshawk (take from Wikimedia Commons – Northern
Goshawk juv).

Northern goshawk behavior when hunting and catching
prey is an intelligent process. Mathematical modeling of the
mentioned strategy is the main inspiration in designing the
proposed NGO algorithm.

B. ALGORITHM INITIALIZATION PROCESS
The proposed NGO is a population-based algorithm that
northern goshawks are searcher members of this algorithm.
In NGO, each population member means a proposed solution
to the problem that determines the values of the variables.
From a mathematical point of view, each population member
is a vector, and these vectors together form the population of
the algorithm as a matrix. At the beginning of the algorithm,
population members are randomly initialized in the search
space. The population matrix in the proposed NGO algorithm
is determined using (1).

The proposed NGO is a population-based algorithm that
northern goshawks are searcher members of this algorithm.
In NGO, each population member means a proposed solution
to the problem that determines the values of the variables.
In fact, from a mathematical point of view, each population
member is a vector, and these vectors together form the
population of the algorithm as a matrix. At the beginning of
the algorithm, population members are randomly initialized
in the search space. The population matrix in the proposed
NGO algorithm is determined using (1).

X=



X1
...

Xi
...

XN


N×m

=



x1,1 · · · x1,j · · · x1,m
...

. . .
... . .

. ...

xi,1 · · · xi,j · · · xi,m
... . .

. ...
. . .

...

xN ,1 · · · xN ,j · · · xN ,m


N×m

,

(1)

where X is the population of northern goshawks, Xi is the
ith proposed solution, xi,j xi,j is the value of the jth variable
specified by the ith proposed solution, N is the number
of population members, and m is the number of problem
variables.

As stated, each population member is a proposed solution
to the problem. Therefore, the objective function of the
problem can be evaluated based on each population member.
These values obtained for the objective function can be
represented as a vector using (2).

F(X ) =



F1 = F(X1)
...

Fi = F(Xi)
...

FN = F(XN )


N×1

(2)

where F is the vector of obtained objective function values
andFi is the objective function value obtained by ith proposed
solution.

The criterion for deciding which solution is best is the
value of the objective function. In minimization problems,
the smaller the value of the objective function, and in
maximization problems, the larger the value of the objective
function, the better the proposed solution. Given that in each
iteration new values are obtained for the objective function,
the best proposed solution should be updated in each iteration.
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C. MATHEMATICAL MODELLING OF PROPOSED NGO
In designing the proposed NGO algorithm to update the
population members, the simulation of northern goshawk
strategy during hunting has been employed. The two main
behaviors of northern goshawk in this strategy, including

(i) prey identification and attack and
(ii) chase and escape operation
are simulated in two phases.

FIGURE 2. Scheme of prey selection and attacking it by northern
goshawk.

1) PHASE 1: PREY IDENTIFICATION (EXPLORATION)
Northern goshawk in the first phase of hunting, randomly
selects a prey and then quickly attacks it. This phase increases
the exploration power of theNGOdue to the random selection
of prey in the search space. This phase leads to a global search
of the search space with the aim of identifying the optimal
area. A schematic of northern goshawk behavior in this phase
involving prey selection and attack is shown in Figure 2.
The concepts expressed in the first phase are mathematically
modeled using (3) to (5).

Pi = Xk , i=1, 2,. . . ,N , k=1, 2,. . . , i−1, i+1,. . . ,N ,

(3)

xnew,P1i,j =

{
xi,j + r

(
pi,j − I xi,j

)
, FPi < Fi,

xi,j + r
(
xi,j − pi,j

)
, FPi ≥ Fi,

(4)

Xi =

{
Xnew,P1i , Fnew,P1i < Fi,
Xi, Fnew,P1i ≥ Fi,

(5)

where Pi is the position of prey for the ith northern goshawk,
FPi is its objective function value, k is a random natural
number in interval [1, N ], Xnew,P1i is the new status for the
ith proposed solution, xnew,P1i,j is its jth dimension, Fnew,P1i is
its objective function value based on first phase of NGO, r is
a random number in interval [0, 1], and I is a random number
that can be 1 or 2. Parameters r and I are random numbers
used to generate randomNGO behavior in search and update.

