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ABSTRACT Transmission schemes taking both sum rate and fairness into account for dirty paper cod-
ing (DPC) based MIMO downlink communications are investigated in this paper. In contrast to existing
works which have mostly focused on maximizing the sum rate, we first investigate the problem of finding
the maximal sum rate achieved by DPCwhen the qualitative notions of fairness such as max-min fairness and
proportional fairness are employed. This corresponds to a nonconvex problem and cannot be solved by usual
weighted sum rate techniques. Several efficient methods for finding the optimal solutions are presented in
this paper when the order of users is adjustable during DPC encoding. Simulation results show surprisingly
and impact greatly on the design of practical systems that it is often possible to achieve the sum rate capacity
with absolute fairness, i.e., an equal rate for each user, when multiple encoding orders of users are used
during transmission. When sum rate capacity and absolute fairness cannot be achieved at the same time, the
optimal tradeoff between sum rate and fairness is also provided for a general class of quantitative fairness
measures.

INDEX TERMS Dirty paper coding, fairness, max-min fairness, MIMO downlink communications, propor-
tional fairness.

I. INTRODUCTION
In multiple-input-multiple-output (MIMO) downlink
communications (also known as broadcast channels
(BC) [3], [10]), the base station uses multiple transmit anten-
nas to send pieces of statistically independent information
simultaneously to a group of multi-antenna, noncooperative
users. Assuming that each user knows perfectly the channel
state information of his/her incoming channel and that the
base station has the complete knowledge of channel state
information of all users, the dirty paper coding (DPC) [11]
is the only known scheme that can achieve the maximal sum
rate of users (also known as the sum rate capacity) of this
MIMO BC [4], [10]. Several practical implementations of
DPC have been proposed in recent years [12]–[16]. However,
finding the numerical value of sum rate capacity and the cor-
responding optimal input distribution of transmitted signals
of a given MIMO BC are not straightforward. Such problems

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Mucchi .

are generally nonconvex and call for the use of a duality [3]
between uplink and downlink communications. Using this
duality, the problem of sum rate maximization for DPC-based
MIMO BC can be converted to another problem of sum rate
maximization for MIMO uplink communications. The new
problem then has a convex objective function and convex
constraints, hence it can be solved using standard convex
optimization techniques. Faster, waterfilling-based, iterative
algorithms for solving the dual problem are also available [4].
Once the optimal solutions are found, they can be converted,
using the same duality, back to the DPC-based MIMO BC to
yield the optimal input distributions of transmitted signals in
the original problem and give the numerical value of sum rate
capacity.

Many existing works on DPC-based MIMO BC [3]–[6]
have focused onmaximizing the sum rate of all users and have
not fully investigated how the rates are distributed among
them, i.e., the issue of fairness. For non-capacity achieving
and suboptimal coding strategies, some works are available
from literature that do take fairness into account. For instance,
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TABLE 1. Comparison of designs of mimo downlink communication systems with fairness considerations.

Salem et al. [7] considered the max-min fairness when
PSK signaling and zero-forcing precoding are used for
MIMO BC. Tran et al. [2] investigated the designs
of zero-forcing DPC (ZFDPC) for the multiple-input-
single-output (MISO) BC when the notions of fairness such
as max-min fairness, proportional fairness and harmonic fair-
ness are employed. Bayesteh et al. [17] considered a random
beamforming based MISO BC and showed that a certain
scheduling of single-antenna users can achievemaximal aver-
age sum rate and maximum fairness (defined in terms of
network scheduling) at the same time when the number of
users goes to infinity. Wang et al. [1] also considered the
MISO BC but used zero forcing beamforming. They showed
that the problem of user selection subject to the proportional
fairness constraint can be reduced to the maximization of a
weighted sum rate. In summary, the comparison of designs
of MIMO BC with fairness considerations is summarized
in Table 1.

In this paper, we will focus on the use of optimal cod-
ing strategy, i.e., DPC for the best possible sum rate and
system performance. To take fairness into account, we will
first adopt the notions of max-min fairness and proportional
fairness, which have been widely used in many areas of
communications [1], [2], [9], [18]–[23]. For a given order
of users for DPC encoding, it will be seen that the problems of
sum rate maximization for DPC-based MIMO BC subject to
either max-min fairness or proportional fairness are generally
nonconvex and are extremely difficult for solving even with
the uplink-downlink duality. The commonly used technique
of weighted sum rate would fail in the present problem either,
since 1) it is completely unknownwhich set of weights should
be used to yield max-min fairness, proportional fairness, etc.
and there are infinitely many choices of weights to be con-
sidered, 2) the weights might not even exist as the achievable
rate regions for max-min fairness and proportional fairness
might not be convex, and 3) the rate-tuples correspond-
ing to max-min fairness, proportional fairness, etc. could
be some interior points of the achievable rate region while
the weighted sum rate approach focuses only on boundary
points.

To overcome the above difficulties, rather than considering
only a fixed encoding order for DPC, we will include all

possible orders of DPC encoding into consideration. It will
be seen in Section III-A that our new approach not only
simplifies the original problems by making them become
convex but also yields a much larger sum rate than that
from a fixed encoding order. A low-complexity algorithm
for reducing the number of required encoding orders is also
provided in Section III-B. Furthermore, we will apply this
method to find the tradeoff between sum rate and fairness
for DPC-based MIMO BC, when the notion of fairness
is replaced by the quantitative fairness measures such as
the recent `1-norm based index [9], [23], Jain’s fairness
index [24], [25] or entropy-based index [26]. It will be seen
from simulations in Section IV that our new approach of
using multiple encoding orders for DPC can often achieve
the sum rate capacity of MIMO BC with absolute fairness,
i.e., an equal rate for every user. This is very surprising and
is thought not possible before. Compared to the work by
Bayesteh et al. [17], our new approach achieves not only the
true maximum sum rate and exact maximum fairness with
equal rate at the same time for MIMO BC but also in finite
number of multi-antenna users. This also leads to a huge
impact on the design of practical MIMO BC as now it is
possible to achieve max-min fairness without any loss of sum
rate capacity.

The major contributions of this paper include:
1) new methods (cf. Theorems 2 and 3) for finding the

maximal sum rate of DPC-based MIMO BC subject to
either max-min fairness or proportional fairness,

2) a new transmission scheme that uses multiple encoding
orders of users for DPC and often achieves the sum
rate capacity of MIMO BC with an absolutely fair
distribution of rates among users,

3) an efficient, low-complexity algorithm (cf. Algo-
rithm 1) that minimizes the number of required encod-
ing orders,

4) a complete characterization on the optimal tradeoff
between the sum rate and fairness (cf. Theorem 4) that
gives system designers a total flexibility in selecting the
operating sum rate and fairness for DPC-based MIMO
downlink communications, when sum rate capacity and
absolute fairness cannot be achieved at the same time,
and
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5) a surprising finding that is quite opposite to the
well-known result of a negligible performance
gap [10], [27] between DPC and its simplified ver-
sion, the successive zero forcing DPC [2], [8], [28].
Our simulation results show that the latter suffers a
huge performance loss and the performance gap is
enormous, when the issue of fairness is taken into
consideration.

The following notations will be used in this paper. Under-
lined lowercase letter x represents a vector, and uppercase
letter A denotes a matrix of certain size. A† (resp. A>) denotes
the Hermitian transpose (resp. transpose) of matrix A. |A| is
the determinant of a square matrix A. 0 and I are the all-zero
and identity matrices of proper sizes, respectively. By 0 we
mean the all-zero vector, and 1 is the all-one vector of proper
length. Matrix inequalities such as � and � are the partial
orderings of positive semidefinite matrices. We will write
x ∼ CN

(
m, �

)
when x is a circularly symmetric complex

Gaussian random vector with mean vector m and covariance
matrix � � 0.

