
Received November 17, 2021, accepted December 1, 2021, date of publication December 6, 2021,
date of current version December 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133097

Security Analysis of LNMNT-LightWeight
Crypto Hash Function for IoT
NUBILA NABEEL, MOHAMED HADI HABAEBI , (Senior Member, IEEE),
AND M. D. RAFIQUL ISLAM , (Senior Member, IEEE)
IoT and Wireless Communication Protocol Laboratory, Department of Electrical and Computer Engineering, International Islamic University Malaysia (IIUM),
Kuala Lumpur 53100, Malaysia

Corresponding author: Mohamed Hadi Habaebi (habaebi@iium.edu.my)

This work was supported by International Islamic University Malaysia, Publication-Research Initiative Grant Scheme P-RIGS18-003-0003.

ABSTRACT Conventional cryptographic techniques are inappropriate for resource-constrained applications
in the Internet of Things (IoT) domain because of their high resources requirement. This paper introduces a
new Lightweight (LWT) hash function termed Lightweight New Mersenne Number Transform (LNMNT)
Hash function, suitable for many IoT applications. The proposed LWT hash function is evaluated in terms
of randomness, confusion, diffusion, distribution of hash function, and different attacks. The randomness
analysis is performed using the NIST test suit. The LNMNT LWT hash function has been benchmarked
against other LWT hash functions in terms of execution time, cycles per byte, memory usage, and consumed
energy. The analysis showed that the LNMNT LWT hash function has excellent randomness behavior and
is highly sensitive to the slight change in the input message too. Moreover, it provides low execution time,
memory usage, and power consumption against the other LWT hash functions.

INDEX TERMS IoT security, lightweight hash functions, newMersenne number transform, NIST test suite.

I. INTRODUCTION
A. IoT OVERVIEW
Today’s networking concept enables the interconnection of
millions of devices that humans use daily and create a smart
environment everywhere [1], [2]. In all sectors with human
interaction, like health, military, transportation, industry, and
cities, IoT can create a smart environment. This can be
reached by making devices mutually connected via the Inter-
net. Further, it makes our tools and equipment smart too.
The Internet of Things architecture [3] is made up of four
layers. The architecture is shown in Fig.1. The first layer is the
device layer, which consists of sensors, actuators, RFIDs, and
gateways and these are mostly resource-constrained devices
in nature. Gateways collect the data from the IoT devices for
further processing, while the network layer provides transport
and networking capabilities for routing the data. The third
layer is a middle layer that hides the complexity of lower
layers from the higher layers and provides storage and fur-
ther processing of data. The Application layer houses differ-
ent IoT applications such as smart city, smart industry and

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

FIGURE 1. Simulation results for the network.

smart health. IoT applications must be designed to provide
security, privacy, transparency, and subject to keep ethical
constraints [4].

Some examples of theoretical and experimental attacks
to highlight the weakness of more efficient but less secure
designs of IoT applications are discussed in [5] and [6]. In [5]
crypt-analysis on Photon using cube attack is conducted and
found that it is possible to recover more bits of plaintext
from the hash digest. In photon key-recovery-based attacks
remains an open issue. In [6] we can find a comparative

165754
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2263-0850
https://orcid.org/0000-0003-0808-2840
https://orcid.org/0000-0001-8041-0197


N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

study about the different hash function based on speed, power
requirements and security. Each LWT hash function is have
its own advantages and disadvantages. None of the LWT hash
function solves conflict between resource requirements and
security. This leads to the requirement of design of new LWT
hash function.

The security module provides necessary security features
for each layer. The main cryptographic mechanisms are
designed to ensure the following properties, such as data
integrity, data confidentiality, authorized access, and access
control. For this many crypto solutions like data encryp-
tion and generation of digital signatures are developed. Data
encryption is done by using AES and DES etc. Data integrity
is ensured by using cryptographic hash functions SHA and
MD5 etc. The device layer of IoT consists of resource con-
strained devices. To implement a security mechanism in the
device layer, it requires LWT cryptographic solutions [7], [8].
Memory utilization, power consumption, and processing
speed are the most important elements to consider while
building LWT crypto solution. Conventional cryptographic
approaches, such as SHA and AES, for example, are imprac-
tical to use in such kinds of devices due to the high com-
plexity of the techniques. RFID tags have a total gate count
of 1000-10000, with only 200-2000 gates set for security.
Most of the conventional cryptographic techniques needmore
than 10000 gate equivalents for their implementation [1]
whereas all IoT devices should ensure privacy, confidential-
ity, availability, data integrity, and authorization.

B. LWT CRYPTOGRAPHY
The main challenges associated with conventional
cryptographic techniques faced when implementing IoT
applications are high memory requirement, high battery
power consumption and large computational power. For
encryption, LWT stream and block ciphers were introduced
in the early on and for message authentication codes, pseudo
random generators, and key derivation functions LWT hash
functions have been developed. Cryptographic hash functions
such as PHOTON [9], QUARK [10], Spongent [11] and
Lesamanta-LWT [12] are defined as LWThashingmethods in
ISO/IEC 29192-5 documentation, while PRESENT [13] and
CLEFIA [14], [15] are used for block ciphers as per ISO/IEC
29192-2:2012 documentation. The LWT stream ciphers are
TRIVIUM, GRAIN, CHACHA and ESPRESSO [16]. In this
paper we have introduced a new adaptive LWT hash function.

PHOTON uses sponge construction architecture with AES
like primitives as its basic building blocks. The sponge con-
struction is a simple iterated construction for building a func-
tion f with variable length input and arbitrary output length.
In sponge construction, a function f is repeatedly process in
two phases, the Absorption and squeezing phase. The output
from the absorption phase taken as the input to squeezing
phase. Final out of sponge construction is taken from the
squeezing phase. The sponge construction operates on a state
of b = br + cp bits. The value br is called the bitrate and the
value cp the capacity. The message is divided into different

FIGURE 2. Sponge construction.

blocks p0, p1, . . . , pn and takes the output as z1, z2, . . . zm.
The sponge construction architecture diagram is shown in
Fig.2. Different variants of PHOTON are available with 80,
128,160,224, and 256 bits hash lengths. To cope up with the
LWT property, the internal state of the PHOTON is reduced
by taking the 4 × 4 S box. An S-Box S is a m × n matrix
which maps S : {0, 1}x → {0, 1}y. that means it converts
input message ax to an output vector by in such a way that it
hides the information about the plain text from the ciphertext.

