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ABSTRACT This paper aims to propose an improved method capable of designing a sampled-data control
for linear systems. To this end, a refined two-sided looped functional method is proposed such that the
chosen Lyapunov-Krasovskii functional can contain more input-delay-dependent state information based
on the two-sided sampling interval. Furthermore, two novel zero equality constraints are introduced to
strengthen the relationship between the input-delay-dependent states and the current states. Finally, through
two illustrative examples, the effectiveness of the proposed method is verified by comparing the maximum
allowable sampling interval and computational complexity with other existing methods.

INDEX TERMS Sampled-data systems, looped-functional, input-delay-dependent state.

I. INTRODUCTION
In the past decade, the sampled-data control method has been
widely studied and applied in many fields such as automotive
control systems, embedded control systems, manufacturing
machine control systems, and power grid control systems
(refer to [1]–[3] and references therein). The reason is that
compared to analog control systems, the sampled-data control
systems have the following advantages: (i) the reliability and
accuracy, (ii) the ease of changing the implemented con-
trol algorithm, and (iii) the extensibility to networked and
event-triggered control systems. In particular, the sampled-
data control scheme can provide a criterion for obtaining the
maximum allowable sampling interval required to reduce the
computational load of digital controllers. Thus, as the devel-
opment of digital technology accelerates, the importance of
sampled-data control theory continues to be emphasized.

Following this trend, various attempts have been made
to develop effective sampled-data control techniques that
can increase the maximum allowable sampling interval. To
be specific, three main approaches have been proposed in
the literature: (i) the input delay approach that incorporates
the time delay resulting from the sampling process into the
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control input, (ii) the discrete-time approach that transforms
the sampled-data system into a discrete-time parameter vary-
ing system, and (iii) the impulsive model approach that uti-
lizes the impulsive modeling of sampled-data systems (see
[4]–[6]). Among them, the input delay approach has been rec-
ognized as the most popular approach, which can be specifi-
cally classified according to Lyapunov-Krasovskii functional
methods such as the time-dependent Lyapunov functional
method [7], the discontinuous Lyapunov functional method
[8], [9], and the looped-functional-based method [10], [11].
In detail, the time-dependent Lyapunov functional method is
given to capture information about the sawtooth structure of
sampling pattern. Furthermore, the discontinuous Lyapunov
functional method is devised to efficiently deal with the dis-
continuity of control signals in sampled-data control systems.
Recently, the looped-functional method is used to obtain
less conservative stability criteria by relaxing the positive
condition of the functional during the sampling intervals. As a
representative study, [12] has utilized the looped-functional
method to address the aperiodic sampled-data control for
fuzzy systems. Furthermore, [13] has presented the two-sided
looped-functional method to take full consideration of the
information about the sampling interval. Meanwhile, to deal
with the integral terms derived from the time-derivative of
the Lyapunov-Krasovskii functional, the following inequality
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approaches have been proposed: the Jensen’s inequality [14],
the Wirtinger’s inequality [15], and the free-matrix-based
integral inequality [16]. Recently, [17]–[19] have proposed
the input-delay-dependent vector approach to fully exploit
the information about the actual sampling pattern. How-
ever, it should be noted that there is still room for further
improvement in [17]–[19], because (i) the used Lyapunov-
Krasovskii functional can be generalized in such a way that
it contains more input-delay-dependent state information on
sampling interval and (ii) the relationship between the input-
delay-dependent states and the current states can be further
enhanced.

Motivated by the aforementioned discussion, this paper
focuses on dealing with the stability analysis and control
design problem of sampled-data control systems. In partic-
ular, considerable efforts are made to develop an effective
method that can provide the stabilization conditions in a less
conservative manner. Overall, the main contributions of this
paper can be summarized as follows:
• Compared to [13], [17], [25], this paper proposes

a refined two-sided looped functional method such
that the chosen Lyapunov-Krasovskii functional can
contain more input-delay-dependent state information
based on the two-sided sampling interval.

