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ABSTRACT The ultraviolet-visible (UV-Vis) spectroscopy measurement method of Chemical Oxygen
Demand (COD) in water is a simple physical method that can measure water without secondary pollution
from chemical reagents. To solve the problems of low accuracy and insufficient generalization capability
of the COD prediction model, an improved Bagging algorithm is proposed and evaluated in this study. The
Improved-Bagging algorithm can reduce model variance and bias concurrently, and improves the accuracy
and stability of the traditional Bagging algorithm. Results show that the Improved-Bagging algorithm
achieves a better prediction ability on different preprocessed data than the traditional Bagging algorithm.
After ensemble empirical mode decomposition based (EEMD-Based) algorithm denoising and stability
competitive adaptive reweighted sampling (SCARS) algorithm dimension reduction, Improved-Bagging
model achieves the best prediction performance. Its coefficient of determination (R2) on the prediction set
reached 0.9317, its root mean square error of prediction (RMSEP) reached 5.39 mg/L, and its variance
reached 5.53 mg2. Results also show that the Improved-Bagging algorithm can accurately measure the COD
concentration in water, which lays the foundation for the wide application of spectroscopy to measure water
quality parameters.

INDEX TERMS COD measurements, improved-bagging model, UV-Vis spectroscopy, water.

I. INTRODUCTION
COD describes the pollution of water by reducing substances,
is an important parameter for evaluating water, but also a
required parameter inwater qualitymeasurements. Generally,
there are twomethods formeasuring COD: chemical methods
and physical methods (i.e., spectroscopy methods) [1], [2].
Chemical methods generally use strong oxidants, such as
potassium permanganate and potassium dichromate, to oxi-
dize water samples under strong acid conditions, and then
calculate the COD in water by measuring the amount of
oxidant consumed. Chemical methods have disadvantages
such as secondary pollution and long measurement periods,
which are not suitable for online and real-time measure-
ments [3], [4]. The wavelength range for measuring COD
via spectroscopy is generally in the ultraviolet-visible inter-
val. After UV-Vis spectroscopy is transmitted through water,
the corresponding COD value is obtained by measuring the
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absorbance of the water [5]. The water quality measurement
method based on UV-Vis spectroscopy has received increas-
ing attention in recent years, and its application prospects are
good.

Essentially, using UV-Vis spectroscopy to measure COD
in water allows a COD prediction model to be built based on
UV-Vis spectra. By building a calibration model between the
UV-Vis spectrum data of water and the COD standard values,
the corresponding COD concentration in water can be pre-
dicted based on water’s spectrum. Therefore, the prediction
accuracy of the model depends on the pros and cons of the
calibration modeling method [6]. In recent years, with the
development and breakthrough of statistics, applied mathe-
matics, chemometrics, artificial intelligence and other fields,
some new modeling methods have been applied to UV-Vis
spectroscopy to measure COD, providing a new idea to mea-
sure COD concentrations in water with a complex composi-
tion [7]–[9]. Modeling methods primarily include statistical
methods and machine learning methods. Appropriate model-
ing methods should be used based on the specific application
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environments being considered. According to the morpho-
logical characteristics of different water spectra, statistical
methods or machine learning methods are used to build
a prediction model suitable for water, which has attracted
substantial attention and led to useful results. In early stud-
ies, COD was measured via UV-Vis spectroscopy at one or
several wavelengths, which is referred to as a single wave-
length or multi-wavelength method. Linear regression (LR)
and multiple linear regression (MLR) are primarily used for
modeling. and is a simple and accurate method for water sam-
ples that are of uniform composition and remain relatively
similar over time; however, these methods are unsuitable for
water samples whose composition changes markedly with
time [10]–[13]. However, the full spectrum contains more
abundant information, which can effectively improve the
accuracy of CODmeasurement. Therefore, the application of
a combination of chemonetrics methods and a full spectrum
is the current development trend. For example, partial least
squares (PLS), support vector machine (SVM), random forest
regression (RFR), and artificial neural networks (ANNs),
have already been applied to UV-Vis spectroscopy to mea-
sure COD in water [14]–[22]. Machine learning algorithms
developed with the rise of artificial intelligence have the
characteristics of various types, flexible use, and fast opti-
mization speed, and can be improved. Both measurement
performance and the scope of application have made a quali-
tative leap. However, manymachine learning algorithms have
not yet been used in real-world water quality measurement
applications using UV-Vis spectroscopy, such as ensemble
learning methods, thus, there is still much work to be done.
Ensemble learning has achieved good results in applications
inmany fields and has the advantages of improving prediction
accuracy, and stability, and eliminating overfitting [23]–[27].
Therefore, this paper uses ensemble learning in COD mea-
surements based on UV-Vis spectroscopy to build a COD
calibration model. To improve model accuracy, the basic
ensemble learning method is improved to be more suitable
for the research demand of COD measurements.

