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ABSTRACT Neural control of movement cannot be fully understood without careful consideration of
interactions between the neural and biomechanical components. Recent advancements in mouse molecular
genetics allow for the identification and manipulation of constituent elements underlying the neural control
of movement. To complement experimental studies and investigate the mechanisms by which the neural
circuitry interacts with the body and the environment, computational studies modeling motor behaviors
in mice need to incorporate a model of the mouse musculoskeletal system. Here, we present the first
fully articulated musculoskeletal model of the mouse. The mouse skeletal system has been developed from
anatomical references and includes the sets of bones in all body compartments, including four limbs, spine,
head and tail. Joints between all bones allow for simulation of full 3D mouse kinematics and kinetics.
Hindlimb and forelimb musculature has been implemented using Hill-type muscle models. We analyzed
the mouse whole-body model and described the moment-arms for different hindlimb and forelimb muscles,
the moments applied by these muscles on the joints, and their involvement in limb movements at different
limb/body configurations. The model represents a necessary step for the subsequent development of a
comprehensive neuro-biomechanical model of freely behaving mice; this will close the loop between the
neural control and the physical interactions between the body and the environment.

INDEX TERMS Mouse, musculoskeletal, biomechanical, moment-arms, open-sourcemodel, biomechanics,
neuromechanical.

I. INTRODUCTION
Terrestrial animals exhibit a variety of complex motor
behaviors, some rhythmic (e.g., locomotion, grooming) and
some non-rhythmic (e.g., reaching and grasping, crouching,
posture-control). These motor behaviors result from com-
plex interactions between the neural circuits in the brain and
spinal cord, the musculoskeletal system, and the environment
(Fig. 1) [1]–[5]. Investigating the underlying mechanisms
of these motor behaviors in awake, behaving animals is
highly challenging. Computational modeling is a powerful
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tool to complement experimental studies of neural control.
It provides a platform to investigate the underlying neural
mechanisms, allowing investigators to reproduce existing
experimental observations, propose mechanistic explanations
for the observed behaviors, suggest new experiments to test
the proposed mechanisms, and propose possible approaches
for treatment of different injuries or disorders [6], [7].

Recent advances in mouse molecular genetic approaches
have led to substantial progress in the studies of spinal and
supra-spinal networks involved inmotor control [2], [7]–[15].
Specifically, it is now possible to dissect the neural net-
work by identifying and manipulating specific neural popula-
tions and to relate them to specific behavioral outcomes [2].
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The ubiquity of molecular genetic tools available for the
mousemade it the preferred experimental animal for the study
of neural control of movement.

Computational modeling of motor control in freely behav-
ing mice, particularly modeling of locomotion, requires the
development of detailedmodels of both the neural and biome-
chanical components and, importantly, their interactions dur-
ing movements [16] (Fig. 1). Such detailed musculoskeletal
models have been developed of the human [17]–[21], the
guinea fowl [22], the ostrich [23], and the dog [24]. Yet,
no detailed whole-body three-dimensional musculoskeletal
model of mouse currently exists; and most of the existing
neuromechanical models (models incorporating neural con-
trollers with the musculoskeletal system) of mammals have
been limited to two-dimensional movements or had signif-
icantly simplified musculoskeletal or muscular components
of the system [7], [25]–[30].

FIGURE 1. Components of a closed-loop neuromechanical simulation.
Movements in animals arise due to complex interactions between the
nervous system, the musculoskeletal system and the environment.
A neuromechanical model includes the neural and biomechanical
components along with their interactions. Neural models (spinal and
brain circuits) produce the necessary instruction signals (motoneuron
activations) for a specific movement. Muscle models respond to the
neural signals by producing forces that act on the skeletal model and
cause movements. The skeletal model and the body interact with the
environment to produce reaction forces. The sensory organ models
encode the state of the movement (somatosensory afferent feedback
signals) and transmit this information back to the nervous system which
then adapts the instruction signals to sensed perturbations or external
forces.

Here, we present an open-source, configurable whole-
body musculoskeletal model of the mouse. We digitized
all the bones of the mouse skeletal system and identified
the corresponding joints to have a fully articulated rigid
body model. Musculature for hindlimbs and forelimbs were
modeled as Hill-type muscles. We compared and validated
the hindlimb musculature of the model with the previ-
ously published single hindlimb model of mouse developed
by Charles et al. [31]. The three-dimensional (3D) model

allowed us to explore the relationship of muscle moment-
arms and moments on the hindlimb and forelimb joints in a
comprehensive manner. Our analysis on the operational range
ofmuscle-fibers for limbmuscles give insights into the role of
active and passive forces under isometric conditions. Finally,
we evaluated the sensitivities of parameters to highlight a
reduced set of crucial parameters in the complex whole-body
mouse model.

II. METHODS
A. SIMULATION TOOLS
The mouse body was simulated as articulated rigid seg-
ments interacting with the environment. We used the Bullet
v3.1.7 physics engine [32]. Bullet was chosen because it
is a fast and stable simulator of complex articulated rigid
bodies. It employs Featherstone’s algorithm [33], which uses
a reduced coordinate representation and an articulated-body
inertia description to provide stability for models with long
kinematic chains and links with larger mass differences.
Furthermore, Bullet is available on most common operating
systems and it has an application programming interface
(API) for Python that allows for a full control of simulated
behavior. To simulate muscle dynamics and their interactions
with the skeletal system, we developed a simulator-agnostic
muscle library and integrated it with Bullet.

B. SKELETAL SYSTEM
The mouse skeletal system was represented by a set of articu-
lated rigid segments. The construction of this model involved
obtaining skeletal scans, identifying joints, and computing
inertial parameters.

1) DIGITIZATION
The skeletal model was based on several mouse skeletal scans
and anatomical reference data. The model simulates a generic
mouse based on references from several specimens. All the
bones of the mouse were digitized as individual mesh objects.
This included 23 tail bones, 8 cervical bones, 13 thoracic
bones, 6 lumbar bones, 4 sacral (merged together as Pelvis
bone), 3 coccygeal, and 20 caudal vertebrae, 15 bones in
each forelimb (including digits), 13 bones in each hindlimb
(including digits), the pelvis, and the head. In total, the model
consists of 108 bones (Table 1). The hind and forelimb bones
are modeled to be symmetric across the sagittal plane.

2) IDENTIFICATION OF CENTERS FOR JOINT ROTATION
Joint rotation centers for the model were chosen such that the
rotations introduced minimal interference with neighboring
bones within the range-of-motion of the joint. The rotation
centers remain fixed throughout the range-of-motion.

Among the tail and spinal bones, we modeled two rota-
tional degrees-of-freedom (DoFs) between each pair of
consecutive bones: flexion-extension (rotation about the
transversal axis) and lateral bending (rotation about the
sagittal axis).
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In the hindlimbs, the hip joints were modeled as spherical
joints with three rotational DoFs: flexion-extension (rotation
about the transversal axis), abduction-adduction (rotation
about the coronal axis), and internal-external rotation
(rotation about the sagittal axis). Knee joints were mod-
eled with a single DoF, a flexion-extension (rotation about
the transversal axis) joint. Ankle joints were modeled with
three DoFs: plantarflexion-dorsiflexion (rotation about the
transversal axis), abduction-adduction (rotation about the
coronal axis) and inversion-eversion (rotation about the sagit-
tal axis). Only a single DoF of flexion-extension (rotation
about the transversal axis) was modeled between each digit
in the hindpaws.

In the forelimbs, the shoulder joints were mod-
eled as a spherical joint with three rotational DoFs:
retraction-protraction (rotation about the transversal axis),
abduction-adduction (rotation about the coronal axis), and
external-internal rotation (rotation about the sagittal axis).
Elbow joints were modeled with two DoFs: extension-flexion
(rotation about the transversal axis) and supination-pronation
(rotation about the sagittal axis). Wrist joints were mod-
eled with two DoFs: extension-flexion (rotation about the
transversal axis), and abduction-adduction (rotation about
the coronal axis). Only a single DoF of flexion-extension
(rotation about the transversal axis) was modeled between
each digit in the forepaws.