We can achieve the LWTproperty this way, but wewon’t be
able to achieve an appropriate level of security. A scan-based
side-channel attack is a serious issue in small block size, small
key size, and less complex round(4 bit S box) operation based
techniques. In [17] we can see an attack in 128-bit AES key
on an Arduino device using differential power analysis and
correlation power analysis. The block length of a block cipher
is an important parameter that directly affects security. AES
has limited flexibility to support variable-length parameters
like key size and block size, even though it offers three options
for the number of rounds, namely: 10, 12, and 14. These
parameters directly affect the security as well as the resource
requirements of IoT devices.

QUARK uses the sponge construction method also. The
permutation is implemented by non-linear Boolean func-
tions and a linear Boolean function. The three classifica-
tions of QUARK hash family are uQUARK, dQUARK, and
tQUARK. Permutation of QUARK uses two Nonlinear Feed-
back Shift Registers (NFSR), one Linear Feedback Shift
Register (LFSR), and three Boolean functions f, g and h.

SPONGENT is a LWT hashing technique, and it also uses
sponge construction. However, it uses a 4 × 4 bits S box
with PRESENT permutation. Besides security and efficiency,
the design of the S box mainly considers the simplicity of
implementation. SPONGENT is available in two forms with
128 bit and 88 bit hash digest.

Lesamnta-LWT uses AES as its building method and it
uses Merkle Damgard construction so that it requires more
memory registers than sponge construction methods. This
LWT hash function provides a 256-bit hash digest. Devel-
opers claim to have a security level of 2120 to collision,
preimage, and second preimage resistance [12].

GLUON [18] is a family of a LWT hash functions based on
sponge construction. This new family is based on Feedback

VOLUME 9, 2021 165755



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

TABLE 1. List of symbols and abbreviations.

with Carry Shift Register (FCSR). FCSR is a promising
alternative to LFSR for the design of stream ciphers. The
FCSR consists of binary main register and carry register but
contrary to LFSRs. LFSR performs XOR but FCSR performs
addition with carry operation. FCSR can help to solve the
problem which is always raised when using LFSR where in
LFSR based stream ciphers, filtering or combining Boolean
functions must be used to break the linearity of LFSR. With
FCSR based stream ciphers, this issue is directly solved by the
intrinsic non-linearity of the FCSR. The transition function
of an LFSR is linear while it is quadratic for an FCSR.
The main advantage of this quadratic transition function is
the intrinsic resistance to algebraic attacks and to correla-
tion attacks, which are the main weaknesses of LFSR based
stream ciphers. However, the implementation of an FCSR
costs more than the one of an LFSR. Like LFSR, FCSR is also
not suitable to use directly for cryptography. It requires some
filters tomodify. The hardware size of such implementation is
heavier than that of the basic building block used in QUARK
and PHOTON.

SPN-Hash [19] is a new family of hash functions that
gives the variable hash length of 128, 256, and 512 bits. It is
constructed as resistance to the collision as well as resis-
tance to common attacks against hash functions. The internal
permutation is implemented as a Substitution Permutation
Network (SPN). It uses AES-based internal permutations
with fixed key sizes. One round of an SPN structure consists
of three layers, they are Key addition, substitution, and linear
transformation. The substitution layer is made up of S boxes
implemented in parallel. SPN structure has good confusion
and diffusion properties.

C. DESIGN COMPARISON OF DIFFERENT LWT HASH
FUNCTIONS
The comparison of different LWT Hash functions in terms of
design can be seen in Table 2 [7]. All LWT hash functions are
created by weakening existing techniques, such as reducing
the size of the S box, the key and block size, and the number of
rounds. We can reduce resource requirements by using these
strategies, but security becomes a challenge. the questions
arising are how to minimize the number of blocks without
compromising security, how to create a lighter S box or
alternative approachwithout compromising security, and how

to reduce block and key size without compromising security
features.

II. CHALLENGES IN LWT HASH FUNCTIONS
A balancing of resource requirements and security is a chal-
lenging problem in LWT cryptographic design. The majority
of LWT hashing approaches attempt to simplify existing
cryptographic techniques. This is a bad practice because
‘‘lightweight’’ does not imply ‘‘weak’’ or ‘‘light’’ cryptogra-
phy. LWT designs require the same or better level of security
features than conventional cryptography.

Most of the LWT hash function family known so far man-
aged to run on resource-constrained devices, but do have
some issues in terms of security level achieved and through-
put. Consequently, it is necessary to develop new approaches
to hash function algorithm design that can prevent attacks
effectively in comparison to existing algorithms as they are
not sufficient to meet the requirement of the latest technolo-
gies and security concerns of IoT applications. These issues
are always considered in the greater perspective of the ICT
rather than the specific application domain of the IoT.

There are more than fifty symmetric LWT cryptographic
algorithms proposed by various sectors. However, the design
focus is only on how to reduce cost and enhance hardware
and software performance. Furthermore, many of them do not
properly consider mitigating security attacks [8]. The ideal
LWT cryptographic technique should reduce the conflict and
strike a balance between cost, performance, and security.
To reach these three often contradicting properties all together
is a challenging design problem. Security problems arise
often when key or block sizes are reduced, and when algo-
rithm design is simplified.

Making a hash function LWT by reducing the block size
can be a serious concern against security because there is
an increase in the probability of guessing the random IV by
the attackers (e.g., the probability of recovering the plaintext
block by block by using chosen plaintext attack increases).
LWT does not mean weak cryptography, as we need more
from less availability. Hence, weakening conventional cryp-
tography is not a good practice to achieve the design goal of
LWT cryptography and an alternative design approach should
be considered. There are many possibilities of side-channel
attacks, and it is vital to consider countermeasures at the
implementation level.