2) PHASE 2: CHASE AND ESCAPE OPERATION
(EXPLOITATION)
After the northern goshawk attacks the prey, the prey tries to
escape. Therefore, in a tail and chase process, the northern

goshawk continues to chase prey. Due to the high speed
of the northern goshawks, they can chase their prey in
almost any situation and eventually hunt. Simulation of this
behavior increases the exploitation power of the algorithm
to local search of the search space. In the proposed NGO
algorithm, it is assumed that this hunting is closed to an
attack position with radius R. The chase process between
the northern goshawk and prey is shown in Figure 3. The
concepts expressed in the second phase are mathematically
modeled using (6) to (8).

xnew,P2i,j = xi,j + R (2r − 1 ) xi,j, (6)

R = 0.02
(
1−

t
T

)
, (7)

Xi =

{
Xnew,P2i , Fnew,P2i < Fi,
Xi, Fnew,P2i ≥ Fi.

(8)

where t is the iteration counter, T is the maximum number of
iterations, Xnew,P2i is the new status for ith proposed solution,
xnew,P2i,j is its jth dimension, Fnex,P2i is its objective function
value based on second phase of NGO.

FIGURE 3. Scheme of the chase between northern goshawk and prey.

3) REPETITION PROCESS, PSEUDO-CODE, AND
FLOWCHART OF NGO
After all members of the population have been updated
based on the first and second phases of the proposed NGO
algorithm, an iteration of the algorithm is completed and
the new values of the population members, the objective
function, and the best proposed solution are determined. The
algorithm then enters the next iteration and the population
members update continues based on Equations (3) to (8)
until the last iteration of the algorithm is reached. At the
end and after the complete implementation of NGO, the
best proposed solution obtained during the iterations of
the algorithm is introduced as a quasi-optimal solution for
the given optimization problem. The various stages of the
proposed NGO algorithm are specified as pseudo-code in
Algorithm 1 and its flowchart is shown in Figure 4.

D. COMPYTIONAL COMPLEXITY
In this subsection, the computational complexity of the
proposed NGO algorithm is analyzed. The computational
complexity of the initialization of the NGO algorithm is equal
to O(N ) where N is the number of population members of
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FIGURE 4. Flowchart of proposed NGO algorithm.

northern goshawks. Given that in the NGO, in each iteration,
each member of the population is updated in two phases
and its objective function is evaluated, the computational

Algorithm 1 Pseudo-Code of Proposed NGO Algorithm
Start NGO.
1. Input the optimization problem information.
2. Set the number of iterations (T ) and the number of

members of the population (N ).
3. Initialization of the position of northern goshawks and

evaluation of the objective function.
4. For t = 1: T
6. For i = 1: N
7. Phase 1: prey identification (exploration phase)
8. Select the prey at random using (3).
9. For j = 1: m
10. Calculate new status of jth dimension using (4).
11. end j = 1: m
12. Update ith population member using (5).
13. Phase 2: tail and chase operation (exploitation phase)
14. Update R using (6)
15. For j = 1: m
16. Calculate new status of jth dimension using (7).
17. end for j = 1: m
18. Update ith population member using (8).
19. end for i = 1: N
20. Save best proposed solution so far.
21. end for t = 1: T
22. Output best quasi-optimal solution obtained by NGO

for given optimization problem.
End NGO.

complexity of the update process is equal to O(2T · N · m)
where T is the maximum number of iterations, and m is the
number of problem variables. Therefore, the computational
complexity of the proposed NGO algorithm is equal to O(N ·
(1+2T · m)).

III. SIMULATION STUDIES AND DISCUSSION
In this section, the performance of the proposed NGO
algorithm in solving optimization problems is tested. For this
purpose, NGO is implemented on sixty-eight different objec-
tive functions including unimodal, high-dimensional multi-
modal, fixed-dimensional multimodal [37], CEC2015 [38],
and CEC2017 [39]. The performance of the proposed NGO
algorithm is compared with eight well-known algorithms
PSO, GA, GSA, TLBO, GWO, WOA, MPA, and TSA. The
values set for the control parameters of these algorithms
are specified in Table 1. The proposed NGO algorithm and
each of the competing algorithms are implemented in twenty
independent executions on every objective function, while
each execution contains 1000 iterations. The optimization
results are reported using two indicators

(i) the average of the best proposed solutions and
(ii) the standard deviation of the best proposed solutions.
The experimentation has been done on Matlab R2020a

version using 64 bit Core i7 processor with 3.20 GHz
and 16 GB main memory.
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FIGURE 5. Boxplot of performance of optimization algorithms on F1 to F23 test functions.
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TABLE 1. Parameter values for the competitor algorithms.