In total, the mouse model consists of 225 rotational joints.
Table 1 lists the joints in the model.

3) JOINT RANGE-OF-MOTION AND LIMITS
Joint range-of-motion defines the extent to which a joint
can rotate between a minimal and a maximal angle. It is
an important attribute for articulated rigid body simulations.
For animals, joint ranges are imposed due to a combination
of factors such as ligaments, muscles, and elastic forces of
tissues. From previous experimental measurements on mice
and rats, we have compiled and reported the joint limits for
the DoFs of the model in Table 1. In this work, we modeled
joint limits to mimic elastic ligaments that engage beyond the
specified joint range by applying a resisting torque (modeled
as a torsional spring and damper system as described in
Opensim v4.2 [34]).

4) ZERO-POSE
Zero-pose defines the reference coordinate system. In the
model, the zero-pose was defined as the pose at which all the
joint angles are set to zero with respect to the corresponding
coordinate frame. A non-anatomical pose in which some
joints go beyond natural joint limits is chosen as the zero-
pose to facilitate the coordinate frame transformations. Joint
angles are measured with respect to the zero-pose. The model
in the zero-pose is shown in Fig. 2A and a possible rest-pose
is shown in Fig. 2B.

5) ESTIMATING INERTIAL PROPERTIES
Inertial parameters are among the most important parameters
for an accurate articulated rigid-body physics simulation.

FIGURE 2. Representation of skeletal model poses. (A) The skeletal
model of the mouse in zero-pose, i.e., when all the joint angles are set to
zero. The zero-pose need not necessarily fall into the range-of-motion for
a given joint. For example, the knee joint is defined to operate between
−145.0 and −45.0 with respect to the zero position. (B) An example of
the mouse in a sitting posture that is defined relative to the zero-pose.

These parameters include the mass, the center-of-mass, and
the inertia tensor for every bone (and surrounding soft
tissues). To compute the inertial parameters, we assumed
an uniform density of water (1000 kg/m3) along the body
[39]–[43]. The volume around the bones was estimated
based on the convex hulls that represent the net volume
encapsulated by the skin, soft-tissues, muscles, and the bone
[44], [45]. Masses were computed based on the density and
volumes of the convex hulls. The center-of-mass and inertia
tensors were computed based on the shape of the convex hulls
and estimated mass assuming uniform density. The mouse
model is 16.90 cm long from the head to the tip of the tail
in the zero-pose and weighs 34.32 grams.

C. MUSCLE SYSTEM
Muscles were modeled using the Hill-type formalism [46].
Modeling each muscle required identification of attachment
points in the hind and forelimbs and the estimation of their
parameters.

1) HILL-TYPE MUSCLE MODEL
Hill-type models make use of passive elements such as
springs and dampers and experimental data to represent the
active and passive dynamics of a muscle [46]. The contractile
element (CE) and the parallel elastic element (PE) represent
the muscle fibers; the series elastic element (SE) represents
the total series elasticity of the muscle-tendon complex. It is
important to keep in mind that due to this definition even
muscles with short or no tendon still have non-zero tendon
lengths in the parameterization of theHill-typemusclemodel.
Fig. 3 shows the formulation of the muscle model used in
this work. To simplify the dynamics of the muscle model, we
assumed rigid tendons [47].

The Hill-type muscle model illustrated in Fig. 3 was
characterized by the following parameters: the optimal fiber
length (lom; the length of muscle-fiber at which the mus-
cle produces maximal active force), the tendon slack length
(lst ; the length of the tendon below which the muscle transfers
no force to the attached bones), the maximum muscle-fiber
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TABLE 1. Mouse skeletal segments grouping, joint names and joint ranges.

FIGURE 3. Hill-type muscle model describing the force generation by the
muscles. The contractile element (CE) or the active element produces
active contraction forces. The parallel element (PE) prevents the muscle
from over stretching the muscle-tendon unit during normal operation.
The series element (SE) represents the series elasticity of the muscle,
including the muscle-tendon. Contractile element length or fiber-length
(lm) is the length of muscles fibers. Pennate muscles are defined by the
pennation angle αo. Series tendon-length (lt ) is the length of series
element. The total length of the muscle (lmt ) is defined as
lmt = lm cos(α)+ lt .

velocity (vmaxm ), the pennation angle when the fiber length is at
its optimal (αo), and the maximum isometric force (F0

m). The
formal description of the Hill-type muscle model used [47] is
described in Appendix A.

2) MUSCLE ATTACHMENT POINTS
Muscles are attached to the bones via tendons. The attach-
ment at the most proximal bone is called the origin (that bone
tends to move less during muscle contraction) and the one at
the most distal bone is called the insertion (that bone tends to
move most during muscle contraction). The complex muscle
paths were approximated as a polyline, a sequence of straight
lines starting at the origin and ending with the insertion and
are connected by waypoints in between (Fig. 4). The polyline
approximation is a common approach to describe the muscle
paths [18], [26], [34], [48]. (Refer to Fig. 4 for an example
showing the polyline muscle path description around the knee
joint). The identification of the muscle attachment points
and waypoints for hind and forelimbs used in this study is
described below.

a: HINDLIMB ATTACHMENT POINTS
The attachment points for mouse hindlimbmuscles have been
previously identified by Charles et al. [31], [49]. However,
because of the differences in the bone geometry between our
model and Charles model [31], it was necessary to transfer
the muscle attachment points from Charles model to the
bone surfaces of our mouse model. To automate the transfer
process and limit the errors, we first performed mesh reg-
istration over the two bones from both models (mesh regis-
tration involves identifying appropriate landmarks between
each bone segment of the hindlimb of our model and theirs).
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FIGURE 4. Polyline approximation of muscle paths. (A) and (B) show an
example of an extensor muscle around the knee joint. Coordinates
PO(origin) through PI (insertion) define the polyline muscle path.
Coordinates PO through PWO(waypoint) are attached to the femur and
coordinates PWI (waypoint) through PI are attached to the tibia. Thus,
PWO − PWI is the only segment of the polyline that changes the muscle
length when the joint is flexed or extended.

Based on the chosen landmarks, a coordinate transformation
matrix was computed to describe an affine transformation
from the bonemesh in Charles model to ourmodel. The affine
transformation obtained from the mesh registration was then
used to transfer the attachment points and waypoints between
the models. The above-described process was carried out
using the open-source mesh software CloudCompare [50].
Identification of the landmarks on each bone from the two
models was done manually. This process was carried out
for the pelvis, femur, tibia, and pedal (tarsus, metatarsus,
phalange) bones of the mouse hindlimb (Fig. 5A).

b: FORELIMB ATTACHMENT POINTS
Modeling the forelimb muscles was challenging because of
the lack of prior studies identifying attachment points of
forelimb muscles. Delaurier et al. [51] has previously devel-
oped a 3D forelimb atlas of the mouse embryo at embryonic
day 14.5 using Optical Projection Tomography and digital
segmentation. Although the model was based on data from a
mouse embryo, it still provides useful information on muscle
attachments to the bones. This data allowed us to identify
attachment points and necessary waypoints for 17 forelimb
muscles (Fig. 5B).