• To achieve the less conservative stability and stabi-
lization conditions, different from [13], [17], [25], this
paper proposes two novel zero equality constraints
that can strengthen the relationship between the input-
delay-dependent states and the current states through
two time-varying weighting factors.

• To obtain a set of linear matrix inequality (LMI)-based
conditions from the time derivative of the proposed
Lyapunov-Krasovskii functional, a proper free-matrix-
based integral inequality and a relaxation process for
the time-varying weighting factors are presented in this
paper.

Finally, two illustrative examples are provided to verify the
effectiveness of the proposed method. The rest of the paper is
organized as follows. Section 2 presents the system model
and the preliminary results. Section 3 proposes the stabil-
ity and stabilization conditions for the closed-loop system.
Section 4 shows the illustrative examples. Finally, the paper
is concluded in Section 5.

Notations: The notationsN andR represent sets of natural
numbers (including zero) and real numbers, respectively. For
any matrix X ∈ Rn×n, the notations X > 0 (or X ≥ 0)
mean thatX is positive definite (or positive semi-definite), the
notations X−1 and XT signify the inverse and the transpose
of X , respectively. In symmetric block matrices, (∗) is used
as an ellipsis for terms induced by symmetry. The operator⊗
denotes the Kronecker product, He{Q} is used to represent
Q+QT for any square matrix Q, diag(·) stands for a block-
diagonal matrix, and col(v1, v2, . . . , vn) =

[
vT1 v

T
2 · · · v

T
n
]T

for scalars or vectors vi. The notations 0n×m is the n ×
m-dimensional zero matrix, and In is the n × n-dimensional
identity matrix.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
This paper aims to propose an improvedmethod for designing
a sampled-data controller that stabilizes the following linear
continuous-time system:

ẋ(t) = Ax(t)+ Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state and the
control input, respectively; A and B represent real constant
system matrices with appropriate dimensions. To this end,
this paper considers the following sampled-data control law:

u(t) = Fx(tk ), t ∈ [tk , tk+1), ∀k ∈ N, (2)

where F ∈ Rm×n denotes the control gain to be designed
later; and x(tk ) denotes the sampled state at a specified time
tk such that 0 = t0 < t1 < · · · < tk < · · · < t∞. Further-
more, in (2), the sampling interval between two consecutive
sampling instants tk and tk+1 is defined to be expressed in a
periodic (ψ1 = ψ2) or aperiodic (ψ1 < ψ2) form:

hk = tk+1 − tk , 0 < ψ1 ≤ hk ≤ ψ2, ∀k ∈ N, (3)

where ψ1 and ψ2 indicate the lower and upper bounds of
sampling interval, respectively. As a result, the closed-loop
system with (1) and (2) is described as follows:

ẋ(t) = Ax(t)+ BFx(tk ). (4)

Throughout this paper, the following lemmas will be used.
Lemma 2.1 ([20]): Let x be a differentiable function:

[a, b]→ Rn. Then, for any η(t) ∈ Rp, 0 < R = RT ∈ Rn×n,
M ∈ Rn×p, and N ∈ Rn×p, the following inequality holds:

−

∫ b

a
ẋT (τ )Rẋ(τ )dτ

≤ (b− a)
(
ηT (t)8η(t)+ 2ηT (t)NT (x(b)+x(a))

)
+2ηT (t)

(
MT (x(b)−x(a))−2NT

∫ b

a
x(τ )dτ

)
,

where 8 = MTR−1M + (b−a)2
3 NTR−1N ∈ Rp×p.