II. DPC-BASED MIMO DOWNLINK COMMUNICATIONS
Consider a MIMO BC, where a base station uses N transmit
antennas to send pieces of statistically independent infor-
mation simultaneously to a group of K users. Assuming
mk receive antennas for user k , where k = 1, 2, . . . ,K , the
signal received by user k is a length-mk vector given by

y
k
= Hkx + wk , (1)

where Hk ∈ Cmk×N is the channel matrix of user k
with arbitrary statistics including the ones from millime-
ter wave (mmWave) communications. The vector wk ∼
CN

(
0, I

)
is the additive noise. The transmitted signal vector

x ∈ CN takes the following form

x = x1 + x2 + · · · + xK , (2)

where xk ∼ CN
(
0,Qk

)
is the component signal vector

containing the information intended only for user k . The
covariance matrices Qk are constrained by the sum power,
i.e., we have

∑
k tr(Qk ) ≤ P for some nonnegative power P.

For an encoding order of 1, 2, . . . ,K , the DPC encoder
first encodes the information of user 1 and produces the
component signal x1. Then for k = 2, . . . ,K , the DPC
encoder iteratively encodes the information of user k by
taking into account the signals of preceding users such that
the interferences caused by x1, . . . , xk−1 can be properly
eliminated at the receiver of user k . The reader is referred
to [5], [6], [16], [29] for further understanding of DPC.

In a nutshell, the signal received by user k in DPC-based
MIMO downlink communications is equivalent to

ŷ
k
= Hkxk + Hk

∑
j>k

x j + wk . (3)

Thus, the achievable rate (in bits per channel use) for user k
using DPC is

Rk = log2

∣∣∣I + Hk∑j≥k QjH
†
k

∣∣∣∣∣∣I + Hk∑j>k QjH
†
k

∣∣∣ . (4)

Consequently, the maximal achievable sum rate of all users
using DPC is

Rms := maximize R1 + . . .+ RK
subject to Qk � 0,

∑
k

tr(Qk ) ≤ P (5)

which turns out to be the sum rate capacity [10], [30] of
MIMO BC specified in (1). To solve the optimization
problem (5), the common approach is to invoke the
uplink-downlink duality [3] and convert the sum rate maxi-
mization problem for downlink communications to that for
uplink communications. Specifically, it has been shown [3]
that the following equality holds for the sum rate capacity
Rms of MIMO BC

Rms = maximize log2

∣∣∣∣∣I +∑
k

H†
k PkHk

∣∣∣∣∣
subject to Pk � 0,

∑
k

tr(Pk ) ≤ P (6)

Note that the right-hand side (RHS) of (6) is the maximal sum
rate of uplink communications when the users simultaneously
transmit signals to the base station with signal covariance
matrices Pk and channel matrices H†

k for k = 1, . . . ,K .
A similar equality holds for the individual rates as well [3],
i.e., we have

R?k = log2

∣∣∣I+ Hk∑j≥k Q
?
jH

†
k

∣∣∣∣∣∣I+ Hk∑j>k Q
?
jH

†
k

∣∣∣ = log2

∣∣∣I+∑i≤k H
†
i P

?
iHi

∣∣∣∣∣∣I+∑i<k H
†
i P

?
iHi

∣∣∣
(7)

where Q?k and P?k are optimal solutions to problems (5)
and (6), respectively, and R?k is the rate of user k satisfying∑

k R
?
k = Rms. Note that the middle term of (7) is the rate

of user k for the DPC-based MIMO BC when the encoding
order 1, 2, . . . ,K , is employed, and the RHS of (7) is the
rate of user k for the MIMO uplink communication when a
successive interference cancellation (SIC) decoder is used at
base station with decoding ordering K ,K − 1, . . . , 1. Since
the objective function of (6) is concave in covariancematrices
Pk and the constraints are affine, the problem (6) can be
solved using standard convex optimization methods [31].
Faster algorithms that make use of iterative waterfilling for
solving (6) are available in [4]. Once the optimal solutions P?k
for (6) are obtained, they can be converted iteratively using (7)
to yield the corresponding Q?k ’s for k = K ,K − 1, . . . , 2, 1,
see [3] for details.

VOLUME 9, 2021 161879



H.-F. Lu: Achieving Sum Rate Capacity of MIMO Downlink Communications With Better Fairness

III. THE NEW CHALLENGES: SUM RATE AND FAIRNESS
Besides sum rate maximization, other objectives for
DPC-based MIMO BC such as max-min fairness, propor-
tional fairness, etc. have not been investigated in the past.
The max-min fairness [2], [23] aims to maximize the minimal
normalized rate of all users, and the proportional fairness
is derived from the Nash standard of comparison [21], [32]
that a transfer of resources (i.e., transmit powers in our case)
among users is favorable and fair if the sum of the percentage
increases of each user’s rate is positive. Specifically, the
max-min fairness for DPC-based MIMO BC seeks optimal
solutions to the following problem

maximize min
k

1
mk

log2

∣∣∣I + Hk∑j≥k QjH
†
k

∣∣∣∣∣∣I + Hk∑j>k QjH
†
k

∣∣∣
subject to Qk � 0,

∑
k

tr(Qk ) ≤ P (8)

and the problem of proportional fairness can be formulated
as [23]

maximize
∑
k

log

 1
mk

log2

∣∣∣I + Hk∑j≥k QjH
†
k

∣∣∣∣∣∣I + Hk∑j>k QjH
†
k

∣∣∣


subject to Qk � 0,
∑
k

tr(Qk ) ≤ P (9)

Note that in both problems (8) and (9) each individual
rate Rk is normalized by the corresponding number of receive
antennas such that the fairness is ensured among all transmit
beams [9].

Unfortunately, neither (8) nor (9) is convex, and solving
these non-convex optimization problems can be highly chal-
lenging. One trial approach is to invoke the uplink-downlink
duality and convert problems (8) and (9) to those for uplink
communications. For instance, we could reformulate (8) as

maximize min
k

1
mk

log2

∣∣∣I +∑i≤k H
†
i PiHi

∣∣∣∣∣∣I +∑i<k H
†
i PiHi

∣∣∣
subject to Pk � 0,

∑
k

tr(Pk ) ≤ P (10)

Unfortunately, the new problem remains as difficult as before
and the sum power iterative waterfilling algorithms [4] seems
powerless here.

