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ABSTRACT The electromagnetic coupling of a charged particle beam with vacuum chambers is of great
interest for beam dynamics studies in the design of a particle accelerator. A deep learning-based method
is proposed as a mesh-free numerical approach for solving the field of space charges of a particle beam in
a vacuum chamber. Deep neural networks based on the physical model of a relativistic particle beam with
transversally nonuniform charge density moving in a vacuum chamber are constructed using this method.
A partial differential equation with the Lorentz factor, transverse charge density, and boundary condition is
embedded in its loss function. The proposed physics-informed neural network method is applied to round,
rectangular, and elliptical vacuum chambers. This is verified in comparison with analytical solutions for
coupling impedances of a round Gaussian beam and an elliptical bi-Gaussian beam. The effects of chamber
geometries, charge density, beam offset, and energy on the beam coupling impedance are demonstrated.

INDEX TERMS Deep learning, neural network, space charge, beam coupling impedance, wake field.

I. INTRODUCTION
Electromagnetic coupling of a charged particle beam with
vacuum chambers is of great interest for beam dynamics
studies in the design of a particle accelerator [1], [2]. Such
coupling effects are quantified using the concept of the beam
coupling impedance [2] in the frequency domain. The follow-
ing two approaches have been widely used to calculate the
impedances of various accelerator vacuum chambers: analyt-
ical approaches such as the mode-matching method [3], [4],
the image charge method [5], and numerical methods such as
the finite integration technique (FIT) [6], and finite element
method (FEM) [7]. In the FIT and FEM, a computational
domain is decomposed into a set of volumemeshes. However,
when using volume meshes for the impedance computations,
the standard FIT with structured grids suffers from the so-
called staircasing error of curved boundaries, and the FEM
with unstructured grids allows accurate boundary modeling
but may require the generation of dense meshes owing to
a large variation in the field in the vicinity of the space
charge (SC) of a relativistic beam traversing in a vacuum
chamber [7].

To address the above problems, we propose a novel mesh-
free approach for solving the field of SCs of a beam moving
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in accelerator vacuum chambers. The proposed method is
based on deep learning, for example, in [8]–[11]. In our
approach, deep neural networks based on a physical model
of the beam coupling effect due to the SC field are con-
structed. A partial differential equation (PDE) with a charge
density distribution and boundary condition (BC) is embed-
ded in the constructed networks. By virtue of the use
of the NN, our approach includes no mesh in the com-
putational domain. This offers the advantage of model-
ing the SC effect compared to the FIT [6] and FEM [7].
The main purpose of this study is to demonstrate the
feasibility of the proposed method for modeling the SC
effect.

It should be noted that the basic idea of this method
is inspired by the physics-informed neural network
(PINN) [8], [9], which was recently presented in the
research field of machine learning. For electromagnet-
ics, there are PINNs for time-domain Maxwell’s equa-
tions [10] in microwave engineering and the PINN for
inverse problems in nano-optics and metamaterials [11].
To the best of the authors’ knowledge, this work is
the first application of the PINN to the SC effect
in particle accelerators. In this study, we develop a
PINN-based numerical method for computing the SC field
and the beam coupling impedance of accelerator vacuum
chambers.
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FIGURE 1. A relativistic charged particle beam with transversally
nonuniform charge density moving at constant velocity on the axis of an
infinitely long vacuum chamber with elliptical cross section.

II. PHYSICS-INFORMED NEURAL NETWORK
A. PROBLEM FORMULATION
Consider a relativistic charged particle beamwith total charge
Q moving in an infinitely long vacuum chamber, as shown
in Fig.1. We assume that the beam has a rigid charge
density distribution ρ and a constant longitudinal velocity
v = vez = βcez, where β = v/c, c is the speed of light in
vacuum, and ez is the unit vector in the direction of the beam
motion (z-direction). The beam current density J has only the
longitudinal component, Jz = ρv. The charge and current
densities obey the following continuity equation [12]:

∂ρ

∂t
+∇ · J = 0 (1)

The influence of the field on the particle distribution is
neglected in the field calculations. This is not self-consistent,
but an excellent approximation for relativistic beams [1,2].

