
Received November 1, 2021, accepted November 22, 2021, date of publication December 6, 2021,
date of current version December 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3132962

User Preference-Based Demand Response for
Smart Home Energy Management Using
Multiobjective Reinforcement Learning
SONG-JEN CHEN, WEI-YU CHIU , (Member, IEEE), AND WEI-JEN LIU
Multi-Objective Control and Reinforcement Learning (MOCaRL) Laboratory, Department of Electrical Engineering, National Tsing Hua University, Hsinchu
300044, Taiwan

Corresponding author: Wei-Yu Chiu (chiuweiyu@gmail.com)

This work was supported by the Ministry of Science and Technology of Taiwan under Grant MOST 108-2221-E-007-100 and Grant MOST
110-2221-E-007-097-MY2.

ABSTRACT A well-designed demand response (DR) program is essential in smart home to optimize
energy usage according to user preferences. In this study, we proposed a multiobjective reinforcement
learning (MORL) algorithm to design a DR program. The proposed approach improved conventional
algorithms by mitigating the effect of the change in user preferences and addressed the uncertainty
induced by future price and renewable energy generation. Because two Q-tables were used, the proposed
algorithm simultaneously considers electricity cost and user dissatisfaction; when user preference changes,
the proposedMORL algorithm uses the previous experience to customize appliances’ scheduling and swiftly
achieve the best objective value. The generalizability of the proposed algorithm is high. Therefore, the
algorithm can be implemented in a smart home equipped with an energy storage system, renewable energy
source, and various types of appliances such as inflexible, time-flexible, and power-flexible ones. Numerical
analysis using real-world data revealed that in case of price and renewable uncertainty, the proposed approach
can deliver excellent performance after a change of user preference; it achieved 8.44% cost reduction as
compared with mixed-integer nonlinear programming based DR while increasing the dissatisfaction level
only by 1.37% on average.

INDEX TERMS Energymanagement system (EMS), reinforcement learning (RL), multiobjective reinforce-
ment learning (MORL), demand response (DR), smart home.

I. INTRODUCTION
Demand response (DR) [1] refers to the changes in the energy
demand of devices in response to time-varying energy prices.
A DR program can reduce the cost of energy through adjust-
ment of appliance operation. In a smart home, an energy
management system (EMS) [2] plays a crucial role in a DR
program. An EMS can shift certain demands for appliances
from peak price hours to nonpeak price hours. This adjust-
ment reduces the demand for electricity during peak load
times [3]. A well-designed DR scheme with an EMS can
benefit users, improve human comfort level, reduce energy
consumption (or electricity cost), and reduce the system’s
peak demand.
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Incentive-based programs and price-based programs are
two major types of DR programs [2]. In incentive-based
programs, incentive payments are given to induce lower
energy usage at times of high electricity prices. Users adjust
the energy usage after incentive is provided. In price-based
programs, users can obtain financial benefits and discounts
in return for their peak demand shifted and consumption
reduced at designated times. Users can respond to the price
change promptly when adopting a price-based program [4],
[5]. Price-based DR programs for smart homes have been
widely studied in recent years [6], [7]. In price-based pro-
grams, the power utility provider sets a time-based electricity
tariff to encourage users to voluntarily adjust their energy
consumption. One of the electricity tariffs commonly used
is real-time pricing (RTP) whose pricing signals change with
time [8]–[10]. The peak price is set at the time of peak demand
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to encourage users to curtail their energy usage. In smart
homes, an EMS can shift the energy demand to nonpeak
price hours and thus reduce the total electricity cost. However,
although this method helps reduce the electricity cost, the
user comfort level can also decrease, which consequently
increases user dissatisfaction, because of partial satisfaction
of energy demand required by users [11]. A well-designed
DR scheme and an EMS can allow users to automatically
manage demand and balance electricity cost and user dissat-
isfaction [12].

When a DR program is used to optimize energy resources,
the objective is to minimize the electricity cost and user dis-
satisfaction. In [13]–[17], the authors applied mixed-integer
nonlinear programming (MINLP) to achieve the optimal DR.
Meanwhile, optimizing energy resources often involves the
use of an EMS, which has been used by, for example, compa-
nies and academic institutions such as Aggregate Industries,
Thorn-Zumtobel, and Sheffield Hallam University to save
energy costs. These approaches require complete informa-
tion, such as full-day electricity prices and renewable supply,
to determine the optimal scheduling. In practice, however,
users are only provided with forecast electricity prices and
renewable supply; data uncertainty must be considered.