A. THE PROPOSED APPROACH
To solve problems (8), (9) andmany others in general, we pro-
pose to include all possible orders of users in consideration
when performing the DPC encoding. To this end, let π :
{1, . . . ,K } → {1, . . . ,K } be a permutation of users and let

Rπ (k) = log2

∣∣∣I + Hπ (k)∑j≥k Qπ (j)H
†
π (k)

∣∣∣∣∣∣I + Hπ (k)∑j>k Qπ (j)H
†
π (k)

∣∣∣ , (11)

be the rate of user π (k) when the DPC encoding order
π (1), . . . , π (K ) is employed. The achievable rate region of
DPC is thus the convex hull of the union of rate vectors
taken over all permutations π subject to the sum power
constraint, i.e.,

CDPC := Conv
(⋃
π

{
(R1, . . . ,RK ) : Rk given by (11),

Qk � 0,
∑
k

tr(Qk ) ≤ P
})
. (12)

It is known [3, Theorem 2] that the region CDPC is equal to
the capacity region of dual MIMO uplink communications
with sum power constraint P, when for each permutation π
of users the order π (K ), . . . , π (1) is used for SIC decoding.
The result is reproduced below.
Theorem 1 (Vishwanath, Jindal, Goldsmith [3]):

CDPC =
⋃
{Pk }

{
(R1, . . . ,RK ) :

∑
k∈S

Rk ≤ log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣
for all S ⊆ {1, . . . ,K }

}
. (13)

The union in the RHS of (13) is taken over all possible covari-
ance matrices Pk � 0 subject to the sum power constraint∑

k tr(Pk ) ≤ P. In particular, for each choice of Pk ’s the
region{
(R1, . . . ,RK ) :

∑
k∈S

Rk ≤ log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣
for all S ⊆ {1, . . . ,K }

}
(14)

is a K -dimensional polytope with K ! corner points on the
face intersecting the hyperspace of total sum rate constraint,
and each corner point corresponds to one of the possible
K ! possible decoding orders of SIC decoder in the uplink
communications. Best of all, it is known from [33] that the
region CDPC is convex.
Armed with the above results, we can formulate the fol-

lowing new problem for max-min fairness that seeks a vector
(R1, . . . ,RK ) ∈ CDPC having the maximal normalized mini-
mal rate

maximize t

subject to Rk ≥ mk t∑
k∈S

Rk ≤ log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣ ,
for all S ⊆ {1, . . . ,K },Pk � 0,

∑
k

tr(Pk ) ≤ P,

(15)
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Since the objective function of (15) is affine, the second con-
straint is affine in the rate Rk and concave in the covariance
matrix Pk , and since the remaining constraints are all affine,
the problem (15) can be efficiently solved by standard convex
optimization methods. We summarize the above approach in
the theorem below.
Theorem 2: The maximal sum rate Rmm achieved by

max-min fairness for a given DPC-based MIMO BC is

Rmm :=
∑
k

mk t? = Mt?, (16)

where M :=
∑

k mk is the total number of receive antennas
of all users and t? is the optimal value of (15). Moreover, the
optimal solutions of individual rates R?k to (15) occur when
the normalized individual rates satisfy R?k/mk = t? for all
users k = 1, . . . ,K .

Proof: See Appendix A.
It should be noted that the optimal covariance matrices P?k

obtained from (15) are not necessarily the optimal solutions
to problems (8) and (10). Very often, they are much better
solutions in the sense that themaximal sum rateRmm obtained
from (16) is much larger than those derived from the optimal
solutions to problems (8) and (10). To see this, recall that the
optimal rate vectorR? = [R?1, . . . ,R

?
K ]
>
= (m1t?, . . . ,mK t?)

of (15) is a vector within the region CDPC, which includes all
possible permutations π of users in (12). Optimal solutions
to (8) and (10), on the other hand, are obtained subject to a
fixed encoding order π (k) = k in (11) for DPC. Thus, the
proposed approach not only solves the problem of sum rate
maximization for max-min fairness but also yields a much
larger optimal value.

Secondly, let the optimal individual rates derived from
the max-min fairness be R?k , which are given by the optimal
solutions to problem (15). By Theorem 2we have R?k = mk t?,
and the individual rates R?k are linearly proportional to the
numbers of receive antennas mk for each user k = 1, . . . ,K .
In other words, the user k , who has mk receive antennas,
is given mk signal beams during the downlink communica-
tion. Each signal beam of each user has the same transmis-
sion rate in the max-min fairness, showing an absolutely fair
manner. This motivates the following definition of absolute
fairness.
Definition 1: Let Rk be the rate of user k in a MIMO

downlink communication for k = 1, . . . ,K . Let mk be the
number of receive antennas of user k . We say the distribution
of rates {Rk} is absolutely fair if Rk/mk is a constant for
all k .

When the rates are distributed in the absolutely fair manner,
the users who have the latest communication equipments
with more receive antennas, will be given higher rates during
downlink communications.

B. FINDING THE REQUIRED PERMUTATIONS OF USERS
Solving the optimization problem (15) only gives the max-
imal sum rate Rmm of DPC-based MIMO BC subject
to max-min fairness, which is from the perspective of

dual MIMO MAC. In this section we will show how to
design DPC-based coding scheme that can achieve the value
Rmm in MIMO BC. Recall that the optimal rate vector
R? = [R?1, . . . ,R

?
K ]
> of individual rates is a certain con-

vex combination of some of the K ! corner points of a
(K − 1)-dimensional polytope, given by intersecting the
K -dimensional polytope CDPC with the hyperspace satisfying∑

k Rk = Rmm. Each corner point on the intersecting facet
corresponds to one possible decoding order of SIC decoder,
or equivalently an encoding order of DPC. To be more spe-
cific, let P?k be the optimal covariance matrices from problem
(15) and let A = [a1, . . . , aK !] be a matrix of size (K × K !),
where each column a` corresponds to a corner point of the
(K − 1)-dimensional polytope, or equivalently one possible
permutation π` of {1, . . . ,K }. The π`(k)-th entry of a` is the
rate of user π`(k)

Rπ`(k) = log2

∣∣∣I +∑i≤k H
†
π`(i)

P?π`(i)Hπ`(i)
∣∣∣∣∣∣I +∑i<k H

†
π`(i)

P?π`(i)Hπ`(i)
∣∣∣ , (17)

when the order of π`(K ), . . . , π`(1) is used for SIC decoding.
The optimal rate vector R? = [R?1, . . . ,R

?
K ]
> is then a

certain convex combination of columns of matrix A, i.e., we
have

R? =
K !∑
`=1

q`a` = Aq (18)

for some q = [q1, . . . , qK !] � 0 satisfying 1>q = 1. The
coefficient q` associated to the rate vector a` lies between
zero and one and can be interpreted as how often the encoding
order π`(1), . . . , π`(K ) should be used for DPC encoding.
In other words, the value q` represents the probability of
order π` used for DPC encoding when seeking to achieve the
optimal rate vector R?.

Obviously, for ease of system implementation, we shall
aim tominimize the number of required encoding orders. This
problem can be formulated as follows

minimize
∥∥∥q∥∥∥

0

subject to Aq = R?, q � 0, 1>q = 1 (19)

where
∥∥∥q∥∥∥

0
is usual 0-norm of vector q. Unfortunately, this

problem seeks the sparest solution to an underdetermined
linear system and is known to be extremely difficult and
NP-hard in general [34]. While some suboptimal approaches
have been proposed for solving (19), such as the orthog-
onal matching pursuit [35], basis pursuit [36], and other
algorithms from compressed sensing [37], these algorithms
require a priori the knowledge of matrix A, which has K !
columns and can be extremely difficult to obtain when K is
large.

To overcome the difficulty, below we propose an effi-
cient method that can produce the required encoding orders
π1, . . . , πn and the corresponding probabilities q1, . . . , qn,
with n ≤ K . It should be noted that our method achieves a
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Algorithm 1 The Proposed Algorithm for Finding the
Coefficients of Convex Combination
Input: Covariance matrices P?k and rate vector R? =

[R?1, . . . ,R
?
K ]
>

Output: An ordered set P = {π1, π2, . . . , πn} and a vector
q = [q1, . . . , qn]>, where each πi is a permutation of
{1, . . . ,K } for the order of DPC encoding, and where
qi > 0 with

∑
i qi = 1.