Here, we consider the transversemagnetic (TM)mode gen-
erated by a relativistic beam in a perfectly conducting vacuum
chamber with a constant but arbitrarily shaped cross section,
because the longitudinal component of the electric field is
nonzero. We study a particular harmonic component with an
angular frequency ω =2π f (or wave number k = ω/v). The
charge and current densities (ρ, J) and longitudinal compo-
nent Ez can be written as [1], [2], [4]

ρ (x, y, z, t) = ρ⊥ (x, y) ej(ωt−kz), J = ρv (2)

Ez (x, y, z, t) = Ez (x, y, ω) ej(ωt−kz) (3)

where ρ⊥ is the transverse charge density distribution func-
tion normalized by∫

ρ⊥ (x, y) dxdy = Q (4)

Substituting Eqs. (1)–(3) into the wave equation of the longi-
tudinal component of the electric field [12]:

∇
2Ez −

1
c2
∂2Ez
∂t2
=

1
ε0

∂ρ

∂z
+ µ0

∂Jz
∂t

(5)

leads to the following PDE(
∂2

∂x2
+
∂2

∂y2

)
Ez −

k2

γ 2Ez = −
jk
ε0γ 2 ρ⊥ (6)

where γ = (1 − β2)−1/2 is the Lorentz factor, also known
as the relativistic factor, ε0 and µ0 denote the permittivity
and the permeability of vacuum, respectively. In particular,

we are interested in the case of an elliptical bi-Gaussian
charge density as [13]–[15]

ρ⊥ =
Q

2πσxσy
e
−
(x−xc)2

2σ2x
−
(y−yc)2

2σ2y (7)

where (σx , σy) are the half values of the Gaussian distribution
in the x- and y-directions, and (xc, yc) is the center position in
the transverse plane. If we set σx = σy = σr , Eq. (7) can be
reduced to a round Gaussian beam [16], [17]:

ρ⊥ =
Q

2πσ 2
r
e
−
(x−xc)2+(y−yc)2

2σ2r (8)

To find Ez inside the chamber cross-section, we solve Eq. (6)
with a perfectly electric conductor (PEC) BC

n× E = 0→ Ez = 0 (9)

that is, the tangential component of the electric field vanishes
on the surface of the chamber cross section. Here, we call
Ez the space charge field because it is the field induced by
the space charge ρ in a vacuum chamber. Note that, owing
to 1/γ 2 in Eq. (6), Ez vanishes in the ultra-relativistic limit
γ →∞.

B. DEEP LEARING APPROACH
We introduce a novel mesh-free approach based on deep
learning [8,9] for solving electromagnetic boundary-value
problems in the presence of a relativistic beam current. This
method utilizes the universal function approximation capabil-
ities of deep neural networks. The key idea of the method is
to include PDE (6) and PEC-BC (9) into the loss function
of a neural network (NN) using automatic differentiation.
It is expected that this strategy works well for a transver-
sally smooth charge density, as shown in Eqs. (7) and (8),
respectively:

A schematic of the proposed algorithm is illustrated in
Fig.2. Note that γ and ρ⊥ are explicitly embedded in PINN.
This feature originates from the physical model described
in the previous section. Our method is summarized in the
following list.

1) Set up a computational domain in a chamber cross
section, wall surfaces imposing the PEC-BC, source
domains related to ρ⊥, physical constants and param-
eters such as ε0, k , γ . Note that the beam traverses
inside the chamber and the SC field is zero outside the
chamber.

2) Generate randomly sampled points (or grid points on
a lattice) within the vacuum domain surrounded by
the inner PEC walls. Note that no sampling point is
generated outside the chamber. The generated sampling
points are used to train a NN as input.

3) Construct a neural network with output Êz (x, y; θ) as a
surrogate of the PDE solution Ez (x, y, ω), where θ is a
vector containing all weights w and bias b in the neural
network to be trained, and σ denotes an activation
function.
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FIGURE 2. Physics-informed neural network for space charge effect in particle accelerator. A partial differential
equation with the Lorentz factor, elliptical bi-Gaussian charge density and boundary condition is embedded in its loss
function.

4) Define the loss function L including Eqs. (6) and (9)
5) Train the constructed neural network to find the best

parameters θ by minimizing the loss L via the L-BFGS
algorithm 18] as a gradient-based optimizer, until the
loss is smaller than a threshold ε.

