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ABSTRACT The performance of a deep learning (DL) model depends on sufficient training datasets
and its algorithmic structure. Even though seismological research using low-cost micro-electro-mechanical
systems (MEMS) sensor received much attention recently, because of the lack of data recorded by such
MEMS sensors whose data are usually polluted by different types of noise. Therefore, increasing seismic
datasets is required by intelligently generating seismic data through data-augmentation techniques. However,
it is difficult to characterize and measure the evolution process of seismic sequences, making the feature
extraction and data generation of seismic sequences still a significant challenge. By combining the framework
of Generative Adversarial Network (GAN) with long short-term memory (LSTM), attention mechanism and
neural network (NN), a novel deep generation model (DGM) named EQGAN is developed to overcome the
challenges, which can automatically capture the different time histories and dimension characteristics of
seismic sequences, meanwhile stably generating high-quality seismic data. The reality of generated data is
qualitatively clarified through the analysis of frequency domain and data autocorrelation distribution. Based
on the High-throughput Screening (HTS) Theory, the quantitative evaluation index of statistical metrics is
designed, and the generation performance of different machine learning models (standard GAN, LSTM,
NN) is compared to prove the stability and effectiveness of EQGAN. The experimental results denote that
the EQGAN has excellent stability and performance (up to 81%, much higher than that of other generation
models), which provides a suitable data expansion approach for the field of seismological research.

INDEX TERMS Deep learning, generative adversarial network, data augmentation, Wasserstein distance.

I. INTRODUCTION
Earthquake detection [1]–[3] and earthquake early warn-
ing (EEW) [4], [5] are the main tasks of seismological
research. Many data processing techniques used in traditional
seismological research originated from small datasets and
limited computing power. Low-cost MEMS acceleration sen-
sors have been extensively used in the monitoring system
of Internet of Things (IoT) over the last few years, because
of their low installation and operation costs, the examples
include a wireless sensor network (WSN) [6], [7], community
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seismic network (CSN) [8]. Although they have a great poten-
tial to replace the traditional expensive seismic networks
whose coverage is hardly dense due to the high installation
and operation costs, however, the large noises inherent in a
low-cost MEMS acceleration sensor reduce the quality of
data recorded [9], thus a novel approach is needed to adapt
to the data with different signal-to-noise ratios (SNR).

In recent years, themachine learning (ML) has beenwidely
applied to earthquake detection [10]–[13], including earth-
quake first arrival recognition [14]–[16] and source loca-
tion [17], [18]. Comparedwith other time series (stockmarket
price, WiFi signals), a high-dimensional seismic sequence
has many implict features (evolution process of different
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components and a single component, etc.) that are difficult
to capture. Khan et al. [19] developed an artificial neural
network (ANN) model [20], [21] to detect seismic events
by artificially selecting labels. Also, many researchers devel-
oped different seismic detection models based on different
convolutional neural network (CNN) methods [3], [22], [23].
Nevertheless, no matter which method is adopted, the above
mentioned models are supervised. A real seismic waveform
needs to be identified by subjectively selecting feature labels,
which will affect the detection performance of the model.
Therefore, seismic detection methods based on the ML grad-
ually used to eliminate the influence of subjective factors.

Considering that the performance of the DL algorithm
depends on the size and quality of the training dataset,
in our work, however, we utilize low-cost MEMS sensors to
record ground motion signals instead of smartphones, which
are polluted by different noise levels (human activities or
the sensor themselves), resulting in the lack of high-quality
seismic data (High SNR). Too few training datasets easily
leads to overfitting [5]. Therefore, to solve this problem,
the current research is mainly based on the following three
solutions:
• To Use Transformation: To overcome the problems
of incomplete real seismic waveform and low SNR,
Dokht et al. [24] designed a general deep convolution
network model for the seismic event and phase detection
based on time-frequency representation and convolution
neural network. Saad and Chen [25] used automated
unsupervised approaches to extract waveform signals
from continuous microseismic data according to the
time-frequency representation of microseismic trajec-
tory, which was also applicable in an environment with
a low SNR, confirming that the waveform-based inverse
time migration method could be used in the model to
improve the resolution of microseismic imaging.