This paper thus proposes an Improved-Bagging algorithm
based on elastic net regression. Drawing on the idea of the
two-phase learning of the Stacking algorithm, the ‘‘learning
method’’ is used to replace the ‘‘simple average’’ ensem-
ble strategy (regression problem) in the traditional Bagging
algorithm. Combined with the characteristics of elastic net
regression, which is simple and has a feature extraction
function, elastic net regression is used as the combination
(ensemble) strategy of base learners in Bagging algorithm.
Thus, the influence of the high collinearity among the base
learners in Bagging on the accuracy of the final ensemble
model can be mitigated. Therefore, elastic net regression is
used instead of simple averaging to improve the Bagging
algorithm. The improved algorithm can retain the advantages
of both the Bagging algorithm and the Stacking algorithm,
which can reduce the variance and bias concurrently. Thus,
the prediction accuracy of the Bagging model is improved.
In addition, a variety of spectrum denoising and dimension

reduction methods are used to preprocess the spectrum data
that are input to themode. Spectrum features that can compre-
hensively reflect the COD in water are extracted from high-
dimensional spectrum data, to speed up model convergence
and reduce computational complexity.

The remainder of this paper is organized as follows.
Section 2 presents the materials required for the experi-
ment and the proposed methods for spectrum modeling.
Section 3 reports the results of COD predictions from differ-
entmodels and discusses the prediction results. Section 4 con-
cludes the paper.

II. MATERIALS AND METHODS
A. INSTRUMENTS AND SAMPLES
1) EXPERIMENTAL INSTRUMENTS
The measurement of COD in water by UV-Vis spectroscopy
was performed with a COD measurement instrument system.
The system structure is shown in Figure 1 and is primarily
composed of a light source, sample cell, spectrometer and
a computer. The light source used in the experiment was
a DH-2000-DUV deuterium-halogen-tungsten light source,
which can provide 190-2500 nm light (Ocean Optics, USA).
The optical path length of the sample cell for water is
10mm. TheUV-VIS spectrometer used in the experiment was
USB2000+ and can measure light with wavelengths between
165 and 1200 nmwith a resolution of 0.45 nm (Ocean Optics,
USA). OceanView spectrum acquisition software was used
to analyze all data, comes with a spectrometer, and stores
the spectrum wavelength range from 193.91 to 1121.69 nm.
The baseline was corrected based on deionized water, and the
integration time of the spectrometer was 10 ms. Each water
sample was successively scanned 10 times, and the average
value was taken. A computer is used to save data, process data
and build models with the corresponding software.

FIGURE 1. Structure diagram of the COD measurement instrument system
based on the UV-Vis spectroscopy method.

2) EXPERIMENTAL SAMPLES
Water samples were collected from Qian Lake in the center
of Nanjing city, which is important to local fisheries, bird
habitats, water resources and the regional environment. The
water quality of this lake is affected by domestic sewage
from the growing urban population. Therefore, it is critical
for local residents to effectively measure and monitor water
quality, and to warn of water quality problems quickly. From
June 2019 to June 2020, water samples from the lake were
collected once per day (except holidays) for one year; a total
of 249 samples were collected throughout the year. Some
samples had many impurities, were not suitable for further
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research, and were not considered in this study. Concurrently,
considering the next step of sample set division, 240 samples
were selected from all collected samples. Each water sample
was divided into two parts: one was used to measure the stan-
dard value of COD, and the other was used to collect UV-Vis
spectrum data. To retain the original characteristics of the lake
water to the maximum extent, the collected water samples
should be immediately measured for UV-Vis spectroscopy
and COD standard values.

B. UV-VIS SPECTRUM COLLECTION AND COD STANDARD
VALUE MEASUREMENT
1) UV-VIS SPECTRUM COLLECTION
Using the UV-Vis spectrum collection instrument system
introduced in Figure 1, the collected water samples were
immediately measured for UV-Vis spectrum data. Baseline
correctionwas based on deionizedwater. The integration time
of the spectrometer was set to 10 ms, each water sample
was scanned 10 times, and the average value was taken. The
original UV-Vis spectra of 240 water samples are shown in
Figure 2.

FIGURE 2. Original UV-Vis spectra of 240 samples.