3) ESTIMATION OF MUSCLE PROPERTIES
As described above, the Hill-type muscle model is charac-
terized by four parameters. Of these, the fiber velocity vmaxm
is dependent on the fiber length and can be expressed as a
function of optimal fiber length lom. As in Charles et al. [52],
we set vmaxm to 10 lom/s. Thus, l

o
m, l

s
t , αo and F0

m had to be
identified for each muscle in the model.

a: HINDLIMB MUSCLE PROPERTIES
Transferring the attachment points from Charles’ model to
our model meant that the muscle parameters had to be scaled
accordingly. Maximum isometric force (F0

m) and pennation
angle (αo) were retained to be the same as in Charles model
and only the length dependent parameters [optimal fiber
length (lom) and tendon slack length (lst )] were scaled. Since
the length of the muscle varies over the DoFs it spans,

FIGURE 5. Lateral view of the musculoskeletal system of the mouse.
(A) right hindlimb showing the attachment of 42 muscle-tendon units and
(B) right forelimb showing the attachment of 17 muscle-tendon units. For
all computations in this paper, the pose of the limbs shown in (A) and (B)
are used unless mentioned otherwise.

we computed a scaling factor that is satisfied at all fea-
sible joint poses. To achieve this, we employed a numer-
ical optimization algorithm based on the one proposed by
Modenese et al. [53] to compute the scaling factors for each
muscle. Refer to the Appendix B for further details.

b: FORELIMB MUSCLE PROPERTIES
Parameters lom and F0

m were extracted from measurements
made by Mathewson et al. [54] and used as preliminary
approximations. lom was scaled in proportion to the muscle-
tendon lengths (i.e., the ratio of muscle-tendon length mea-
sured by Mathewson et al. [54] to the muscle-tendon length
in our model for each forelimb muscle was used as the scal-
ing factor for lom). The scaling procedure used for hindlimb
muscle parameters could not be employed here because there
was no previous biomechanical model of the mouse forelimb.
F0
m was computed by multiplying the physiological cross-

sectional area (PCSA) of the muscle by isometric stress (σ )
taken to be 0.3 N/mm2, the same used by Charles et al. [31]
for the hindlimb muscles.

The remaining muscle property, lst , was estimated using an
adaptation of the numerical optimization technique formu-
lated by Manal and Buchanan [55]. We removed the restric-
tion that muscle fibers only operate in the ascending region of
the force-length curve.We extended the algorithm to consider
all the DoFs a muscle operates on while optimizing for lst .
Refer to the Appendix C for further details.

4) COMPUTATION OF MUSCLE-TENDON LENGTH
AND MOMENT-ARM
Muscle-tendon length (lmt ) is the distance from the origin
of the muscle on the proximal bone to the insertion point
on the distal bone. Based on the polyline approximation for
describing the muscle paths (Fig. 4),

lmt =
N−1∑
n=0

‖Pn+1 − Pn‖ (1)

where Pn are the muscle attachment points on the polyline
withP0 being the origin,PN the insertion point andwaypoints
in between Pi : i = 1 . . . (N − 1).
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Muscle moment-arms (r) were computed using the pertur-
bation method described in Sherman et al. [56],

r = ∂lmt/∂θ (2)

where θ is generalized coordinate representing the DoF
of interest across which the muscle moment-arm is to be
computed.

D. ANALYSIS OF SENSITIVITY OF JOINT MOMENT-ARMS
AND MOMENTS TO CHANGES IN MUSCLE PARAMETERS
AND ATTACHMENT POINTS
Like any model, the mouse biomechanical model was devel-
oped based on several assumptions and simplifications.
To highlight and study the influence of various characteristics
of the biomechanical model on the overall motor behav-
ior, we analyzed the sensitivity of joint moment-arms and
moments to changes in muscle attachment points and model
parameters.

For both analyses, we used the Sobol method [57],
a variance-based global sensitivity method. The Sobol
method decomposes the proportion of model output variance
caused by each individual parameter [58]. This method also
allows for the study of the inter-parameter effect on the
model’s output variance, but we restricted our analysis to
first-order indices (main effects). First-order indices ‘‘mea-
sure the direct contribution of each input factor to the output
variance’’ [58]. A value of 1.0 for the first-order indices
indicates that the parameter is solely responsible for all the
variance in the models’ output, whereas a value of 0.0 repre-
sents no influence on the models’ output variance. We used
the root-mean-square (RMS) value of the joint moment-arm
or moment over the DoFs range-of-motion to represent the
scalar value necessary to evaluate the sensitivities. The Sobol
sensitivity analysis was performed using SALib v1.4 [59],
an open source python library for the sensitivity analysis.

The polyline approximation of the muscle paths deter-
mines the computation of muscle-tendon length (lmt ) and
thereby the moment-arm (2). For the polyline approximation,
change in lmt can be reduced to just two attachment points
of the segment that cross the DoF of interest (refer to Fig. 4
showing an example). Therefore, for the analysis of sensi-
tivities to muscle attachments, we referred to the proximal
attachment point of the segment as PWO and to the distal
one as PWI . The sensitivities to these attachment points were
computed by varying their 3D position within a range of
±0.5 mm in x, y, and z directions. With PWO and PWI we
had six parameters (x, y, and z coordinates for each point) to
study the sensitivity of the joint moment-arm. We limited our
analysis to study how the 3D location of the two attachment
points influence the joint moment-arms. As the total sum of
the first-order indices is equal to 1.0, we reported the sum
of the first-order indices along the individual 3D coordinates
(x-y-z) for each attachment point. These values represent a
direction-independent measure of moment or moment-arm
sensitivity to the attachment points. Data on the individual
sensitivities are available in the supplementary material.

Muscle force production depends not only on the geomet-
ric relationship defined by the muscle-path but also on the
muscle dynamics. The Hill muscle dynamics are parameter-
ized by four main parameters (as described in section II-C1).
F0
m linearly affects the overall force produced by the muscle.
lom, l

s
t and αo determine the active and passive forces produced

by the muscle and consequently affect the joint moments.
Sensitivity of the joint moments to the changes in muscle
parameters were analyzed within a range defined by ±10%
of their original parameter values.

III. RESULTS
The parameters of all muscles in the model are speci-
fied in Table 2. Because of the differences in the avail-
able experimental data, muscle parameters for the hindlimb
and forelimb muscles were obtained using different
approaches. For hindlimb muscles, the maximum isometric
force (F0

m) and pennation angle (αo) were directly taken from
Charles et al. [31] while tendon slack length (lst ) and optimal
fiber length (lom) were scaled using the method described
in [53] to account for the differences in model dimensions.
For forelimb muscles, F0

m and lom were scaled from Mathew-
son et al. [54] while keeping αo the same. lst was optimized
using amodified version of the algorithm originally described
byManal and Buchanan [55] (see section II-C3.b for details).

A. MOMENT-ARM ANALYSIS FOR THE
HINDLIMB MUSCLES
Because of the differences in bone geometries, we transferred
the muscle attachment points from the hindlimb model devel-
oped by Charles et al. [31], [49] to our model. The mesh
registration technique described in section II-C2.a was used
to transfer the attachment points. The attachment points of
the muscle have a direct influence on the muscle moment-
arms (Fig. 4) and consequently on the moments on the joints
they influence. To compensate for the lack of wrapping sur-
faces, additional waypoints were introduced along the muscle
path when necessary. To validate the muscle attachment pro-
cess, moment-arms of two flexor muscles of the hip, knee,
and ankle joints from Charles model were compared with
the moment-arms in our model (Fig. 6). For this compari-
son, moment-arms were normalized to their respective thigh
(femur) lengths, since the two models are of mice of different
age and size. The moment-arms from the two models are in
good quantitative and qualitative agreement throughout the
range-of-motion for the three hindlimb joints.

B. DESCRIPTION OF MUSCLE FUNCTION BASED ON
MOMENT-ARMS AND MOMENTS
Fig. 7 presents a comprehensive overview of each muscle’s
influence over every DoF it spans. We present the func-
tional grouping of the muscles based on the moment-arm
and moment. Each DoF was sub-divided into two functions,
representing the possible directions in which the muscle can
influence the DoF. Thus, for every DoF it spans over, a muscle
has the possibility to apply a moment either on one of the
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TABLE 2. Hindlimb and forelimb muscle parameters.
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FIGURE 6. Comparison of moment-arms from [31] (dotted lines) and current model (solid lines) for muscles (A) pectineus (PECT) and
biceps femoris anterior (BFA) over hip flexion-extension range-of-motion (RoM) (B) semimembranosus (SM) and vastus intermedius (VI)
over knee flexion-extension RoM (C) medial gastrocnemius (MG) and tibialis anterior (TA) over ankle flexion-extension RoM. The
moment-arms are normalized by the respective thigh length (thighcharles = 16.25 mm and thighcurrent = 24.5 mm).

DoF functions’ or both (zero-crossing). Moment-arms were
computed in the default pose shown in Fig. 5; moments were
computed assuming maximal muscle activation (a(t) = 1.0).