Lemma 2.2 ([17]): Let x be a differentiable function:
[a, b]→ Rn. Then, for any η(t) ∈ Rp, 0 < R = RT ∈ Rn×n,
and M ∈ Rn×p, the following inequality holds:

−

∫ b

a
ẋT (τ )Rẋ(τ )dτ ≤ (b− a)ηT (t)MTR−1Mη(t)

+2ηT (t)MT (x(b)− x(a))).
III. CONTROL SYNTHESIS
For the sake of technical simplicity, let us define

α1(t) = t − tk , α2(t) = tk+1 − t,

which lead to α̇1(t) = 1 and α̇2(t) = −1. In add-
ition, let us establish the following augmented states and the
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block entry matrices:

• η(t) = col
{
x(t), α1(t)x(t), α2(t)x(t),

x(tk ), x(tk+1),
∫ t

tk
x(τ )dτ,

∫ tk+1

t
x(τ )dτ, ẋ(t),

α1(t)ẋ(t), α2(t)ẋ(t)
}
∈R10n, (5)

• eq =
[
0n×(q−1)n In 0n×(10−q)n

]
∈ Rn×10n,

∀q = 1, 2, . . . , 10.

Then, letting

• η1(t) = col
{
x(t)− x(tk ), α1(t)x(t),

∫ t

tk
x(τ )dτ

}
= 41η(t) ∈ R3n,

• η̇1(t) = 4̄1η(t) ∈ R3n,

• η2(t) = col
{
x(tk+1)− x(t), α2(t)x(t),

∫ tk+1

t
x(τ )dτ

}
= 42η(t) ∈ R3n,

• η̇2(t) = 4̄2η(t) ∈ R3n,

where

4T
1 =

[
eT1 − e

T
4 eT2 eT6

]
,

4̄T
1 =

[
eT8 eT1 + e

T
9 eT1

]
,

4T
2 =

[
eT5 − e

T
1 eT3 eT7

]
,

4̄T
2 =

[
−eT8 −e

T
1 + e

T
10 −e

T
1

]
,

we can choose the following Lyapunov-Krasovskii functional
candidate:

V (t) = V1(t)+ V2(t)+ V3(t), for t ∈ [tk , tk+1), (6)

where

V1(t) = xT (t)Px(t),

V2(t) = α2(t)ηT1 (t)Q1η1(t)+ α1(t)ηT2 (t)Q2η2(t)

+2ηT1 (t)Q3η2(t),

V3(t) = α2(t)V31(t)− α1(t)V32(t),

V31(t) =
∫ t

tk
ẋT (τ )R1ẋ(τ )dτ, (7)

V32(t) =
∫ tk+1

t
ẋT (τ )R2ẋ(τ )dτ, (8)

in which 0 < P = PT ∈ Rn×n, Q1 = QT1 , Q2 = QT2 , Q3 ∈

R3n×3n, and R1 = RT1 , R2 = RT2 ∈ Rn×n.
Remark 1: The functions V2(t) and V3(t) satisfy the loop-

ing conditions, i.e., limt→t−k+1
Vi(t) = 0 and Vi(tk+1) = 0,

for i = 2, 3. Thus, according to the looped-functional-based
approach [21], [22], the positive definiteness of V2(t) and
V3(t) can be relaxed on the sampling interval.
Remark 2: Similar to [17]–[19], our approach is devel-

oped based on the looped-functional framework and the
input-delay-dependent vector approach. However, to obtain
less conservative stabilization conditions of (4), this paper
proposes a refined two-sided looped-functional method by

incorporating more information about the following input-
delay-dependent states into the Lyapunov-Krasovskii func-
tional: (t−tk )x(t), (tk+1−t)x(t), (t−tk )ẋ(t), and (tk+1−t)ẋ(t),
for t ∈ [tk , tk+1).
The following theorem provides the stability criterion of
closed-loop system (4).
Theorem 3.1: Let the scalar values ψ1 and ψ2 be pre-

scribed such that 0 < ψ1 ≤ ψ2. Suppose that
there exist matrices 0 < P = PT ∈ Rn×n, Q1 = QT1 ,
Q2 = QT2 , Q3 ∈ R3n×3n, R1 = RT1 , R2 = RT2 ∈ Rn×n,
M1,M2 ∈ Rn×10n, N1, N2 ∈ Rn×10n, S1, S2, S3, S4 ∈ R10n×n,
G1, G2, G3, G4, G5 ∈ Rn×n, and G ∈ Rn×n such that for all
p, ν ∈ {1, 2}, the following conditions hold:

0 >

∑9
i=1 Ti + ψν9p (∗) (∗)
ψνMp −ψνRp 0
ψνψ2Np 0 −3ψνRp

 , (9)

where

T1 = He
{
eT1 Pe8

}
,

T2 =−4
T
1Q141+4

T
2Q242 + He

{
4T

1Q34̄2+4̄
T
1Q342

}
,

T3 = He
{
(eT1 − e

T
4 )M1 − 2eT6N1

}
,

T4 = He
{
(eT5 − e

T
1 )M2 − 2eT7N2

}
,

T5 = He
{
S1e2 + S2e9

}
, T6 = He

{
S3e3 + S4e10

}
,

T7 = He
{(
eT1G

T
1 +e

T
8G

T
2
)(
− e8+Ae1+BFe4

)}
,

T8 = He
{(
eT2G

T
3 +e

T
9G

T
4
)(
− e9+Ae2

)}
,

T9 = He
{(
eT3G

T
5 +e

T
10G

T )(
− e10+Ae3

)}
,

91 = He
{
4T

2Q24̄2 + (eT1 + e
T
4 )N1 − S1e1 − S2e8

}
+He

{(
eT2G

T
3 + e

T
9G

T
4
)
BFe4

}
+ eT8 R2e8,

92 = He
{
4T

1Q14̄1 + (eT1 + e
T
5 )N2 − S3e1 − S4e8

}
+He

{(
eT3G

T
5 + e

T
10G

T )BFe4}+ eT8 R1e8.
Then, closed-loop system (4) is asymptotically stable.

Proof: The time derivatives of V1(t), V2(t), and V3(t) are
given as follows:

V̇1(t) = ηT (t)T1η(t), (10)

V̇2(t) = ηT (t)
(
T2 + α2(t)He

{
4T

1Q14̄1
})
η(t)

+ ηT (t)
(
α1(t)He

{
4T

2Q24̄2
})
η(t), (11)

V̇3(t) = −V31(t)− V32(t)

+ ηT (t)
(
α2(t)eT8 R1e8+α1(t)e

T
8 R2e8

)
η(t). (12)

Furthermore, based on α1(t) ≤ ψ2 and α2(t) ≤ ψ2,
Lemma 2.1 offers

−V31(t) ≤ ηT (t)

×

(
α1(t)

(
81 + He

{
(eT1 + e

T
4 )N1

} )
+ T3

)
η(t),

(13)
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−V32(t) ≤ ηT (t)

×

(
α2(t)

(
82 + He

{
(eT1 + e

T
5 )N2

} )
+ T4

)
η(t),

(14)

where 8p = MT
p R
−1
p Mp +

ψ2
2
3 N

T
p R
−1
p Np, for p = 1, 2.

In addition, it is worth noticing that from (5), the following
zero equalities hold:

0 = 2ηT (t)
[
S1 S2

] [ e2 − α1(t)e1
e9 − α1(t)e8

]
η(t)

= ηT (t) (T5 − α1(t)He {S1e1 + S2e8}) η(t), (15)

0 = 2ηT (t)
[
S3 S4

] [ e3 − α2(t)e1
e10 − α2(t)e8

]
η(t)

= ηT (t) (T6 − α2(t)He {S3e1 + S4e8}) η(t). (16)

Subsequently, from (4), it also holds that

• e8η(t) =
(
Ae1 + BFe4

)
η(t), (17)

• e9η(t) =
(
Ae2 + α1(t)BFe4

)
η(t), (18)

• e10η(t) =
(
Ae3 + α2(t)BFe4

)
η(t), (19)

which leads to

0 = 2ηT (t)
(
eT1G

T
1 + e

T
8G

T
2
)(
− e8 + Ae1 + BFe4

)
η(t)