To address this uncertainty, machine learning technologies
have been used for energy management [18], [19]. Reinforce-
ment learning (RL) is a machine learning-based decision-
making algorithm that can address an uncertain environment
using limited information [20]. The use of RL involves the
identification of agents and the environment. Agents interact
with the environment to receive feedback from the envi-
ronment; this reward (feedback) is then used to construct a
Q-table, which stores Q-values for the evaluation of each
state–action pair.

Conventional RL algorithms have been applied for energy
management in smart homes over the past few years [21].
Ruelens et al. [22] developed a batch RL technique called
fitted Q-iteration to perform day-ahead scheduling only
for power-flexible appliances. Wen et al. [23] proposed an
RL-based algorithm to operate home appliances auto-
matically but considered only time-flexible appliances.
Lu et al. [24] proposed a multiagent RL technique to sched-
ule the operation of various home appliances in a decentral-
ized manner. However, they did not include renewable energy
sources and energy storage systems and the influence of the
prediction error was not discussed. Xu et al. [25] developed
a multiagent RL-based EMS but did not consider an energy
storage system to reduce the energy bill. Remani et al. [26]
proposed a RL-based model to control load balance problem
but trained in single agent. Mathew et al. [27] developed a
priced-based deep RL-based EMS. In modern smart homes,
various home appliances and their interaction with the energy
storage system as well as renewable energy sources should be
considered.

In [22], [23], and [25], the authors formulated a DR
problem as a single objective RL (SORL) problem. They
used weighted-sum methods to combine multiple objectives.

Park et al. [28] and Lu et al. [24] devised the concepts of
using various weights but they did not consider possible
weight changes in response to user preferences. A user-
friendly DR program was used to customize the schedul-
ing of appliance operation according to user preferences.
However, user preferences are assumed to be fixed, and
possible changes over time are not considered. If user prefer-
ences change, learning algorithms can approximate an opti-
mal scheduling after a certain period. However, the speed
of approximating a new scheduling after change of pref-
erence depends on various factors. These factors have not
been sufficiently investigated. To address the change of user
preferences, a mechanism to expedite the learning process
must be implemented in order to minimize the learning costs.

Multiobjective RL (MORL) [29] is preferred over the
SORL to address the problem of multiple conflicting objec-
tives mainly because of two reasons. First, MORL improves
the performance of SORL by developing diverse Pareto opti-
mal models with multiple objectives. Second, MORL is suit-
able for optimizing multiple objectives simultaneously for
sequential decision-making problems. While the concept of
MORL has emerged recently, the applications of MORL to
the smart home energy management have not been explored.
Therefore, further research is required in this field.

Due to the advantages of MORL over SORL, we proposed
a user preference-based DR program that uses MORL for
energy management in a smart home. We implemented the
proposed DR program in a smart home equipped with various
types of home appliances, an energy storage system, and a
renewable energy source. Appliances and the energy storage
system are considered as agents that aim to approach opti-
mal energy scheduling in the presence of uncertainty from
renewable energy generation and electricity price. To handle
a possible change in user preferences, two Q-tables were
used in the proposed approach to simultaneously consider
electricity cost and user dissatisfaction. After the user prefer-
ence changes, the previous experience can be used to swiftly
approach the best objective value without undergoing any
time-consuming learning process.

The main contributions of this paper are as follows.
First, the proposed user preference-based DR program using
MORL algorithm can swiftly approach the best objective
value after the user preference changes. An EMS is used to
rapidly customize energy scheduling according to a change
in the user preference. The concept of using the MORL to
improve the learning speed and its application to home energy
management has not been investigated in the literature. Sec-
ond, the proposed home energy management approach is
flexible and can address a wide range of appliances and other
smart home components, including inflexible, time-flexible,
power-flexible appliances, an energy storage system, and a
renewable energy source, whereas existing approaches are
applicable to only some of these devices. This feature of the
proposed approach is critical because users desire a DR pro-
gram that can handle various types of appliances, and smart
homes are often equipped with an energy storage system and
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renewable energy source to improve the energy efficiency.
Third, a numerical analysis was conducted using real-world
data; the results revealed that the proposed approach outper-
formed existing methods in terms of electricity cost and user
dissatisfaction while simultaneously considering the price
and renewable energy uncertainty.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III details the
scheme of a smart home, system models of diverse cate-
gories of home appliances, and the energy storage system.
In Section IV, a user preference-based DR program that uses
the MORL algorithm is proposed with dedicated designs of
states, actions and rewards. Section V presents our simula-
tion results and a comparison of the existing smart home
energy management methods. Finally, conclusions are drawn
in Section VI.