1) HINDLIMB MUSCLES
Fig. 7A,B shows the functional grouping of hindlimbmuscles
based on the moment-arm and moment, respectively. For hip
flexion, iliacus, psoas major, psoas minor, and rectus femoris
have the maximal moment-arms. However, since rectus
femoris has the largest maximum isometric force, it exhibits
the highest moment towards hip flexion. For hip extension,
adductor longus, adductor brevis, quadratus femoris, biceps
femoris posterior, semimembranosus, and semitendinosus
have the dominant moment-arms. However, grouping them
by moment reveals that quadratus femoris, semimembra-
nosus, and semitendinosus are the dominant muscles. This
classification also highlights that all hip flexors except psoas
major, psoas minor, iliacus, and rectus femoris have zero-
crossings (Fig. 7A). While gluteus maximus muscle has the
highest moment-arm to abduct the hip, semimembranosus
along with gluteus maximus also strongly contributes to hip
abduction moments as their maximum force is larger. For hip
adduction, adductor brevis, adductor longus, adductor mag-
nus, gracilis anterior, and gracilis posterior are the dominant
adductors when we consider the moment-arms. Considering
moments, quadratus femoris and rectus femoris dominate
over other muscles because of their large F0

m. For hip external
rotators quadratus femoris has the most significant moment-
arm and moment in the group. Also, gluteus maximus has
the largest moment and moment-arm among the hip internal
rotators.

For knee flexion, semitendinosus, biceps femoris posterior,
gracilis anterior, gracilis posterior, and semimembranosus
have the strongest moment-arms, but semimembranosus and
semitendinosus show the largest moments followed by lat-
eral gastrocnemius. For knee extension, rectus femoris, vas-
tus intermedius, vastus lateralis, and vastus medialis have
the largest moment-arms, while rectus femoris exerted the
largest moment, followed by vastus lateralis and lateral
gastrocnemius.

Several muscles show strong moment-arms for ankle
plantarflexion with soleus and plantaris having the largest
moment-arms. Considering the moments, lateral gastrocne-
mius overshadows all the other ankle plantarflexors. For ankle
dorsiflexion, tibialis anterior exhibits the strongest moment-
arm and moment. Among ankle evertors, peroneus digiti
quarti and peroneus longus show the largest moment-arm
but flexor digitorum longus and peroneus longus, due to their
large maximum isometric force, also significantly contribute
to the moments. For ankle inversion, medial gastrocnemius
has the highest moment-arm and moment among all the mus-
cles in its group. Peroneus digiti quarti, peroneus longus, and
peroneus brevis have largemoment-arms for ankle abduction,
while lateral gastrocnemius, flexor digitorum longus, and
peroneus longus Can exert large moments for ankle abduc-
tion. Medial gastrocnemius, plantaris, and soleus have sig-
nificant moment-arms for ankle adduction group, and lateral
gastrocnemius and medial gastrocnemius have the highest
moments.

2) FORELIMB MUSCLES
Figs 7C,D show the functional grouping of forelimb mus-
cles based on the moment-arm and moment, respectively.
Anatomically, the forelimb is more complex than the
hindlimb, the scapula is a floating link with all six DoFs
and elbow joints have complex joint rotations. The kinematic
complexities are reflected in the identification of muscle
functions. Most shoulder joint muscles originate from ver-
tebral processes. Here, we have not included those muscles
that originate from the spinal segment due to the lack of
available experimental data; the model only includes a lim-
ited number of proximal muscles in the forelimb. Shoulder
retraction is actuated by the long head of biceps brachii
whereas shoulder protraction is actuated by coracobrachialis
and the lateral head of triceps brachii. Both latter muscles
have similar maximum moment-arms, but the maximal iso-
metric force of the lateral head of triceps brachii is much
larger compared to coracobrachialis, resulting in a larger
moment. Coracobrachialis, the long head of biceps brachii,
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FIGURE 7. Maximum moment arms (A, C) and moments (B, D) for each muscle and joint function. Grey boxes indicate joint functions for
joints the muscle spans but has zero influence over. For example, a pure hip flexor muscle is considered to be spanning over both hip
flexion and extension joints, but the corresponding hip extension will be in grey to indicate that the muscle has no influence on hip
extension. The moment-arms and moments are normalized by the muscle which has the maximum influence in the group. ε indicates a very
low non-zero positive value.

and the lateral head of triceps brachii contribute similarly
to shoulder abduction both in terms of moment-arm and
moments, while the long head of biceps brachii and the lateral
head of triceps brachii contribute to shoulder adduction. This
shows that shoulder adduction is possible in the model only
due to the zero-crossing of the long head of biceps brachii
and the lateral head of triceps brachii. For shoulder external

rotation, coracobrachialis and the lateral head of triceps
brachii act on the joint function with the lateral head of
triceps brachii dominating the joint function both in moment-
arm and torque magnitudes. The long head of biceps brachii
alone acts on the shoulder-internal-rotation joint function,
leaving us to draw no further inferences about this joint
function.
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Among the many forelimbs muscles that span over the
elbow joint, the elbow-flexors, the long head of biceps brachii
and extensor carpi radialis longus have the largest moment-
arms followed by short head of biceps brachii, brachialis,
extensor carpi radialis brevis, and flexor carpi radialis.When
we consider the moments, long head of biceps brachii has the
largest maximal moment followed by short head of biceps
brachii. Other muscles that have a large moment-arm are
weak and exert smaller moments. For elbow-extension, all
the triceps muscles (triceps brachii lateral, triceps brachii
medial, and triceps brachii long head) have relatively strong
moment-arms, with the long head of triceps brachii exerting
the largest maximal moment. In the current model, we did not
include any elbow-pronator muscles. For elbow supination,
extensor carpi radialis longus has the largest moment-arm,
followed by short head of biceps brachii, extensor carpi
radialis brevis, and flexor carpi ulnaris. The short head of
biceps brachii becomes the most dominant muscle for elbow
supination when we consider moments, followed by extensor
carpi radialis longus and flexor carpi ulnaris.
All the wrist flexor muscles have similar maximum

moment-arms across the joint function, with extensor carpi
radialis brevis, extensor carpi radialis longus, and extensor
carpi ulnaris having the most dominant moment-arms. For
moments, extensor carpi ulnaris has the strongest moment
followed by extensor carpi radialis longus and extensor carpi
radialis brevis. Three muscles act on wrist-flexion, of which
peroneus longus has the highest moment-arm followed by
flexor carpi ulnaris; when we consider moments, how-
ever, the dominance is flipped. While flexor carpi radialis,
flexor carpi ulnaris, and peroneus longus have the strongest
moment-arms for wrist abduction, the strongest moments
are exerted by the flexor carpis ulnaris, followed by flexor
carpi radialis. Among the three muscles that influence wrist
adduction, extensor carpi ulnaris has the strongest moment-
arm followed by extensor carpi radialis brevis and extensor
carpi radialis longus. Extensor carpi radialis longus has a
zero-crossing such that it influences both wrist abduction
and adduction. For moments, extensor carpi ulnaris has the
highest moment followed by extensor carpi radialis brevis.