1: Initialize: corner-flag←true, π an arbitrary permutation
of {1, . . . ,K } and S ← ∅

2: while |S| < K and corner-flag=true do
3: if exists k ∈ {1, . . . ,K } \ S such that

R?k +
∑
i∈S

R?i = log2

∣∣∣∣∣∣I +
∑

i∈S∪{k}
H†
i P

?
iHi

∣∣∣∣∣∣ (20)

then
4: Update S ← S ∪ {k} and set π (|S|)← k
5: else
6: Set corner-flag=false
7: end if
8: end while
9: if corner-flag=true then
10: Set P = {π} and q = 1
11: else
12: Initialize: found-flag=false,P = ∅, A an empty matrix

13: while found-flag=false do
14: Choose a permutation π of {1, . . . ,K } with π 6∈ P
15: Compute R = [R1, . . . ,RK ]> with entry Rπ (k)

according to (17) for k = 1, . . . ,K
16: Update A← [A,R] and P ← P ∪ {π}
17: if the following linear programming is feasible

minimize 0
subject to Aq = R?, q � 0, 1>q = 1

then
18: Set found-flag←true and let q? be a solution
19: end if
20: end while
21: while exists u 6= 0 such that Au = 0 and 1>u = 0 do
22: Find the index k = argmin{q?i /ui : ui > 0, i =

1, . . . , |P|} and set α = q?k/uk
23: Delete entry q?k from q?, uk from u, column ak from

A and the k-th entry from ordered set P
24: Update q?← q? − α u
25: end while
26: end if

density n/K ! ≤ 1/(K − 1)!, which is extremely small for
large K .
The proposed method consists of three major components

and is given in Algorithm 1. For an overview, the first com-
ponent aims to check efficiently whether the optimal rate
vector R? belongs to one of theK ! corner points. If the answer

is true, then we are done and we simply return the encoding
order associated with the corner point. If otherwise, we con-
tinue to the second component and seek a set of corner points
such that the rate vector R? is a certain convex combination
of these corner points. The last component is to reduce the
number of corner points required for the convex combination.
This would in turn reduce the number of orders required for
DPC encoding.

a: THE FIRST COMPONENT (STEPS 1-8)
This component checks efficiently whether the optimal rate
vector R? belongs to one of the K ! corner points of the
(K − 1)-dimensional polytope in roughly K 2/2 trials. It is
based on the observation that if there exists a permuta-
tion π such that R?π (K ), . . . ,R

?
π (1) are the rates derived from

the decoding order π (K ), . . . , π (1) in SIC decoding, then
by (17) the last decoded user π (1) at the SIC decoder
must be interference free and the following equality
holds

R?π (1) = log2
∣∣∣I + H†

π (1)P
?
π (1)Hπ (1)

∣∣∣ . (21)

Hence, it suffices to check only whether there exists a user
such that the above holds. If true, then we can checkwhether a
similar equality holds for the sum rate of the last two decoded
users at SIC decoder and so on and so forth. This is the main
doing of (20).

If the first component succeeds, then the optimal rate vec-
tor R? is from one of the K ! corner points of the (K − 1)-
dimensional polytope. This shows that the only required num-
ber of encoding orders is n = 1 and we are done; otherwise
the vector R? is either a boundary or an interior point of
(K − 1)-dimensional polytope.

b: THE SECOND COMPONENT (STEPS 12-20)
The second component seeks to build the matrix A incremen-
tally by adding one randomly chosen permutation π at a time
until a valid convex combination q with Aq = R? is found.
This is done is step 17, where a simple linear programming is
used to determine whether enough permutations π have been
found to construct R?.

c: THE LAST COMPONENT (STEPS 21-25)
It aims to reduce the number of permutations found in
the second component. As R? ∈ RK , Carathéodory’s
theorem [38] asserts that R? is a convex combination of at
most K + 1 corner points. In the proposed Algorithm 1,
we further reduce the number of required permutations to
be no larger than K . The proof for this claim is given in
Appendix V, and the proof for steps 22-24 is relegated to
Appendix V.

Once the ordered set P = {π1, π2, . . . , πn} and the
corresponding vector q = [q1, . . . , qn]> are obtained from
Algorithm 1, we apply the uplink-downlink duality [3]
and use (7) to find for each permutation πi ∈ P the
optimal covariance matrices Q?πi(k) for downlink
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communications from the uplink covariance matrices P?k .
Then, we randomly select a permutation πi with probabil-
ity qi from set P and use DPC to iteratively encode user
πi(k)’s information with covariance matrixQ?πi(k), taking into
account the messages from users πi(1), . . . , πi(k − 1), for
k = 1, 2, . . . ,K . It then follows from (7) that the average
achievable rate of user k equals exactly R?k and the overall
sum rate for the above scheme equals exactly Rmm.

C. COMPLEXITY ANALYSIS
To achieve max-min fairness for DPC-based MIMO BC, the
proposed approach consists of two parts, namely, solving the
convex optimization problem (15) for the maximal sum rate
Rmm and finding the coefficients for the convex combination
of DPC encoding orders using Algorithm 1. For the first part,
the complexity of standard interior point methods is at most
cubic with respect to the dimensionality of input space [31].
It follows that the complexity for solving (15) is at most
O
((
K +

∑
k m

2
k

)3)
.

For the second part, there are three major components in
Algorithm 1. The major complexity of the first component
(steps 1-8) comes from the evaluation of log-determent of
matrices in (20), which has complexity O

(∑
k ntm

2
k

)
for

matrix multiplication and O(n3t ) for computing the determi-
nant. Since (20) is computed in no more than K 2/2 times,
the overall complexity of steps 1-8 of Algorithm 1 is at most
O
(
K 2
(
n3t + nt

∑
k m

2
k

))
.

For the second component (steps 12-20) of
Algorithm 1, the most complexity comes from step 15 for
evaluating (17). Similar to (20), it has complexity equal
to O

(
K
(
n3t + nt

∑
k m

2
k

))
, due to the computations of

Rπ`(1), . . . ,Rπ`(K ). Step 17 is simply a linear programming
and has complexity at most O(n2) [39], where n is the
length of vector q and equals the number of permutations
in step 14.

The last component (steps 21-25) of Algorithm 1 is to solve
a system of linear equation. Since there are at most n variables
in step 21, the complexity is at most O(n3). Steps 21-25 are
performed repeatedly until the number of required orders is
no larger than K . Hence, the complexity of this component is
at most O(n4).

D. OTHER NOTIONS OF FAIRNESS
The proposed approach (15) and Algorithm 1 for finding the
maximal sum rate of max-min fairness and the corresponding
DPC encoding orders are very general and extremely power-
ful. They can be applied to solve many similar problems after
slight modifications. For instance, the problem for sum rate
maximization subject to proportional fairness can be solved
using the method below.
Theorem 3: The maximal sum rate achieved by propor-

tional fairness for DPC-based MIMO BC is

Rpf := R?1 + . . .+ R
?
K , (22)

where R?k are optimal solutions to the following convex opti-
mization problem

maximize
∑
k

log(Rk/mk )

subject to
∑
k∈S

Rk ≤ log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣ ,
for all S ⊆ {1, . . . ,K },Pk � 0,

∑
k

tr(Pk ) ≤ P

(23)

Moreover, the sum rate Rpf can be achieved by methods
outlined in Algorithm 1.