Figure 2 shows the curve of the original UV-Vis spectra of
the collected water samples. The curve trend of the original
spectrum data of the water samples collected at different
times is similar. A strong absorption peak is shown at approx-
imately 235nm, which is due to absorption by COD. Jumps
and pinnacles appear at approximately 500 nm and 680 nm,
which are due to the presence of noise in the spectrum.
Therefore, due to the deficiency of the collected spectra, it is
necessary to preprocess the collected spectra before building
a model to improve the accuracy of CODmeasurement based
on UV-Vis spectroscopy. Jumps and pinnacles at approxi-
mately 500 nm and 680 nm are non-sensical and are removed
before preprocessing.

2) COD STANDARD VALUE MEASUREMENT
According to the rapid digestion spectrophotometry method,
the COD of the collected water samples was measured
by a DRB200 digester and a DR3900 visible spectropho-
tometer (HACH, USA). The required chemical reagents and

water samples to be tested were fully mixed and put into a
DRB200 COD digester preheated to 165 ◦C in advance for
20 minutes. After digestion, each digestion tube was placed
onto the cooling shelf to cool. After cooling to room temper-
ature (25±1)◦C, color reagent was added to each digestion
tube. Finally, the COD value was measured with a DR3900
spectrophotometer.

C. SAMPLE SET DIVISION
A reasonable calibration set can improve the prediction abil-
ity of the built calibration model. Common sample selec-
tion methods include random sampling (RS), conventional
selection (CS), Kennard stone (KS) and sample set portion-
ing based on joint X-Y distance (SPXY) [28]–[31]. The
RS method cannot guarantee the representativeness of the
selected samples because it randomly selects the samples of
the calibration set. The CS method selects the samples
according to the chemical measurement values of the samples
and selects the samples with the maximum or minimum
chemical measurement values as the calibration set samples.
RS and CS are subjective in sample selection. The KSmethod
selects the two sample pairs with the farthest Mahalanobis
distance for inclusion in the calibration set; calculates the
distance from each remaining sample to each selected sam-
ple in the calibration set; determines the minimum distance
sample and the maximum distance sample; and adds them to
the calibration set. This step was repeated until the number
of samples in the calibration set met the requirements. The
SPXY algorithm is a new sample set division method based
on the KS algorithm and considers the scientific division
of the sample set by comprehensively considering the spec-
trum and chemical values of the samples. This algorithm has
the advantages of covering multidimensional vector space
and effectively improving the prediction performance of the
calibration model. According to the SPXY algorithm, the
calibration set and prediction set are divided according to
the ratio of 2:1; therefore, among the 240 water samples,
160 samples are used as the calibration set, and 80 samples
are used as the prediction set. The statistical characteristics of
the samples are shown in Table 1.

D. UV-VIS SPECTRUM PREPROCESSING
Due to the influence of experimental conditions including
spectrometer hardware and natural light, the original spec-
trum data collected will contain some noise, as shown in
Figure 2. If the original spectra are used directly, the relia-
bility and stability of the calibration model will be affected;
thus, it is important to preprocess the original spectrum data
properly in advance. By preprocessing the original spectrum
data, we can effectively reduce the influence of external
factors on the spectrum; improve the correlation between
the spectrum and the component to be measured; and then
build a robust and reliable prediction model. In this paper,
Gaussian smoothing (SG), Fourier transform (FT), wavelet
transform (WT) and EEMD-Based denoising algorithms are
used to process the spectrum, and the effects of the four
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TABLE 1. Statistical results of COD standard values of 240 water samples.

denoising algorithms are compared [32]–[36]. SG smoothing
is a type of linear smoothing method that is suitable for
eliminating Gaussian noise and is widely used in various data.
FT has a good effect on the denoising of stationary signals,
and WT denoising methods have been widely studied and
have achieved good results in a variety of spectral denoising
techniques. The EEMD-Based denoising method is a new
denoising method that has strong adaptability and plays an
important role in signal denoising.

