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ABSTRACT This article presents a novel system parameter-independent double-loop solution to the speed
control problem of servo motors incorporating the variable current cut-off frequency into the current-loop.
The active damping terms for both the inner and outer loops make it possible to assign the pole-zero
cancellation nature to the closed-loop system by cooperating the structured proportional-integral gains. The
proposed analytic variable cut-off frequency mechanism automatically boosts the transient current-cut off
frequency and decreases it to its initial value in the steady-state operation to secure the improved relative
stability and reduced current ripple level, maintaining the rapid speed tracking behavior (feasibility of the
high-speed cut-off frequency). The QUBE-servo2 kit experimentally verifies the practical benefits of the
proposed solution.

INDEX TERMS Servo motor, speed control, current cut-off frequency, pole-zero cancellation,
active-damping.

I. INTRODUCTION
Servo motors have been widely applied in applications such
as home appliances, robotics, andmobility devices because of
their high closed-loop performance and reasonable cost. This
system adopted the DC motors (DCMs) as the mechanical
part owing to the simple structure and low cost. As another
version of DCMs, brushless DCMs (BLDCMs) have addi-
tional industrial applications because of their power effi-
ciency improvement due to the removal of brush; however,
they require additional algorithms because of the involvement
of a three-phase inverter as the electrical driver part [1]–[5].

Speed servo motors with both the DCMs and BLDCMs
require the single-loop for the speed feedback whose regula-
tion can be achieved by the conventional proportional-integral
(PI) controller. The approximated (ignoring the current
dynamics) first-order open-loop transfer function from the
stator voltage to the speed make it possible to implement
this single-loop control strategy, which may limit the feasible
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speed cut-off frequency range owing to the ignorance of
current dynamics [4], [6], [7]. For a high precision, the
controller must involve the current-loop exhibiting a suf-
ficiently high cut-off frequency for its transfer function,
resulting in double and triple loops for speed and position
servo applications, respectively [8]. The PI controller was
preferred for implementing these multi-loop systems owing
to its structural simplicity; this requires the additional gain
scheduler (as in [9]) to enlarge the feasible operating region
due to the load uncertainties. The feedback linearization
controller made it possible to avoid the use of an additional
gain scheduler by incorporating the parameter dependent
feed-forward compensator and PI gain structure (leading to
the pole-zero cancellation) [8], whose closed-loop precision
level would be increased by adopting the additional online
motor parameter identifiers as in [10]–[13].

Several novel solutions were based-on an adaptive, neu-
ral network, and back-stepping technique for improved
closed-loop robustness against parameter and load
variations [14], [15]. The DOB-based controller attempted
to solve the parameter dependence problem under the
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double-loop strategy using a rigorous closed-loop stability
analysis, where the combination of integral action and DOB
considerably improves the closed-loop robustness [6]. As an
advanced solution, the novel proportional-integral-derivative
(PID) controller considerably improved the closed-loop
robustness by incorporating numerical solver-dependent
online self-tuning algorithms [16]. Another recent approach
replaced the integrator with the nonlinear DOB while ensur-
ing the offset-free nature and incorporating the online
self-tuner (numerical optimization process-free), and mag-
nifying the speed cut-off frequency in the control law [4].
The parameter-independent acceleration observer and surface
stabilizer were systematically designed as subsystems for
the DOB-based control law, including the active damping
term [7], [17].

These extant solutions require the current cut-off frequency
to be set as constant a constantly high-value covering the high
speed cut-off frequency leading to the rapid speed-tracking
behavior (high speed cut-off frequency). However, the high
setting of current-cut off frequency results in the current
ripple level magnification and relative stability degradation,
which correspond to the challenge of this study. The proposed
solution addresses this problem by introducing a variable
cut-off frequency for the inner loop with the following three
contributions:

1) a variable cut-off frequency mechanism for the inner
loop in the analytic form to make the high speed
cut-frequency feasible as lowering the steady-state cur-
rent cut-off frequency value leading to the current rip-
ple reduction and improved relative stability,

2) a pole-zero cancellation current controller including the
nonlinear DOB for improving the accuracy of variable
cut-off frequency system implementation for the inner
loop, and

3) an outer loop pole-zero cancellation speed controller
with the active damping term suppressing the external
disturbances.