II. RELATED WORK
In a smart home, a renewable system has been used to supply
electricity to home appliances [30]–[32]. To predict future
renewable supply, various weather forecasting methods have
been developed [33]–[35]. For example, Cerrai et al. [36]
proposed an outage prediction model for an electric distri-
bution network.

A battery system is often used to reduce the variability of
renewable energy. As such, battery models have been investi-
gated [37], [38]. Price forecasting [39]–[41] or prediction of
energy consumption [42]–[44] may be involved in a battery
system to form an EMS.

Prediction errors were observed in conventional predic-
tion algorithms [45]–[47]. To reduce the prediction error,
for example, Kodaira et al. [48] proposed to use prediction
intervals of estimated error based on prior predictions to
approach optimal energy scheduling; Lee et al. [49] applied
an error driven prediction modulation to evaluate the differ-
ence between the forecast load and actual load.

To improve energy efficiency, hybrid systems have been
examined [50]–[52]. For example, Li et al. [53] considered
photovoltaic battery energy storage systems as a black start
power source that can improve the regional power grid and
broaden the application of photovoltaic (PV) power gener-
ation; Yulong et al. [54] proposed a hybrid energy storage
system which consists of ultra capacitors and battery packs.
The hybrid systemwas able to prevent the battery from a large
current impact and increase instantaneous battery capacity.

While energy scheduling within a smart home has been
widely investigated, its impact can extend to a larger scale
if transactive energy is applied. Transactive energy is related
to economic and control techniques that can be employed
to exchange energy or power flow within a region of inter-
est, such as a multimicrogrid system or a community. For
instance, Iqbal et al. [55] proposed a metaheuristic polar bear
optimization method to solve a DR problem considering
interconnected microgrids in a transactive energy market.
Meanwhile, blockchain technologies can be employed to
ensure the security of energy transactions [56]–[58].

FIGURE 1. Home energy management system.

III. SYSTEM MODELS AND PROBLEM FORMULATION
Fig. 1 illustrates the smart home environment considered in
this study. Typically, smart homes include an EMS, an energy
storage system, a renewable energy source, and several home
appliances. A user sends a full-day demand request list to
the EMS.

In this study, we primarily focus on the price-based pro-
grams to optimize energy resources. The electricity can be
bought from a utility or supplied from renewable energy
sources. The price of electricity will fluctuate due to several
factors, including fuels, power plant costs, transmission and
distribution system, weather conditions, and regulations [59].
The electricity price is automatically updated periodically
in the EMS to evaluate the energy bill and a renewable
energy source is used to charge the energy storage system.
The EMS controls home appliances and the energy storage
system to improve energy usage and reduce the energy bill.
Home appliances are categorized into three groups, namely
inflexible, time-flexible, and power-flexible [24], [60]. The
following subsections present models of home appliances,
energy storage system, and our problem formulation.

A. INFLEXIBLE APPLIANCES
Inflexible appliances have critical energy demand that must
be satisfied in each time slot. Inflexible appliances, such as
refrigerators, must be operated continuously, and their energy
demand cannot be adjusted. The energy consumption of
inflexible appliance n in time slot h is denoted as Ea

n,h, where
n ∈ {1, 2, 3, . . . ,N a

} and h ∈ {1, 2, 3, . . . ,H}. Here, N a

and H represent the number of inflexible appliances and the
optimization window, respectively. The energy consumption
of all inflexible appliances is as follows:

Ea
=

H∑
h=1

N a∑
n=1

Ea
n,h. (1)

B. TIME-FLEXIBLE APPLIANCES
Time-flexible appliances, such as washing machines, can
be scheduled using an EMS to operate at nonpeak hours
to reduce the energy bill. For time-flexible appliances,
users can send the request to the EMS and set an oper-
ation period. The EMS must finish the job in this oper-
ation period. The energy consumption of time-flexible
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appliance n in time slot h is denoted as Eb
n,h, where

n ∈ {1, 2, 3, . . . ,N b
} with N b representing the number

of time-flexible appliances. The energy consumption of all
time-flexible appliances during the observation period is as
follows:

Eb
=

H∑
h=1

N b∑
n=1

Eb
n,h. (2)

Shifting the operation time of a device can result in user
dissatisfaction. The user dissatisfaction, denoted as Ub

n,h, for
appliance n in time slot h increases with the increment of
shifted operation time. Here, hbn,s is the start time of oper-
ation conducted by the EMS, hbn,r is the request start time,
and hbn,e is the end time. The EMS can shift the start time
in the available operation period [hbn,r, h

b
n,e]. Typically, the

priority for various time-flexible appliances is different. Here,
θbn denotes the device-dependent dissatisfaction parameter of
time-flexible appliance n with 0 < θbn ≤ 1. A larger θbn
implies a higher priority for time-flexible appliance n. The
user dissatisfaction is related to dissatisfaction parameters
and the operation time.

We denote user dissatisfaction as Ub
n,h(θ

b
n , h

b
n,s) with the

following variable constraints:

hbn,r ≤ h
b
n,s ≤ h

b
n,e. (3)

For example, user dissatisfaction can be linearly related to the
difference between the actual start time hbn,s and the request
start time hbn,r [61]

Ub
n,h = θ

b
n (h

b
n,s − h

b
n,r). (4)

C. POWER-FLEXIBLE APPLIANCES
Power-flexible appliances, such as air conditioners, are com-
mon in a smart home. The use of power-flexible appli-
ances can be adjusted to satisfy the energy demand during a
requested time. Power-flexible appliances can operate with
flexible power consumption between the minimum energy
demand and maximum energy demand. The energy con-
sumption of power-flexible appliance n in time slot h is
denoted by Ec

n,h, where n ∈ {1, 2, 3, . . . ,N
c
} and N c is

the number of power-flexible appliances. The energy con-
sumption of all power-flexible appliances is calculated as
follows:

Ec
=

H∑
h=1

N c∑
n=1

Ec
n,h. (5)

An EMS can reduce the energy cost through the adjustment
of power-flexible appliances, but this adjustment can increase
user dissatisfaction.

Here, dcn,max is the desired energy demand for the
power-flexible appliance n. The minimum energy demand
is denoted by dcn,min. The EMS controls the energy con-
sumption ranging from dcn,min to dcn,max. Furthermore, θcn
denotes the device-dependent dissatisfaction parameter of
power-flexible appliance n with 0 < θcn ≤ 1. A larger

θcn implies a higher priority for power-flexible appliance n.
The user dissatisfaction U c

n,h(θ
c
n ,E

c
n,h) of power-flexible

appliance n is related to the energy consumption and dis-
satisfaction parameters, and it has the following variable
constraints

dcn,min ≤ E
c
n,h ≤ d

c
n,max. (6)

For example, U c
n,h(θ

c
n ,E

c
n,h) can be formulated as

follows [24]:

U c
n,h = θ

c
n (E

c
n,h − d

c
n,max)

2. (7)

D. ENERGY STORAGE SYSTEM
In this study, a battery system was used as the energy storage
system. A battery system can charge at nonpeak hours and
discharge electrical energy to appliances at peak hours to
reduce the energy bill. The energy level of the battery system
in time slot h is denoted by Bh kWh, which satisfies the
following equation [62]:

Bmin
≤ Bh ≤ Bmax (8)

where Bmin and Bmax are the minimum battery level and
maximum battery capacity, respectively. Here, Bh is mainly
influenced by charging and discharging activities, denoted
as Ph kW. The renewable energy source charges the battery
system in time slot h and it is denoted by E res

h kWh. Positive
Ph represents charging and negative Ph represents discharg-
ing, E res

h represents the energy supply from the renewable
energy source to the battery system. The power leakage
occurs with a power leakage rate β, where 0 < β ≤ 1.
The dynamics of the battery system can be expressed as
follows [62], [63]:

Bh+1 = βBh + ηPh1h+ E res
h (9)

where 1h is the length of a time slot and η is the charg-
ing/discharging efficiency.