A. EVALUATION OF UNIMODAL OBJECTIVE
FUNCTION (F1-F7)
The optimization results of F1 to F7 functions using the
proposedNGO algorithm and eight competitor algorithms are
reported in Table 2. The simulation results show that NGO
has been able to provide the optimal global for F6. The NGO
algorithm is the first best optimizer in solving F1, F2, F3, F4,
F5, and F7 functions. What can be deduced from the analysis
of the simulation results is that the proposed NGO algorithm

has a superior and much more competitive performance than
the eight compared algorithms.

B. EVALUATION OF HIGH-DIMENSIONAL MULTIMODAL
OBJECTIVE FUNCTION (F8-F13)
The implementation results of the proposed NGO algorithm
and eight compared algorithms on the objective functions
of F8 to F13 are presented in Table 3. The NGO with its
high exploration power has been able to achieve the optimal
global value for F9 and F11. In the F8 function optimizer,
GA is the first best optimizer while NGO is the second best
optimizer for this function. GSA is the first best optimizer
and NGO is the second best optimizer for the F13 function.
The proposed NGO algorithm is the first best optimizer for
solving F10 and F12 functions. The simulation results show
that the proposed NGO algorithm has an acceptable ability to
solve high-dimensional multimodal optimization problems.

C. EVALUATION OF FIXED-DIMENSIONAL MULTIMODAL
OBJECTIVE FUNCTION (F14-F23)
The solving results of the objective functions F14 to F23
using the NGO and eight competitor algorithms are presented
in Table 4. The proposed NGO algorithm has been able to
converge to the global optimum for F14 and F17. The NGO
is the first best optimizer in solving F15 and F20 functions.
In optimizing the functions of F16, F18, F19, F21, F22, and
F23, the proposed NGO algorithm has the same performance
in the avg index as some competing algorithms. However,
in these functions, the proposed NGO algorithm has better
conditions in the std index. Analysis of the simulation results
shows that the proposed NGO algorithm has a high capability
in solving F14 to F23 functions and is muchmore competitive
than the eight compared algorithms.

The performance of NGO and eight competitor algorithms
in optimizing F1 to F23 functions is shown in the form
of a boxplot in Figure 5. The analysis of this boxplot
shows that the NGO has less width and a more efficient
center than competitor algorithms in optimizing most F1 to
F23 functions. This means that the NGO has offered close
and almost similar solutions in different implementations.
Therefore, NGO is able to provide more efficient solutions
to optimal problems.

D. STATISTICAL ANALYSIS
Comparison of optimization algorithms based on avg and std
criteria provides valuable information about their capabilities.
However, it may be a chance that one algorithm is superior to
another, even after twenty independent executions with the
least probability. Therefore, in this subsection, a statistical
analysis is presented to further analyze the performance of
the proposed algorithm in effectively solving optimization
problems than the eight competitor algorithms. For this
purpose, Wilcoxon rank sum test is used to show whether
the superiority of the proposed algorithm over the competing
algorithms is significant or not. In this test, a p-value is used to
show the superiority of one algorithm over another algorithm.
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TABLE 2. Optimization results of NGO and other algorithms on unimodal test function.

TABLE 3. Optimization results of GMBO and other algorithms on high dimensional test function.

TABLE 4. Optimization results of GMBO and other algorithms on fixed dimensional test function.

The results of statistical analysis of the proposed NGO
algorithm against eight competitor algorithms are presented
in Table 5. According to the results of theWilcoxon rank sum

test, in cases where a p-value is less than 0.05, the proposed
NGO algorithm is significantly better than all competitor
algorithms. According to Table 5, the NGOhas a significantly
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FIGURE 6. Sensitivity analysis of the NGO for the number of population members.
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FIGURE 7. Sensitivity analysis of the NGO for the maximum number of iterations.
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TABLE 5. p-values obtained from Wilcoxon rank sum test.

FIGURE 8. Schematic view of the pressure vessel problem.