The experimental study justifies the merits of the proposed
solution using the QUBE-servo2 hardware platform.

In the remainder of this paper, Section II briefly intro-
duces the mechanical and electrical dynamics of the servo
motor. Section III provides the proposed control algorithm
with a block diagram for actual implementation. Section IV
analyzes the closed-loop properties. Section V presents the
experimental results. Finally, Section VI concludes the paper,
future work.

II. SERVO MOTOR DYNAMICS
The stator current (ia in A) and rotor speed (ωm in rad/s) are
considered as the state variables excited by the stator voltage
(va in V) treated as the control input, which satisfies the
second-order dynamic relationship:

Jmω̇m = −Bmωm + Te − TL , (1)

La i̇a = −Raia − ea + va, ∀t ≥ 0, (2)

with the output torque Te (in Nm) and the back-electromotive
force (EMF) term ea (in V) being proportional to the current
and speed as Te = kT ia and ea = keωm. Note that kT = ke for
the permanent magnet-type systems considered in this study.
The load torque TL (in Nm) functions as the mismatched
external disturbance for this system. The two coefficients Jm
(in kgm2) and Bm (in Nm/rad/s) represent the rotor inertia
and viscous damping effects. The resistance and inductance
values for the stator coil are given by Ra (in�) and La (in H),
respectively.

To handle the system parameter and load variation prob-
lems, the nominal coefficient values denoted as (·)0 for its
true values (·) (e.g., Ra,0 for Ra) are introduced to rewrite the
dynamic equations (1) and (2) as

Jm,0ω̇m = −Bm,0ωm + kT ,0ia + dωm , (3)

La,0 i̇a = −Ra,0ia − kT ,0ωm + va + d̄ia , ∀t ≥ 0, (4)

with unknown time-varying lumped disturbances dωm
and d̄ia , which derive the proposed solution and beneficial
closed-loop properties.

III. SPEED CONTROLLER
This study devises an advanced cascade-type stator voltage
update rule to guarantee the closed-loop speed dynamics
given in the low-pass filter (LPF) form:

ω̇∗m = ωsc(ωm,ref − ω
∗
m), ∀t ≥ 0, (5)

with respect to the speed reference ωm,ref and cut-off fre-
quency ωsc(= 2π fsc) in rad/s (outer loop), the maximum
value of which is limited by the inner loop (current control)
cut-off frequency, denoted as ωcc(= 2π fcc) in rad/s. In sum-
mary, the control objective is constituted as the exponential
convergence:

lim
t→∞

ωm = ω
∗
m, (6)

where ω∗m represents the desired input-output behavior (from
the reference to the output) satisfying (5).

A. OUTER LOOP CONTROLLER
First, rewrite the open-loop speed dynamics (5) as

Jm,0ω̇m = −Bm,0ωm + kT ,0ia,ref − kT ,0 ĩa + dωm , ∀t ≥ 0,

with the current reference ia,ref and its error ĩa = ia,ref −
ia, whose stabilization can be accomplished by the proposed
pole-zero cancellation control law:

ia,ref =
1
kT ,0

((Bm,0 − bd,sc)ωm + Jm,0ωscω̃m

+bd,scωsc

∫ t

0
ω̃mdτ ), ∀t ≥ 0, (7)

with the speed error ω̃m = ωm,ref − ωm and active-damping
parameter bd,sc > 0 resulting in the pole-zero cancella-
tion together with the control gain from above. For details,
see Section IV.
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FIGURE 1. Control system configuration

B. INNER LOOP CONTROLLER
1) VARIABLE CUT-OFF FREQUENCY
Consider the first-order target current dynamics for given
reference ia,ref :

i̇∗a = ω̂cc(ia,ref − i
∗
a), ∀t ≥ 0, (8)

with the variable cut-off frequency ω̂cc driven by the proposed
update rule:

˙̂ωcc = γcc((ĩ∗a)
2
+ ρccω̃cc), ω̂cc(0) = ωcc(> 0), ∀t ≥ 0, (9)

with the two design parameters γcc > 0 and ρcc > 0
and errors ĩ∗a = ia,ref − i∗a and ω̃cc = ωcc − ω̂cc
(e.g., i∗a represents the desired current trajectory satisfy-
ing (8)). The target system (8) has the same structure as
the LPF, except for the time-varying cut-off frequency ω̂cc.
Moreover, the time-varying cut-off frequency dynamics (9)
makes the closed-loop stability issue non-trivial due to its
nonlinearity (ĩ∗a)

2, which is formally analyzed in Section IV.

2) CURRENT CONTROLLER
The definition of current error ecc = i∗a − ia produces the
dynamics:

La,0ėcc = φcc − va + dia , ∀t ≥ 0, (10)

with φcc := La,0 i̇∗a +Ra,0ia+ kT ,0ωm, dia = −d̄ia , which can
be stabilized by the proposed control law:

va = (bd,cc + La,0kcc)ecc + bd,cckcc

∫ t

0
eccdτ + φcc + d̂ia ,

(11)

∀t ≥ 0, with the current error convergent rate kcc > 0
and active-damping parameter bd,cc > 0 resulting in the
pole-zero cancellation together with the control gain form
above. See Section IV for details. The DOB yields the esti-
mated disturbance d̂ia according to the following rule:

żia = −liazia − l
2
iaLa,0ecc + lia (−φcc + va), (12)

d̂ia = zia + liaLa,0ecc, ∀t ≥ 0, (13)

with gain lia > 0. Fig. 1 presents the resulting control system
configuration.

IV. ANALYSIS
A. INNER LOOP ANALYSIS
This section begins with the subsystem analysis in the inner
loop, such as the target current dynamics (8), the variable
cut-off frequency update rule (9), and DOB (12) and (13).
First, Lemma 1 addresses the stability issue for the target
current dynamics (8).
Lemma 1: The subsystem comprising (8)-(9) guarantees

the exponential convergence

lim
t→∞

i∗a = ia,ref

as i̇a,ref → 0 exponentially. ♦
Proof: The error dynamics for ĩ∗a = ia,ref − i∗a and

ω̃cc = ωcc − ω̂cc, obtained by (8) and (9), transform the
positive definite function

Vvc :=
1
2
(ĩ∗a)

2
+

1
2γcc

ω̃2
cc (14)

into

V̇vc = −ωcc(ĩ∗a)
2
− ρccω̃

2
cc + i̇a,ref ĩ

∗
a

≤ −αvcVvc + i̇a,ref ĩ∗a, ∀t ≥ 0,

with αvc := min{2ωcc, 2ρccγcc}. This concludes the
L2-stability for the system i̇a,ref 7→ ĩ∗a due to its strict
passivity [18]. Thus, the claim becomes true. �
The results from Lemma 1 only show that the subsys-

tem (9) continuously updates the variable cut-off frequency
to the direction for the exponential convergence i∗a → ia,ref .
However, this is insufficient for discovering the variable
cut-off frequency behavior. Lemma 2 proves that the update
rule (9) guarantees the cut-off frequency boosting property
from its initial value ωcc.
Lemma 2: The time-varying cut-off frequency ω̂cc from

the update rule (9) satisfies

ω̂cc ≥ ωcc, ∀t ≥ 0. (15)

♦
Proof:The solution to the update rule (9) can be obtained

by its two-sided integration as

ω̂cc = e−γccρcctωcc

+

∫ t

0
e−γccρcc(t−τ )(γccρccωcc + γcc(ĩ∗a)

2)dτ,

whose lower bound can be easily obtained as ω̂cc ≥ ωcc,
∀t ≥ 0. Thus, the claim comes true. �
The resultant boosting property (15) increases the feasible

speed cut-off frequency (fsc Hz, ωsc = 2π fsc rad/s) range for
a given initial current cut-off frequency fcc (ω̂cc(0) = ωcc =
2π fcc) based on the desired cut-off frequency relationship
ωcc ≥ 10ωsc (in [8]). Section V experimentally demonstrates
this practical merit.