In the above method, we use the loss function L defined by

L = LPDE + LBC (10)

with

LPDE =
1

NPDE

NPDE∑
p=1

∣∣f (xp, yp, ω)∣∣2 (11)

LBC =
1

NBC

NBC∑
p=1

∣∣∣Êz (xp, yp; θ)∣∣∣2 (12)

f =
(
∂2

∂x2
+
∂2

∂y2

)
Êz −

k2

γ 2 Êz +
jk
ε0γ 2 ρ⊥ (13)

where p denotes the sampling point. NPDE and NBC are the
numbers of sampling points in the computational domain and
boundary condition, respectively. LPDE is the loss function
related to the PDE (6), and its minimization (LPDE → 0)
enforces (6) at a set of finite sampling points in the computa-
tional domain. LBC is the loss function related to the PEC-BC
(9), and its minimization (LBC → 0) enforces (9) at a set of
finite sampling points on the boundary surface.

Throughout this study, we adapted a fully connected neural
network and the tanh activation function. We used three
hidden layers and 20 neurons per layer. For various chamber
geometries, we chose NPDE and NBC , as shown in Table 1.

TABLE 1. Number of sampling points for various chamber geometries.

NPDE random points are generated inside a chamber and NBC
grid points are generated on the chamber wall.

It is important that a dataset is properly scaled for training,
as mentioned in the literatures, e.g. [19], [20]. In this study,
the scaling of the input and output to a NN is performed as
pre-processing and post-processing for the proposed method.
See Appendix A for more details.

It is worth mentioning that the prediction accuracy depends
on the NN architecture and hyperparameters in deep learning.
As stated in [8], the general trend of the PINN on accuracy
is that a good prediction accuracy can be achieved as a suf-
ficiently expressive NN architecture and sufficient numbers
of sampling points are given. This trend is confirmed in
Appendix B.

C. BEAM COUPLING IMPEDANCE COMPUTATION USING
TRAINED NEURAL NETWORK
After training the neural network, we can simulate the SC
field Êz (x, y; θ) for any position (x, y) in a vacuum chamber
cross-section. Note that no mesh exists in this method. From
the simulated field Êz (x, y; θ), we can compute the beam
coupling impedance (per unit length) Z|| defined as [5]

Z|| (x, y) = −
Êz (x, y; θ)

I
(14)
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TABLE 2. Beam parameters.

where I = Qv is the total beam current. Note that the
impedance at any position inside the beam domain of (7) or
(8) can be obtained from (14). If one obtains the impedance
averaged over the beam domain, we use the following defini-
tion [7]:

Z̄|| = −
1
Q2

∫
beam

Êz · J∗z dV (15)

where the asterisk ‘‘∗’’ denotes taking its complex conjugate.
Although Eq. (15) can be made by numerical integrations,

in this paper we focus on the local impedance defined in (14),
because for comparison analytical solutions for (7) and (8)
are available in the local one. The evaluation of the averaged
impedance (15) is out of the present paper, and it is left for
future work.

In the following, we show the applications of the PINN
method to accelerator vacuum chambers.

III. NUMERICAL RESULTS
To verify the proposed PINN method, we show some
benchmark examples, including transversally nonuniform
charge density. Our simulated results are compared with
the available analytical solutions. The beam parameters and
vacuum chamber cross sections used are summarized in
Tables 2 and 3, respectively. The purpose of this section is to
demonstrate its feasibility for SC problems in accelerators.

It should be noted that closed-form analytical impedances
of transversally nonuniform beams for any frequency are
published only for very limited cases [17]. Very recently,
in [15], the analytical impedance formula of an elliptical
bi-Gaussian beam in free space was derived as an extension
of the impedance theory of a round Gaussian beam [17].
In this study, we combine the extended impedance theory [15]
with the image charge method [5] for our purpose, and cal-
culate the analytical impedances of a round Gaussian and an
elliptical bi-Gaussian beam in parallel plate and rectangular
chambers. In [15], although the use of the image charge
method has already been mentioned, only the free space
solution is derived and discussed when we submit the present
paper to this journal. Throughout this study, the number of
image charges in each direction is chosen as 40. This gives a
convergent result, even for the off-axis beams tested here.

The application of the proposed method to an irregularly-
shaped chamber is demonstrated in Appendix C.