• To Train Model Using a Generalized Deep Learning
Model Based on a Small Dataset: Using a generalized
deep learning architecture to extract the most repre-
sentative features from limited/small training datasets,
Saad et al. [26] successfully proposed the SCALODEEP
model to detect ground demand signals. Similarly,
Zhu et al. [27] proposed a CNN-based phase recognition
classifier (CPIC) for phase detection and picked up from
small and medium-sized training datasets. While Saad
and Chen [28] used a capsule neural network (CapsNet)
to identify and detect earthquakes automatically and
confirmed that it could learn from small datasets with
a good generalization performance.

• To Develop a Data Augmentation-Approach: Data aug-
mentation is also an effective method to increase data
samples. The conditional GAN [29] was used to gen-
erate the seismic dataset effectively. Wang et al. [30]
developed the EarthquakeGen to generate a short seis-
mic waveform and verified its rationality. Although seis-
mic data can be generated by inferring the implicit and
explicit characteristics of the seismic waveform, it is

not easy to ensure the diversity or efficiency of the data
generated.

In this paper, we propose a novel DGM for data augmen-
tation. However, the design of the generation model depends
on the measurement of the distribution pattern of the origi-
nal data. The speech synthesis technology based on Hidden
Markov Model (HMM) has been proven to be very effective
in synthesizing an acceptable speech [31]. Due to the discrete
limitation of HMM, it cannot represent a continuous space.
The LSTMmodel [32] based on natural language is applied to
capture and memorize the long-term and short-term features
of the sequences, so as to generate realistic text information.
However, compared with the traditional recurrent neural net-
work (RNN) algorithm, the training difficulty also increases
because of toomany parameters. Zhao et al. [33] proposes the
seq2seq based on LSTM together with an attention mecha-
nism to improve the efficiency quality of text summarization,
which, however, lack text information coherence. Although
different DL models have been developed in these studies
to achieve time series generation, they cannot fully represent
the distribution of the original data. The performance of gen-
eration model cannot meet the best expectations. Therefore,
we designed a variant of the GAN structure called EQGAN,
automatically capturing different dimensional and time his-
tory features.

In addition, we mix the real seismic data and noise data as
the data input layer, integrateWasserstein Distance (WD) and
spectral normalization (SN) to improve the stability of model
training, overcomemode collapses, and generate high-quality
earthquake data recorded by approximate acceleration sen-
sors. Since there is no absolute one-to-one correspondence
between the generated and real data, it is not easy to evaluate
the quality of the generated data. Frechet Inception Distance
(FID) [34], [35] have been proposed in previous studies to
evaluate the similarity between generated images and real
images. However, for non-image data, an accurate evaluation
of theGANmodel is still a challenge. Reagan’s powerful seis-
mic data generation ability is qualititatively analyzed in this
study through visual representation, frequency domain and
autocorrelation schemes, and a new quantitative error evalu-
ation scheme is designed based on HTS theory, which proves
the excellent stability and high efficiency of our model.

The rest of this article is organized as follows. In Section II,
we describe the basic theory of the GAN, design and
develop the DGM by analyzing the data distribution patterns
as well as characteristics of real seismic data. Section III
provides details of data collection and preprocessing tech-
niques. We then present the experimental results and evalu-
ate our model from different metrics in Section IV. Finally,
Section V includes the conclusion and future work of the
research.

II. THEORY AND MODEL DESIGN
In this section, we first present the basic theoretical frame-
work of standard GAN in Part A, the characteristics of
real seismic sequences are analyzed in Part B according to
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TABLE 1. Overview of related work.

the evolution process of the seismic event. Finally, we also
design the EQGAN model based on appropriate algorithms
in Part C .

A. THEORETICAL BASIS
3-component earthquake data is a series of discrete mea-
surements captured in a continuous time series. Acceleration
components change in different degrees at different time or
in different dimensions at the same time. To automatically
extract data features through the ML model instead of the
traditional ANN model, so as to infer implicit data features,
we introduce theGAN framework to build a generationmodel
by fitting real data distribution.