Proof: The objective function in (23) is a concave
function in the rate Rk and is derived from the formulation
of proportional fairness in (9). The first constraint in (23) is
affine in Rk and concave in the covariance matrix Pk . The
remaining constraints are all affine. Hence, the problem (23)
belongs to the class of convex optimization problems. The
optimal solutions R?k to problem (23) constitute the optimal
rate distribution for proportional fairness.
Another important application of the present work is to

find the optimal tradeoff between sum rate and fairness for
DPC-based MIMO BC. While the max-min fairness and
proportional fairness are based on some qualitative interpre-
tations of fairness [23], the notion of fairness can also be
measured quantitatively using for example, Jain’s index [24],
entropy index [26] or amore recent `1-norm based index [23].
In particular, the latter defines the value of fairness
as

f (R) := 1−c
K∑
k=1

∣∣∣∣ RkRsum
−
mk
M

∣∣∣∣ , (24)

for a given rate vector R = [R1, . . . ,RK ]>, where M =∑
k mk is the total number of receive antennas, Rsum =∑
k Rk is the sum rate, and c :=

(
2− 2

M mink mk
)−1

is a
constant for K ≥ 2, such that for any nonnegative rate vector
Rwith sum rate Rsum the value f (R) has a tight upper bound 1
(meaning absolutely fair) and a tight lower bound 0 (meaning
the most unfair). For instance, consider the max-min fairness,
where we have Rsum = Rmm and Rk/mk = t for some
constant t . The `1-norm based index (24) then tells that
max-min fairness achieves the 100% fairness value, since we
have Rk/Rsum = mk/M for all k .

If we seek to achieve a sum rate larger than Rmm, then a
certain level of fairness might have to be sacrificed. In gen-
eral, the larger the value of sum rate is, the smaller the value
of fairness becomes. To find the efficient frontier between
sum rate Rsum and fairness f (R), we propose the following
approach.
Theorem 4: Given the target sum rate Rsum ∈ [Rmm,Rms],

the maximal achievable fairness value for DPC-based MIMO
BC subject to the `1-norm fairness index is the optimal value
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of the following convex optimization problem

F(Rsum) := maximize 1−c
K∑
k=1

∣∣∣∣ RkRsum
−
mk
M

∣∣∣∣
subject to Rk ≥ 0,Pk � 0,∑

k

Rk = Rsum,
∑
k

tr(Pk ) ≤ P

∑
k∈S

Rk ≤ log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣
for all S ⊆ {1, . . . ,K } (25)

Proof: Note that the objective function of (25) is
concave in Rk ’s and is given by the `1-norm based fair-
ness index defined in (24). The first four constraints are
affine in Rk ’s and Pk ’s. The fifth constraint is affine
in Rk ’s and concave in Pk ’s. Hence, the problem (25) belongs
to the class of convex optimization problems. Its optimal
solutions Rk ’s and Pk ’s maximize the value of `1-norm based
fairness index.
Since the problem (25) is convex, it can be efficiently

solved by using standard convex optimization methods. Same
as before, the optimal solutionsR?k ’s of (25) are certain convex
combinations of the K ! corner points on the intersecting facet
of a K -dimensional polytope and the hyperspace formed by∑

k Rk = Rsum. We can apply Algorithm 1 to find one such
convex combination, which will in turn give the desired set
of encoding orders for DPC and the corresponding relative
frequencies for using each order.

The optimal sum rate-fairness tradeoff F(Rsum) gives the
designer of MIMO downlink communications a total flexibil-
ity in selecting the values of sum rate and fairness for system
operation. Other than following the common objectives of
max sum rate, max-min fairness and proportional fairness,
the system designer now can use F(Rsum) to adjust freely and
optimally the sum rate of downlink communication according
to the required fairness among users and vice versa.

While Theorem 4 aims for finding the optimal trade-
off between sum rate and the `1-norm fairness index for
DPC-based MIMO downlink communications, we remark
that the same approach can be applied to other quantitative
fairness measures such as Jain’s index, entropy index, etc.
These fairness indices are all concave in Rk ’s [26]. Simply
replace the objective function of (25) with the desired fairness
measure, and the resulting optimal sum rate-fairness tradeoff
can be similarly found.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section we provide simulation results of perfor-
mances achieved by max sum rate, max-min fairness and
proportional fairness and the optimal sum rate-fairness
tradeoff (25). We first consider a MIMO BC with N = 10
transmit antennas at base station and a group of K = 3
users, having m1 = 2, m2 = 4, m3 = 8 receive anten-
nas, respectively. The channel matrices Hk are randomly and
independently generated using a geometry-based mmWave

FIGURE 1. Probability distributions for the values of (a) (Rms − Rmm) and
(b) (Rmm − Rpf) for the DPC-based MIMO BC with P = 20 dB, N = 10
transmit antennas and a group of K = 3 users having m1 = 2, m2 = 4 and
m3 = 8 receive antennas, respectively.

channel model [40] assuming 1) sixteen effective channel
paths between base station and each user, 2) uniform linear
arrays with half wavelength spacing for transmit and receive
antennas, 3) uniformly distributed angles of departure within
[−π6 ,

π
6 ], 4) uniformly distributed angles of arrival within

[−π, π], and 5) independently Gaussian distributed complex
gain associated with each propagation path with the sum of
variances normalized to 1.

The simulations are performed at a total power P = 20 dB
and over 10,000 independent channel realizations. We first
investigate the difference (Rms−Rmm) among various channel
realizations. This value tells the loss of sum rate if the design
objective is changed from the traditional sum rate maximiza-
tion to max-min fairness for achieving an absolute fairness
among users. The results are given in Fig. 1(a). Surprisingly,
in roughly 5,500 channel realizations, or equivalently with
a probability roughly 0.55, we have Rms = Rmm, i.e., there
is no loss in sum rate at all. This happens only when the
(K−1)-dimensional polytope formed by the intersecting facet
of CDPC and the hyperspace

∑
k Rk = Rms intersects the ray

vector R = [tm1/M , . . . , tmK/M ]> for some t > 0. In other
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FIGURE 2. The optimal sum rate-fairness tradeoff and the performances
of max sum rate, max-min fairness and proportional fairness for a
DPC-based MIMO BC with P = 20 dB, N = 10 transmit antennas and a
group of K = 3 users having m1 = 2, m2 = 4 and m3 = 8 receive
antennas, respectively.

words, while it is commonly believed that one cannot achieve
sum rate capacity and absolute fairness at the same time for
MIMO downlink communications, it is often the contrary if
our new approach of multiple encoding orders of users is
employed. Thus, other than following the common objective
of sum rate maximization when designing MIMO downlink
communication systems, we can replace the design objective
with (15) for max-min fairness, and Fig. 1(a) shows that for
more than half of the time, we can achieve the same max sum
rate with 100% absolute fairness value.

Fig. 1(b) compares the performances of max-min fairness
and proportional fairness. It can be seen that for more than
70% of channel realizations, the popular proportional fairness
results in a sum rate smaller than Rmm of max-min fairness
and has a small fairness value. The optimal sum rate-fairness
tradeoff of one particular channel realization (one of the
remaining 4,500 realizations) is given in Fig. 2. It is seen
that the max sum rate (cf. (6)) achieves the sum rate Rms =

63.83 bits per channel use (bpcu) with fairness value 93%,
while the max-min fairness achieves 100% fairness value at a
small cost of 0.57 bpcu in overall sum rate. The proportional
fairness, however, achieves only a sum rate of 61.85 bpcu and
a much smaller fairness value of 83.5%.
Further simulations are performed for the DPC-based

MIMO BC with P = 20 dB, N = 16 transmit antennas
and a group of K = 4 users with m1 = m2 = 2, m3 = 4
and m4 = 8 receive antennas, respectively. The results are
given in Fig. 3 and 4. It can be seen similarly that in more
than half of channel realizations we can achievemax-sum rate
with 100% fairness value and in roughly 75.4% of channel
realizations the proportional fairness has a sum rate smaller
thanmax-min fairness. For one particular channel realization,
the optimal sum rate-fairness tradeoff is given in Fig. 4.
It is seen that the max sum rate (cf. (6)) achieves the sum
rate Rms = 78.6 bpcu with fairness value 95.7%, while the
max-min fairness achieves 100% fairness value at a small cost
of 0.5 bpcu in overall sum rate. The proportional fairness,

FIGURE 3. Probability distributions for the values of (a) (Rms − Rmm) and
(b) (Rmm − Rpf) for the DPC-based MIMO BC with P = 20 dB, N = 16
transmit antennas and a group of K = 4 users having m1 = m2 = 2,
m3 = 4 and m4 = 8 receive antennas, respectively.