C. OPERATIONAL RANGE OF MUSCLE-FIBER LENGTH
The muscle-fiber length (lm) determines the working region
of the muscle in the force-length (FL) curve (Fig. 8B).
More specifically, the fiber-length determines if the muscle
produces force purely based on muscle contractions or a
combination of muscle contraction and passive forces. The
range of operation in the FL relationship is determined by
the muscle attachment points and parameters. In Fig. 8A we
show the working ranges of normalized muscle-fiber lengths
(l̃m) across all the DoFs each muscle spans. Muscles that span
over a single joint tend to have shorter range of operation in
the FL relationship. Most muscles in the mouse forelimb and
hindlimb operate within the active (l̃m ≤ 1.0) and passive
force (l̃m > 1.0) regions of the FL curve. Gluteus maximus
in the hindlimb is the only muscle that operates completely

FIGURE 8. (A) Range of normalized muscle-fiber length (muscle-fiber
length (lm) normalized by optimal fiber length (lo

m); l̃m = lm/lo
m) for each

muscle in the forelimb and the hindlimb. The range of l̃m is computed
considering the range-of-motion of all the degrees-of-freedom the
muscle spans. (B) Hill-type muscle force-length relationship showing the
normalized force produced by muscle contraction (active force), by series
and parallel elastic forces, and the sum of both (total force) across the l̃m.
At l̃m = 1.0 the muscle produces maximum active force in the force
length curve.

in the active region of the FL curve. Short head of biceps
brachii, brachialis, extensor carpi radialis, and extensor indi-
cis propriusmuscles in the forelimb exhibit operation only in
the active region. These muscles in the hindlimb and forelimb
have no passive/elastic force contributions during movement.
In the hindlimb, extensor digitorum longus, extensor hallucis
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longus, peroneus digiti quarti, and peroneus tertius are the
muscles that operate only in the passive region of the FL
curve. All the mentioned muscles span over the ankle joint.
Pronator quadratus is the only muscle in the forelimb that
operates only in the passive region of the FL curve. This
is because the optimization of the parameters of forelimb
muscles was performed under the constraint that every mus-
cle must have some operation range in the active section of
the FL curve. A muscle whose operational range is only in
the passive region always produces an elastic force on the
joints and the force increases exponentially as the muscle is
stretched. Passive forces are useful as they consume no energy
to produce movement but if the desired movement is against
the passive force, then it requires additional energy to over-
come it. Hence, there is an interesting optimum that could be
reached to minimize energy consumption. All the other mus-
cles in the hindlimb and forelimb operate across the active
and passive regions depending on the pose/configuration of
the joints.

D. SENSITIVITY ANALYSIS
Muscle attachments and muscle parameters together deter-
mine the overall function and moments produced by the
muscle. The high number of muscles and the DoFs each
muscle influences makes it a challenging task to perform a
comprehensive sensitivity analysis. Here, we use the Sobol
method, a variance-based global sensitivity method to per-
form the analysis (see Section II-D).

It is important to note that in Fig. 9, results of two sep-
arate sensitivity analyses are displayed, one for the mus-
cle attachments and one for the muscle parameters. Thus,
sensitivity indices for the two cases should be interpreted
independently.

1) SENSITIVITY OF JOINT MOMENT-ARMS TO CHANGES
IN MUSCLE ATTACHMENT POINTS
The first observation we can make from the sensitivity anal-
ysis to variation in attachment points is that the majority
of muscle joint moment-arms are highly sensitive to either
PWO (attachment to the parent bone of the joint) or PWI
(attachment to the child bone of the joint) and only very few
to both. Fig. 10(A-D) shows an example of the variation of
moment-arms when the 3D positions of PWO and PWI are
varied between ±0.5 mm for gracilis anterior muscle across
the 4 DoFs it spans over the hip and the knee joints. For hip
flexion-extension and abduction-adduction, moment-arms of
gracilis anterior are highly sensitive to PWO. For hip internal
and external rotation and knee flexion-extension DoF, the
moment-arm of gracilis anterior is more sensitive to changes
in PWI than PWO. The same observations are reflected in the
comprehensive representation shown in Fig. 9.
Referring to Fig. 4, we can interpret the geometric reason

for why a muscle-joint pair is sensitive to either PWO, PWI ,
or sometimes both. When the attachment points are perturbed
to perform the sensitivity analysis, points further away from
the joint rotation centers will result in larger changes in

muscle length within the range-of-motion of the joint. As we
have seen from (2), larger change in muscle-tendon length
for the same change in DoF motion results in larger moment-
arms. Thus, the proximity of the attachment point to the
joint’s center-of-rotation will influence its sensitivity. From
the analysis (Fig. 10), we can identify those attachment points
that are most important and interesting to explore for a given
muscle-DoF pair.

2) SENSITIVITY OF JOINT MOMENT TO CHANGES
IN MUSCLE PARAMETERS
In addition to the muscle attachment points, the muscle
parameters determine the dynamics of the muscle and the
moments it generates on the joints. Estimation of muscle
parameters is a challenging process that could potentially lead
to modeling errors. This applies to our forelimbmodel, where
themuscle parameters were estimated based on several differ-
ent data sources (See Section II-C3.b). The sensitivity anal-
ysis provides an overview of the parameters that have most
influence on the moment generation for each muscle-joint
pair. We performed this analysis for four muscle parameters
[maximum isometric force (F0

m), optimal fiber length (lom),
tendon slack length (lst ), and pennation angle (αo)] within a
range of ±10% of their original values. The sensitivities of
joint moments to changes in muscle parameters are reported
in Fig. 9. We do not show the results for αo, since no joint
moment exhibited a significant sensitivity.

From the Hill-type muscle force (see (3) in the Appendix)
F0
m has a linear influence on the muscle force while lom and lst

have complex, non-linear relationships.
Among the hindlimb muscles that span the hip joint,

F0
m is the parameter influencing the joint moments the most;
lom being the next parameter in a few muscles in this group.
No muscle in this group exhibits sensitivity for the choice of
lst parameter. Next, sensitivity of moments caused by muscles
that span hip and knee joints are equal due to the changes in
F0
m, l

o
m and sometimes lst . Muscles spanning only the knee

joint exhibit sensitivity only for F0
m. Moments of muscles

that span knee and ankle or only ankle joint all have lst as
their most important parameter. Among the forelimbmuscles,
moments are most sensitive to the F0

m parameter for almost
all muscle-joint pairs. With just a few muscles for which
moments are more sensitive to lom or lst parameters.

IV. DISCUSSION
We presented a whole-body three dimensional (3D) muscu-
loskeletal model of the mouse with a fully articulated skeletal
system actuated by identified musculature for both hindlimbs
and forelimbs. Using the model, we performed a systematic
and comprehensive analysis of the limb musculature to study
their influence on limb joints. We first studied how the mus-
cles influence joint function based on the moment-arm and
moments they exert. The analysis gives a comprehensive view
to characterize muscle function. Our results reveal that many
muscles that span multiple degrees-of-freedom (DoFs) tend
to have zero-crossing (i.e., change their function over the
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FIGURE 9. Sensitivity of joint moment-arms to changes in muscle attachment points and of joint moments to changes in muscle parameters. Analysis of
muscle attachments and muscle parameters was done independently but is shown together in the figure. The colors indicate the first-order indices from
the Sobol analysis. A first-order index value of 0.0 indicates that the parameter under observation has no contribution to the output’s
(moment-arm/moment) variance and value of 1.0 indicates that the parameter is responsible for the total output’s variance. Analyzed DoF pairs are: Hip
abduction-adduction (HA), flexion-extension (HF), internal-external rotation (HR), Knee flexion-extension (KF), Ankle abduction-adduction (AA),
flexion-extension (AF), inversion-eversion (AI). Shoulder abduction-adduction (SA), flexion-extension (SF), internal-external rotation (SR), Elbow
flexion-extension (EF), pronation-supination (ES), Wrist abduction-adduction (WA), flexion-extension (WF).

DoFs range-of-motion). Examining the muscle-fiber length
range showed how the limbmuscles distribute their force pro-
duction in terms of active and passive forces over the joints’

complete range-of-motion. We then performed a sensitivity
analysis to highlight the crucial parameters in the model and
showed how different parameters affect on each muscle-DoF
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FIGURE 10. (A-D) Variation of gracilis anterior moment-arms for the variation of the 3D position of the attachment points PWO (attachment point in the
parent bone of the joint) and PWI (attachment point in the child bone of the joint) within the range of ±0.5 mm for hip flexion-extension (HF), hip
abduction-adduction (HA), internal and external rotation (HR) and knee flexion-extension (KF). (E-H) Variation of Gracilis anterior moments for the
variation of the muscle parameters (maximum isometric force (F 0

m), muscle fiber length (lm), tendon slack length (lt ) within the range of ±10% of their
default values for HF, HA, HR and KF.

pair in the model. Although the model was based on
a number of simplifications and assumptions, it is an impor-
tant step in the direction of building complex biomechani-
cal, and ultimately neuromechanical models to study motor
behaviors and their underlying neuronal control.