In 2014, Goodfellow [36] proposed the concept of GAN,
an epoch-making unsupervised learning algorithm frame-
work (Fig.1c), in which only backpropagation is used to train
the network, avoiding the use of Markov chain, and mak-
ing a deep learning breakthrough. GAN’s basic idea comes
from the 0-1 Game Theory, which is mainly composed of
a generator and a discriminator. The purpose of the gen-
erator is to learn and capture the potential distribution of
real data as much as possible meanwhile generating new
data. At the same time, the essence of the discriminator is
a binary classifier with the purpose of identifying whether
the incoming data is from real data or generated data as
accurately as possible. This learning optimization process is
a maximin game to optimize and improve their generation or
discrimination ability continuously, whose purpose is to find
a Nash equilibrium between the two sides. The performance
of the generation task depends on the design of the GAN
adversarial mechanism. The optimal objective function can
be expressed as follows:

min
G

max
D

V(D,G) = Ex∼pr(x)[log(D(x))]

+Ez∼pg(z)[log(1− D(G(z)))] (1)

where D(∗) is a discriminator, and G(∗) is a generator. The
distribution probability of generated data g(z) corresponding
to random variable matrix z is pg(z), and the data distribution
of the real data x is pr , D(g(z)) is the probability of fast
data g(x) estimated by the discriminator, whose output value
is 0-1. When the generator g(∗) is optimized, the discrimina-
tor D(∗) is fixed. The purpose of generator optimization is to
cheat discriminator D(∗), so that D(g(z)) tends to be 1 and
1 − D(g(z)) tends to be 0, so the optimization genera-
tor is to minimize V (g, d); on the contrary, the optimized

discriminator is to recognize no matter how realistic the
generated samples are, that is, D(g(z)) tends to be 0 and
1−D(g(z)) tends to be 1, so that the optimal discriminator is to
maximize V (D,G). Compared with other generation models,
more real samples can be generated with only backpropaga-
tion through GAN. At the same time, no complex Markov
chain is needed.

B. ANALYSIS OF SEISMIC DATA FEATURES
Due to the complex high-dimensional data structure of seis-
mic data, it is impossible to directly represent its specific
distribution pattern. The evolution of the seismic wave-
form is mapped into a controllable observation sequence,
showing multiple multi-dimensional time-series correlations.
To ensure the performance of the model training and gen-
erate various seismic waves, we systematically analyze the
evolution of earthquake waves: (i) Fully extract the implicit
and explicit characteristics of the seismic sequence’s time
evolution and spatial dimension. (ii) A realistic earthquake
sequence generation model is established, and appropri-
ate countermeasures are designed and adjusted to meet the
dependence of high-quality generation tasks. Different time
series distribution patterns lead to different construction
methods of mapping space. To complete the task of seismic
data generation, we need to find the spatial distribution pat-
tern P according to the discrete real seismic data points and
get the optimal parameter combination of continuous data
space:

θ∗ = argmax
θ

N∏
n=1

P
(
xn, θ

)
(2)

where N is the data size.
Since earthquake sequence x in the spatial dimension

i = {1, 2, 3} (i represents three different dimensions, namely
east-west, north-south, and up-down) and time series N =
{1, 2, . . . , n}, θ is the parameter space that satisfies the map-
ping relation, the maximum likelihood function Eq 3 is used
to get the optimal parameter combination:

θ∗ = argmax
θ
5N
n=1

3∏
i=1

P
(
xNi | x

1→n−1
i , θf

)
︸ ︷︷ ︸

feature extract

· P
(
yni | x

n
i , θg

)︸ ︷︷ ︸
data generation

, θ =
{
θf , θg

}
(3)
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FIGURE 1. System structure of different generation models. (a) NN, (b) LSTM, (c) Normal GAN, (d) EQGAN.

However, it is infeasible to directly solve the equation to
measure the evolution process of time series, and we intro-
duce Kullback-Leibler (KL) Divergence [37], [38]:

KL
(
Pr‖Pg

)
=

∫
X
Pr (x) log

Pr (x)
Pg(x)

dx (4)

The optimal parameter combination can be abtained by
minimizing the KL divergence of the data distribution gen-
erated Pg and the real data distribution Pr .

C. ALGORITHM AND MODEL DESIGN
In order to expand the scope of seismic sequence analysis and
extract the long-range as well as short-range spatiotemporal
correlation characteristics of the earthquake wave evolution
process, we introduce the LSTM [39] algorithm (Fig.1b) to
capture the invisible evolution relationship among the earth-
quake sequences. Keep the crucial data and information that
need to be memorized for a long time and forget the unimpor-
tant information. Input information x at time i is represented

by Eq 5:

x = σ (Wi · [ht−1, xt ]+ bi) (5)

where σ (∗) is a deterministic nonlinear sigmoid function,
while Wi and bi are the weight and deviation of output units,
respectively, which has only one transfer state ht compared
with the traditional RNN, LSTM is calculated by changing
the operation mode of neurons, based on the input x and
the last time hidden layer transmission h, to control the
transmission process of the data hidden state relying on the
compling work among the three gating units, as is shown in
the following Eq 6:

ht = σ (Wo [ht−1, xt ]+ bo)︸ ︷︷ ︸
output gate

· tanh (ft × Ct−1︸ ︷︷ ︸
forget gate

+ it × tanh
(
C̃t
)