Two main principles for secure cryptographic systems are
diffusion and confusion property. Confusion tries to make
complications between plaintext and ciphertext. Diffusion is
the process in which the plaintext is rearranged into cipher-
text. The strength of diffusion is measured by how the plain-
text is rearranged into ciphertext. A small change in the
plaintext should have a significant change in the ciphertext
(e.g., the avalanche effect). The crypto system should have a
good avalanche effect in such a way that half of the ciphertext
should change for a single change in the plaintext. Currently,
the AES algorithm uses Mix Column Transformation in its
diffusion layer. Mix Column transformation is powerful for

165756 VOLUME 9, 2021



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

TABLE 2. Comparison of different LWT hash functions in terms of design.

diffusion property. However, this transformation is fixed in
terms of their length such that we cannot make a significant
change in the algorithm to make it completely adequate for
IoT applications. As a result, an alternate technique to meet
the needs of resource-constrained IoT devices is the usage
of parameter-based transformation, which permits change-
able block length and key size by adjusting the transform
length.

In this article, a new LWT hash function, LNMNT, that
uses the New Mersenne Number transform (NMNT) in its
diffusion layer, is described. The proposed LNMNT design
builds on the sponge construction method to reduce the
internal memory size as much as possible. Further, the arti-
cle also includes the implementation details and the NIST
test result of the new LWT hash function. LNMNT is not
only LWT but it also achieves excellent diffusion and con-
fusion property, making it quite attractive to a variety of
IoT applications.

Since device layer of IoT applications consists of resource
constrained devices, LWT crypto techniques are the only
solutions for the security issues of these devices. The main
contribution of this paper as follows.

1) The paper introduced a LWT crypto hash function
LNMNT for IoT applications.

2) The proposed LWT hash function has been compared
with existing LWT hash functions in terms of execution
time, cycles per byte, memory usage, power consump-
tion and collision resistance.

3) The proposed LWT hash function is evaluated in terms
of randomness, confusion, diffusion, hash function dis-
tribution and different attacks. Further, the results were
compared against other results for LWT hash functions.

4) The LNMNT LWT hash function has been further
implemented in real Zigbeemotes Z1 fromZolertia and
tested in the lab to evaluate its capabilities.

III. NEW APPROACH TO LWT HASH
As previously stated, a new design approach is required for
the construction of a LWT hash function, where simplifica-
tion of existing techniques is not recommended. As a result,
NMNT is introduced in the design of the LWT hash function.
Table 1 shows the list of symbols and abbreviations used
below.

A. NEW MERSENNE NUMBER TRANSFORM
The main motivation of this research is the adoption of the
NMNT functions as a building block for the proposed LWT
hash function [20]. Number Theoretic Transforms (NTT)
are mainly adopted to improve the diffusion property of
cryptographic techniques. The NMNT is an important NTT
introduced by Holt and Boussakta, which can be used for fast
error free calculation of convolutions and correlations [21].

Mersenne number is a number which is one less than a
power of two. It can be represented as M = 2p − 1 where
p is an integer and M is the Mersenne number. An example
for Mersenne number includes 1,3,7,15,31 etc. IfM is prime
then it is called Mersenne Prime Numbers.

NMNT can be defined as the modulo of a Mersenne num-
ber, where the arithmetic operations are simple equivalents
to one’s complement operation. The one-dimensional NMNT
X (k) of an integer sequence x(n) with length N is defined
in (1).

X (k) = 〈
∑
n

x(n)β(nk)〉mnp. (1)

VOLUME 9, 2021 165757



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

wheremnp is theMersenne prime in the form ofmnp = 2p−1,
p is the prime number, n = 0 to (N − 1) and k = 0 to N − 1

β(nk) = β1(nk)+ β2(nk). (2)

β1(nk) = 〈Rel(α1 + jα2)nk 〉mnp. (3)

β2(nk) = 〈Img(α1 + jα2)nk 〉mnp. (4)

The value of β(nk) is in (2). β1(nk) and β2(nk) are showed
in (3) and (4) respectively. Here Rel() and Img() indicates real
and imaginary parts. The values of α1 and α2 can be obtained
using (5) and (6).

α1(nk) = ±〈2q〉mnp. (5)

α2(nk) = ±〈−3q〉mnp. (6)

where, q = 2p−2

The value of NMNT parameters α1, α2 and β(nk) depends
upon the transform length. For the transform length less than
N = 2p+1 the value of β1(nk) and β2(nk) can be calculated
as shown in (7) and (8).

β1(nk) = 〈Rel((α1 + jα2)i)nk 〉mnp. (7)

β2(nk) = 〈Img((α1 + jα2)i)nk 〉mnp. (8)

where i is an integer power of 2. The (7) and (8) is for the
transform length N/i.

B. PROPERTIES OF NMNT
This section lists the motivation to select NMNT in the design
of LWT hash.

1) We know that a LWT cryptosystem does not mean
to be a weak cryptosystem. So that we should need
an alternative method instead of weakening existing
approaches. Moreover, we know that AES is hard to
become LWT compactable due to its fixed transfor-
mation. The proposed technique uses NMNT, which
provides variable transform length (power of two). This
variable transform length can be utilized to create a
hash function that has a high diffusion rate during
the hashing process. NMNT has good diffusion and
avalanche characteristics [22]. So that by designing
the LWT hash function with NMNT, a good diffusion
property is achieved.

2) NMNT provides variable transform length (power of
two) so that we can design a hash function with vari-
able block size according to its security requirements.
Hence, there is no need to adjust the number of rounds;
all you have to do is change the NMNT settings tomake
it variable length.

3) NMNT also provides the property of cyclic convolu-
tions used for fast calculation of error-free convolution.

4) The key feature of NMNT is that it provides an
extremely long transform length for a proper Mersenne
Number prime (power of two), so that the LWT hash
function can be designed with variable length hash
digests. The proposed system gives the hash digest size
of 80,128,160,224 and more and it is very flexible to
change the length of the hash digest.