The DOB (12) and (13) does not explicitly show the esti-
mated disturbance dynamics, which is derived by Lemma 3
by investigating the DOB output dynamics using the combi-
nation of (12) and (13).
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Lemma 3: The estimated disturbance d̂ia from the
DOB (12)-(13) satisfies

˙̂dia = lia (dia − d̂ia ), ∀t ≥ 0. (16)

♦
Proof: From the DOB output (13), it holds that

(using (12))

˙̂dia = żia + liaLa,0ėcc

= −lia (d̂ia − liaLa,0ecc)− l
2
iaLa,0ecc

+lia (−φcc + va)+ liaLa,0ėcc

= lia (La,0ėcc − φcc + va − d̂ia ) = lia (dia − d̂ia ),

∀t ≥ 0, with the application of relationship (10), which
verifies the result of this lemma. �
Lemma 4 shows the inherent pole-zero cancellation char-

acteristic of the inner loop.
Lemma 4: The proposed controller (11) forces the inner

loop dynamics to be the first-order system:

ėcc = −kccecc + d̃ia,F + d̃ia , (17)

with the filtered signal d̃ia,F such that

˙̃dia,F = −c1d̃ia,F − c2d̃ia , ∀t ≥ 0, (18)

∀t ≥ 0, for some positive constants ci, i = 1, 2, where d̃ia :=
dia − d̂ia . ♦

Proof: The substitution of the control law (11) into
the current error dynamics (10) produces the state-space
representation for the state xia :=

[
ecc σia

]T (σia :=
bd,cckcc

∫ t
0 eccdτ ) and output yia = ecc as

ẋia = Aiaxia + biar + bdia d̃ia ,

yia = ciaxia , ∀t ≥ 0,

with Aia :=

[
−

(bd,cc+La,0kcc)
La,0

1
La,0

−bd,cckcc 0

]
, bia :=

[
kcc bd,cckcc

]T ,
bdia :=

[
1
La,0

0
]T

, cia :=
[
1 0

]
, d̃ia := dia−d̂ia , and dummy

signal r = 0. The corresponding Laplace transform yields

Yia (s) = cia (sI2×2 − Aia )
−1biaR(s)

+cia (sI2×2 − Aia )
−1bdia D̃ia (s),

where

cia (sI2×2 − Aia )
−1bdia =

s
(s+ kcc)(La,0s+ bd,cc)

and

cia (sI2×2 − Aia )
−1bia =

kcc(La,0s+ bd,cc)
(s+ kcc)(La,0s+ bd,cc)

=
kcc

s+ kcc
,

due to the pole-zero cancellation, which can be written as
(using the relationship s

La,0s+bd,cc
= 1 − c2

s+c1
for positive

constants c1 :=
bd,cc
L2a,0

and c2 :=
bd,cc
La,0

)

(s+ kcc)Yia (s) = kccR(s)+ D̃ia (s) + D̃ia,F (s), ∀s ∈ C,

with D̃ia,F (s) = −
c2
s+c1

D̃ia (s), confirming the result of this
lemma by applying the inverse Laplace transform. �

Now, it is ready to prove the exponential convergence
behavior for the error ecc = i∗a − ia in Theorem 2.
Theorem 1: The proposed controller (11) guarantees

|ecc| ≤ δcc,1e−δcc,2t , ∀t ≥ 0,

∀|d̃ia | ≥
2Mia
lia

, for some δcc,i > 0, i = 1, 2, where |ḋia | ≤ Mia ,
∀t ≥ 0. ♦

Proof: Define the vector zcc :=
[
ecc d̃ia,F

]T
leading to

the system (using (17) and (18)) as

żcc = Acczcc + bccd̃ia , ∀t ≥ 0, (19)

whereAcc :=
[
−kcc 1
0 −c1

]
and bcc :=

[
1
−c2

]
, which solves

the matrix equationATccPcc+PccAcc = −I with respect to the
unique solution Pcc > 0 due to the stability of Acc. Consider
the positive definite function:

Vcc :=
1
2
zTccPcczcc +

κd

2
d̃ia , κd > 0,

whose time derivative is obtained using the closed-loop error
dynamics (19) and DOB estimation dynamics (16) as

V̇cc = zTccPcc(Acczcc + bccd̃ia )−
κd lia
2

d̃2ia

−κd (
lia
2
d̃2ia − ḋia d̃ia )

≤ −
1
2
‖zcc‖2 − (

κd lia
2
−
‖Pcc‖2‖bcc‖2

2
)d̃2ia ,

∀t ≥ 0, ∀|d̃ia | ≥
2Mia

lia
,

with the use of the Young’s inequality (xT y ≤ ε
2‖x‖

2
+

1
2ε ‖y‖

2, ∀ε > 0) to the inequality above. The coefficient

κd :=
2
lia
( ‖Pcc‖

2
‖bcc‖2
2 +

1
2 ) shows that

V̇cc ≤ −
1
2
‖zcc‖2 −

1
2
d̃2ia

≤ −αccVcc,∀t ≥ 0, ∀|d̃ia | ≥
2Mia

lia
, (20)

where αcc := { 1
λmin(Pcc)

, 1
κd
} (λmin(Pcc): minimum eigenvalue

of Pcc) and |ḋia | ≤ Mia , ∀t ≥ 0, which verifies the result due
to the comparison principle in [18]. �

From Theorem 1, the DOB gain satisfying 2Mia
lia
≈ 0

(assumed in the following analysis) concludes the exponen-
tial convergence ia→ i∗a due to the inequality

V̇cc ≤ −αccVcc < 0, ∀t ≥ 0,
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This also shows the convergence ia → ia,ref , exponen-
tially, due to Lemma 1. Theorem 2 proves this convergence
property.
Theorem 2: The proposed controller (11) guarantees

|ĩa| ≤ b1e−b2t , ∀t ≥ 0, ∀|ĩa| ≥
2κ
ω̂cc

,

for some bi > 0, i = 1, 2, where |i̇a,ref | ≤ κ , ∀t ≥ 0. ♦
Proof: The error ĩa := ia,ref − ia satisfies ĩa = ĩ∗a + ecc

whose dynamics are obtained as (using (8), (17), and (18)):

˙̃ia = −ω̂cc ĩ∗a + i̇a,ref − kccecc + d̃ia,F + d̃ia
= −ω̂cc ĩa + cTcczcc + i̇a,ref ,

∀t ≥ 0, with ccc :=
[
(ω̂cc − kcc) 1 1

]T and application of
the relationship ĩ∗a = ĩa − ecc (⇔ ĩa = ĩ∗a + ecc) to the last
equation above, which renders the composite-type Lyapunov
function candidate

V :=
1
2
ĩ2a + ηVcc, η > 0, ∀t ≥ 0,

to be

V̇ = ĩa(−ω̂cc ĩa + cTcczcc + i̇a,ref )+ ηV̇cc,

with its upper bound (using (20))

V̇ ≤ −
ωcc

4
ĩ2a +

c2cc,max
ωcc
‖zcc‖2 − ηαccVcc

−(
ω̂cc

2
−

κ

|ĩa|
)ĩ2a

≤ −
ωcc

4
ĩ2a − (ηαcc −

2c2cc,max
ωcc

)Vcc,

∀t ≥ 0, ∀|ĩa| ≥
2κ
ω̂cc

,

where the property ω̂cc ≥ ωcc (Lemma 2) and Young’s
inequality verify the first inequality above and |i̇a,ref | ≤ κ and

||ccc|| ≤ ccc,max , ∀t ≥ 0. The coefficient η := 1
αcc

(
2c2cc,max
ωcc
+1)

leads to:

V̇ ≤ −αV , ∀t ≥ 0, ∀|ĩa| ≥
2κ
ω̂cc

,

with α := min{ωcc, 1η }, which completes the proof with the
use of the comparison principle in [18]. �
Note that the time-varying cut-off frequency boosting

property (ω̂cc ≥ ωcc, ∀t ≥ 0, depicted in Lemma 2) provides
a rationale to assume that 2κ

ω̂cc
≈ 0 so that

V̇ ≤ −αV , ∀t ≥ 0, (21)

which is used for the remaining analysis.