A. CIRCULAR CHAMBER
To assess the proposed PINN method, we apply it to a
round vacuum chamber with radius R = 1 cm and a round
Gaussian beam with Q = 1pC, γ = 100 and σr = 1 mm,
(xc, yc) = (0 mm,0 mm). PEC-BC (9) is imposed on the

TABLE 3. Parameters for various vacuum chamber geometries.

chamber wall. To the best of the authors’ knowledge, the
closed-form exact solution for any frequency in this case has
not yet been published. Therefore, we verify the numerical
results with the PINN in comparison with the analytical
coupling impedances known for the following two cases: a
beam with uniform charge density

ρ⊥ =


Q

πr2b
r ≤ rb

0 r > rb

r =
√
(x − xc)2 + (y− yc)2 (16)

in the PEC round chamber [5] and a beamwith a transversally
nonuniform (Gaussian) density (8) in free space [15]–[17].
Here, we choose a uniform beam radius rb = 1.747σr . This
choice allows us to approximate the space charge impedance
of the round Gaussian beam by that of the round uniform
beam, up to kσr/γ ' 0.5, as suggested in [17]. This condition
reads f < 2.3THz in our case.
Fig. 3 shows a comparison of the SC impedances obtained

for the circular chamber with the PINN simulation and the
above analytical solutions [5], [17]. The PINN-simulated
SC impedance is in good agreement with the analytical
impedance (red line) of the uniform beam in the round cham-
ber at f < 2.3 THz. At higher frequencies f > 2.3THz, the
PINN-simulated SC impedance is in good agreement with the
analytical one (black dashed line) of the Gaussian beam in
free space. Some SCfield distributions (Ez) are also displayed
in the insets, where the field is strong near the center of
the chamber owing to the existence of the space charge and
approaches zero at the wall. This illustrates that in the trained
deep neural network, the charge density is taken into account
and the PEC BC (9) is properly imposed.

We discuss the relationship between the SC field and
impedances in Fig.3. In the left inset (0.2THz), the nonzero
field spread widely inside the chamber. This indicates that
the shielding effect is relatively large and can contribute to
a reduction in the impedance. In fact, the circular chamber
impedance becomes smaller than the free space in the low-
frequency region f < 2.3 THz. In the right inset (3.1 THz),
the field becomes strong only in the vicinity of the beam.
This indicates that the shielding effect is small and hardly
contributes to impedance. Therefore, the circular chamber
impedance of the Gaussian beam is very similar to the free
space impedance of the same beam in the high-frequency
region f > 2.3THz.

164020 VOLUME 9, 2021



K. Fujita: Physics-Informed Neural Network Method for Space Charge Effect in Particle Accelerators

TABLE 4. Effect of beam offset on space charge impedance for different
chamber geometries.

B. SQUARE CHAMBER
In order to carefully check the accuracy of the PINN method,
we simulate the space charge field of an on-axis round
Gaussian beam in a square vacuum chamber with a width
and height of 2 cm at 0.2THz, and compare it with the cor-
responding analytical field. The analytical calculation can be
performed by combining the free-space solution of the round
Gaussian beam [15]–[17] and the image charge method [5].

Fig. 4 demonstrates comparison of the space charge field
of the on-axis round Gaussian beam in the square chambers
simulated at 0.2THz with the PINN method with analytical
results for some cases: free space, the parallel plate and the
square chambers. It is obvious that the free space SCfield (red
dotted line) is not zero on the chamber walls at x = ±0.01m
and y = ±0.01m, thus it does not satisfy the PEC-BCs at
all the walls. The parallel plate SC field (blue dashed line)
is not zero at x = ±0.01m, while it approaches zero at
y = ±0.01m. This is considered to be reasonable because of
the effect of the parallel plate chamber walls. The analytical
square chamber field is zero for all walls; thus, it satisfies the
PEC-BCs. As expected, the PINN-simulated square chamber
field is zero for all walls; thus, it satisfies the PEC-BCs. Its
field profile is consistent with the analytical profile inside the
chamber.

C. RECTANGULAR AND ELLIPTICAL CHAMBERS
Here, we demonstrate the feasibility of the PINN method for
other chamber geometries. The fields of the round Gaussian
beam (Q = 1pC, γ = 100, σr = 1 mm) with an offset
(xc, yc) = (rs,0) to the axis in the x-direction are simulated
for rectangular and elliptical vacuum chambers at 0.2THz.
rs = 6 mm is chosen in this study. A discrepancy in the field
distributions for the two geometries is clearly observed in
Fig. 5. The simulated impedances for the different geometries
are listed in Table 4. The elliptical chamber impedance is
slightly smaller than the rectangular one, but it is larger than
the circular impedance. This indicates that by approximating
the elliptical and rectangular chambers as a similar circular
chamber, an underestimated impedance can be obtained.