TABLE 3. Relationship between mnp, N and transform parameters.

The NMNT transform is mainly based on the NMNT param-
eters, which include α1, α2, β1, β2 and transform length. The
value of each parameter has a direct impact on the length
of the transform. We must first set the transform parameters
before we can calculate NMNT. For calculating NMNT first
wemust set the transform parameters. To begin, select a prime
number p from which to calculate the Mersenne prime mnp.
Let’s choose p = 7. Then mnp = 27 − 1 = 127 is the
corresponding value. Nmax = 2p+1 is the maximum trans-
form length. As a result, the maximum transform length for
p = 7 is 27+1 = 256. The parameters can then be calculated.
For Nmax = 256(maximum transform length) α1, and α2 can
be calculated as shown in (9), (10) and (11).

q = 27−2 = 32. (9)

α1 = ±〈232〉 = ±16. (10)

α2 = ±〈−332〉 = ±39. (11)

The α1 and α2 pair can be written as (16, 39), (16,−39),
(−16, 39) and (−16,−39). These values are related to max-
imum transform length. It will vary based on the trans-
form length. For the pair (16,−39), the value of α1 and
α2 for the transform length 128, can be calculated as in (12)
and (13).

〈Rel(α1 + jα2)i〉mnp = 〈Rel(16− j39)2〉127 = 5. (12)

〈Img(α1 + jα2)i〉mnp = 〈Img(16− j39)2〉127 = 22. (13)

Here i = Nmax/requiredtransformlength(N ) =

256/128 = 2. Table 3 gives the value of Mersenne prime
and transform parameters. Table 4 gives the value of different
transform parameters for different transform lengths with
mnp 127. The same procedure can be used for the calcula-
tion of transform parameters of various mnp. Next we can
calculate β1(nk) and β2(nk) as (14) and (15)

β1(nk) = 〈Rel(5+ j22)nk 〉127. (14)

β2(nk) = 〈Img(5+ j22)nk 〉127. (15)

Let us consider one numerical example from the NMNT
calculation. Let x(4) = [74, 65, 110, 91]. First, we choose
the mnp in such a way that it should be greater than any
data in x(4). Here mnp = 127. The input array contains
4 elements, so the transform length is 4.We can take the value
of parameters as α1 = 70 and α2 = 16 from the Table 4.
Next, we calculate the value of β(nk)using (2). β(nk) =
[1, 181, 118, 97, 1, 118, 181]. Then using (1) we can calcu-
late NMNT for the input as x[4] = [74, 65, 110, 91].

165758 VOLUME 9, 2021



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

TABLE 4. Transform parametes for mnp = 127.

The first value is

X [0] = (x[0]×β(0× 0)+x[1]×β(1× 0)+x[2]×β(2× 0)

+ x[3]× β(3× 0))mod127

= (74× 1+ 65× 1+ 110× 1+ 91× 1)mod127

= 340mod127

= 86

The second value is

X [1] = (x[0]×β(0× 1)+x[1]×β(1× 1)+x[2]×β(2× 1)

+ x[3]× β(3× 1))mod127

= (74×1+65× 181+110× 118+ 91× 97)mod127

= 33646mod127

= 118

The third value is

X [2] = (x[0]×β(0× 2)+x[1]×β(1× 2)+x[2]×β(2× 2)

+ x[3]× β(3× 2))mod127

= (74×1+65× 118+110× 1+ 91× 181)mod127

= 24325mod127

= 68

The fourth value is

X [3] = (x[0]×β(0× 3)+x[1]×β(1× 3)+x[2]×β(2× 3)

+ x[3]× β(3× 3))mod127

= (74×1+65×97+ 110× 118+ 91× 181)mod127

= 35830mod127

= 16

Finally NMNT output is given by X [3] = [86, 118, 68, 16].

C. IMPLEMENTATION OF LNMNT
Direct implementation of NMNT using (1) requires a lot of
multiplications. We aim to reduce the number of multiplica-
tion and hencemake it suitable for LWT applications. The use
of the radix algorithm [23] for the implementation of NMNT
will achieve the fast realization of NMNT. The radix-4
algorithm decomposes the input sequence x(n) into four equal
sequences of length N/4, where N is the transform length.
The DIF Radix-4 algorithm is used to implement the NMNT
layer in the proposed hash function. The NMNT transform

FIGURE 3. Butterfly diagram for Radix-4 NMNT.

for x(n) can be represented as the sum of four output samples
using the Radix-4 algorithm, as shown in (16).

X (k) = 〈X0(k)+ X1(k)+ X2(k)+ X3(k)〉mnp. (16)

where Xi(k) is represented by using (1), which is shown
in (17).

Xi(k) = 〈
N/4−1∑

0

x(4n+ i)β(4n+ i)〉mnp. (17)

where 0 ≤ i ≤ 3 Consider X (k) as four samples, ie, X (4k),
X (4k + 1), X (4k + 2) and X (4k + 3). If we consider each
term separately we will have the 4 points of Radix-4 DIF
algorithm, which is shown in (18) - (21).

x4n = 〈
N/4−1∑
n=0

x(n)+ x(n+ N/4)

+ x(n+ N/2)+ x(n+ 3n/4)〉mnp. (18)

x4n+1 = 〈
N/4−1∑
n=0

(x(n)+ x(N/4− n)− x(n+ N/2)

− x(3N/4− n)+ x(n+ 3N/4))β1(n)

+ (x(n+ 3N/4)+ x(N/2− n)− x(n+ N/4)

− x(n− N ))β2(n)〉mnp (19)

x4n+2 = 〈
N/4−1∑
n=0

(x(n)− x(n+ N/4)+ x(n+ N/2)

− x(n+ 3N/4)+ x(n+ 3N/4))β1(2n)

+ (x(3N/4− n)− x(N/2− n)+ x(N/4− n)

− x(n− N ))β2(2n)〉mnp (20)

x4n+3 = 〈
N/4−1∑
n=0

(x(n)− x(N/4− n)− x(n+ N/2)

− x(3N/4− n)− x(n+ 3N/4))β1(3n)

− (x(n+ 3N/4)− x(N/2− n)− x(n+ N/4)

+ x(N − n))β2(3n)〉mnp (21)

The butterfly diagram for NMNt radix-4 algorithm is shown
in Fig.3.