B. COMPLETE CLOSED-LOOP SYSTEM ANALYSIS
This section proves the proposed solution attains the control
objective by showing the exponential convergence ω → ω∗

using the inner loop system analysis result given as inequal-
ity (21). First, Lemma 5 derives the inherent pole-zero can-
cellation characteristic of the outer loop.
Lemma 5: The proposed controller (7) forces the outer

loop dynamics to be the first-order system:

ω̇m = ωscω̃m − kT ,0 ĩa + ĩa,F + dωm,F , (22)

with filtered signals such that

˙̃ia,F = −csc,1 ĩa,F − csc,2 ĩa, (23)

Jm,0ḋωm,F = −bd,scdωm,F +1ḋωm , ∀t ≥ 0, (24)

for some positive constants csc,i, i = 1, 2, where 1dωm
represents the AC component of the disturbance dωm . i.e.,
dωm = dωm,0 (DC)+1dωm (AC). ♦

Proof: The closed-loop outer loop dynamics obtained
from the substitution of (7) into (3) are given as the
state-space representation for the state xωm :=

[
ωm σωm

]T
(σωm := bd,scωsc

∫ t
0 ω̃mdτ ) and output yωm = ωm as

ẋωm = Aωmxωm + bωmωm,ref + bdω (−kT ,0 ĩa + dωm ),

yωm = cωmxωm , ∀t ≥ 0,

withAωm :=

[
−

(bd,sc+Jm,0ωcc)
Jm,0

1
Jm,0

−bd,scωsc 0

]
, bωm :=

[
ωsc bd,scωsc

]T ,
bdω :=

[
1

Jm,0
0
]T

, and cωm :=
[
1 0

]
. The corresponding

Laplace transform yields

Yωm (s) = cωm (sI2×2 − Aωm )
−1bωm�m,ref (s)

+cωm (sI2×2 − Aωm )
−1bdω (−kT ,0 Ĩa(s)

+Dωm (s)), ∀s ∈ C,

where

cωm (sI2×2 − Aωm )
−1bdω =

s
(s+ ωsc)(Jm,0s+ bd,sc)

and

cωm (sI2×2 − Aωm )
−1bωm =

ωsc(Jm,0s+ bd,sc)
(s+ ωsc)(Jm,0s+ bd,sc)

=
ωsc

s+ ωsc
,

due to the pole-zero cancellation, which can be written as
(using the relationship s

Jm,0s+bd,sc
= 1 − b2

s+b1
for positive

constants b1 :=
bd,sc
J2m,0

and b2 :=
bd,sc
Jm,0

)

(s+ ωsc)Yωm (s) = ωsc�m,ref (s)− kT ,0Ĩa(s) + Ĩa,F (s)

+
s

(Jm,0s+ bd,sc)
Dωm (s), ∀s ∈ C,

withEcc,F (s) =
kT ,0b2
s+b1

Ecc(s), which confirms the result of this
lemma after applying the inverse Laplace transform. �
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The subtraction of (22)-(24) from the target system (5)
gives the error dynamics with respect to the error esc :=
ω∗m − ωm as