Let the following equation be the total energy consumption
of all home appliances:

EHA
h =

N∑
n=1

(Ea
n,h + E

b
n,h + E

c
n,h). (10)

Because of the energy demand of appliances and limited
battery capacity, the charging/discharging power Ph should
satisfy the following equation:

Pmin
h ≤ Ph ≤ Pmax

h (11)

where maximum power Pmax
h and minimum power Pmin

h in
charging or discharging events are calculated as follows:

Pmax
h =

η(Bmax
− Bh−1)− E res

h

1h
(12)

Pmin
h = max{

η(Bmin
− Bh−1)− E res

h

1h
,−

EHA

1h
}. (13)
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E. PROBLEM FORMULATION
The electricity cost of a smart home in time slot h, denoted
as f1,h, is the multiplication of energy bought from the utility
and RTP λRTPh cent/kWh:

f1,h = λRTPh × EHA
h + λ

RTP
h × Ph1h

= λRTPh (EHA
h + Ph1h). (14)

For a charging event, Ph > 0 and the term EHA
h + Ph1h

represents the energy consumption of appliances and battery
charing. For a discharging event, Ph < 0 and energy dis-
charged from the battery, i.e., Ph1h < 0, is used by the
appliances; hence, the difference EHA

h +Ph1h represents the
total energy that should be bought from the utility.

The total user dissatisfaction is denoted as f2,h. The two
objectives must be minimized:

f2,h =
N∑
n=1

{θbn (h
b
n,s − h

b
n,r)+ θ

c
n (E

c
n,h − d

c
n,max)

2
}. (15)

Consider weight w with 0 ≤ w ≤ 1 that represents user pref-
erence on objectives. A larger weight indicates the objective
that the user prefers. A user preference-based DR in a smart
home can be realized by solving

min E[
H∑
h=1

(wf1,h + (1− w)f2,h)]

subject to (3), (6), (8), and (11). (16)

In this study, we focus on the dynamic adjustment in the
EMS, where the agent can make decisions based on the user’s
preferences for the target, i.e., w and 1− w. The weight may
change with time; the EMS must reschedule energy when the
user preference changes in the presence of uncertainty.

IV. USER PREFERENCE-BASED MULTIOBJECTIVE
REINFORCEMENT LEARNING APPROACH
Owing to the uncertainty in electricity price and renew-
able generation, and possible change of user preference, this
section develops a user preference-based DR approach that
solves (16) using an MORL algorithm. The home appliances
and battery system were considered as agents that interact
with the environment (utility, renewable energy source, and
the user). The EMS regulates the operation of appliances to
reduce energy cost and dissatisfaction from the user. Fur-
thermore, the EMS controls the charging/discharging of the
battery. In this section, the framework of MORL is first
presented, followed by our customized RL algorithms for
energy control and scheduling of the charging/discharging of
the battery and home appliances.

The framework of multiagent RL is based on a Markov
decision process. Here, Sn is the state set of agent n and
sn,h is the state in time slot h, where sn,h ∈ Sn. Given sn,h,
agent n selects an action an,h from its action set An, and
then proceeds to the next state sn,h+1 and receives reward
rn,h+1 given by the environment. The reward rn,h+1 is used to
evaluate action an,h. The main goal of agent n is to determine

an optimal policy π∗n or an optimal mapping from states to
actions that maximizes the expected value of the cumulative
reward. Given a state sn,h, an action an,h and a policy πn, the
action value of pair (sn,h, an,h) is defined by the following
expression:

qn,πn (sn,h, an,h) = Eπn [
H∑
h=1

γ h−1rn,h|sn,h, an,h],

∀sn,h ∈ Sn, ∀an,h ∈ An (17)

where γ is the discount factor. The action-value func-
tion under an optimal policy, denoted as q∗n(sn,h, an,h),
is expressed as follows:

q∗n(sn,h, an,h) = max
πn

qn,πn (sn,h, an,h). (18)

Q-learning is often used to achieve or approach the optimality
in (18) [20], [64]. In Q-learning, an agent uses a Q-table to
estimate q∗n and has two strategies to select an action: for
exploration, the agent randomly selects an action to explore
the state space and action space with probability ε; for opti-
mization or exploitation, the agent selects an action on the
basis of the current state that yields the highest Q-value with
probability 1− ε. This mechanism is termed ε-greedy action
selection. The greedy action a∗n,h can be determined by

a∗n,h = argmax
a

Qn(sn,h, a). (19)