VOLUME 9, 2021 165759



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

FIGURE 4. LNMNT sponge construction.

IV. DESIGN CHOICES
The newly proposed hash algorithm in this research must also
be able to run with minimal resources and overcome security
and throughput issues. Because it uses sponge construction,
the proposed hash function has a small internal memory
footprint. The proposed hash function is described in detail
in this section and hash digests of 80, 128, 160, and 224 bits
are produced by the proposed hash function LNMNT.

A. SPONGE CONSTRUCTION OF LNMNT LWT HASH
In cryptography, sponge construction [24], [25] is a class of
algorithms made up of internal states that take any length
of input and produce any length of the output. LNMNT
LWT [26] Hash’s sponge construction is divided into two
phases: absorption and squeezing. The message is iteratively
divided into different blocks during the absorption phase.
For designing variable length hash function we can change
the block length. After that, the padding of the Message
block is done to make it a power of two. Fig. 4a and 4b
depict the absorption and squeezing phases. An algorithmic
representation of LNMNT is shown below.

The internal state S is initialized with a secret key and is
divided it into C bit capacity and R bit bitrate. Each block of
the message passes through the NMNT block and gives the
NMNT of each message block. Then the message is divided
into any number of blocks. This is followed by bitwise XOR
operation of the bitrate R with the massage block M0. The
output from this stage and capacity C bits are passed through
NMNT and the process repeats again for the entire message
blocks. Initialize the absorption phase using the secret values
p (prime number), mnp (Mersenne number prime), and round
constant RK. These values are used to calculate NMNT. Then
calculate the value of q, α1, and α2 using (5) and (6). NMNT
parameters α1, α2 and β(nk) depend upon the transform
length. Here the message is divided into different block sizes
(power of 2), and each block returns a different transform
length (power of 2). Hence, the NMNT parameters depend
upon the block size, its values are different in each block.

Next is the squeezing phase. The output from the absorp-
tion phase is passed to the squeezing phase, where the

Algorithm 1 Algorithm for LNMNT LWT Hash
Input: an arbitrary length message:M
Output: 128 bit LNMNT hash digest

Initialization: state variable with one secret value and
keys

1: Read the message to hashM
2: DivideM into variable length number of blocks, m0, m1,
m2,. . . , mn

3: Then divide the state variable value into c and r number
of bits. b = c+ r

4: c bits go into absorption phase without any change and
the r bit Xored with first block of data m0, then goes into
absorption phase.

5: The Absorption phase is designed using NMNT. There
are many secret values are initialized inside the Absorp-
tion phase for NMNT calculation. These values are not
visible to the outside world. So that no one can reverse
the Absorption phase by reversing the NMNT operation.

6: The output from NMNT again Xor with next message
block and goes into next absorption phase. This process
repeats for all message blocks.

7: Next is the squeezing phase Repeatedly perform NMNT
operation on the output from the Absorption phase until
we reach the required output length.

required output can be taken from the squeezing phase.
Again, we also apply NMNT repeatedly on the output of
LNMNT LWT Hash. We can take the output as X0, X1, X2
and X3, where the size of output decides the number of steps
in the squeezing phase.

V. STATISTICAL ANALYSIS AND PERFORMANCE
EVALUATION
In this section, we discuss the Uniform distribution of hash
value, Diffusion and Confusion. For the evaluation, we select
a random message M and its LNMNT hash digest H is given
below.

165760 VOLUME 9, 2021



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

FIGURE 5. Plot of message M and it’s LNMNT LWT hash digest.

FIGURE 6. Plot of blank message and it’s LNMNT LWT hash digest.

M: This is a new lightweight crypto hash function designed
for Internet of Things (IoT) applications. The main goal of
this hash function is to ensure secure communication between
devices with limited resources.

H: 76C167E6658214A2F6D354E3F213514D

A. UNIFORM DISTRIBUTION OF LNMNT LWT HASH
The important property of a hash function that is directly
related to the security of the hash function is the uniform
distribution of the hash digest. For this, we can consider a
message m and plot the message m in a two-dimensional
graph. As depicted in Fig. 5a, the plain text spreads in the
range of [32,126], which is the range of ASCII values. Fig. 5b
shows the hexadecimal value of the LNMNT hash digest.
we can see that the LNMNT hash digest spreads uniformly
and randomly and also hides the statistical information of the
plain text.

Moreover, we evaluate the case of ’’blank space message’’,
which is shown in Fig. 6a and 6b. We can see that even in
this condition also the distribution of hash digest is uniform.
So that we can prove that the proposed hash function has a
uniform distribution on hash digest and it effectively hides
the information about the plain message.

B. DIFFUSION AND CONFUSION ANALYSIS
Diffusion and confusion are considered to be important fac-
tors in the design of hash functions. Confusion implies the
relationship between the message and the hash digest, which

measures the difficulty of predicting the hash digest. Dif-
fusion defines the dependency of hash value on plain text.
For a good diffusion, a single bit change in the plain text
should result in a 50 percent change in the hash digest. The
NMNT is sensitive to slight variations of input. It also sup-
ports variable block length and has good diffusion properties.
The main motivation for using NMNT in the design of the
LNMNT LWT hash is due to these properties. The following
statistical analysis is done to measure the diffusion and con-
fusion property of the LNMNT LWT hash function. In this
statistical experiment, first, a random message is selected
and its LNMNT hash value is calculated. Then, randomly
toggle a single bit in the message. The LNMNT hash of
the toggled message is then calculated and the two hash
values are compared bit by bit to find the number of changed
bits. This statistical experiment is repeated N times and the
Mean number of bits changed and the standard deviation is
calculated. Table 5 shows the result of statistical analysis of
diffusion and confusion [27], [28].