FIGURE 4. The optimal sum rate-fairness tradeoffs and the performances
of max sum rate, max-min fairness and proportional fairness for
DPC-based and SZFDPC-based MIMO BC [9] with P = 20 dB, N = 16
transmit antennas and a group of K = 4 users having m1 = m2 = 2,
m3 = 4 and m4 = 8 receive antennas, respectively.

however, achieves only a sum rate of 76.7 bpcu and a much
smaller fairness value of 84%.

The result is also compared to the optimal sum rate-fairness
tradeoff when the encoding method of DPC is replaced by
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FIGURE 5. Probability distributions for the values of (a) (Rms − Rmm) and
(b) (Rmm − Rpf) for the DPC-based MIMO BC with P = 10 dB, N = 256
transmit antennas and a group of K = 3 users having m1 = 16, m2 = 32
and m3 = 32 receive antennas, respectively.

the suboptimal successive zero-forcing DPC (SZFDPC) [2],
[9], [23] which can be employed only when the total number
of receive antennas of all users is no larger than the number
of transmit at base station. This comparison leads to another
surprising finding of the present work. While it is well known
that the SZFDPC can approach the sum rate capacity of
MIMO BC within a small gap [10], [27], the loss can be
significantly huge when the fairness is taken into account.
The dashed line in Fig. 4 corresponds to the optimal sum
rate-fairness tradeoff of SZFDPC-based MIMO BC. It shows
that SZFDPC achieves a maximal sum rate of 75.7 bpcu
and has a gap of roughly 2.9 bpcu to the sum rate capacity.
However, if the notion of max-min fairness is taken into
account, the SZFDPC can offer only 67.3 bpcu in sum rate,
which corresponds to a huge loss of 10.8 bpcu compared to
the present DPC-based approach.

For mmWave system with large antenna arrays, we con-
sider a MIMO BC with N = 256 transmit antennas and
a group of K = 3 users having m1 = 16, m2 = 32
and m3 = 32 receive antennas, respectively. The sim-
ulation results are presented in Fig. 5 and Fig. 6 for
P = 10 dB. It is seen from Fig. 5 that the proposed

FIGURE 6. The optimal sum rate-fairness tradeoffs and the performances
of max sum rate, max-min fairness and proportional fairness for
DPC-based and SZFDPC-based MIMO BC [9] with P = 10 dB, N = 256
transmit antennas and a group of K = 3 users having m1 = 16, m2 = 32
and m3 = 32 receive antennas, respectively.

FIGURE 7. Probability distributions for the values of (a) (Rms − Rmm) and
(b) (Rmm − Rpf) for the rich-scattered, DPC-based MIMO BC with
P = 10 dB, N = 10 transmit antennas and a group of K = 4 users having
m1 = 1, m2 = 2, m3 = 3 and m4 = 4 receive antennas, respectively.

approach (15) can achieve the sum rate capacity with 100%
fairness value in roughly 58.4% of channel realizations
and outperforms proportional fairness in roughly 69.2% of
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FIGURE 8. The optimal sum rate-fairness tradeoffs and the performances
of max sum rate, max-min fairness and proportional fairness for the
rich-scattered, DPC-based and SZFDPC-based MIMO BCs [9] with
P = 10 dB, N = 10 transmit antennas and a group of K = 4 users having
m1 = 1, m2 = 2, m3 = 3 and m4 = 4 receive antennas, respectively.

channel realizations. The optimal sum rate-fairness tradeoff
for a particular channel realization is given in Fig. 6. It is seen
that the proposed approach achieves 100% fairness value at an
almost negligible cost of 0.27 bpcu in overall sum rate from
the sum rate capacity. The proportional fairness has a sum rate
smaller than max-min fairness with a gap of 2.64 bpcu and
has a smaller fairness value of 95.6%. The SZFDPC-based
MIMO BC performs much worse in this case. Its maximal
sum rate is 221.92 bpcu and has a relatively large gap of
19.03 bpcu from the sum rate capacity. To achieve 100%
fairness value, the SZFDPC offers only 217.17 bpcu in sum
rate, which corresponds to a huge loss of 23.5 bpcu compared
to the present DPC-based approach.

For conventional sub-6GHz channels with rich scattering,
we consider a MIMO BC with N = 10 transmit antennas
and a group of K = 4 users having m1 = 1, m2 = 2,
m3 = 3 and m4 = 4 receive antennas, respectively. The
entries of channel matrices Hk are modeled as independent
and identically distributed CN (0, 1) random variables for
quasi-static Rayleigh fading. At P = 10 dB, it is seen from
Fig. 7 that the proposed approach achieves the sum rate
capacity in roughly 56.1% of channel realizations and has a
sum rate larger than proportional fairness in 97.7% of channel
realizations. For a particular channel realization, Fig. 8 shows
that the proposed approach achieves 100% fairness value at
a negligible cost of 0.18 bpcu from the sum rate capacity
and outperforms the SZFDPC-based MIMO BC by more
than 2.8 bpcu in overall sum rate.

V. CONCLUSION
In this paper we have presented several efficient algorithms
for finding the maximal sum rate achieved by DPC-based
MIMO BC when the qualitative notions of fairness such
as max-min fairness and proportional fairness are employed
and when the order of users can be adjustable during DPC
encoding. Our new approach can often achieve the sum
rate capacity of MIMO BC with absolute fairness in finite

number of users. This brings a huge impact on the design
of practical MIMO BC as now the rates can be completely
fairly distributed among the users without any loss on the
sum rate capacity. Furthermore, in sharp contrast to common
belief, simulation results show that there is an enormous
advantage of DPC over SZFDPCwhen the issue of fairness is
taken into consideration. We have also provided a complete
characterization on the optimal tradeoff between the sum rate
and fairness that gives system designers a total flexibility in
selecting the operating sum rate and fairness for DPC-based
MIMO downlink communications.

As for future works, we remark that the questions of
finding optimal input distributions for DPC-based MIMO
BC with a fixed encoding order subject to the criterion of
max-min fairness or proportional fairness remain open. How
to solve efficiently the non-convex problems (8) and (9) calls
for further works. Although (8) and (9) could have smaller
sum rates and fairness values than the present work, they use
only one fixed DPC encoding order and are therefore simpler
for implementation. Another direction for future work is to
investigate the dramatic loss of SZFDPC to DPC in sum rate
when the issue of fairness is taken into account. Equivalently,
the simulation results show that there is plenty of room for
improving the performance of SZFDPC-based MIMO BC
and suggest a great challenge of designing SZFDPC-based
MIMO BC for future work.