Given the action selection strategies, Q-learning can approach
q∗n through the following update rule:

Qn(sn,h, an,h) ← (1− α)Qn(sn,h, an,h)

+α(rn,h+1 + γ max
a
Qn(sn,h+1, a)) (20)

where α ∈ (0, 1] is the learning rate.
In our smart home scenario, a user desires to minimize the

cost and user dissatisfaction; we thus interpret reward r as a
penalty, and the aforementioned maximization is replaced by
minimization. We refer to home appliance n as agent n and
design its state sn,h as follows:

sn,h = [λRTPh , h]. (21)

Let an,h denote the action performed by agent n in time
slot h. For inflexible appliances, the action space has only
one option ‘‘on’’, because it cannot be scheduled. For time-
flexible appliances, the action space has two options which
are ‘‘on’’ and ‘‘off’’ to determine when the appliances are
operated. For power-flexible appliances, the action space is
a set of discrete numbers {1, 2, 3, . . . ,Ec

n,max}; each element
in the set represents a level of energy consumption and Ec

max
is the maximum level. Each agent can receive two reward
signals as feedback from the environment. For time-flexible
appliances, the reward is expressed as follows:

r1,n,h = λRTPh Eb
n,h, r2,n,h = Ub

n,h. (22)

For power-flexible appliances, the reward is used as follows:

r1,n,h = λRTPh Ec
n,h, r2,n,h = U c

n,h. (23)
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Both the aforementioned reward functions are designed to
encourage agents to minimize objectives (14) and (15) by
updating Q-value Qk,n(sn,h, an,h) as follows:

Qk,n(sn,h, an,h) ← (1− α)Qk,n(sn,h, an,h)

+α(rk,n,h+1 + γ min
a
Qk,n(sn,h+1, a))

(24)

where k ∈ {1, 2} represents the kth objective.
We proposed to use an MORL algorithm to expedite the

learning process in response to possible changes of the user
preference on objectives. Algorithm 1 presents the pseu-
docode of the proposed user preference-based MORL algo-
rithm for agent n. Agent n selects the action derived from
wQ1,n + (1 − w)Q2,n. After Q-tables Q1,n and Q2,n reach
steady values, greedy action selection can be readily per-
formed given any weight w. Thus, the best objective value
wQ1,n+ (1−w)Q2,n can be achieved without further learning
when a change in user preference occurs.

Algorithm 1 Proposed User Preference Based MORL for
Energy Scheduling of Home Appliance n

Require: dissatisfaction parameters θbn , θ
c
n ; user’s request

tn,r , tn,e, dn,min, dn,max; weight w.
Initialize Qk,n(sn,h, an,h) arbitrarily.

Ensure: scheduling policy for home appliance n derived
from wQ1,n + (1− w)Q2,n.
1: Loop for each episode
2: For h = 1, 2, . . . ,H do
3: Choose action an,h on the basis of current state sn,h

using ε-greedy derived from wQ1,n+ (1−w)Q2,n.
4: Take action an,h, obtain rewards r1,n,h+1,

r2,n,h+1 and next state sn,h+1.
5: Update Q1,n(sn,h, an,h) and Q2,n(sn,h, an,h)

using (24).
6: sn,h← sn,h+1.
7: End for

The EMS also considers the battery system as an agent in
a smart home. Its state is designed as follows:

sessh = [Bh, λRTPh , h]. (25)

The action of battery system agent, denoted by aessh , is Ph and
subject to (11). Unlike the agents associated with the home
appliances, this agent has one reward signal as feedback from
the environment:

ressh = λ
RTP
h Ph1h. (26)

The reward is the electricity cost because the goal of the agent
is to reduce the energy bill. The agent’s Q-table is updated by
the following expression:

Qess(sessh , a
ess
h ) ← (1− α)Qess(sessh , a

ess
h )

+α(ressh+1 + γ min
a
Qess(sessh+1, a)). (27)

Algorithm 2 presents the pseudocode of the Q-learning
for the battery system. The input contains the battery sys-
tem parameters. The renewable energy source energy supply
is stored in the battery system. The battery system agent
observes the battery state and energy demand of home appli-
ances to charge/discharge energy to home appliances.

Algorithm 2 Q-Learning for Control of Battery System

Require: battery system parameters Bmin, Bmax, β, η.
Initialize Qess arbitrarily.