The results of Sections III-A, B, and C show that the PINN
method can model various vacuum chamber geometries and
evaluate its effect on the impedance.

D. BEAM OFFSET
We apply the PINN to the modeling of an off-axis round
Gaussian beam. The impedance of a round Gaussian
beam in a square vacuum chamber with width and height
of 2 cm at 0.2THz is simulated for different beam offsets.

TABLE 5. Comparison of simulated and analytical space charge
impedances of square chamber for different offsets.

As a reference, we calculate the corresponding analytical
impedances using the image charge method [5]. A compar-
ison of the simulated and analytical impedances is presented
in Table 5. Excellent agreement between the two results is
observed. The relative error is less than 0.3%.

Here, we return to Table 4, and discuss the impact of beam
offset on impedance. The impedances of the round Gaussian
beam in the circular, rectangular, and elliptical chambers are
simulated for different offsets with the PINN. As the offset
increases, the impedances decrease in all chambers.

Fig. 6 shows the SC field of an off-axis round Gaussian
beam in a circular chamber. Shifting of the field peak to the
chamber axis is clearly shown because of the off-axis beam.

E. TRANSVERSE BI-GAUSSIAN CHARGE DENSITY
We apply the PINN to the modeling of the bi-Gaussian charge
density with α = σy/σx 6= 1. The impedance of an on-axis
elliptical bi-Gaussian beam with σx = 1 mm in a square
vacuum chamber with width and height of 2 cm at 0.2THz
is simulated for α = 0.5 and 2. Again, we calculated the
corresponding analytical impedances using the image charge
method [5].

A comparison of the simulated and analytical impedances
is shown in Fig. 7. For both cases (α = 0.5, and 2), the
simulated impedance is in good agreement with the analyt-
ical impedance of the same square chamber. We find that
the square chamber impedances of α = 2 are less than
those of α = 0.5. A discrepancy compared to the free-space
impedances is clearly observed at low frequencies. This
is due to the shielding effect of the square chamber wall,
as discussed in Sections III-A, III-B, and III-C. The insets
demonstrate the SC field distributions simulated at 3.1THz
for α = 0.5 and 2. A discrepancy in the field distributions due
to the different density profiles in the transverse directions is
observed.

F. BEAM ENERGY (LORENTZ FACTOR)
Finally, we show that the PINN method can consider finite
γ , that is, the beam energy. We simulate the impedances
of an on-axis elliptical bi-Gaussian beam with σx = 1 mm
and α = 0.5, in a square vacuum chamber with a width and
height of 2 cm at 0.2THz for a wide range of beam energies.
We also calculate the corresponding analytical impedances
in free space and the same square chamber using the image
charge method [5].

The dependencies of the simulated and analytical
impedances on the finite γ are shown in Fig. 8. The simu-
lated square chamber impedance is in good agreement with
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FIGURE 3. Space charge impedance of a round Gaussian beam in a
circular vacuum chamber. Carves for a round uniform beam in the same
chamber and a round Gaussian in free space are also shown for
comparison. In the inset, electric field distributions (space charge field) at
two sampling frequencies simulated with the PINN are displayed. In the
insets, the field values are set to zero outside the chamber.

FIGURE 4. Space charge field of a round Gaussian beam in a square
vacuum chamber at 0.2THz. (a) field profile along the x-axis at y = 0m,
(b) field profile along the y-axis at x = 0m. For comparison, analytical
solutions of a round Gaussian beam in free space, parallel plate and
square chambers are also displayed. The parallel plate chamber has two
PEC walls at y = ±0.01m.

the analytical square chamber impedance. Both impedances
decrease as γ increases. This is due to the feature of the

FIGURE 5. Space charge field distribution simulated with the proposed
PINN method. The round Gaussian beam has a 6mm offset in x-direction
from the center of a vacuum chamber. (a) Rectangular chamber with
width 4cm and height 2cm, (b) Elliptical chamber with major semiaxis
2cm and minor semiaxis 1cm. In (b), the field values are set to zero
outside the chamber.

FIGURE 6. Space charge field of a round Gaussian beam in a circular
vacuum chamber. Top: 2-D distribution, Bottom: 1-D profile at y = 0.
In top figure, the field values are set to zero outside the chamber.