FIGURE 9. Convergence analysis of the NGO for the pressure vessel
design optimization problem.

FIGURE 10. Schematic view of the welded beam problem.

superiority over each of the competitor algorithms in optimiz-
ing unimodal and fixed-dimensional multimodal functions.
Also, NGO has a significant superiority in optimizing

FIGURE 11. Convergence analysis of the NGO for the welded beam
design optimization problem.

FIGURE 12. Schematic view of the tension/compression spring problem.

FIGURE 13. Convergence analysis of the NGO for the
tension/compression spring optimization problem.

FIGURE 14. Schematic view of the speed reducer design problem.

high-dimensional multimodal functions compared to MPA,
TSA, WOA, GWO, TLBO, and PSO.

E. SENSITIVITY ANALYSIS
The proposed NGO algorithm is a population-based algo-
rithm that solves optimization problems in a repetition-based
process. Therefore, the two parameters of the population,
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TABLE 6. Sensitivity analysis of the NGO for the number of population members.

TABLE 7. Sensitivity analysis of the NGO for the maximum number of iterations.

number of northern goshawks (N ) and the maximum number
of iterations (T ) affect the performance of the proposed
NGO algorithm. Therefore, in this subsection, the sensitivity
analysis of the NGO to the two parameters N and T is
presented.

To evaluate the sensitivity analysis to parameter N , the
proposed NGO algorithm for different values of population
members equal to 20, 30, 50, and 80 has been implemented
on the functions F1 to F23. The results of the sensitivity
analysis of the NGO with respect to parameter N are
reported in Table 6. The simulation results show that

increasing the number of population members has improved
the performance of the NGO and the values of the objective
functions have decreased. The behavior of the convergence
curves of the NGO in the study of this analysis is shown
in Figure 6. These convergence curves show that increasing
the number of population members leads to an increase in
the exploratory power of NGO in identifying the optimal
area more quickly and thus converging to more appropriate
solutions.

In order to evaluate the sensitivity analysis for the T
parameter, the NGO for different values of the maximum
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TABLE 8. Evaluation results of CEC2015 objective functions.

FIGURE 15. Convergence analysis of the NGO for the speed reducer
design problem.

number of iterations equal to 100, 500, 800, and 1000 is
employed to solve the functions of F1 to F23. The results of
this analysis are presented in Table 7. Sensitivity analysis of
the NGO to parameter T shows that as the maximum number
of iterations increases, the value of all objective functions

decreases. The behavior of the convergence curves of the
proposed NGO algorithm under the influence of different
values of the T parameter is presented in Figure 7. These
convergence curves show that increasing the value of T
gives the NGO more opportunity to converge towards better
solutions.

F. EVALUATION OF IEEE CEC2015 (CEC1-CEC15)
The results of optimization of CEC2015 functions using
the NGO and eight competitor algorithms are presented in
Table 8. The simulation results show that the NGO has better
results than the eight competitor algorithms in CEC1, CEC3,
CEC7, CEC8, CEC9, CEC10, CEC11, CEC12, CEC13,
CEC14, and CEC15 functions. In optimizing CEC5 and
CEC6 the WOA performed better. However, the proposed
NGO is the second best optimizer to solve these functions.

G. EVALUATION OF IEEE CEC2017 (C1-C30)
The performance results of the proposed NGO and eight
competitor algorithms on the CEC2017 objective functions
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TABLE 9. Evaluation results of CEC2017 objective functions.
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TABLE 10. Comparison results for the pressure vessel design problem.

TABLE 11. Statistical results for the pressure vessel design problem.

TABLE 12. Comparison results for the welded beam design problem.

are presented in Table 9. What is clear from the analysis
of the results is that the proposed NGO algorithm offers
better quasi-optimal solution for objective functions C4,
C5, C8, C10, C11, C12, C13, C20, C22, C25, C26,
C29, and C30.

IV. NGO APPLICATION FOR ENGINEERING
DESIGN PROBLEMS
In this section, the performance of the NGO in solving
problems in real-world applications is evaluated. For this
purpose, the NGO is implemented on four optimization
problems, namely pressure vessel design, welded beam
design, tension/compression spring, and speed reducer
design.