From Table 5 results, we can say that the proposed
LNMNT LWT hash function generated the mean number
of bits changed b− and the mean changed bit probability
P values are more than 50 percent. So that the proposed
hash function has a good diffusion and confusion property.
As shown in Fig. 7a, the value of the number of changed bits
(bi) is evenly distributed, and the histogram of bi has a normal
distribution, as shown in Fig. 7b. The statistical confusion and

VOLUME 9, 2021 165761



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

FIGURE 7. Diffusion and confusion analysis.

TABLE 5. Statistical analysis of LNMNT.

diffusion results ensure that the proposed LWT hash function
resists against any kind of differential and linear attacks.

C. COLLISION RESISTANCE
Collision resistance in cryptographic hash functions refers
to the difficulty of finding two plaintexts that hash to the
same hash value. That means it should be hard to find two
different messages xa and xb such that H (xa) = H (xb).
The proposed hash function applies NMNT in every message
block. Because this NMNT has a good diffusion property,
it has a good avalanche effect.

For the proposed hash function, we ran a collision resis-
tance test. The LNMNT LWT hash value for a randomly
chosen message is generated for this purpose. Then a part of
the randomly chosen message is randomly modified and its
LNMNT hash value calculated. The two LNMNThash values
are then compared, and the number of identical ASCII values
in the same position is counted. This experiment repeated
5000 times, as depicted in Fig.8.

There are no equal characters in 4435 cases out of 5000,
and there are 552 cases with one equal character at the same
location. There are about 12 cases of two identical characters
at the same location, and the remaining cases of two identical

TABLE 6. NIST test result.

FIGURE 8. Distribution of number of hits.

characters at the same location are all zero. There can be a
maximum of three identical characters in the same location.
As the result, we can say that collision of our proposed hash
function is very low.

D. RANDOMNESS TEST
In cryptography, statistical tests are used to ensure that the
output is random [29]. The randomness property is strongly

165762 VOLUME 9, 2021



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

TABLE 7. Performance comparison of LNMNT with other LWT hash functions.

related to the security of cryptographic algorithms [30]. The
NIST statistical test was used to determine the randomness of
the LNMNT LWT hash. The outcome is shown in Table 6.

Our proposed system ran many times for different inputs to
accomplish the NIST test and generate a binary output file of
about 10MB. If the P-value is greater than 0.01, the sequence
is said to be random, i.e. (P − value > 0.01). It is clear
from Table 6 that all of the frequency tests have a P-value
is greater than 0.01. So that our LNMT hash function has
enough randomness.

E. COLLISION ATTACK
The cryptographic hash function should be resistance to col-
lision attack, second pre-image attack and pre-image attack.
In the previous section we analyzed the collision resis-
tance of proposed LWT hash function and obtained that
our LNMT LWT hash provides good collision resistance.
Next attack is second preimage attack. In second pre-image
attack we are trying to find m2 for a given m1, such that
hash(m1) = hash(m2). Collision resistance implies second
pre-image resistance but not the third one pre-image resis-
tance. In pre-image resistance it is computationally difficult
to find any input message that hashes to given hash digest.
LNMNT hash function is designed to support variable param-
eters. So that it computationally difficult to invert the hash
digest.

F. BIRTHDAY ATTACK
In a birthday attack, the attacker tries to find two differ-
ent input messages (m,m′) that have the same hash values
h(m) = h(m′) = h′ within fewer than 2n/2 trials, where n
is the hash digest length. We have seen from the previous
sections that our proposed hash function has a good avalanche
effect and is resistant to collision attacks. So that the
LMNT LWT hash design is sufficient to withstand birthday
attacks.

G. MEET IN THE MIDDLE ATTACK
The meet-in-the-middle attack tries to find a collision in
the intermediate hash chaining values instead of the final
hash values. A collision can be found if there is a match
between two intermediate hash chaining values Because we
used variable block length and secret values like NMNT
parameters and round constant RK, the proposed hash func-
tion is resistant to meet-in-the-middle attacks. As a result,
finding the collision in the intermediate hash chaining values
is extremely difficult.

VI. COMPARISON WITH OTHER LWT HASH FUNCTIONS
The LNMNT hash function was implemented in C, and
test runs for Contiki OS was performed using the COOJA
simulator [31], [32]. In the cooja simulator, we simulated
a wireless network platform using Z1 (Zolertia) motes
and ran the LMNT LWT Hash. The benchmarks were
run on an Intel Core 3 processor with a clock speed of
1.7 GHz and 64-bit architecture. For four different hash
digests, namely, LNMNT80, LNMNT128, LNMNT160, and
LNMNT224, the proposed LWT hash function is eval-
uated. According to the result, the memory usage for
LNMNT128 is 4256 bytes Photon 128, u-QUARK (hash
digest 128 bit), and Lesamnta(hash digest 128 bit) each
consume 6728, 5646, and 6708 bytes of memory, respec-
tively. When compared to other LWT hash functions with
the same hash digest size, we can say that LNMNT uses less
memory.
Similarly, the LNMNT128 LWT Hash takes 1.3 seconds

to execute and consumes 6.57 µ of power. For a hash length
of 128 bits, the proposed system uses 54042 cycles per
byte.

Table 7 lists additional benchmark LWT Hash functions.
As can be seen, our proposed LWT hash function outperforms
other LWT hash functions in terms of cycles per byte, exe-
cution speed, collision resistance, and power consumption.

VOLUME 9, 2021 165763



N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

The main features of our proposed hash function are that
it supports variable block size and that NMNT is a fast
algorithm for calculating transforms, allowing us to hash long
messages in a few rounds and very quicklywithout sacrificing
resource efficiency or security. Other LWT hash functions
require more rounds in order to produce a different hash
digest.

Furthermore, other LWT hash functions are not adaptable
to different hash digest lengths. However, with LNMNT,
we can change the transform length and create variable-length
hash digests without increasing the number of rounds. This
is the reason why the LNMNT LWT hash function shows
only a slight difference in power consumption and cycles
per byte for different hash digest sizes. Other LWT hash
functions have a large difference in cycles per byte and power
consumption for different hash digest sizes when compared to
LNMNT,whichmakes our proposed hash function appealing.
Moreover, LNMNT LWT hash function provides good colli-
sion resistance than other LWT hash functions proving that
the proposed system is more secure against collision attack
than other LWT hash functions.