A. MUSCLE SYSTEM DEVELOPMENT
Identification and characterization of the muscles operating
in complex musculoskeletal systems is a challenging task.
It involves a laborious process of extracting individual mus-
cles from the animal, carefully identifying the attachment
landmarks such as origin and insertion locations of each
muscle and identification of major muscle parameters.

These steps were traditionally performed directly on
cadavers [35]; later studies, used microCT scans along with
digital segmentation, which lead to more detailed identifica-
tion about muscle geometry and attachments, especially for
deep muscles [49]. In this work, we developed the muscle
system of both hindlimb and forelimbs by incorporating data
from several studies on the mouse.

1) TRANSFERRING HINDLIMB MUSCLE ATTACHMENT
POINTS FROM CHARLES MODEL
Development of the hindlimb musculature was largely
based on the OpenSim single mouse hindlimb model of

Charles et al. [31], [49]. Since, this model was only of a
single hindlimb, we had to transfer the muscle system to
our full mouse model which had a different bone geometry.
The first step in this process was to identify the appropriate
landmarks of origin and insertion points of eachmuscle on the
new model. To accomplish this task, we setup an automatic
process to identify a coordinate transformation between the
bones of two models using mesh-registration technique. With
this, every attachment point of amuscle defined in a particular
coordinate of a bone was transferred to the coordinate frame
of the same bone in the current model. The model in Opensim
had incorporated muscle wrapping surfaces to better describe
the muscle paths. However, in our current framework, muscle
paths were approximated as linear polyline paths similar to
[18], [26], [48]. To compensate for this approximation, we
had to manually introduce additional waypoints to describe
the muscle path closer to the original model. With the use of
polyline method it was possible to faithfully describe muscle
paths. In figure 6, we comparedmoment-arms of six hindlimb
muscles from our current model with the model developed by
Charles et al. in OpenSim. Among the six muscles, five of
them had used wrapping surfaces in Charles model (except
tibialis anterior (TA)). The comparison showed excellent
qualitative and quantitative agreement between the moment-
arms of the two models, highlighting that the approximation
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of polyline method captured muscle paths well throughout
range-of-motion.

2) SCALING OF HINDLIMB MUSCLE PARAMETERS
After transferring the muscle attachments from Charles’
model to our model, it was necessary to scale the muscle
parameters appropriately to our model’s geometry. Since our
model is a whole-body 3D model, it was very important to
consider the influence of the muscle parameters on all the
DoFs the muscle spans. We used the numerical optimization
based algorithm proposed by Modenese et al. [53] to appro-
priately scale lom and lst parameters considering all the DoFs
a muscle spans. While the method emphasizes on scaling
the parameters such that the change in muscle length was
preserved between the original and the scaled model, there
is no constraint on preserving the ratios between lom and lst .
In Charles model, lst was estimated based on the numerical
method proposed by Manal and Buchanan [55]. Thus, the
lst parameter has no direct measurable tendon property of the
muscle. This is in accordance with the original formulation
of the Hill-type muscle models [46]. Also, Charles et al.
showed that the measured tendon lengths were either longer
or shorter than the estimated lst values [31]. Because of these
observations, we did not impose any constraints to the algo-
rithm to preserve the ratios between lom and lst of Charles’
model. During future iterations of the model improvement, lst
parameter could be estimated from animal experiments [22].

3) MODELING THE MOUSE FORELIMB IS MORE
CHALLENGING THAN THE HINDLIMB
Developing the forelimb muscle system was more challeng-
ing due to the lack of available biomechanical studies of
the mouse or even rat forelimbs. To the best of our knowl-
edge, Mathewson et al. [54] was the only published work
that measured some of the muscle properties necessary to
model Hill-type muscles. But, since the goal of their work
was not building a simulation model of the mouse forelimb,
information about muscle attachments were not reported.

Delaurier et al. [51] developed a 3D model of mouse
embryonic forelimb using Optical Projection Tomography
and digital segmentation. We transferred the attachment
points for each muscle using their 3D atlas to our model. The
choice of muscle was based on muscle data reported in [54].
This limited the forelimb model to mostly distal muscles.
Proximal muscles around the shoulder that had origins from
the spine were omitted from the model.

Mathewson et al. [54] reported lom and α0 for the fore-
limb muscles. Unlike in the hindlimb case, we could not
employ the algorithm to scale length related parameters from
Modenese et al. [53] because of a lack of information about
muscle lengths at different model poses. The lom parameter
was thus scaled based on the ratio of average muscle-tendon
length for while α0 was used as reported.F0

m was computed as
by multiplying the physiological cross-sectional area by the
same value of maximum isometric stress used for hindlimb
muscles (0.3 N/mm2).

The final missing parameter lst was estimated based on the
extended algorithm by Manal and Buchanan [55]. (Refer to
Appendix C for details on the changes incorporated to the
algorithm.) Determining lst is one of the biggest bottlenecks
in Hill-type muscle parameterization as there is no method
to experimentally to estimate it [31]. The closest experimen-
tal method to estimate lst is described by Cox et al. [22].
However, performing such experiments are extremely dif-
ficult in the mouse because of their relatively small size.
The modifications we proposed to the numerical method by
Manal and Buchanan [55] should improve the reliability of
these estimates for the mouse as well as for other muscu-
loskeletal model of animals.

To the best of our knowledge there is no published work
that characterizes either the muscle properties or muscle
attachments for forelimb muscles attaching to the scapula or
the spine; neither for mice nor rats. Hence, these muscles
were considered beyond the scope of this work.

B. MUSCLE MOMENT-ARMS AND MOMENTS
The model includes 59 distinct forelimb and hindlimb mus-
cles. It is a challenging task to provide a comprehensive
analysis of a complex model such as this. Conventionally,
the practice is to report and describe the relationship between
moment-arm and joint movement for each muscle individu-
ally. This means that it is necessary to assume the function
of a muscle a priori. Instead of making this assumption,
we reported a global view of the possible roles of a mus-
cle based on moment-arm and moment (Fig. 7). With this
representation one can quickly identify the function of a
muscle and observe the contribution of different muscles to a
particular degree of freedom.

Previous musculoskeletal modeling studies have reported
the behavior of zero-crossing of muscle moment arms in
several animals such as cat [61], mouse [31], rat [35] and
ostrich [23]. Young et al. [61] speculated that muscles with
a zero-crossing moment-arms could intrinsically stabilize the
joints around which they change sign without any need for
extra neural commands. For the mouse hindlimb model [31]
several muscles were reported to have a zero-crossing. But
their analysis was limited to the assumption of functional
roles assigned to each muscle a priori. Here, we identified
more muscles that have zero-crossings. For example, previ-
ously only pectineus muscle was reported to have a zero-
crossing for hip flexion-extension. From Fig. 11A,B we can
observe that in addition to pectineuswe have adductor brevis,
gemellus, gluteus maximus (ventral), obturator externus and
internus and quadratus femoris muscles have zero-crossing.
Similarly for the different joints in forelimb and hindlimb,
we can observe many muscles exhibiting the zero-crossing
behavior.

A shortcoming of the representation we proposed is that
it does not show joints’ angle information: it is not possible
to see at what joint angle the zero-crossing occurs. This
limitation is only in the visual representation in this article,
and detailed moment-arms of all the possible muscle and
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FIGURE 11. (A) Moment and (B) moment-arm of hip flexor muscles
adductor brevis (AB), gemellus (GEM), iliacus (ILI), obturator
externus (OE), obturator internus (OI), pectinus (PECT), psoas major
(PMA), psoas minor (PMI), rectus femoris (RF). (C) Moment and
(D) moment-arm of elbow flexor muscles anconeus (AN), brachialis
(BRA), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU),
triceps brachii lateral head (TBL), triceps brachii medial head (TBM),
triceps brachii long head (TBO).

joint combinations are available. We encourage the readers
to use the data and plotting tools in the code-repository (see
section V) to extract the detailed plots.