A. PRESSURE VESSEL DESIGN OPTIMIZATION PROBLEM
The mathematical model used was adapted from [40].
Figure 8 shows the schematic view of the pressure vessel

problem. In this design, Ts is the thickness of the shell, Th
is the thickness of the head, R is the inner radius, and L
is the length of the cylindrical section without considering
the head. Tables 10 and 11 report the performance of the
NGO and other algorithms. The NGO provides an optimal
solution at (0.7781779, 0.3846819, 40.31963, 200.00000)
with a corresponding fitness value of 5885.4958.

Figure 9 presents the convergence analysis of the NGO for
the pressure vessel design optimization problem.

B. WELDED BEEM DESIGN OPTIMIZATION PROBLEM
The mathematical model of a welded beam design was
adapted from [10]. Figure 10 displays the schematic view of
the welded beam problem. In this design, h is the thickness
of weld, l is the length of the clamped bar, t is the height
of the bar, and b is the thickness of the bar. The results to
this optimization problem are presented in Tables 12 and 13.
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TABLE 13. Statistical results for the welded beam design problem.

TABLE 14. Comparison results for the tension/compression spring design problem.

TABLE 15. Statistical results for the tension/compression spring design problem.

The NGO provides an optimal solution at (0.20576, 3.471,
9.0361, 0.20577) with a corresponding fitness value equal:
1.725202. Figure 11 presents the convergence analysis
of the NGO for the welded beam design optimization
problem.

C. TENSION/COMPRESSION SPRING DESIGN
OPTIMIZATION PROBLEM
The mathematical model of this problem was adapted
from [10]. Figure 12 displays the schematic view of
the tension/compression spring problem. in this design,
d is the wire diameter, D is the mean coil diameter,
and P is the number of active coils. The results to this
optimization problem are displayed in Tables 14 and 15.
The AMBOA provides the optimal solution at (0.0523593,

0.372854, 10.4093) with a corresponding fitness value of
0.012672. Figure 13 shows the convergence analysis of
the NGO for the tension/compression spring optimization
problem.

D. SPEED REDUCER DESIGN OPTIMIZATION PROBLEM
This problem is modeled mathematically in [41], [42].
Figure 14 displays the schematic view of the speed reducer
design problem. In this design, b is the face width, m is
the module of teeth, p is the number of teeth in the pinion,
l1 is the length of the first shaft between bearings, l2 is
the length of the second shaft between bearings, d1 is the
diameter of first shafts, and d2 is the diameter of second
shafts. The results of the optimization problem are presented
in Table 16 and 17. The optimal solution was provided by the
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TABLE 16. Comparison results for speed reducer design problem.

TABLE 17. Statistical results for speed reducer design problem.

TABLE 18. Unimodal objective functions.

NGO at (3.50122, 0.7, 17, 7.3, 7.8, 3.334208, 5.26535) with
a corresponding fitness value equal to 2994.2471. Figure 15
presents the convergence analysis of the NGO for the speed
reducer design optimization problem.

V. CONCLUSION AND FUTURE WORKS
In this paper, a new intelligence swarm-based algo-
rithm called Northern Goshawk Optimization (NGO) was
designed, which its main inspiration is to simulate the
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TABLE 19. High-dimensional multimodal objective functions.

behavior and strategy of northern goshawk while hunting.
Mathematical modeling of the proposed NGO algorithm was
presented and then its performance in optimization was tested
on sixty-eight objective functions. The optimization results
indicate the ability of NGO to provide desired quasi-optimal
solutions for optimization problems. The performance of
NGO in optimization was compared with eight well-known
algorithms including PSO, GA, GSA, TLBO, GWO, WOA,
MPA, and TSA. The analysis of the simulation results
showed the obvious superiority of the proposed NGO
algorithm over the eight competitor algorithms. In addition,
the implementation of NGO on four design problems showed
that the proposed algorithm was highly capable of solving
real-world problems.

The authors make several suggestions for future studies
of this paper. Attempts to design the binary as well as the
multi-objective version of the proposed NGO algorithm are
among the main study potentials for the future. In addition,
the application of NGO in solving optimization problems
in different sciences and comparing it with other existing
algorithms are other suggestions for further studies in line
with this paper.

APPENDIX A
See Tables 18–22.