Ensure: scheduling policy for battery system derived from
Qess.
1: Loop for each episode
2: For h = 1, 2, . . . ,H do
3: Store energy E res

h , observe home appliance energy
demand and state of battery.

4: Choose action aessh on the basis of current state sessh
using ε-greedy derived from Qess.

5: Take action aessh , obtain ressh+1 and next state sessh+1.
6: Calculate battery dynamics in (9).
7: Update Qess using (27).
8: sessh ← sessh+1.
9: End for

Remark 1: The variation of renewable generation can
affect the total energy bought from the utility. Because the
electricity prices change with time, the total energy bought
from the utility can affect the energy cost, which is minimized
as a goal for a learning agent. Fortunately, renewable genera-
tion generally has a periodic pattern related to time; the agent
can learn how to perform energy scheduling by accessing
state h (time index) as well as other important states such as
the current electricity price λRTPh and battery level Bh. All that
information is thus encoded as a state vector in (25) along
with historical information stored in the Q-table for the agent
to plan for coming activities.

V. NUMERICAL RESULTS
We examined energy scheduling in a smart home by using the
proposed approach. In our analysis, the scheduling horizon
starts from h = 1 and ends at H = 24, and one episode
consists of 24 hours. The RTP signals were broadcast periodi-
cally by the utility and day-ahead prices were used as forecast
prices. Price uncertainty resulted from the difference between
the real-time and forecast prices [65]. The prediction error of
prices was evaluated using the following expression of mean
absolute percentage error (MAPE):

MAPE =
100
H

H∑
h=1

|λRTPh − λDh |

λRTPh

% (28)

where λDh cent/kWh represents the day-ahead pricing
signal.

Fig. 2 illustrates sample data, including the solar energy
generation and energy price, from the electric industry leader
PJM [66]. By using the data set of PJM and analyzing total
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FIGURE 2. Pricing and renewable energy generation from PJM.

TABLE 1. Home appliances list.

electricity prices of each month in 2019, we discovered that
the highest prediction errors of prices occurred in January.
The following three days were selected: January 2, 2019
(maximum MAPE), January 12, 2019 (50th percentile), and
January 27, 2019 (minimum MAPE). Fig. 3 displays the
RTP and day-ahead pricing of selected days. A PV sys-
tem was used as a renewable energy source. Fig. 4 illus-
trates the corresponding PV power output. A prediction
error of 10% for power generation was considered in our
analysis [67].

The smart home in the study was equipped with an inflexi-
ble appliance, a time-flexible appliance, three power-flexible
appliances, a battery system, and a PV system [2]. Table 1
displays the requested appliances operation list of the smart
home user. The Li-Ion battery could have about 90% of the
efficiency of charging/discharging and power leakage was
about 0.1% to 0.2%; η = 0.99 and power leakage rate
β = 0.99 in (9) were set [68]. The minimum battery level
Bmin and maximum battery capacity Bmax in (8) were 1 and
12 kWh, respectively. For the learning algorithms, parameters
were tuned for the best performance: ε = 0.1, α = 0.9 and
γ = 0.8.

The proposed MORL was used to realize the user
preference-basedDR. Fig. 5 displays the appliances’ schedul-
ing using the proposed DR program on January 2, 2019. The
energy consumption in peak price time slots was reduced. The
peak electricity price occurs at t = 13 and all power-flexible
appliances’ energy consumptions were reduced in that time

FIGURE 3. Pricing signals on three selective days.

slot. Compared with the normal operation from t = 17 to
t = 19, the washing machine operated from t = 18 to t = 20,
which reduced the energy bill. The proposedDR programwas
effective in reducing the energy bill.

The proposed approach was compared with SORL [24],
normal operation, and MINLP algorithms [16]. An average
of 10 simulation runs were performed to smooth all learn-
ing curves. In MINLP-based DR, prior information regard-
ing RTP and PV supply was used for all future time slots
to produce ideal performance. For MINLP-based DR with-
out prior information, SORL-based DR, and the proposed
MORL-based DR, they used forecast prices and forecast
renewable energy generation for energy scheduling. For
SORL, the reward function of agent n in time slot h is the
weighted-sum of rewards in (22) and (23) and is expressed as
follows:

rn,h = wλRTPh En,h + (1− w)Un,h. (29)

The associated Q-table was updated using (20). The nor-
mal operation was the operation of appliances according to
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FIGURE 4. 24-hour PV supply.