VII. CONCLUSION
The LWT hash function based on the NMNT is introduced as
a LWT solution for IoT applications. The NMNT has a good
diffusion property and a fast computation algorithm. The
proposed hash function generates a transform with a variable
length (powers of two). These characteristics make the New
LWT Hash Function design suitable for a wide range of IoT
applications. The proposed hash function passed the NIST
test suite for randomness, confusion, diffusion, and attack
types. Cooja Simulator was used to assess its computational
complexity and energy consumption.

REFERENCES
[1] H. Zhang and L. Zhu, ‘‘Internet of Things: Key technology, architecture

and challenging problems,’’ in Proc. IEEE Int. Conf. Comput. Sci. Autom.
Eng., Jun. 2011, pp. 507–512.

[2] Y. Ashibani and Q. H. Mahmoud, ‘‘An efficient and secure scheme
for smart home communication using identity-based signcryption,’’ in
Proc. 36th Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2017,
pp. 1–7.

[3] P. K. Sharma, M.-Y. Chen, and J. H. Park, ‘‘A software defined fog node
based distributed blockchain cloud architecture for IoT,’’ IEEE Access,
vol. 6, pp. 115–124, 2018.

[4] N. Kshetri, ‘‘Can blockchain strengthen the Internet of Things?’’ IT Prof.,
vol. 19, no. 4, pp. 68–72, 2017.

[5] C. Lu, Y. Lin, S. Jen, and J. Yang, ‘‘Cryptanalysis on PHOTON hash
function using cube attack,’’ in Proc. Int. Conf. Inf. Secur. Intell. Control,
2012, pp. 278–281, doi: 10.1109/ISIC.2012.6449760.

[6] D. N. Gupta and R. Kumar, ‘‘Sponge based lightweight cryptographic
hash functions for IoT applications,’’ in Proc. Int. Conf. Intell. Tech-
nol. (CONIT), Jun. 2021, pp. 1–5, doi: 10.1109/CONIT51480.2021.
9498572.

[7] N. Nabeel, M. H. Habaebi, N. Arfah, and C. Mustapha, ‘‘IoT light weight
(LWT) crypto functions,’’ Int. J. Interact. Mobile Technol., vol. 13, no. 4,
pp. 117–129, 2019.

[8] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, ‘‘Lightweight
cryptography algorithms for resource-constrained IoT devices:
A review, comparison and research opportunities,’’ IEEE Access,
vol. 9, pp. 28177–28193, 2021, doi: 10.1109/ACCESS.2021.
3052867.

[9] J. Guo, T. Peyrin, and A. Poschmann, ‘‘The PHOTON lightweight
hash functions family,’’ in Crypto (Lecture Notes in Computer Science),
vol. 6841. Berlin, Germany: Springer, 2000, pp. 222–239.

[10] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia,
‘‘QUARK: A lightweight hash,’’ J. Cryptol., vol. 26, no. 2, pp. 313–339,
2013.

[11] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and
B. Verbauwhede, ‘‘SPONGENT: The design space of lightweight crypto-
graphic hashing,’’ IEEE Trans. Comput., vol. 62, no. 10, pp. 2041–2053,
Aug. 2012, doi: 10.1109/TC.2012.196.

[12] A. Akhimullah and S. Hirose, ‘‘Lightweight hashing using lesamnta-LW
compression function mode and MDP domain extension,’’ in Proc. 4th Int.
Symp. Comput. Netw. (CANDAR), Nov. 2016, pp. 590–596.

[13] L. Yang, M.Wang, and S. Qiao, ‘‘Side channel cube attack on PRESENT,’’
in Proc. Int. Conf. Cryptol. Netw. Secur. Berlin, Germany: Springer, 2009,
pp. 379–391.

[14] T. Akishita and H. Hiwatari, ‘‘Very compact hardware implementations
of the blockcipher CLEFIA,’’ in Proc. Int. Workshop Sel. Areas Cryptogr.
Berlin, Germany: Springer, 2011, pp. 278–292.

[15] C. Tezcan, ‘‘The improbable differential attack: Cryptanalysis of reduced
round CLEFIA,’’ in Proc. Int. Conf. Cryptol. Berlin, Germany: Springer,
2010, pp. 197–209.

[16] M. A. Philip and Vaithiyanathan, ‘‘A survey on LWT ciphers for IoT
devices,’’ in Proc. Int. Conf. Technol. Adv. Power Energy (TAP Energy),
2017, pp. 1–4, doi: 10.1109/TAPENERGY.2017.8397271.

[17] O. Lo, W. J. Buchanan, and D. Carson, ‘‘Power analysis attacks on the
AES-128 S-box using differential power analysis (DPA) and correlation
power analysis (CPA),’’ J. Cyber Secur. Technol., vol. 1, no. 2, pp. 88–107,
Apr. 2017.

[18] P. T. Berger, J. D’Hayer, and K. Marquet, ‘‘The GLUON family:
A lightweight hash function family based on FCSRs,’’ in
Progress in Cryptology (Lecture Notes in Computer Science),
vol. 7374. Springer, 2012, pp. 306–323. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-31410-0_19/

[19] L. Dalmasso, F. Bruguier, P. Benoit, and L. Torres, ‘‘Evaluation of SPN-
based lightweight crypto-ciphers,’’ IEEE Access, vol. 7, pp. 10559–10567,
2019.

[20] N. U. Tyne, ‘‘NewMersenne number transform diffusion power analysis,’’
Amer. J. Eng. Appl. Sci., vol. 4, no. 4, pp. 461–469, 2011.

[21] N. Rutter, S. Boussakta, and A. Bystrov, ‘‘Assessment of the one-
dimensional generalized new Mersenne number transform for security
systems,’’ in Proc. IEEE Veh. Technol. Conf., Jun. 2013, pp. 1–5.