APPENDIX B
PRESSURE VESSEL DESIGN PROBLEM
Consider X = [x1, x2, x3, x4] = [Ts,Th,R,L].
Minimize f (x) = 0.6224x1x3x4 + 1.778x2x23 +

3.1661x21x4 + 19.84x21x3.
Subject to:

g1 (x) = − x1 + 0.0193x3 ≤ 0,

g2 (x) = −x2 + 0.00954x3 ≤ 0,

g3 (x) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0,

g4 (x) = x4 − 240 ≤ 0.

With

0 ≤ x1, x2 ≤ 100, and10 ≤ x3, x4 ≤ 200.

APPENDIX C
WELDED BEAM DESIGN PROBLEM
Consider X = [x1, x2, x3, x4] = [h, l, t, b].
Minimize f (x) = 1.10471x21x2 + 0.04811x3x4(14.0+ x2).
Subject to:

g1 (x) = τ (x)− 13600 ≤ 0,

g2 (x) = σ (x)− 30000 ≤ 0,

g3 (x) = x1 − x4 ≤ 0,
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TABLE 20. Fixed-dimensional multimodal objective functions.

g4(x) = 0.10471x21 + 0.04811x3x4(14+ x2)− 5.0 ≤ 0,

g5(x) = 0.125− x1 ≤ 0,

g6(x) = δ(x)− 0.25 ≤ 0,

g7(x) = 6000− pc(x) ≤ 0.

where

τ (x) =

√
τ ′ + (2ττ ′)

x2
2R
+ (τ ′′)2,

τ ′ =
6000
√
2x1x2

,

τ ′′ =
MR
J
,

M = 6000
(
14+

x2
2

)
,

R =

√
x22
4
+

(
x1 + x3

2

)2

,

J = 2

{
x1x2
√
2

[
x22
12
+

(
x1 + x3

2

)2
]}

,

σ (x) =
504000

x4x23

δ (x) =
65856000(

30 · 106
)
x4x33

,

pc (x) =
4.013

(
30 · 106

)√ x23x
6
4

36

196

1−
x3
28

√
30 · 106

4(12 · 106)

 .
With

0.1 ≤ x1, x4 ≤ 2and0.1 ≤ x2, x3 ≤ 10.

APPENDIX D
TENSION/COMPRESSION SPRING DESIGN PROBLEM
Consider X = [x1, x2, x3] = [d,D,P] .
Minimize f (x) = (x3 + 2) x2x21 .

VOLUME 9, 2021 162077



M. Dehghani et al.: Northern Goshawk Optimization: New

TABLE 21. IEEE CEC-2015 benchmark test functions.

Subject to:

g1 (x) = 1−
x32x3

71785x41
≤ 0,

g2 (x) =
4x22 − x1x2
12566(x2x31 )

+
1

5108x21
− 1 ≤ 0,

g3 (x) = 1−
140.45x1
x22x3

≤ 0,

g4 (x) =
x1 + x2
1.5

− 1 ≤ 0.

With

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3and2 ≤ x3 ≤ 15.

APPENDIX E
SPEED REDUCER DESIGN PROBLEM
Consider

X =
[
x1,x2, x3, x4, x5, x6, x7

]
= [b,m, p, l1, l2, d1, d2] .

Minimize

f (x) = 0.7854x1x22
(
3.3333x23 + 14.9334x3 − 43.0934

)
− 1.508x1

(
x26 + x

2
7

)
+ 7.4777

(
x36 + x

3
7

)
+ 0.7854(x4x26 + x5x

2
7 ).

Subject to:

g1 (x) =
27

x1x22x3
− 1 ≤ 0,
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TABLE 22. IEEE CEC-2017 benchmark test functions.

g2 (x) =
397.5

x1x22x3
− 1 ≤ 0,

g3 (x) =
1.93x34
x2x3x46

− 1 ≤ 0,

g4 (x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5 (x) =
1

110x36

√(
745x4
x2x3

)2

+ 16.9× 106 − 1 ≤ 0,

g6(x) =
1

85x37

√(
745x5
x2x3

)2

+ 157.5× 106 − 1 ≤ 0,

g7 (x) =
x2x3
40
− 1 ≤ 0,

g8 (x) =
5x2
x1
− 1 ≤ 0,

g9 (x) =
x1
12x2

− 1 ≤ 0,

g10 (x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11 (x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

With

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and

5 ≤ x7 ≤ 5.5.
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