E. SPECTRUM DIMENSION REDUCTION ALGORITHM
After denoising, the UV-Vis spectra collected by the instru-
ment system still have serious nonlinear or linear overlap,
and the spectrum data dimension is high. High-dimensional
data contain a large amount of redundant information and
hide important information. If the full UV-Vis spectrum is
used as the input variable of the calibration model, it will
lead to large computing resources and introduce the inter-
ference of unknown substances, thus reducing the mea-
surement accuracy and generalization performance of the
model. Therefore, it is necessary to reduce the dimension of
the high-dimensional spectrum, extract its effective feature
information, and improve the efficiency of model training
and generalization ability. Data dimension reduction can be
divided into two categories: feature transformation and fea-
ture selection. From the results of spectrum feature selection,
feature selection can be divided into continuous feature selec-
tion (wavelength interval selection) and discontinuous feature
selection (limited discontinuous wavelengths). According to
the results of spectrum feature dimension reduction, this
paper will select a representative algorithm from the feature
transformation, continuous feature selection and discontinu-
ous feature selection to analyze. PCA, interval partial least
squares (iPLS), and SCARS were used to reduce the dimen-
sion of the full UV-Vis spectrum, and the calibration model
performance of COD was analyzed [37]–[39].

F. MODELING ALGORITHM
1) BAGGING ALGORITHM
Bagging [40], [41] is an ensemble learning method, that uses
the same base learner (different data subsets) to generate
multiple different learners and combines these learners into
an ensemble model. The core idea of Bagging is bootstrap.
For a given dataset containing n samples, we first perform m
random samplings with replacement to obtain a data subset
containing m samples and use this data subset to train a base
learner. The operation is repeated T times, and T base learners
are generated. Due to the bootstrap sampling method, there

FIGURE 3. Schematic diagram of bagging algorithm.

are differences between the data subsets; thus, there are also
marked differences between the T base learners. Finally, the
T base learners are combined. For the regression problem,
the average method is used to combine the base learners.
For the classification problem, the voting method is used to
combine the base learners to produce a final ensemble model.
Among the T base learners, the accuracy of each base learner
is not necessarily high, but the result of their ensemble is very
high. A schematic diagram of Bagging algorithm is shown in
Figure 3.

The Bagging algorithm changes the distribution of the
original dataset by resampling and produces a number of
data subsets with differences. The more unstable the base
learner is to the data subset, the better the performance of
Bagging. Currently, decision tree (DT) and artificial neural
networks (ANNs) are commonly used as the base learners
of Bagging because these two algorithms are sensitive to
training data. Considering the limited number of samples
used in this paper, it is not suitable to use ANNs as the
base learner; thus, DT is used as the base learner. The pri-
mary advantage of the Bagging algorithm is to reduce model
variance; the increase in performance by reducing bias is
negligible. Therefore, this paper explores methods to reduce
Bagging bias.
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2) STACKING ALGORITHM
Stacking [42], [43] is also a famous ensemble learning
method and is different from Bagging in base learner selec-
tion. The base learner of Bagging is usually the same algo-
rithm (with different training data subsets), while the base
learner of Stacking algorithm is a different learning algo-
rithm. The Stacking algorithm trains base learners, takes
their outputs as inputs of the second learner (meta-learner),
and generates the final ensemble results through two-phase
learning. The Stacking algorithm first trains the first phase
learners from the original training dataset, and then uses the
prediction results of the first phase learners to form a new
dataset for training the meta-learner. A schematic diagram of
a two-phase Stacking algorithm is shown in Figure 4.

FIGURE 4. Schematic diagram of a two-phase Stacking algorithm.

Different from Bagging, Stacking divides the model into
two phases. The first phase trains the sample set and predicts
the results, and the meta-learner uses the results of the first
phase for further learning to find and correct the bias in the
first phase and improve the accuracy of the ensemble model.
Stacking is a generalization of ensemble strategy and is an
ensemble method based on the ‘‘learning method’’ that uses
meta-learner to replace the average method (regression prob-
lems) in Bagging to reduce model bias. Therefore, Stacking
can make full use of the advantages of two-phase learning,
reduce model bias, and improve the accuracy of the ensemble
model.

3) ELASTIC NET REGRESSION
In the standard linear regression model, the model relates y
to x as follows:

y = ωT xi + b (1)

The regression coefficients in ω can be estimated by
optimizing the following elastic net penalty function as

Equation (2). When using the elastic net penalty, we obtain
the elastic net regression [44]:

min
1
2

∑N

i=1

(
ωT xi + b− yi

)2
+ r ‖ω‖1 +

1− r
2
‖ω‖22 (2)

where {xi, yi} is the sample data, xi ∈ Rn is the independent
variable, and yi is the corresponding dependent variable.
ω ∈ Rn is the feature weight vector, and b ∈ Rn is the
intercept. 0 ≤ r ≤ 1 is the regularization parameter, which
controls how much of the loss function is ridge regression
and lasso regression.When r= 0, a complete ridge regression
is performed. When r = 1, a complete lasso regression is
performed.