︸ ︷︷ ︸
input gate

)

︸ ︷︷ ︸
state unit

(6)
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Among them, ft , it , and Ct represent forgetting gate, input
gate, and new cell state, respectively. In Eq 6, the forgetting
unit keeps the previously accumulated sequence information
correct, and the information input of the current time is added
by the input gate, which effectively captures the multi-range
pattern of the time series. It is highlighted that the generation
of seismic data is neither a noise version nor a copy of
real data, and it is difficult to generate high-quality seismic
data by retaining the correlation with earthquake data evolu-
tion process, considering that the seismic waveform results
from a multi-dimensional time series. Therefore, to obtain
the correlation among different dimensions, we compiled
the multi-head attention mechanism [40], [41] and use the
weight of the attention vector as the approximate value of
the target (The attention mechanism is detailed in Appendix
2). In addition, to further enhance the local feature extrac-
tion of earthquake waveforms, the NN algorithm (Fig.1a) is
developed.

In the earthquake data generation process, measuring the
distance among the low-dimensional manifolds of the dis-
tribution patterns in a high-dimensional hidden space more
accurately drives the generated sequences towards the objec-
tive function. On the other hand, the highly scattered data
points in the training dataset lead to an irregular gradient
transmission, which cannot guarantee the training’s stability.
Therefore, it is unreasonable to train GAN by minimizing
KL divergence to make the two distributions approach
each other. We introduce Wasserstein distance [42], [43] to
describe the similarity between the distribution of generated
and real data, so as to solve this problem, the specific theory
on WD is explained in Appendix 3.

W
(
Pr ,Pg

)
= inf
γ∼5(Pr ,Pg)

E(x,y)∼y[‖x− y‖] (7)

where 5
(
Pr ,Pg

)
is the set of all possible joint distributions

of real data Pr and generated data Pg, samples x and y are
obtained from each possible joint distribution γ , and the dis-
tance between the two samples is calculated, so the expected
value of the sample pair distance under joint distribution
γ can be obtained. In all possible joint distributions, the
expected value from the sample to distance can be obtained,
and the lower bound of the expected value is obtained:
infγ∼5(Pr ,Pg) E(x,y)∼y

[
||x− y||

]
and its WD is found.

Compared with KL divergence, WD can provide smooth
and meaningful distance even if two distributions are located
in low-dimensional manifolds with no or less overlap. It can
effectivelymeasure the pattern difference in the submanifolds
of high-dimensional distributions and describe the similarity
of the two distributions, which fundamentally solves the prob-
lem of vanishing gradients.

To further ensure the stability of EQGAN model training,
the discriminator must satisfy the Lipschitz constraint. There-
fore, we use the spectral normalization method to normalize
the spectral normalization [44] of weight matrixW to satisfy
Lipschitz constraint σ (W ) = 1:

W̄SN(W ) := W/σ (W ) (8)

where W is the total weight of EQGAN and σ (∗) is the
maximum singular value. Unlike the commonly used meth-
ods in the calculation of gradients (such as gradient penalty),
SNR operation WSN (∗) is performed before the backprop-
agation of the discriminator. The weight of different time
series features is intelligently adjusted to avoid overlearning
EQGAN iterative training, which retains the time correlation
of the carefully designed weights, thus ensuring the high
stability of generation and training process.

The system framework of our EQGAN model is summa-
rized in Fig.1d, in which LSTM, attention, NN, SN, and
WD are combined to realize the extraction and generation of
seismic data features; it is developed through the platform of
Python 3.6 and TensorFlow v2.0.

III. DATA COLLECTION AND PREPROCESSING
Data collection and preprocessing are the premises of model
training and analysis. Here we present the experimental
data source and preprocessing to better explain the model
workflow.