[22] S. Boussakta and S. Member, ‘‘Evaluation of one-dimensional NMNT for
security applications,’’ in Proc. CSNDSP, Jul. 2010, pp. 715–720.

[23] S. Boussakta and M. Aziz, ‘‘RADIX-4 ALGORITHM for the new
Mersenne number transform,’’ in Proc. 16th World Comput. Congr.,
Aug. 2000, pp. 23–25.

[24] Y. Li and G. Ge, ‘‘Cryptographic and parallel hash function based on cross
coupled map lattices suitable for multimedia communication security,’’
Multimedia Tools Appl., vol. 78, pp. 17973–17994, Apr. 2019. [Online].
Available: https://doi-org.ezlib.iium.edu.my/10.1007/s11042-018-7122-y

[25] M. Borowski, ‘‘The sponge construction as a source of secure crypto-
graphic primitives,’’ in Proc. Mil. Commun. Inf. Syst. Conf., Oct. 2013,
pp. 1–5.

[26] N. Nabeel, M. H. Habaebi, and M. R. Islam, ‘‘LNMNT-New Mersenne
number based lightweight crypto hash function for IoT,’’ in Proc. 8th
Int. Conf. Comput. Commun. Eng. (ICCCE), Jun. 2021, pp. 68–71, doi:
10.1109/ICCCE50029.2021.9467180.

[27] A. Maetouq and S. M. Daud, ‘‘HMNT: Hash function based on new
Mersenne number transform,’’ IEEE Access, vol. 8, pp. 80395–80407,
2020, doi: 10.1109/ACCESS.2020.2989820.

[28] N. Hidayah Lot, N. A. Nik Abdullah, and H. Abdul Rani, ‘‘Statistical
analysis on KATAN block cipher,’’ in Proc. Int. Conf. Res. Innov. Inf. Syst.,
Nov. 2011, pp. 1–6.

[29] C. Georgescu, A. Nita, and A. Toma, ‘‘A view on NIST randomness tests
(in) dependence,’’ in Proc. ECAI, Jun./Jul. 2017, pp. 9–12.

[30] A. Rukhin, J. Soto, and J. Nechvatal, ‘‘A statistical test suite for random and
pseudorandom number generators for cryptographic applications,’’ Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. 800-22 Rev
1a, Jul. 2021.

[31] A. Velinov and A. Mileva, ‘‘Running and testing applications for contiki
OS using cooja simulator,’’ in Proc. Int. Conf. Inf. Technol. Dev. Educ.,
2016, pp. 279–285.

[32] T. R. Sheltami, E. Q. Shahra, and E. M. Shakshuki, ‘‘Perfomance compari-
son of three localization protocols in WSN using cooja,’’ J. Ambient Intell.
Hum. Comput., vol. 8, no. 3, pp. 373–382, Jun. 2017.

165764 VOLUME 9, 2021

http://dx.doi.org/10.1109/ISIC.2012.6449760
http://dx.doi.org/10.1109/CONIT51480.2021.9498572
http://dx.doi.org/10.1109/CONIT51480.2021.9498572
http://dx.doi.org/10.1109/ACCESS.2021.3052867
http://dx.doi.org/10.1109/ACCESS.2021.3052867
http://dx.doi.org/10.1109/TC.2012.196
http://dx.doi.org/10.1109/TAPENERGY.2017.8397271
http://dx.doi.org/10.1109/ICCCE50029.2021.9467180
http://dx.doi.org/10.1109/ACCESS.2020.2989820


N. Nabeel et al.: Security Analysis of LNMNT-LightWeight Crypto Hash Function for IoT

NUBILA NABEEL received the Bachelor of Tech-
nology degree in computer science engineering
from the MES College of Engineering, Calicut
University, Kerala, India, in 2012, and the Mas-
ter of Technology degree in communication and
network technology from Mahatma Gandhi Uni-
versity, Kerala, in 2015. She is currently pursuing
the Ph.D. degree in computer Engineering with
the Department of Electrical and computer Engi-
neering, International Islamic University Malaysia

(IIUM). Her current research interests include the IoT, cryptography, and
block chain technology.

MOHAMED HADI HABAEBI (Senior Member,
IEEE) received the B.Sc. degree from the Civil
Aviation and Meteorology High Institute, Libya,
in 1991, the M.Sc. degree in electrical engineering
from University Technology Malaysia, in 1994,
and the Ph.D. degree in computer and communi-
cation system engineering from University Putra
Malaysia, in 2001. He is currently a full-time Pro-
fessor and the Post Graduate Academic Advisor
with the Department of Electrical and Computer

Engineering, International Islamic University Malaysia, where he heads the
research works on the Internet of Things. He has supervised many M.Sc.
and Ph.D. students. He has published more than 120 articles and papers, and
sits on the Editorial Boards of many international journals. He is actively
publishing in M2M communication protocols, wireless sensor and actuator
networks, cognitive radio, small antenna systems, and radio propagation, and
wireless communications and network performance evaluation. He is also an
Active Member of the IEEE and an Active Reviewer of many international
journals.

M. D. RAFIQUL ISLAM (Senior Member,
IEEE) received the Bachelor of Science degree
in electrical and electronic engineering from
the Bangladesh University of Engineering and
Technology (BUET), Dhaka, in 1987, and the
M.Sc. and Ph.D. degrees in electrical engineer-
ing from the University of Technology Malaysia,
in 1996 and 2000, respectively. He is currently
working as a Professor with the Department of
Electrical and Computer Engineering, Faculty of

Engineering, International Islamic University Malaysia. He has supervised
more than 50 M.Sc. and Ph.D. students and has published more than
200 research papers in international journals and conferences. His research
interests include wireless channel modeling, radio link design, RF propa-
gation measurement and modeling in tropical and desert, RF design, smart
antennas and array antennas design, and FSO propagation and modeling.
He is a Life Fellow of Institute of Engineers Bangladesh and a member
of IET.

VOLUME 9, 2021 165765