As a typical linear regression technology, elastic net regres-
sion integrates the ridge regression and lasso regression
algorithms. Elastic net regression can shrink regression coef-
ficients while performing regularization to select character-
istic variables such as lasso regression and obtain a simpler
model. Elastic net regression can also select closely asso-
ciated variables, such ridge regression, to select features,
simplify the model, and ensure its stability. Therefore, elastic
net regression combines the advantage of ridge regression and
lasso regression, and performs feature extraction and regres-
sion analysis concurrently. Elastic net regression achieves
better performance with data that contain many characteristic
variables that are associated with each other.

4) IMPROVED-BAGGING ALGORITHM
When the Bagging algorithm is used to solve regression
problems, the ensemble of base learners is typically reported
as a simple average. However, there is a high collinearity
between the base learners, and the simple average between
the collinear variables is limited to improve model accuracy.
To eliminate the effects of collinearity, the meta-learner of
Stackingwas referenced, and the simple averagewas replaced
by the ‘‘learning method’’. The meta-learner selected in
this study should overcome the problem of high collinearity
between the base learners in Bagging and should avoid the
risk that the meta-learner is too complex to lead to overfitting
of the ensemble model. Therefore, the elastic net regression
algorithm is simple and performs feature extraction, which
can reduce the influence of the high collinearity between the
base learners in the Bagging algorithm. Therefore, elastic
net regression as a meta-learner is introduced to replace the
simple average to improve the Bagging algorithm. Elastic
net regression can make the improved Bagging (Improved-
Bagging) algorithm retain the advantages of both Bagging
algorithm and Stacking algorithm, which can reduce model
variance and bias concurrently. The Improved-Bagging algo-
rithm is shown in Figure 5.

The workflow of the Improved-Bagging algorithm is as
follows:

Input: Original data S =
{(
xp, yp

)
, p = 1, · · · ,N

}
;

Base learner f ;
Meta-learner h;
Number of base learners T.
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FIGURE 5. Schematic diagram of improved-bagging algorithm.

Phase 1:%Training base learners
for t = 1, . . . ,T:
St = Bootstrap(t) %Generating different data

subsets St from the original dataset S by the bootstrap
method

Ft = f (St) %Using data subset St for training the
base learner to obtain the prediction result Ft

end;
for n = 1, . . . , T: %Building a new dataset Dh used

for meta-learner training
X ′n = {F1 (xn) , · · · ,FT (xn)}
Dh =

{(
X ′n, yn

)
, n= 1, · · · ,T

}
% New dataset Dh

end;
Phase 2:%Training meta-learner

H = h (Dh)
Output: Ensemble mode H
Based on the two phases of the Improved-Bagging algo-

rithm, the Bagging algorithm first trains the base learner
f repeatedly using different data subset to obtain T base
prediction models F1, F2, · · · ,FT and outputs the prediction
results. Then, according to the outputs of the base learners,
a new dataset Dh for meta-learner training is constructed.
Finally, the new dataset Dh is used to train the meta-learner h
to obtain the ensemble model H.

G. MODEL TUNING
When the data set and model remain unchanged, tun-
ing model hyper-parameters is an effective method to
reduce model complexity and improve model accuracy. Grid

Search (GS) is a model parameter tuning method based
on traversal. With the improvement of computer hardware,
the computing power and speed of the computer have been
greatly improved. Therefore, more search levels and smaller
search steps can be set during GS to improve the accuracy of
the model. The hyper-parameters that the Improved-Bagging
algorithm needs to tune include the parameters of Improved-
Bagging and the parameters of the base learner (DT), forming
a two-level grid search. The root mean square error of calibra-
tion (RMSEC) is used as a fitness function to assess the pros
and cons of each group of parameters. The smaller the fitness
function value, the higher the model accuracy.

H. PERFORMANCE INDICES
Machine learning methods must be used to build a spectrum
data model, but different types of modeling methods have dif-
ferent advantages and disadvantages. Therefore, the compar-
ison of the prediction performance of different models must
use quantitative model performance indices. The evaluation
of the prediction performance of the model was based on
several performance indices, including R2, root mean square
error of calibration (RMSEC) and RMSEP, variance (s2). The
larger R2 and the smaller RMSEC/RMSEP are, the better the
model. The smaller RMSEC/RMSEP, the smaller model bias.
The smaller s2, the smaller model variance. The equations of
these performance indices are shown as follows:

R2
= 1−

∑n
i=1

(
ŷi − yi

)2∑n
i=1 (yi − ȳ)

2 (3)

RMSEC =

√
1

nc − 1

∑nc

i=1

(
ŷci − yci

)2 (4)