APPENDIX A
PROOF OF THEOREM 2
The optimization problem (15) is equivalent to the following

minimize − t

subject to
Rk
mk
≥ t

∑
k∈S

Rk ≤ log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣ ,
for all S ⊆ {1, . . . ,K },Pk � 0,

∑
k

tr(Pk ) ≤ P,

(26)

which has the following Lagrangian

L = −t +
K∑
k=1

λk

(
t −

Rk
mk

)

+

∑
S⊆{1,...,K }

λS

(∑
k∈S

Rk − log2

∣∣∣∣∣I +∑
k∈S

H†
k PkHk

∣∣∣∣∣
)

+λ

(
K∑
k=1

tr(Pk )−P

)
(27)

where λk ≥ 0, λS ≥ 0 and λ ≥ 0 are the Lagrange
multipliers for the three sets of constraints in (26), respec-
tively. The Kuhn-Kuhn-Tucker (KKT) conditions [31] for
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problem (26) are

∂L
∂t
= −1+

∑
k

λk = 0 (28)

∂L
∂Rk
= −

λk

mk
+

∑
S∈S(k)

λS = 0 (29)

−

∑
S∈S(k)

λSHk

(
I +

∑
i∈S

H†
i PiHi

)−1
H†
k + λI = 0 (30)

where the last condition is the gradient of L with respect to
the positive semidefinite matrix Pk and where S(k) is the
collection of subsets of {1, . . . ,K } containing k , i.e.

S(k) := {S : k ∈ S ⊆ {1, . . . ,K }} . (31)

If λk = 0 for some k , then by (29) we have λS = 0 for all
S ∈ S(k) since λS is nonnegative. It then follows from (30)
that λ = 0. Now, if there exists k ′ 6= k with λk ′ > 0, the KKT
condition for the gradient of L with respect to Pk ′ (cf. (30))
reduces to

−

∑
S∈S(k ′)

λSHk ′

(
I +

∑
i∈S

H†
i PiHi

)−1
H†
k ′ = 0 (32)

since λ = 0.
Note that the matrices Hk ′

(
I +

∑
i∈S H

†
i PiHi

)−1
H†
k ′ are

all positive semidefinite, and (32) holds if and only if λS =
0 for all S ∈ S(k ′). This in turn implies that the partial
derivative of L with respect to Rk ′ must satisfy

0 =
∂L
∂Rk ′

= −
λk ′

mk ′
+

∑
S∈S(k ′)

λS = −
λk ′

mk ′
(33)

due to KKT conditions. The above then shows λk ′ = 0,
a contradiction. Hence, if there exists k such that λk = 0,
then we must have λk ′ = 0 for all k ′. But this contradicts
to the first KKT condition (28). As a result, we must have
λk > 0 for all k = 1, . . . ,K . Finally, by the complementary
slackness of KKT conditions λk

(
t − Rk

mk

)
= 0 for the opti-

mal solutions Rk and optimal value t of convex optimization
problem (26), we conclude that t − Rk

mk
= 0 for all k .

APPENDIX B
REDUCING THE NUMBER OF REQUIRED ORDERS TO AT
MOST K
Let A be the matrix of size K ×|P| obtained from the second
component of Algorithm 1. Step 21 in Algorithm 1 then seeks
a vector u such that it is a nontrivial solution to the following
system of linear equations[

1>

A

]
︸ ︷︷ ︸
:=Ā

u = 0. (34)

Note that the matrix Ā is of size (K + 1) × |P|, hence a
nontrivial u exists whenever |P| > K + 1. Thus, it suffices
to consider the case when |P| = K + 1 and Ā is a square

matrix of size (K + 1) × (K + 1). Note that by the second
component of Algorithm 1 the columns of matrix A have the
same column sum equal to the sum rate 1>R?, i.e., we have
1>A =

(
1>R?

)
1>. It follows that the square matrix Ā must

be singular since we have[
−

(
1>R?

)
1>
]
Ā = 0>. (35)

Hence, a nontrivial solution u for Āu = 0 must exist, and the
while loop of steps 21-25 proceeds whenever |P| ≥ K .

APPENDIX C
PROOF OF STEPS 22-24 IN ALGORITHM 1
Here we will give a short proof to verify the steps 22-24 in
Algorithm 1. Note that if there exists u 6= 0 with 1>u = 0,
then the nonzero entries of u cannot be all negative and the
index k of step 22 must exist, since A is a nonnegative matrix.
By the choice of α and k in step 22, it is clear that q? � αu.
Moreover, we have 1>(q?−αu) = 1>q?−α1>u = 1−0 = 1.
Thus, the vector (q?−αu) � 0 is a valid solution and satisfies
A(q? − αu) = Aq? − αAu = R?. The k-th entry of (q? − αu)
is zero and can be removed in step 23. Now replacing q? by
(q? − αu) decreases the vector-length by 1.

REFERENCES
[1] J. Wang, D. J. Love, and M. D. Zoltowski, ‘‘User selection for the MIMO

broadcast channel with a fairness constraint,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Honolulu, HI, USA, Apr. 2007,
pp. 9–12.

[2] L.-N. Tran, M. Juntti, M. Bengtsson, and B. Ottersten, ‘‘Beamformer
designs for MISO broadcast channels with zero-forcing dirty paper cod-
ing,’’ IEEE Trans. Wireless Commun., vol. 12, no. 3, pp. 1173–1185,
Mar. 2013.

[3] S. Vishwanath, N. Jindal, and A. Goldsmith, ‘‘Duality, achievable rates,
and sum-rate capacity of Gaussian MIMO broadcast channels,’’ IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[4] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith, ‘‘Sum
power iterative water-filling for multi-antenna Gaussian broadcast chan-
nels,’’ IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1570–1580, Apr. 2005.

[5] H. V. Nguyen, V.-D. Nguyen, and O.-S. Shin, ‘‘Low-complexity precoding
for sum rate maximization in downlink massive MIMO systems,’’ IEEE
Wireless Commun. Lett., vol. 6, no. 2, pp. 186–189, Apr. 2017.

[6] R. Chen, H. Zhou, andM.Moretti, ‘‘Performance comparison of non-linear
precoding schemes for multi-user MIMO broadcast channels,’’ in Proc.
IEEE 90th Veh. Technol. Conf. (VTC-Fall), Honolulu, HI, USA, Sep. 2019,
pp. 1–6.

[7] A. Salem, C. Masouros, and K. Wong, ‘‘Sum rate and fairness analysis for
the MU-MIMO downlink under PSK signalling: Interference suppression
vs exploitation,’’ IEEE Trans. Commun., vol. 67, no. 9, pp. 6085–6098,
Dec. 2019.

[8] L.-N. Tran, M. Juntti, M. Bengtsson, and B. Ottersten, ‘‘Weighted sum
rate maximization for MIMO broadcast channels using dirty paper cod-
ing and zero-forcing methods,’’ IEEE Trans. Commun., vol. 61, no. 6,
pp. 2362–2373, Jun. 2013.

[9] H.-F. Lu, ‘‘Optimal sum rate-fairness tradeoff for MIMO downlink com-
munications employing successive zero forcing dirty paper coding,’’ IEEE
Commun. Lett., vol. 25, no. 3, pp. 783–787, Mar. 2021.

[10] G. Caire and S. Shamai (Shitz), ‘‘On the achievable throughput of a mul-
tiantenna Gaussian broadcast channel,’’ IEEE Trans. Inf. Theory, vol. 49,
no. 7, pp. 1691–1706, Jul. 2003.