= ηT (t)T7η(t), (20)

0 = 2ηT (t)
(
eT2G

T
3 + e

T
9G

T
4
)(
− e9 + Ae2 + α1(t)BFe4

)
η(t)

= ηT (t)
(
T8 + α1(t)BFe2

)
η(t), (21)

0 = 2ηT (t)
(
eT3G

T
5 + e

T
10G

T )(
− e10 + Ae3 + α2(t)BFe4

)
η(t)

= ηT (t)
(
T9 + α2(t)BFe2

)
η(t). (22)

As a result, by combining (10)–(12), (15), (16), (20)–(22),
and by applying (13) and (14), we can obtain

V̇ (t) ≤ ηT (t)9η(t), (23)

where

9 =
∑9

i=1 Ti +
α1(t)
hk

hk
(
91 +81

)
+

α2(t)
hk

hk
(
92 +82

)
.

(24)

Accordingly, from (26), it can be seen that the stability con-
dition V̇ (t) < 0 is ensured by 9 < 0. Finally, since α1(t)

hk
and α2(t)

hk
belong to the unit simplex and hk ∈ [ψ1, ψ2] holds,

the condition 9 < 0 can be expressed as a linear convex
combination of

∑9
i=1 Ti + ψν

(
9p + 8p

)
, for p, ν = 1, 2,

which can be transformed into (9) by Schur complement. �
Remark 3: In this paper, we have introduced two

additional zero equality constraints (21) and (22) that
can strengthen the relationship between the input-delay-
dependent states and the current states using the weighting
factors α1(t) and α2(t), which plays an important role in
deriving less conservative stabilization conditions.

The following theorem provides the stabilization condi-
tions of closed-loop system (4).
Theorem 3.2: Let the scalar values ψ1, ψ2, λ1, λ2, λ3, λ4

and λ5 be prescribed such that 0 < ψ1 ≤ ψ2. Suppose that
there exist matrices 0 < P̄ = P̄T ∈ Rn×n, Q̄1 = Q̄T1 ,

Q̄2 = Q̄T2 , Q̄3 ∈ R3n×3n, R̄1 = R̄T1 , R̄2 = R̄T2 ∈ Rn×n,
M̄1, M̄2 ∈ Rn×10n, N̄1, N̄2 ∈ Rn×10n, S̄1, S̄2, S̄3, S̄4 ∈ R10n×n,
Ḡ ∈ Rn×n, and F̄ ∈ Rm×n such that for all p, ν ∈ {1, 2}, the
following conditions hold:

0 >

∑9
i=1 T̄i + ψν9̄p (∗) (∗)
ψνM̄p −ψν R̄p 0
ψνψ2N̄p 0 −3ψν R̄p

 , (25)

where

T̄1 = He
{
eT1 P̄e8

}
,

T̄2 = −4
T
1 Q̄141+4

T
2 Q̄242+He

{
4T

1 Q̄34̄2 + 4̄
T
1 Q̄342

}
,

T̄4 = He
{
(eT1 − e

T
4 )M̄1 − 2eT6 N̄1

}
,

T̄3 = He
{
(eT5 − e

T
1 )M̄2 − 2eT7 N̄2

}
,

T̄5 = He
{
S̄1e2 + S̄2e9

}
, T̄6 = He

{
S̄3e3 + S̄4e10

}
,

T̄7 = He
{(
λ1eT1 + λ2e

T
8
)(
− Ḡe8 + AḠe1 + BF̄e4

)}
,

T̄8 = He
{(
λ3eT2 + λ4e

T
9
)(
− Ḡe9 + AḠe2

)}
,

T̄9 = He
{(
λ5eT3 + e

T
10
)(
− Ḡe10 + AḠe3

)}
,

9̄1 = He
{
4T

2 Q̄24̄2 + (eT1 + e
T
4 )N̄1 − S̄1e1 − S̄2e8

}
+He

{(
λ3eT2 + λ4e

T
9
)
BF̄e4

}
+ eT8 R̄2e8,

9̄2 = He
{
4T

1 Q̄14̄1 + (eT1 + e
T
5 )N̄2 − S̄3e1 − S̄4e8

}
+He

{(
λ5eT3 + e

T
10
)
BF̄e4

}
+ eT8 R̄1e8.