SC field, as mentioned in Section II. In contrast, for large
γ , a discrepancy of the square chamber impedance to the
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FIGURE 7. Space charge impedances of an elliptical bi-Gaussian beam in
a square chamber for α = σy /σx = 0.5 and 2. For comparison, analytical
solutions of an elliptical bi-Gaussian beam in free space and a square
chamber are also displayed. The insets display the field distributions of
the elliptical bi-Gaussian beam in a square chamber simulated at 3.1THz.

FIGURE 8. Dependency of space charge impedance of an elliptical
bi-Gaussian beam with α = 0.5 in a square vacuum chamber for beam
energy. For comparison, analytical solutions of an elliptical bi-Gaussian
beam in free space and a square chamber are also displayed.

free-space impedance can be seen. This effect is related to
k/γ on the left-hand side of the PDE (6). As γ increases, k/γ
decreases. This is similar to the situation when k = 2π f /v,
i.e. f decreases, as discussed in Section III-B. Therefore, as γ
increases, the shielding of the chamber wall becomes more
effective, resulting in a reduction in the impedance. A similar
discussion was made in the impedance theory of a round
uniform beam [5].

The results of Sections III-D, E, and F show that the PINN
method can model various charge densities, beam offsets, and
energies, and can also evaluate their effects on the impedance.

IV. CONCLUSION
The PINN method for the calculation of beam coupling
impedances of accelerator vacuum chambers is proposed as a
mesh-free approach. The method has the capability of mod-
eling the SC field of an elliptical bi-Gaussian charge density
for any beam energy and for calculating the impedances of
various vacuum chamber cross sections for any frequency.
The proposed method was successfully applied to circular,

FIGURE 9. Convergence of relative error for different number of sampling
points.

rectangular, and elliptical chambers. The SC fields and
impedances simulated for different charge densities, different
beam offsets, and different beam energies were demonstrated.
Their numerical results are verified in comparison with the
analytical impedances of a round Gaussian and an elliptical
bi-Gaussian beam in parallel plates and rectangular chambers
based on the image charge method.

Although the PECwalls are assumed, the proposedmethod
can be extended to resistive walls. This extension will be
discussed in the near future. Generalization of the proposed
PINN method for transverse coupling impedances will be
considered for future publication.

APPENDIX
A. DATA AND EQUATION SCALING
In many cases, we will have a dataset including different
magnitudes of input for calculating the coupling impedance.
The magnitude of the SC field may vary largely within a
vacuum chamber under consideration or in a frequency range
of interest. In such situations, we have to deal with the dataset
carefully. Directly using a raw dataset may result in a slow
convergence of the gradient-based optimizer. To avoid this
problem, we employ the following special scaling scheme for
the input, output and PDE (6).

First, consider modeling a vacuum chamber geometry in
Cartesian coordinates. The x-axis and y-axis are scaled with
a typical chamber length s0 (e.g., radius, height and width) as

X =
x
s0
, Y =

y
s0

(17)

Using Eq. (17), we can scale the sampling points (input) and
transform the PDE (6) into(

∂2

∂X2 +
∂2

∂Y 2

)
Ez −

k2s20
γ 2 Ez = −

jks20
ε0γ 2 ρ⊥ (18)
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FIGURE 10. Space charge field of a round Gaussian beam in a L-shape
vacuum chamber simulated at 0.2THz. The PEC walls exist in 0 ≤ x ≤ 0.01
at y = 0 and for 0 ≤ y ≤ 0.01 at x = 0.

Next, by scaling the SC field Ez (output) as

ez =
Ez
E0

(19)

we obtain(
∂2

∂X2 +
∂2

∂Y 2

)
ez −

k2s20
γ 2 ez = −

jks20
ε0γ 2E0

ρ⊥ (20)

where ρ⊥ is given by (7). Finally, by introducing a new
parameter B and choosing E0 as

E0 = qns20
k

Bεγ 2 (21)

qn =
Q

2πσxσy
(22)

we can derive a scaled PDE as follows:(
∂2

∂X2 +
∂2

∂Y 2

)
ez −

k2s20
γ 2 ez = −jBρn (23)

where ρn = ρ⊥/qn denotes the normalized charge density
distribution. Throughout this paper, B = 100 is empirically
chosen. Note that γ and ρn are included even in the scaled
PDE (23). From (9) and (19), the PEC-BC of the scaled SC
field is given by

ez = 0 (24)

It should be mentioned that the input (x, y) is scaled to (X ,Y )
with s0 in (17), and the output Ez is scaled to ez with E0
in (19), and the absolute value of the right-hand side in the
PDE (23) is scaled to B. This scaling is performed as pre-
processing.