Along with moment-arms, we also reported the muscle
moments across each DoF (Fig. 7). By presenting both
moment-arms and moments together, we can quickly observe
how the role and importance of a muscle in actuating a
particular DoF can change. Muscles with large maximum
isometric force naturally become the dominating muscle for
the DoF. While the moment-arm is only dependent on the
muscle attachments and joint position, moments also depend
on the dynamics of the muscle—most importantly muscle
activation. From a neural control point of view this is very
interesting: the nervous system can operate with a single
strong muscle and/or utilize several different weaker muscles
together to produce the same movement. Co-activation of
multiple synergistic muscles with respect to a specific func-
tion could also result in a stabilization of the joint in the other
DoFs.

The current muscle moment-arm and moment results were
computed while the joint of interest was rotated within the
range of motion and while keeping all other joints in their
default position. This has a strong influence on the results.
It limits the scope of the analysis to a particular pose of
the model. This is often the case in biomechanical model
analysis as it becomes very complex to interpret and represent
the relationship of different joints with muscle moment and
moment-arm. Young and colleagues [26], [61] studied the
coupled effect of a bi-articular muscle on joints. Also, we
see from Fig. 7 that many muscles operate on more than
two degrees of freedom, especially muscles that span joints
with multiple degrees of freedom (e.g., hip, ankle, shoulder,
or wrist). With the condensed representation (Fig. 7), it is

possible to generate plots to study the relationships at various
model poses.

C. RANGE OF NORMALIZED MUSCLE-FIBER LENGTHS
Muscle-fiber length (lm) is a state variable in describing
the muscle dynamics (see Appendix A). It depends on the
muscle-tendon length (lmt ), the muscle contraction dynamics,
and themuscle activation. lm is thus a very interesting variable
to study. In this paper, we reported the operational range of
normalized muscle-fiber length (l̃m) for each muscle over all
the joints it spans in Fig. 8. (Unlike the moment-arm and
moment representation in Fig. 7, Fig. 8 incorporates all the
possible joint poses for a single muscle.) The range of l̃m
reflects the choice of the tendon slack length (lst ) and optimal
fiber length (lom) parameters. In future, if we can obtain exper-
imental data of fiber-lengths at the different limb postures.
This data can be used to validate the model by making sure
that the experimental measurements fall within the predicted
ranges of l̃m.

Analyzing the l̃m is also useful in understanding the behav-
iors by being able to characterize if a muscle is operating in
the ascending, plateau or the descending region in the force-
length curve (Fig. 7B). In smaller animals, such as mice, due
to their low weight and small inertias, the effect of gravity
on the body is negligible [62], [63]. With lower influence of
gravity, the forces produced by the passive elements become
more significant. This has two important consequences on the
neural control circuits. One, it is less essential (compared to
larger vertebrates) for the neural system to monitor the direc-
tion of gravity on the limbs during movements. Second, the
momentum of the limbs is less useful during the swing phase
during locomotion. For further discussion on the influence
of body size on neural control refer to Hooper [62]. Thus,
passive forces in mice play an important role in movement
generation and it would be informative to use themuscle-fiber
length range plots to explore it.

In [64], the authors reported the l̃m of human leg mus-
cles during different speeds of walking and running. They
observed that the l̃m has awide range of operation in the force-
length curve for different speeds of walking and running.
Fig. 8 for the mouse model also highlights that most mus-
cles with the current muscle parameters operate both in the
ascending and descending region of the force-length allowing
for the kind of variability observed in humans.

D. SENSITIVITY ANALYSIS
While developing a complex model like the one described
here, it is important to identify the critical parameters that
influence the overall performance of the model. To this aim,
we performed a variance based global sensitivity analysis
using the Sobol method to systematically study the influences
of muscle attachment points and muscle parameters on the
moment-arms and moments.

In our analysis of sensitivity of moment-arms to mus-
cle attachment points, we considered only those attachment
points (PWO and PWI ) that influence the muscle-length effect
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on the joint of interest. In Charles et al. [31], the analysis
was performed directly at the origin and insertion points, and
the perturbations applied to the attachments were along a
particular direction. In contrast, in our work, we applied per-
turbations to the attachments in all three directions. Similar to
the observations made by Charles et al. in [31], we unsurpris-
ingly observed that the attachment points located farther from
the joint rotation centers had the greatest effect on the joint
moment-arms. With the polyline approximation it therefore
becomes very important to identify the intermediate points as
accurately as possible to describe the muscle paths.

We further analyzed the sensitivity of joint moments to
changes in F0

m, l
s
t , l

o
m and αo parameters of the Hill-type

muscle model. Based on (3), the formulation of Hill-type
muscle models, F0

m linearly affects the joint moments.
However, lst , l

o
m and αo have a non-linear relationship with

muscle force production (refer to Appendix A for Hill model
description). Unsurprisingly, moments across many muscle-
DoF pairs were most sensitive to F0

m with lst being the
next most significant parameters. Our observations presented
in Section III-D2 agree with the sensitivity analysis by
Charles et al. [31]. Charles et al. observed that muscles
with larger lst compared to their lom had their moments more
sensitive to lst than F

0
m. In Table 2 we reported the ratios of

lst
lom
.

Muscles with smaller ratios (< 1.0) for lst
lom

have moments

more sensitive to F0
m and muscles larger lst

lom
> 1.0 ratios are

more sensitive to lst . This in accordance with the previous
studies not only in mouse [31] but also for chimpanzees [65]
and humans [48], [66].

The same applied to the forelimb muscles as well.
Although, in the forelimb we have very few muscles whose
ratios of lst

lom
is greater than 1.0. The validation of our sensitiv-

ity analysis for the hindlimb muscle-joint pairs allows us to
increase the confidence levels of our observations made for
forelimb muscles.

Overall, with our comprehensive analysis we have high-
lighted the most important parameters in the model. This
allows future researchers to identify and work with these
important parametersmore critically. The identification of the
critical parameters also allows for adapting and fine tuning
the model in case of numerical optimization for specific
behaviors.

E. MODEL LIMITATIONS
In this work, we present the most complete musculoskeletal
model of the mouse. Yet, as with any model, the model con-
struction was possible only because of some simplifications
and assumptions. The skeletal model of the mice was devel-
oped from anatomical references rather than from an actual
microCT scan. This allowed us to generate a more generic
representation of the mouse skeleton but meant that not all
anatomical features on the bones were captured. In future
iterations, a skeletal model based on CT scans will further
allow for better model validation. Here, we calculated the

inertias of the bones using a bounding box method and
assumed a uniform density of water along the body. We did
not consider air cavities with different density in the lungs
and head in our model. This introduces variation of inertial
properties of certain bones and the overall center-of-mass
of the mouse musculoskeletal model. Joint rotations were
identified manually in this model and use joints such as
revolute or spherical joints to represent the different DoFs in
the model. However, in animals, joints are more complex and
often difficult to model. Any studies that require validated
joint movements should try to extend the current version of
the model by including the necessary complexities in joint
modeling for the particular study.

For the hindlimb muscles, we were able to build on, com-
pare and validate our model with the previous mouse [31] and
rat [35] hindlimb models. However, similar validation was
not possible for the forelimb. Because of the lack of previous
forelimb studies, we had to estimate both the attachment
points and the muscle parameters (F0

m, l
o
m, l

s
t and αo). The

comprehensive sensitivity analysis presented in this work
provides information about the important parameters to be
critically explored in the model. Further experimental mea-
surements from the mouse forelimb are necessary to improve
the forelimb model.

F. MODEL USE AND FUTURE WORK
A musculoskeletal model complements animal experiments
by providing the data (EMG, afferent firings, interactions
forces between the body and the environment) that is chal-
lenging to collect, and they are essential to setup and
study closed-loop neuromechanical simulations (Fig. 1). The
whole-body model of the mouse presented in this work has
the necessary components to contribute to both.