A. DATASET
The occurrence of earthquake events is accidental and irre-
placeable. With this in mind, we need a special data acquisi-
tion scheme. The earthquake datasets used for model training
are mainly from the National Research Institute for Earth Sci-
ence and Disaster Resilience (NIED) [45] databases, we also
integrated the seismic data recorded by our sensors into
the dataset. The earthquake events with magnitudes ranging
from 4 to 8 recorded from April 2009 to May 2019 were
selected from the NIED database and preprocessed to con-
vert them into units (g). Also, the data of 120 stations for
the three earthquakes of Tottori (2000) (M6.61), Niigata
(2004) (M6.63), and Chuetsuoki (2007) (M6.8) were down-
loaded from the United States Geological Survey (USGS)
database [46]. In addition, the earthquake data also include
small events (2020) (approximately M2.5) recorded by our
MEMS sensor in Korea. The sampling rate of all earthquake
events is 100 Hz. The data is shown in three channels titled
X , Y , and Z , where X (east-west) and Y (north-south) are
horizontal components, and Z (up and down) is the vertical
component. Noise data is a time series of non-earthquake
datasets recorded byour low-cost sensors for several hours.
We used two kinds of non-earthquake data in the experiment,
namely human activity data and noise data. Human activity
data include cars (hands), rope skipping, running (hands,
pockets), table shaking (when moving above), climbing stairs
(up and down), walking (bags, hands, pockets), standing
still, and working. Instead, noise data includes floor noise
(for example, different elevation angles) and mechanical
noise. These noise data are external source data.

B. DATA PREPROCESSING AND TRAINING DETAILS
To facilitate training and analysis, we preprocess the seismic
data. Each data (they are all recorded at a sampling rate
of 100 data points per second) only retains 3600 data points
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FIGURE 2. The diversity and fidelity of the data generated by our EQGAN model, (a) The fundamental waveform of seismic data, (b) and
(c) represent the waveform of generated data.

included the P-wave and S-wave (including 50 abnormal
data points at the two data endpoints), and only obtains the
final length of 3500 data. The training and test dataset are
divided according to the ratio of 7:3. The experiment was
carried out on Ubuntu 18.04 operating system, and the learn-
ing rate was set to 10−5, the batch size and epoch were set
64 and 1000, respectively. In order to improve the stability
of model training, in addition to compiling the WD algo-
rithm, in the Input layer, we have mixed the real earthquake
data with random noise as input data (Appendix 4 for the
schematic diagram) to improve the robustness of our model,
and the data generated by our model is the same type of data
length in output.Wemainly use diagram to intuitively present
the evolution process of seismic waveforms.

IV. RESULTS AND DISCUSSION
A more important fact is how to evaluate the quality of gen-
erated data. With all things considered, we design a variety of
evaluation schemes in this section:

(1) Initially, we analyze the performance of the EQGAN
model to generate data through visual appearance.

(2) Then, we compare and analyze the frequency domain
of generated and real data.

(3) From the perspective of seismic data distribution pat-
tern, we introduce a paired scatter plot to analyze the distri-
bution of generated data points and real data or noise data
and the correlation among different channels. At the same
time, we also compare the performance of other generation
models.

(4) Also, to make the evaluation more reliable,
based on the statistical analysis index, we introduce the
Mean Squared Error (MSE), Mean Absolute Percentage
Error (MAPE), and WD error quantification index and
use the High-throughput Screening Theory to design a
novel generation model quantitative accuracy evaluation
method.

(5) Finally, we compare the computational complexity of
differentmodels and discuss the robustness of ourmodel from
the perspective of computational cost.

Through an analysis of generated data, real data, and noise
data, results of our model cast a new light on augmenting
seismic data.
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FIGURE 3. The comparision of frequency domain between real
earthquake data and generated data, (a) Real data frequency
domain (b) Generate data frequency domain.

A. VISUAL APPEARANCE
The accuracy of earthquake detection depends not only on
the first arrival of earthquake waves but also the amplitude
and frequency. Therefore, visual performance of generated
data is one of the primary indicators to evaluate the quality of
generated data. Fig.2b-c highlights the seismic data generated
by our EQGANmodel, which presents similar characteristics
to that of the real seismic waveform. It is clear to observe the
arrival time of P-wave and S-wave in different dimensions of
generated data. It is worth noting that compared with Channel
Z , the amplitude of S-wave after arrival in Channel X and Y is
more prominent, which indicates that the EQGAN model we
designed has taken into the essential statistical characteristics
of real earthquake data and can generate seismic waveforms
that are highly similar to the appearance of real data.