FIGURE 5. Scheduling for home appliances on January 2, 2019 (w = 0.5).

Table 1. MINLP-based DR used day-ahead pricing signals as
the prediction of RTP signals to evaluate the energy cost for
the day for energy scheduling. Fig. 6 displays the learning
curves of comparable methods on the selected days. The
performance of the proposed MORL-based DR was closest
to the ideal performance, followed by the SORL-based DR.
The MINLP-based DR program performed slightly better
than the normal operation, but was susceptible to prediction
errors. From Fig. 6(a) with the highest prediction error to
Fig. 6(c) with the lowest prediction error, the performance
of MINLP-based DR improved but was still worse than that
produced by the proposed approach. As illustrated in Fig. 6(b)
and Fig. 6(c), the MINLP-based DR exhibited better perfor-
mance when the prediction errors were low.

To verify the effectiveness and efficiency of the proposed
approach addressing user preference changes, Fig. 7 illus-
trates the learning curves of the SORL-based and proposed
MORL-based DRs. Two weight settings of w = 0.2 and
w = 0.7 were considered. In Fig. 7, the user changed the
preference at episode 300 (dotted vertical line). After the
change in the user preference, the objective value achieved
by the SORL-based DR required approximately 300 episodes
training to converge to a steady value. By contrast, once the
objective value achieved by the MORL-based DR reached a
steady value, a jump to another steady objective value was

FIGURE 6. Comparison of learning curves of selected days (w = 0.5) with
(a) maximum MAPE (2 January, 2019), (b) 50th percentile (12 January,
2019), and (c) minimum MAPE (27 January, 2019).

observed when a change in user preference occurred. This
quick convergence was attributed to the use of two Q-tables,
which mitigated the effect of the change of weights.

Finally, the cost and user dissatisfaction under vari-
ous preference weights of the proposed MORL-based and
MINLP-based DRs were compared. Table 2 presents a sum-
mary of the average electricity cost and average user dis-
satisfaction level in January, 2019. The normal operation
had the same cost (c/ 32.34) because appliances were not
scheduled in response to prices. For other energy scheduling
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FIGURE 7. Learning curves on January 2, 2019, considering a change in
user preference (episode 1 to episode 300: w = 0.7, episode 301 to
episode 1500: w = 0.2). When the weight changes, the SORL-based DR
undergoes additional learning processes to update the Q-table until it
reaches a steady objective value. For the proposed MORL, the weight
change does not affect the update function (24) using rewards (22)
and (23). Thus a steady objective value is achieved.

TABLE 2. Costs and user dissatisfaction level under different user
preference weights.

methods, a larger weightw yielded a lower electricity cost and
higher user dissatisfaction. As compared with MINLP, cost
reductions achieved by our approach were 9.95%, 9.03%,
and 6.35% for w = 0.3, 0.5, and 0.7, respectively (cost
reduction by 8.44% on average), while the dissatisfaction
level was slightly increased by 3.99%, 0.92%, and −0.79%
for w = 0.3, 0.5, and 0.7, respectively (dissatisfaction level
increased by 1.37% on average). The proposed MORL-based
DR outperformed the MINLP-based DR in the presence of
prediction errors of pricing signals.

VI. CONCLUSION
This study investigated the user preference–based DR pro-
gram for smart home users to optimize home appliances’
scheduling by shifting or reducing energy consumption.
In the literature, user preference has been assumed to be fixed
without considering possible changes over time. To address
possible changes in user preference, the MORL-based DR
was proposed to achieve fast convergence to a steady objec-
tive value in the presence of price and renewable uncertainty.
Relevant numerical analysis using real-world data, including
price signals and renewable energy generation, was con-
ducted to illustrate the advantages of the proposed approach.
For SORL-based DR, an extra learning period was observed
as compared with the proposed approach. For MINLP-based

DR using an optimization algorithm instead of a learning
algorithm, its performance was not affected by a change in
user preference, but susceptible to the uncertainty induced
by electricity prices and renewable energy generation. The
numerical analyses show that the proposed MORL-based DR
outperformed the MINLP-based DR in terms of energy cost
reductions by 8.44% while sacrificing little user dissatisfac-
tion only by 1.37% on average. Our future work includes
the investigation of Blockchain-enabled transactive energy
markets for residential DR programs.
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