[11] M. H. M. Costa, ‘‘Writing on dirty paper,’’ IEEE Trans. Inf. Theory,
vol. IT-29, no. 3, pp. 439–441, May 1983.

[12] Y. Yang, Z. Xiong, W. Yu-Chun, and P. Zhang, ‘‘A Density evolution based
framework for dirty-paper code design using TCQ and multilevel LDPC
codes,’’ IEEE Commun. Lett., vol. 16, no. 10, pp. 1544–1547, Oct. 2012.

161888 VOLUME 9, 2021



H.-F. Lu: Achieving Sum Rate Capacity of MIMO Downlink Communications With Better Fairness

[13] A. Hindy and A. Nosratinia, ‘‘On the fading MIMO dirty paper channel
with lattice coding and decoding,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Washington, DC, USA, Dec. 2016, pp. 1–6.

[14] K.M. Rege, K. Balachandran, J. H. Kang, andM.K.Karakayali, ‘‘Practical
dirty paper coding with sum codes,’’ IEEE Trans. Commun., vol. 64, no. 2,
pp. 441–455, Feb. 2016.

[15] T. Kim, K. Kwon, and J. Heo, ‘‘Practical dirty paper coding schemes using
one error correction code with syndrome,’’ IEEE Commun. Lett., vol. 21,
no. 6, pp. 1257–1260, Jun. 2017.

[16] L. Natarajan, Y. Hong, and E. Viterbo, ‘‘Lattice codes achieve the capac-
ity of common message Gaussian broadcast channels with coded side
information,’’ IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1481–1496,
Mar. 2018.

[17] A. Bayesteh, M. A. Sadrabadi, and A. K. Khandani, ‘‘Is it possible to
achieve the optimum throughput and fairness simultaneously in a MIMO
broadcast channel?’’ in Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON,
Canada, Jul. 2008, pp. 752–756.

[18] F. P. Kelly, A. K. Malullo, and D. K. H. Tan, ‘‘Rate control in communica-
tion networks: Shadow prices, proportional fairness and stability,’’ J. Oper.
Res. Soc., vol. 49, pp. 237–252, Mar. 1998.

[19] J.Mo and J.Walrand, ‘‘Fair end-to-endwindow-based congestion control,’’
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[20] A. C. Cirik, ‘‘Fairness considerations for full duplex multi-user MIMO
systems,’’ IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 361–364,
Aug. 2015.

[21] Y. Lin, Y. Wang, C. Li, Y. Huang, and L. Yang, ‘‘Joint design of user
association and power allocation with proportional fairness in massive
MIMO HetNets,’’ IEEE Access, vol. 5, pp. 6560–6569, 2017.

[22] Y.-T. Cheng and H.-F. Lu, ‘‘Optimal sum rate-fairness tradeoff for MISO
broadcast communication using zero forcing DPC,’’ in Proc. IEEE 90th
Veh. Technol. Conf. (VTC-Fall), Honolulu, HI, USA, Sep. 2019, pp. 1–5.

[23] J.-Y. Huang and H.-F. Lu, ‘‘Achieving large sum rate and good fairness
in MISO broadcast communication,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 6, pp. 5684–5695, Jun. 2019.

[24] R. Jain, D. Chiu, and W. Hawe, ‘‘A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems,’’ Digit.
Equip. Corp., Maynard, MA, USA, Tech. Rep. DEC-TR-301, 1984.

[25] G. Gui, H. Sari, and E. Biglieri, ‘‘A new definition of fairness for
non-orthogonal multiple access,’’ IEEE Commun. Lett., vol. 23, no. 7,
pp. 1267–1271, May 2019.

[26] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, ‘‘An axiomatic theory
of fairness in network resource allocation,’’ in Proc. IEEE INFOCOM,
San Diego, CA, USA, Mar. 2010, pp. 1343–1351.

[27] A. D. Dabbagh and D. J. Love, ‘‘Precoding for multiple antenna Gaussian
broadcast channels with successive zero-forcing,’’ IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3837–3850, Jul. 2007.

[28] S. Hu and F. Rusek, ‘‘A generalized zero-forcing precoder with successive
dirty-paper coding in MISO broadcast channels,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 6, pp. 3632–3645, Jun. 2017.

[29] U. Erez, S. Shamai (Shitz), and R. Zamir, ‘‘Capacity and lattice strategies
for canceling known interference,’’ IEEE Trans. Inf. Theory, vol. 51, no. 11,
pp. 3820–3833, Nov. 2005.

[30] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), ‘‘The capacity region
of the Gaussian multiple-input multiple-output broadcast channel,’’ IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[32] D. Bertsimas, V. F. Farias, and N. Trichakis, ‘‘The price of fairness,’’Oper.
Res., vol. 59, no. 1, pp. 17–31, 2011.

[33] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, ‘‘Iterative water-filling
for Gaussian vector multiple-access channels,’’ IEEE Trans. Inf. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[34] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, ‘‘Sparse solution
of underdetermined systems of linear equations by stagewise orthogonal
matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094–1121,
Feb. 2012.

[35] J. A. Tropp and A. C. Gilbert, ‘‘Signal recovery from random measure-
ments via orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Dec. 2007.

[36] S. S. Chen, D. L. Donoho, and M. A. Saunders, ‘‘Atomic decomposition
by basis pursuit,’’ SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1999.

[37] D. L. Donoho, ‘‘Compressed sensing,’’ IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[38] R. T. Rockafellar, Convex Analysis (Princeton Mathematical Series).
Princeton, NJ, USA: Princeton Univ., 1970.

[39] S. Jiang, Z. Song, O. Weinstein, and H. Zhang, ‘‘A faster algorithm for
solving general LPs,’’ in Proc. 53rd Annu. ACM SIGACT Symp. Theory
Comput. Virtual Event (STOC), S. Khuller and V. V. Williams, Eds.,
New York, NY, USA, Jun. 2021, pp. 823–832.

[40] X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, Jr., ‘‘Energy-
efficient hybrid analog and digital precoding for mmWave MIMO systems
with large antenna arrays,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 4,
pp. 998–1009, Apr. 2016.

HSIAO-FENG (FRANCIS) LU (Senior Member,
IEEE) received the B.S. degree from Tatung
University, Taipei, Taiwan, in 1994, and the
M.S. and Ph.D. degrees from the University of
Southern California (USC), Los Angeles, in
1999 and 2003, respectively, all in electrical
engineering.

He was a Postdoctoral Research Fellow
with the University of Waterloo, ON, Canada,
from 2003 to 2004. In February 2004, he joined

the Department of Communications Engineering, National Chung Cheng
University, Chiayi, Taiwan, where he was promoted to an Associate Profes-
sor, in August 2007. Since August 2008, he has been with the Department
of Electrical and Computer Engineering, National Yang Ming Chiao Tung
University, Hsinchu, Taiwan, and the Institute of Communications Engineer-
ing, National Yang Ming Chiao Tung University, where he is currently a Full
Professor. His research interests include the area of space-time codes, MIMO
systems, error correcting codes, wireless communications, and quantum
communications.

Dr. Lu was a recipient of several research awards, including the 2006 IEEE
Information Society Taipei Chapter and the IEEE Communications
Society Taipei/Tainan Chapter Best Paper Award for Young Scholars,
the 2007 Wu Da You Memorial Award from the Taiwan National Science
Council, the 2007 IEEE Communication Society Asia Pacific Outstanding
Young Researchers Award, and the 2008 Academia Sinica Research Award
for Junior Research Investigators. He is an Associate Editor of IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY.

VOLUME 9, 2021 161889