From the perspective of generating data diversity, in a
real earthquake sequence, some earthquake waves contain
small vibrations such as foreshocks or aftershocks, which is
in line with the scientific nature of seismology. We can not
only generate a single epicenter or aftershock, but also cap-
ture the characteristics of a single epicenter. Simultaneously,
in Fig.2c, it is evident that the amplitude of generated data is
also significantly different. The presentation of these different
data features can prove the diversity of the data generated by
our generation model, which is highly coincide with the real
seismic data recorded by acceleration sensors.

B. FREQUENCY DOMAIN ANALYSIS
To further confirm the quality of generated data, we use
the Fast Fourier Transform (FFT) to obtain its frequency
domain [47] and the real data (Fig.3). Because of the fre-
quency synchronization between generated and real data,
it is not easy to represent the frequency domain of the
whole dataset through an exact measurement in the frequency

domain. However, we can evaluate the fluctuation in the
frequency range by randomly selecting 100 real data samples
and generating data for testing. As can be seen, the frequency
domain of real data is maintained at 0-40 Hz. Similarly, most
of the frequency fields of generated data are maintained in the
same range, and there is no false data found beyond the real
data frequency domain, which further suggests that real data
and generated data are highly similar in the frequency range.

C. AUTOCORRELATION DISTRIBUTION ANALYSIS
Through further exploration, with another evaluation method,
we randomly select a piece of data from the corresponding
dataset and use the scatter matrix diagram to visualize data
analysis. Fig.4 can be divided into two parts: the scatter
diagram shows that in all kinds of data (real data, generated
data and noise data), any two channels of X , Y and Z are
paired tomeasure the correlation of them. TheKernel Density
Estimation (KDE) represents the autocorrelation distribution
of particular channel data, and the horizontal as well as
vertical axes correspond to data points of the channels.

Since the distribution of data points is a relatively scattered
and weak correlation due to the difference in the ampli-
tude of P-wave and S-wave, in contrast, the distribution of
non-seismic data points is uniform and concentrated. It is evi-
dent in the autocorrelation distribution map that both real and
generated data present an approximate Gaussian distribution
pattern on Channel X , Y and Z , which is quite different from
the distribution of non-seismic data. No matter it is a scatter
diagram or a distribution diagram, we can undoubtedly find
that data generated by our model is similar to the real data,
which is consistent with what has been found in the above
analysis. Also, we dissect a standard GAN model, LSTM,
and NN model with paired scatter diagram (Fig.4d-f). As we
expected, the distribution of data generated by the standard
GANmodel is very similar to the real data, nonetheless, from
the perspective of the sequence evolution process, which does
not conform to the natural characteristics of the P-wave and
S-wave. On the contrary, the autocorrelation distribution of
data generated by the LSTM model is not different from the
real data; the correlation scatter diagram of data generated
by the LSTM model presents an obvious positive correlation
among three channels, which is contrary to that of real seismic
data. The data of correlation scatter diagram and autocorrela-
tion scatter diagram generated by the NN model is different
from real data. There are significant differences between the
correlation distribution map and the real data.

Even if this method can reflect the excellent quality of the
data generated by EQGANmodel, it is difficult to distinguish
the false positive data generated by standard GAN and NN
model. Moreover, it can only be used to analyze randomly
selected single data instead of evaluating a dataset as a whole.

D. COMPARATIVE ANALYSIS OF DIFFERENT GENERATION
MODELS
Although previous evaluation methods can be used to verify
the potential of EQGAN in earthquake sequence generation,
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FIGURE 4. Different data distribution patterns including real data, noise data, and generated data by different generation models.

one limitation of our implementation is that they all be used
to qualitatively evaluate the quality of individual generated
data, which is also a common weakness in the evaluation of
many ML model. In this research, to further clarify excellent
performance of our EQGAN model, we design a scheme
to quantitatively verify the generated data based on MSE,
MAPE, and WD meanwhile evaluating the performance of
different generation models. (i) Firstly, eight samples of rep-
resentative seismic data is selected from all real datasets as
the standard dataset.

(ii) Then, calculate theMSE of sample dataset and standard
dataset:

MSE =
N∑
i=1

(ci − ri)2

N
(9)

where ci represents the sample dataset, ri is the standard
dataset, and N represents the data length. We use real data,
noise data, and data generated by different models as sample
datasets to obtain MSE (Eq 9) corresponding to standard
datasets.