ėsc = −ωscesc − ĩa,F − dωm,F + kT ,0 ĩa, ∀t ≥ 0, (25)

which is used to confirm the control objective accomplish-
ment by showing the exponential convergence ωm → ω∗m in
Theorem 3 together with inequality (21).
Theorem 3: The control system depicted in Fig. 1 guaran-

tees

|esc| ≤ δsc,1e−δsc,2t , ∀t ≥ 0, ∀|dωm,F | ≥
2Mωm

bd,sc
,

for some δsc,i > 0, i = 1, 2, where |1ḋωm | ≤ Mωm ,
∀t ≥ 0. ♦

Proof: Define the vector zsc :=
[
esc ĩa,F

]T
leading to

the system (using (23)-(25) as

żsc = Asczsc + bsc,1 ĩa + bsc,2dωm,F , ∀t ≥ 0, (26)

where Asc :=
[
−ωsc −1
0 −csc,1

]
, bsc,1 :=

[
kT ,0
−csc,2

]
, and

bsc,2 :=
[
−1
0

]
, which solves the matrix equation ATscPsc +

PscAsc = −I with respect to the unique solution Psc > 0 due
to the stability of Asc. Consider the positive definite function:

Vsc :=
1
2
zTscPsczsc +

ζdJm,0
2

d2ωm,F + ζvV , ∀t ≥ 0,

with positive coefficients ζd > 0 and ζv > 0, whose time
derivative is obtained using the dynamics (26) and (24) as

V̇sc = zTscPsc(Asczsc + bsc,1 ĩa + bsc,2dωm,F )

+ζddωm,F (−bd,scdωm,F +1ḋωm )+ ζvV̇

≤ −
1
3
‖zsc‖2 − (

ζdbd,sc
2
−

3‖Psc‖2‖bsc,2‖2

4
)d2ωm,F

−(ζvα −
3‖Psc‖2‖bsc,1‖2

2
)V

−ζd (
bd,sc
2

d2ωm,F −1ḋωmdωm,F ), ∀t ≥ 0,

with the use of the Young’s inequality to the inequality above.
The coefficients ζd := 2

bd,sc
( 3‖Psc‖

2
‖bsc,2‖2

4 +
1
2 ) and ζv :=

1
α
( 3‖Psc‖

2
‖bsc,1‖2

2 + 1) show that

V̇sc ≤ −
1
3
‖zsc‖2 −

1
2
d2ωm,F − V ,

≤ −αscVsc, ∀t ≥ 0, ∀|dωm,F | ≥
2Mωm

bd,sc
,

whereαsc := min{ 2
3λmin(Psc)

, 1
ζd Jm,0

, 1
ζv
} (λmin(Psc): minimum

eigenvalue of Psc) and |1ḋωm | ≤ Mωm , ∀t ≥ 0, which
completes the proof with the use of the comparison principle
in [18]. �

FIGURE 2. Experimental platform comprising QUBE-servo2 and
myRIO-1900 processor.

Theorem 3 reveals the role of active damping depressing
the high-frequency component of the disturbance, conclud-
ing that the proposed controller depicted in Fig. 1 accom-
plishes the control objective by ensuring the exponential
convergence

lim
t→∞

ω = ω∗

under the condition 2Mωm
bd,sc
≈ 0.

V. EXPERIMENTAL RESULTS
Fig. 2 presents the experimental platform based on
the QUBE-servo2 and myRIO-1900 processor using
Simulink/MATLAB for the gain tuning process and resulting
data collection. In this platform, the load motor applies the
load torque to the QUBE servo2 through the closed-loop
angle control implemented by the MyRIO-1900. The true
system parameters and their nominal version are given by:
Jm = 4 × 10−6 kgm2, and Bm = 4 × 10−7 Nm/(rad/s),
Ra = 8.4 �, La = 1.16 mH, kT = 0.042 Nm/A, ke =
0.042 V/(rad/s), Jm,0 = 0.7Jm, and Bm,0 = 1.1Bm, Ra,0 =
0.8Ra, La,0 = 1.2La, and kT ,0 = ke,0 = 1.3kT , with the
control period 0.1 ms.

The tuning result of the proposed controller is, for the
inner loop, (variable cut-off frequency) fcc = 10 Hz
(ωcc = 2π10 rad/s), γcc = 2 × 107, ρcc = 10/γcc, (control)
kcc = 1000, bd,cc = 20, (DOB) lia = 1900, and, for the outer
loop, fsc = 2 Hz (ωsc = 2π2 rad/s) and bd,cc = 0.3.
This section highlights the effectiveness of the variable

current cut-off frequency update rule (primary contribution
of this study) with a comparison study by activating and
deactivating the update rule (9) in the speed-tracking and
regulation tasks.