RMSEP =

√
1
np
∑np

i=1

(
ŷpi − ypi

)2
(5)

s2 =

∑nm
i=1

(
ŷpm−i − µ

)2
nm

(6)

where yi is the measured value based on the standard method;
ȳ is the average value of yi; ŷi is the predicted value based
on spectroscopy method; n is the number of samples; yci
is the measured value based the standard method of cali-
bration set; ŷci is the predicted value based on spectroscopy
method of calibration set; nc is the number of samples of
calibration set; ypi is the measured value based the standard
method of prediction set; ŷpi is the predicted value based on
the spectroscopy method with the prediction set; np is the
number of samples of prediction set;µ is the average value of(
ŷpm−1, ŷ

p
m−2, · · · , ŷ

p
m−n

)
; and nm is the number of predictions

for the same sample. The model variance (s2) represents the
variance of the predicted value for the same sample under
different calibration sets. In this paper, the sample with the
median value of COD in the calibration set and prediction set
(both COD = 46.3 mg/L) was used to calculate the variance.
Tenfold cross-validation modeling was used to predict the
sample (COD = 46.3 mg/L) 10 times, and the variance of
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FIGURE 6. UV-Vis spectra denoised by different methods. (a) GS denoising. (b) FT denoising. (c) WT denoising. (d) EEMD-based denoising.

the 10 prediction results was used to represent the variance of
the model.

III. RESULTS AND DISCUSSION
A. UV-VIS SPECTRUM PREPROCESSING
Figure 2 shows the original UV-Vis spectrum data curve
of water samples collected by the experimental instrument.
The trends of the original spectra of different water sam-
ples are relatively similar but contain considerable noise.
Figures 6(a) ∼ 6(d) show the spectra denoised by the SG, FT,
WT and EEMD-Based methods.

By comparing the denoised spectra in Figure 6 with the
original spectra in Figure 2, the denoised spectrum is shown
to retain the basic absorption characteristics of the original
spectrum. After processing by different denoising methods,
the jump and pinnacle noise in the original spectrum has
been reduced to some extent, and the EEMD-Based denoising
method achieves the best result. However, the influence of
different denoising methods on the COD prediction results
still must be studied in more detail via modeling.

B. MODEL PERFORMANCE OF FULL UV-VIS SPECTRUM
To study the processing results of different spectrum denois-
ing methods on the original UV-Vis spectra, and study the
fitting effect of the proposed modeling method on the spec-
trum data, this section compares the performance of the
combination of different spectrum denoising and modeling
methods on COD prediction. Data denoisingmethods include
raw UV-Vis spectra without any processing, GS, FT, WT and

EEMD-Based denoising. The modeling methods include DT,
Bagging, random forest (RF) and Improved-Bagging. The
COD prediction performance of the combination of differ-
ent spectrum denoising and modeling methods is shown in
Table 2.

Comparing the results shown in Table 2, if the modeling
method is the same, the model built by UV-Vis spectrum
denoised by EEMD-Basedmethod is better than other denois-
ing methods. The prediction set R2 is the largest, and the
RMSEP and variance are the smallest, which indicates that
the EEMD-Based denoising method is more effective; thus,
additional research is performed with EEMD-Based denois-
ing used during preprocessing. If the denoising method is
the same, the Improved-Bagging model is better than the
other two modeling methods, the prediction set R2 is the
largest, and the RMSEP and variance are the smallest, which
demonstrates the improved performance of the proposed
Improved-Bagging modeling method. Among the full spec-
trum prediction models of COD in water shown in Table 2,
the optimal prediction model is the UV-Vis spectrum pro-
cessed by the EEMD-Based denoising method and modeled
by Improved-Bagging algorithm. The R2 of the prediction set
was 0.9054, and the RMSEP and variance of the prediction
set were 7.11 mg/L and 6.73 mg2, respectively.

C. DIMENSION REDUCTION OF UV-VIS SPECTRUM
In this study, the original spectrum wavelength range is
193.91-1121.69 nm, and the spectrum resolution is 0.45 nm,
including 2048 wavelength features. Full spectrum modeling
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TABLE 2. COD prediction performance of combination of different denoising and modeling methods.

TABLE 3. Principal component contribution rate of PCA dimension reduction.

will lead to the input variable dimension being too high,
and the number of samples is far lower than the spectrum
feature dimension. These differences increase the complexity
of the calibration model, allowing the model to easily exhibit
overfitting; thus, feature dimension reduction is necessary.
Through feature dimension reduction, a COD prediction
model with better generalization ability is constructed.