(iii) The mean value, minimum value, and standard devia-
tion of the MSE vector are extracted as characteristic param-
eters for experimental confirmation. Different characteristic
parameters show similar distribution patterns. Fig.5a dis-
plays the distribution difference between each sample dataset
and the real dataset when MSE is minimized. It can be seen
that the distribution of the dataset generated by EQGAN has
the highest similarity with the real dataset, and there are
cliff-like differences between the distribution of other sample
datasets and the real dataset.
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FIGURE 5. Distribution diagram of error quantification index. (a) Minimizing MSE, (b) Minimizing MAPE, (c) Minimizing WD.
Here, the y-axis (Vertical) represents the distribution probability, and the x-axis (Horizontal) shows the value of the
corresponding error-index.

Comparing the models generated by different ML algo-
rithms, the results reveal that the overall similarity between
different sample datasets and the real dataset is as follows:
EQGAN > GAN > LSTM > NN.

Although MSE strongly indicates the actual situation of
the error between generated and real data, it is not convinc-
ing to judge the generation ability from the value of MSE
alone. Consequently, we handle the same scheme to calculate
the mean absolute percentage error (MAPE) of the sample

dataset and the standard dataset, respectively (Eq 10):

MAPE =

∑N
i=1
|ci−ri|
ri

N
× 100% (10)

MAPE is a statistical index to measure the accuracy of
prediction, which considers the error between predicted and
actual value as well as the ratio between the error and actual
value. It is generally believed that the closer the MAPE is
to 0, the higher the similarity between the two groups of
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data will be. By calculating the MAPE of different gener-
ated, real, noise and standard datasets, the results explain
that the distribution pattern of real and generated datasets
is very similar. Fig.5b confirms the similarity between the
dataset generated by different models and the real dataset:
EQGAN > GAN > LSTM > NN. From the statistics per-
spective, both MSE and MAPE are widely applicable to the
quantitative error analysis of data. WD is a special indicator
to measure the difference of probability distribution between
two pieces of high-dimensional data. Accordingly, we work
the corresponding scheme to calculate the WD (Eq 11) and
further analyze the quality of generated data. The results are
exhibited in Fig.5c.

Wp(µ, ν) =
(

inf
γ∈0(µ,ν)

∫
X×X

‖x − y‖pdγ (x, y)
)1/p

(11)

where γ represents the joint distribution of real data x and
generated data y, which is called coupling and requires that
the edge distribution is µ and ν.
Despite the fact that the previous evaluation method has

been used to fully explain and examine the quality of gener-
ated data, to prove the robustness and stability of EQGAN,
we propose a High Throughput Screening (HTS) Theory to
analyze the performance of different generation models. The
HTS technology is an essential means of drug research and
development based on experimental methods at the molec-
ular and cellular level, in which microplate is used as the
experimental tool carrier to screen high-quality data, so as
to meet the needs automatically [48]–[50]. The quality of
data screening depends on the design of the microplate, and
some data will show false-positive results with different types
of microplate screening [51], which is entirely consistent
with the error evaluation scheme of MSE, MAPE and WD
designed by us. Fig.6 presents our basic screening process
of generated data. In view of the significant difference in
data generated by different models, in order to eliminate
the dimensional influence among different error indexes and
obtain the comparability among seismic datasets, we normal-
ized all datasets under different error quantitative indexes.
It is worth mentioning that normalization will reduce the
differences among the data generated by different models
and change their distributions. Hence, in this paper, we try
different normalization methods for MSE, MAPE and WD,
choosing the best method to process the data (Fig.7).

Compared with Fig.5 and Fig.7, it stands to reason that we
can find that the generated datasets with normalization have
a higher similarity with the real dataset, which does not mean
that their distribution pattern is changed in the normalization
process. Still, differences in the data are reduced, which
does not affect the scientific nature of the statistical analysis.
Therefore, through Fig.5 and Fig.6, we can conclude that
the GAN framework training generation task is better than
a single algorithm model, and generation performance of our
EQGAN model is better than that of standard GAN.

Furthermore, based on MSE, MAPE and WD, we calcu-
late the correlation between the sample dataset generated by

FIGURE 6. High-throughput screening process.

different models and the real dataset. The scatter plot matrix
directly reveals the correlation between the datasets generated
by different models and the real datasets under different
quantitative indexes meanwhile the incidence matrix is used
to quantify and summarize the linear strength relationship
between the datasets (Fig.8a). It is observed that the corre-
lation coefficient between the dataset generated by EQGAN
and the real dataset is 0.11. Although it looks deficient, it is
much higher than that of other generation models, which
shows that the generation performance of the EQGANmodel
is not only high but also fully reflects that the data generated
by EQGAN is not a copy of the real data.