A. SPEED-TRACKING TASK
This section uses the pulse speed reference with its mini-
mum and maximum values of 500 and 1500 rpm to evaluate
speed tracking performance. Fig. 3 demonstrates the prac-
tical merit of the proposed controller subject to the current
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FIGURE 3. Speed response comparison under pulse speed
reference-tracking task as increasing fsc = 2, 4, and 8 Hz.

FIGURE 4. Stator current response comparison under pulse speed
reference-tracking task as increasing fsc = 2, 4, and 8 Hz.

cut-off frequency boosting property indicated in the right
panel of Fig. 5. Particularly, the proposed controller suc-
cessfully maintained the desired speed tracking performance
by increasing the speed cut-off frequency (fsc = 2, 4,
and 8 Hz) without any performance degradation (such as
oscillation) owing to the current cut-off frequency boosting
nature shown in the right panel of Fig. 5. The deactivation of
the proposed variable cut-off frequency mechanism failed to
make the increased speed cut-off frequency feasible, involv-
ing considerable speed oscillations for the cases of fsc = 4
and 8 Hz, which would be alleviated by constantly increas-
ing the current cut-off frequency fcc. These observations are
summarized as: (a) feasible speed bandwidth expansion and
(b) lowered current cut-off frequency in steady-state opera-
tion. Fig. 4 shows the corresponding stator current behaviors
where the proposed controller stabilizes the current more
rapidly than when deactivating the variable cut-off frequency
update mechanism. The left panel of Fig. 5 presents the
estimated disturbance responses from the DOB.

B. SPEED REGULATION TASK
1) TRANSIENT RESPONSE COMPARISON
This section fixes the speed reference to 500 rpm to evaluate
the speed maintenance performance while abruptly apply-
ing and removing the load torque, causing the current peak
level increment (approximately 250 mA) depicted in Fig. 7.
Fig. 6 depicts the resultant speed responses whose over/under
shoots and oscillation periods are effectively suppressed by
the proposed controller boosting the cut-off frequency of the
current-loop.

FIGURE 5. DOB and variable cut-off frequency responses under pulse
speed reference-tracking task as increasing fsc = 2, 4, and 8 Hz.

FIGURE 6. Speed response comparison under abrupt load torque
variation at 500 rpm operation mode.

FIGURE 7. Stator current comparison under abrupt load torque variation
at 500 rpm operation mode.

FIGURE 8. Steady-state speed response comparison under pulse speed
reference-tracking task.

2) STEADY-STATE RESPONSE COMPARISON
Under the same setting as the previous subsection, only
the initial current cut-off frequency was increased to fcc =
300 Hz (so that ω̂cc(0) = 2π300 rad/s) for the case of
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deactivating the update rule (9) to improve the closed-loop
performance without using the variable current cut-off fre-
quency mechanism. In contrast, the proposed controller uses
the original initial current cut-off frequency value fcc =
10 Hz, (so that ω̂cc(0) = 62.8 rad/s). As expected,
Fig. 8 shows that the use of a constantly increasing cur-
rent cut-off frequency considerably magnifies the current
ripple level but the proposed variable cut-off frequencymech-
anism successfully avoids this demerit by decreasing the
cut-off frequency value to its initial value by reaching the
steady-state. This practical benefit increases the power effi-
ciency by switching loss reduction for large power system
applications.

VI. CONCLUSION
In this study, a variable cut-off frequency mechanism was
designed to enlarge the feasible speed operation region
with a convergence analysis, including experimental verifi-
cation. From the experimental study, the proposed controller
accomplished the two main objectives; making the high
speed cut-off frequency feasible and lowering the steady-state
cut-off frequency value (leading to the current ripple reduc-
tion). An offline optimization process will be established
under linear or bilinear matrix constraints to determine the
optimal controller design parameters in a future study involv-
ing three-phase motor applications.
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