1) PCA DIMENSION REDUCTION OF UV-VIS SPECTRUM
In this study, 240 water samples were collected, of which
160 water samples were used for the calibration set and
80 water samples were used for the prediction set. Before
PCA dimension reduction, EEMD-Based denoising prepro-
cessing is performed on the collected spectra, and the denois-
ing results are shown in Figure 6(d).

The PCA algorithm is used to reduce redundant informa-
tion for the input UV-Vis spectrum matrix (160 × 2048),
and results are shown in Table 3. Due to the limited space,
only the first five principal components and their contribution
rate and cumulative contribution rate are listed in the table.
The row of cumulative contribution rates in Table 3 shows
the first principal component contributed 90.4987% of the
contribution rate, and the cumulative contribution rate of
the first three principal components has reached 99.8444%,
which is sufficient to replace the information for the original
full spectrum. Adding the fourth principal component does
not significantly improve the cumulative contribution rate.

TABLE 4. Feature matrix by PCA dimension reduction.

Therefore, the original UV-Vis spectrum matrix can be sim-
plified to a 160 × 3 matrix after PCA dimension reduction,
as shown in Table 4. Due to space constraints, only part of
the sample dimension reduction results are shown. For the
UV-Vis spectrum of 80 water samples in the prediction set,
PCA dimension reduction was performed using the same
transformation strategy as the calibration set.

2) UV-VIS SPECTRUM WAVELENGTH INTERVAL
SELECTION BY IPLS
The spectrum preprocessed by the EEMD-Based method is
divided into n = 10, 20, 30, 40 and 50 subintervals. The
PLS regression model is constructed for each subinterval, and
the root mean square error of cross validation (RMSECV)
of the model is compared. A regression model with mini-
mum RMSECV under different subinterval divisions is built.
The correlation coefficient (R) and RMSECV/RMSEP were
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TABLE 5. Results of the best iPLS model with different interval divisions.

FIGURE 7. RMSECV value of each interval when the full spectrum is
divided into 20 subintervals by iPLS.

compared. Table 5 shows the best iPLS model results for the
full spectrum with different interval divisions.

Table 5 shows the UV-Vis spectrum is divided into differ-
ent subintervals, and the subintervals selected by the iPLS
method and the prediction results of the PLS model built in
the selected subinterval are different. When the full spectrum
is divided into 20 subintervals, the RMSECV value of the
iPLS model established in the first subinterval (wavelength
range 193.91-242.78 nm) is the smallest, reaches 5.46 mg/L,
and the number of optimal latent variables is 3, as shown
in Figure 7. In this case, the model accuracy in the wave-
length range is better than that in any other subinterval.
Figure 8 shows the scatter plot of the COD value predicted
by the optimal iPLS model and the COD standard value.
The prediction set R is 0.8811, and RMSEP is 5.68 mg/L.
Therefore, the wavelength range of 193.91-242.78 nm is the
optimal wavelength subinterval after dimension reduction by
the iPLS wavelength interval selection method.

3) SCARS WAVELENGTH SELECTION OF UV-VIS SPECTRUM
When using the SCARS algorithm to select feature wave-
lengths, it is necessary to first determine the optimal number
of principal components (latent variables) in the PLS model.
Initially, the maximum number of latent variables for the PLS
model is set to 15, and the Monte Carlo sampling times is
set to 3000. Figure 9 shows the RMSECV of the PLS model
with different latent variables. Figure 9 shows that when the
number of latent variables is 9, the minimum RMSECV is

FIGURE 8. Scatter plot of COD prediction results in optimal subinterval of
iPLS model and standard values of prediction set.

6.2604 mg/L; thus, the optimal number of latent variables for
the PLS model is 9.

Through many attempts to select a group of more appro-
priate SCARS parameters, this paper sets the Monte Carlo
sampling times to 200, the number of latent variables
to 9, and the number of cross validation groups to 10.
Figure 10 shows that as the number of samplings increases,
the number of optimized wavelength variables gradually
decreases. The RMSECV value decreased continuously
between 1 and 142 samplings, indicating that the variables
removed in the screening process did not affect COD pre-
diction. After 142 sampling, RMSECV began to rise, indi-
cating that COD-related variables began to be removed,
resulting in the increase in RMSECV. When the number
of samplings reached 142, the RMSECV was the smallest
(6.15 mg/L), and the corresponding feature wavelength sub-
set was optimal. The subset contained 14 feature wave-
lengths: 195.83 nm, 197.27 nm, 202.07 nm, 204.95 nm,
205.43 nm, 206.39 nm, 210.23 nm, 212.15 nm, 215.98 nm,
216.46 nm, 216.94 nm, 220.29 nm, 238.48 nm, 241.35 nm.
These wavelengths are the optimal wavelength features after
dimension reduction of the SCARS wavelength selection
method.