It’s noteworthy that based on the above analysis results,
we use each generation model to complete 10 consecutive
generation tasks, generating 2,000 data samples each time,
and further verify the performance of different models. The
error bars diagram (Fig.8b) shows the datasets generated
based on different models and gives themaximum,minimum,
and average value of MSE, MAPE and WD, respectively.
At the same time, it allows us to master the efficiency and
stability of the models. Through EQGAN, the generation task
can be completed more stably under MSE, but the genera-
tion performance of GAN is the highest. The reason is that
there will be false-positive data after the normalization of
the data generated by GAN, which improves the efficiency.
Simultaneously, in a more complex evaluation index map
under MAPE and WD, the results show that the stability and
accuracy of the data generated by the model with LSTM and
NN algorithm are the best.

Finally, through the HTS method, we filter 2000 data
samples generated by each model respectively according to
the increasing complexity of MSE, MAPE and WD. Fig.8c
shows that the generation performance of different models is:
EQGAN (81%) > GAN (74%) > NN (21%) > LSTM (2%),
implying that EQGAN possesses a strong generalization and
stability to deal with distinct diversity earthquake series intel-
ligently.
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FIGURE 7. Distribution of different error quantification indexes with normalization. Here, the y-axis (Vertical) represents the distribution
probability, and the x-axis (Horizontal) shows the value of the corresponding error-index.

E. COMPUTATIONAL COMPLEXITY
One may expect that our EQGAN model with different algo-
rithms would have high computational complexity. This is,
however, not the case. Tomeasure the quality of an algorithm,
there are usually three considerations: (i) The time consumed
in the execution of the algorithm (ii) The number of resources

occupied during execution, such as the amount of memory
space occupied (iii) The algorithm is easy to understand,
implement and verify Therefore, different algorithms need
to be selected in different cases. Due to a large amount
of data processing, we first consider the difficulty of data
processing in LSTM or GAN, which is not different from that
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FIGURE 8. Stability and performance analysis from different models. (a) shows the correlation between datasets generated by different
models and real datasets, (b) Comparison of performance and stability of different models under different filter screening conditions,
(c) Accuracy analysis of the same amount of data from different generation models filtered by different filters (1-filter represents MSE,
2-filter denotes MSE+MAPE, 3-filter denotes MSE + MAPE + WD).

in EQGAN. Still, EQGAN has apparent advantages in time
complexity and easy implementation of the algorithm. This
paper mainly discusses the time complexity of the algorithm
and its feasibility. Appendix 5 gives the measurement indexes
of different algorithm complexity.

V. CONCLUSION
A new DGM called EQGAN is proposed in this research
to capture the multi-dimensional temporal evolution of seis-
mic sequences and generate high-quality seismic sequences

containing P-waves and S-waves. In order to verify the per-
formance of the EQGAN model, by comparing standard
GAN, NN and LSTM model, we not only qualitatively eval-
uate the quality of generated data from the distribution pat-
tern and frequency domain, but also quantitatively analyze
the similarity between generated and real data by fusing
statistical indexes of MSE, MAPE and WD with seismic
data. Experimental results show that the efficiency of data
generated by our EQGAN model reaches 81% (The gener-
ation performance of standard GAN, LSTM and NN models
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are 72%, 2%, and 21%, respectively), which further demon-
strate that our generation model has excellent performance
and stability.

Even if the current discussion is not as easy to be explained
as the traditional supervised training models, the data screen-
ing and evaluation scheme based on the HTS theory and
techniques are highly consistent with the distribution pattern
of seismic data. There is no apparent defect to prevent the
expansion of the EQGAN model, which also promotes the
application and innovation of ML algorithms in seismology.
These findings provide a potential mechanism for data aug-
mentation. We also assume that the EQGAN algorithm may
generate seismic sequences similar to that recorded by a spe-
cific position sensor, which provides a more convenient data
support scheme for earthquake prediction. Looking forward,
the proposed EQGAN model provides a more convenient
dataset support scheme for seismic prediction. Based on gen-
erated data, we will further develop and train the earthquake
detectionmodel to improve the accuracy and robustness of the
EEW system. Moreover, with fault-detection/identification
techniques as a future research direction [52], we will design
fault and detection equipment for regulating and maintaining
sensors under abnormal conditions to improve the quality of
the data recorded by our sensors.
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