Locomotion is a result of whole-body movement with the
neural circuits integrating feed-forward and sensory-driven
strategies to generate the necessary muscle activation signals.
The limb musculature modeled and analyzed in this work
presents an excellent platform to use the model to setup
predictive simulations to connect computational models of
neural circuits to drive the musculoskeletal model. Alterna-
tively, inverse kinematics and inverse dynamics approaches
can be used to estimate kinematics (e.g., joint angles),
kinetics (e.g., joint moments) and proprioceptive sensory
information (e.g., activities of muscle spindles and Golgi
tendon organs) from experimental whole-body trajectories
made possible now by markerless pose estimation methods
such as DeepLabCut [67].

The majority of the previous locomotion studies in mouse
have been limited to straight forward locomotion. Exploring
other locomotor regimes such as turning is now experimen-
tally possible [68] and the current 3D model has the neces-
sary DoFs to replicate similar behaviors in simulation. The
current model also allows to study motor behaviors that does
not involve the whole-body movements like reaching and
grasping.
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While the possible use cases of our model are plenty,
it still is only a preliminary step towards a more robust
computational model. As mice are one of the most significant
experimental animal models to study normal and pathological
motor behaviors, it is extremely important to develop compu-
tational models that can complement these studies.

The open-source and modular musculoskeletal model pre-
sented here offers an opportunity for a community driven
approach that can collectively improve and rigorously vali-
date the different components of the model with experimental
data. In future iterations of the model, a systematic identifi-
cation the full set of forelimb muscles along with the spinal
muscles will increase the usability of the model in even more
complex scenarios and grow towards a more complete model
like the ones available for humans.

V. CODE AVAILABILITY
All the resources and code for the development and analysis
of the mouse model can be found at https://gitlab.com/paper_
submissions/mouse_biomechanics_paper

APPENDIX A
HILL-TYPE MUSCLE MODEL
The force produced by the contractile and parallel elements
was modeled as,

F = F0
m(a(t)fl(l̃m)fv(ṽm)+ fPE (l̃m)+ β ṽm) (3)

F0
m is the maximum isometric force the muscle is capable

of producing. a(t) is the muscle activation. fl(l̃m) defines
the force-length relationship curve during isometric con-
tractions with l̃m being the normalized muscle-fiber length.
fv(ṽm) defines the force-velocity relationship curve during
isotonic contractions with ṽm being the normalized muscle-
fiber length. Passive forces are generated in the muscle when
stretched beyond a threshold length, this is represented by
the passive-force-length given by fPE (l̃m). β ṽm represents the
additional damping in the muscle with β being the damping
coefficient, set to 0.1 by default.

The activation dynamics (a(t)) and passive-force-length
(fPE ) are described based on the implementation from
Opensim [69].

da(t)
dt
=
u(t)− a(t)
τact

(4)

where u(t) is the neural-excitation input signal to the muscles
bounded within a range of 0 and 1, and τact is the time-
constant (Note that we used a constant value for τact instead
of varying it as a function of u(t) and a(t) as described by
Thelen [69].)

fPE (l̃m) =
exp

(
kPE (l̃m − 1)/εm0

)
− 1

exp(kPE )− 1
(5)

The active-force-length (fl) and force-velocity (fv) rela-
tionships described below are based on the description

by De Groote et al. in [70]

fl(l̃m) =
3∑
i=1

b1i exp

[
−0.5(l̃m − b2i)

b3i + b4i l̃m

]2
(6)

fv(ṽm) = d1 log
[
(d2ṽm + d3)+

√
((d2ṽm + d3)2 + 1))

]
+ d4 (7)

Since, the tendon is assumed to be rigid and inextensible,
the force along the tendon (Ft ) equates to the force produced
by the contractile element described in (3) as,

Ft = F cos(α) (8)

APPENDIX B
HINDLIMB MUSCLE PARAMETER SCALING
Optimal muscle-fiber length (lom) and muscle-tendon slack
length (lst ) were scaled from Charles model [31] (referred
to as reference model) to our model (referred to as target
model). To do the scaling, we used the algorithm proposed by
Modenese et al. in [53], steps for which are described below,

• In the reference model, identify the Nq degrees-of-
freedom spanned by the muscle. Discretize each joint
into ndof poses to create a set of n = (ndof )Nq possible
joint pose combinations.

• In the reference model, for each pose 1, 2, 3, . . . , n,
compute a vector of pennation angles (αref), normal-
izedmuscle-fiber length (l̃m,ref) and normalizedmuscle-
tendon lengths (l̃t,ref)

• In the target model, for the same n poses, compute a
vector of muscle-tendon lengths (lmt,targ)

• Solve for muscle-tendon slack length lst in the target
model by solving (9) using a least-squares like numerical
method.

l1mt
l2mt
.

.

lnmt


targ

=


l̃1mcos(α) l̃1t
l̃2mcos(α) l̃2t

. .

. .

l̃nmcos(α) l̃nt


ref

[
lom
lst

]
targ

(9)

We solved (9) using the least squares method implemented
in Scipy v1.70.

APPENDIX C
MUSCLE-TENDON SLACK LENGTH ESTIMATION
Muscle-tendon slack length for the forelimb muscles were
estimated based on the modified algorithm proposed by
Manal and Buchanan in [55].

For the purpose of estimating the muscle-tendon slack
length, we consider the tendons to be elastic and non-rigid
whose force-tendon length (ft (l̃t )) (with l̃t =

lt
lst

being the
normalized muscle-tendon length) characteristics are defined
by the formulation by De Groote et al. in [70] as,

ft (l̃t ) = c1 exp[kT (l̃t − c2)]− c3 (10)
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TABLE 3. Hill-type muscle model parameters.

Substituting (10) in (8),

F0
mft (l̃t ) = F0

m(a(t)fl(l̃m)fv(ṽm)+ fPE (l̃m)+ β ṽm) (11)

The total length of the muscle-tendon unit is,

lmt = lm cos(α)+ lt (12)

Equation 12 can be expressed in terms of normalized
muscle-fiber length (l̃m) and normalized tendon (l̃t ) as,

lmt = l̃mlom cos(α)+ l̃t lst (13)

From (13) lst can be written as,

lst =
lmt − l̃mlom cos(α)

l̃t
(14)

Considering a maximal activation (a(t) = 1.0) under
isometric conditions (ṽm = 0.0), from (10), (11) and (14),
lst can be written as,

c1 exp[kT (l̃t − c2)]− c3
= (fl(l̃m)+ fPE (l̃m)) cos(α) (15)

l̃t =
c2 + (log[((fl(l̃m)+ fPE (l̃m)) cos(α)+ c3)/c1])

kT
(16)

lst =
lmt − l̃mlom cos(α)

c2 + (log[((fl(l̃m)+ fPE (l̃m)) cos(α)+ c3)/c1])/kT
(17)

Here we uses the tendon force-length relationship formu-
lated by De Groote et al. in [70] instead of the one described
Manal and Buchanan in [55].

Given l̃m at lmt and knowing lom, we can compute tendon
slack length lst from (17). But, we do not know l̃m in practice.
Manal and Buchanan proposed to use numerical methods to
estimate l̃m at short, long and mid range of lmt such that lst

is to be a constant, which was formulated as a minimization
problem.

minimize[(ls1t − l
s2
t )2 + (ls1t − l

s3
t )2 + (ls2t − l

s3
t )2]

subject to, l̃m ≤ 1.0

We extended this formulation by Manal et al. for lst in [55]
by including the passive forces (fPE (l̃m)) in (17)so that we
include the complete force-length curve for estimation. The
formalization described above is limited to the muscles’ rela-
tionship with only a single degree-of-freedom.We extend this
to all the degrees-of-freedom (ndof ) where the muscle has
a significant moment-arm. This is done by estimating l̃m at
short, long and mid range of lmt for each degree-of-freedom
the muscle influences. The new minimization problem is
defined as,

minimize
ndof∑
n=1

[(ls1t − l
s2
t )2 + (ls1t − l

s3
t )n2 + (ls2t − l

s3
t )2]n

(18)

subject to, 0.6 ≤ l̃m ≤ 1.4 (19)

We used differential evolution, a stochastic population
based optimization technique implemented in Scipy v1.70 to
minimize the objective in (18) for each muscle in the
forelimb. A population size of 20, maximum iterations of
1000 and relative and absolute tolerances were set to 1e-10.
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