D. MODELS PERFORMANCE OF UV-VIS SPECTRUM AFTER
FEATURE DIMENSION REDUCTION
This section compares the performance of different spectrum
dimension reduction and modeling methods on COD pre-
diction. Data dimension reduction methods include the PCA
dimension reduction algorithm, iPLS wavelength interval
selection algorithm and SCARS feature wavelength selection
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TABLE 6. COD prediction performance of the combination of different spectrum dimension reduction and modeling methods.

FIGURE 9. RMSECV with the number of principal components.

FIGURE 10. Feature optimization process of SCARS method.

algorithm. The modeling methods include DT, Bagging,
RF and Improved-Bagging. The COD prediction perfor-
mance of the combination of different spectrum dimension
reduction and modeling methods is shown in Table 6.

According to the comparative analysis of Table 6, if the
model is the same, the model built by the UV-Vis spectrum
after SCARS dimension reduction achieves better perfor-
mance than the other two dimension reduction methods. The
prediction set R2 is the largest, and the RMSEP and vari-
ance are the smallest, indicating that the SCARS dimension

reduction method is more effective. In terms of the same
dimension reduction method, the model built by Improved-
Bagging is better than the other two modeling methods. Its
prediction set R2 is the largest, and the RMSEP and vari-
ance are the smallest, which also demonstrates the superi-
ority of the proposed Improved-Bagging modeling method.
Among all the built COD prediction models, the best COD
prediction model is the UV-Vis spectroscopy model through
EEMD-Based denoising, SCARS dimension reduction, and
Improved-Bagging modeling. The prediction set R2 of the
model is 0.9317, and the RMSEP and variance are 5.39 mg/L
and 5.53 mg2, respectively.

E. COMPARISON OF PREDICTION PERFORMANCE
OF ALL MODELS
The COD optimal prediction model obtained by each mod-
eling method is compared in Tables 2 and 6. The R2 and
RMSEC/RMSEP of each model’s calibration set and predic-
tion set show good consistency. In terms of the same spectrum
preprocessing method, the Improved-Bagging algorithm pro-
posed in this paper has better prediction performance than
the RF, Bagging algorithm and DT, which fully validates
the superiority of the proposed Improved-Bagging algorithm.
After spectrum preprocessing (denoising), the accuracy of
the COD prediction model can be improved to some extent.
Compared with full spectrum modeling, through feature
dimension reduction, the prediction accuracy of the COD
prediction model can be improved further. For the water COD
prediction model of the experimental water samples, the full
spectrumDTmodel of the raw spectrum has the worst predic-
tion performance, and the Improved-Bagging model, which
is denoised by the EEMD-Based algorithm and dimension
reduction by SCARS, has the best prediction performance.
The optimal model’s (EEMD-Based+SCARS+Improved-
Bagging model) prediction set R2 is 0.9317, and the RMSEP
and variance are 5.39 mg/L and 5.53 mg2, respectively. The
COD prediction values and standard value scatter plots of the
optimal model on the prediction set are shown in Figure 11.
Figure 11 shows that the model performs well on the pre-
diction set, and the prediction values and the standard values
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FIGURE 11. Scatter plot of COD prediction values and standard values
based on EEMD-Based+SCARS+improved-bagging.

are similar, indicating that the prediction model built by
this research has good robustness and adaptability, and can
complete COD measurements in water accurately.

IV. CONCLUSION
Using the UV-Vis spectroscopy method to measure COD in
water, an effective prediction model can be built using the
UV-Vis spectrum of the water and the COD values. This
paper proposed a model optimization method that used elas-
tic net regression to improve the Bagging algorithm. Also,
the input UV-Vis spectrum of the model was processed by
spectrum preprocessing algorithms to further improve model
performance. Results show that the prediction performance
of Improved-Bagging algorithm is better than that of the tra-
ditional Bagging algorithm, and its prediction accuracy and
generalization ability have been markedly improved. Appro-
priate denoising and feature dimension reduction meth-
ods can effectively reduce non-informative features, extract
important features, and create a more accurate COD pre-
diction model. Research shows that UV-Vis spectroscopy
combined with the Improved-Bagging modeling method can
perform COD measurements in water accurately. UV-Vis
spectroscopy can thus be a new method for COD measure-
ment in water.
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