After the data and equation scaling described above, in the
same way to step 1)−5) described in Section II-B, we con-
struct a neural network with output êz (X ,Y ; θ) as a surro-
gate of the scaled PDE solution ez (X ,Y , ω), define the loss
function including (23) and (24), and train the constructed

NN using the gradient-based optimizer. Finally, we obtain the
original output (unscaled) from

Êz (x, y; θ) = E0êz (x/s0, y/s0; θ) (25)

This step is performed as post-processing.
The implementation of the above scaling scheme needs

only minor modifications of (10)-(13) and the PINN (Fig.2)
in the original scheme described in Section II-B. It is worth
noting that the methodology of this scaling scheme can be
applied to other PDEs in electromagnetics, as addressed
in [10], [11]. This application is left for a future study.
Here, we shall compare Eq. (23) with Eq. (6). The right-

hand side (RHS) of the original PDE (6) will have a rela-
tively large value owing to the existence of ε0 ≈ 8.854 ×
10−12 [F/m]. This is undesirable for using the gradient-based
optimizer. In addition, the RHS depends on the wavenumber
k (or the frequency f ). On the other hand, when our scaling
scheme (17)-(25) is used, the RHS of the scaled PDE (23)
has only a constant value over a frequency range of interest.
This feature is preferable for calculating the beam coupling
impedance in the frequency domain and for maintaining the
accuracy of trained NNs over a frequency range. In fact, our
scaling scheme has been successfully applied to all bench-
mark examples shown in Section III. Note that the concept of
our scaling scheme is not described in [10], [11].
In summary, the input, output and PDE are properly scaled

in the proposedmethod with the above scaling scheme, which
is performed as pre-processing and post-processing.

B. IMPACT OF HYPERPARAMETERS ON PREDICTION
ACCURACY
Here we confirm the general trend of the PINN on prediction
accuracy in [8]. It is that a good prediction accuracy can be
achieved as a sufficiently expressive NN architecture and suf-
ficient numbers of sampling points are given. As an example,
we use the same square vacuum chamber as that described in
Section III-B. We define the relative error as

Error =

∣∣Z|| − Zanaly∣∣∣∣Zanaly∣∣ × 100 (26)

where Zanaly denotes the analytical impedance of the on-axis
round Gaussian beam in the square vacuum chamber. The
analytical and numerical impedances are evaluated at the
origin (x, y) = (0,0).
First, we change the number of hidden layers and the num-

ber of neurons in each layer while keeping all other param-
eters fixed. The relative error of the impedance simulated at
0.2THz is listed in Table 6. As expected, we observe that the
prediction accuracy increases, as the number of hidden layers
and neurons increases.

Second, we change the number of sampling points NPDE
within the chamber cross section while keeping all other
parameters fixed. Fig.9 shows the influence of sampling
points on the relative errors of the impedance simulated at
0.2THz. As the number of sampling points increases, the
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TABLE 6. Relative error between the predicted and exact solutions for
different number of hidden layers and different number of neurons per
layer.

relative error decrease. The error fluctuates near 0.2%, when
NPDE ≥ 2000.
These results demonstrate the accuracy and convergence of

the proposed PINN method on the impedance computation.

C. APPLICATION TO L-SHAPED VACUUM CHAMBER
We demonstrate the applicability of the proposed PINN
method to an irregularly shaped chamber. For this purpose,
we model and simulate the SC field of an on-axis round
Gaussian beamwith (xc, yc)= (−5mm,−5mm) in a L-shaped
vacuum chamber as shown in Fig.10. Note that it is difficult
to analytically determine the SC field in this case. We used
three hidden layers and 20 neurons per layer. We chose
NPDE = 3750 and NBC = 400. NPDE random points are gen-
erated inside a chamber and NBC grids points are generated
on the chamber wall. We additionally multiply the loss term
LBC by a factor of 1000 to enhance the effect of the PEC-BC
in training, as used in [11].

Fig.10 shows the field distribution in the L-shaped vacuum
chamber simulated at 0.2THz.Wefind that the simulated field
approaches zero on the edges and even at the corner near the
origin.
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