Then, closed-loop system (4) is asymptotically stable, and the
control gain is designed as follows: F = F̄Ḡ−1.

Proof: Since the (10, 10)th block matrix of (25) is neg-
ative definite, it holds that He{−Ḡ} < 0, which means
Ḡ is nonsingular. Thus, based on Ḡ, we can construct the
following congruent transformation matrices:

Ḡ3 = I3 ⊗ Ḡ, Ḡ10 = I10 ⊗ Ḡ,

which lead to

41Ḡ10 = Ḡ341, 42Ḡ10 = Ḡ342, 4̄1Ḡ10 = Ḡ34̄1,

4̄2Ḡ10 = Ḡ34̄2, eqḠ10 = Ḡeq, ∀q = 1, 2, . . . , 10.

Furthermore, letting G = Ḡ−1, and Gi = λiḠ−1, for i =
1, 2, . . . , 5, and using the following replacement variables:

Q̄1 = ḠT3Q1Ḡ3, Q̄2 = ḠT3Q2Ḡ3, Q̄3 = ḠT3Q3Ḡ3,

R̄1 = ḠTR1Ḡ, R̄1 = ḠTR1Ḡ, M̄1 = ḠTM1Ḡ10,

M̄2 = ḠTM2Ḡ10, N̄1 = ḠTN1Ḡ10, N̄2 = ḠTN2Ḡ10,

S̄1 = ḠT10S1Ḡ, S̄2 = ḠT10S2Ḡ, S̄3 = ḠT10S3Ḡ,

S̄4 = ḠT10S4Ḡ, P̄ = ḠTPḠ, F̄ = FḠ,

we can obtain

ḠT10TiḠ10 = T̄i, ∀i = 1, 2, . . . , 9,

ḠT109pḠ10 = 9̄p, ∀p = 1, 2.

Therefore, pre- and post-multiply (9) by diag(ḠT10, Ḡ
T , ḠT )

and its transpose, we can transform (9) into (25). �
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Remark 4: The conditions of Theorem 3.1 can be used to
analyze the stability of the closed-loop system (4) under a
given control gain, and the conditions of Theorem 3.2 can be
used to design a control gain that stabilizes the closed-loop
system (4). Furthermore, to derive the LMI-based stabiliza-
tion conditions of Theorem 3.1 from Theorem 3.2, the deci-
sion variable Gi is set to Gi = λiG, where λi plays a key role
in changing GBF and GiBF into BF̄ and λiBF̄ through the
congruent transformation and variable replacement methods.

As a by-product, the following corollary provides the stabi-
lization conditions of closed-loop system (4), obtained from
Lemma 2.2.
Corollary 3.1: Let the scalar values ψ1, ψ2, λ1, λ2, λ3, λ4

and λ5 be prescribed such that 0 < ψ1 ≤ ψ2. Suppose that
there exist matrices 0 < P̄ = P̄T ∈ Rn×n, Q̄1 = Q̄T1 , Q̄2 =

Q̄T2 , Q̄3 ∈ R3n×3n, R̄1 = R̄T1 , R̄2 = R̄T2 ∈ Rn×n, M̄1, M̄2 ∈

Rn×10n, S̄1, S̄2, S̄3, S̄4 ∈ R10n×n, Ḡ ∈ Rn×n, and F̄ ∈ Rm×n

such that for all p, ν ∈ {1, 2}, the following conditions hold:

0 >
[∑9

i=1 T̄i + ψν9̄p (∗)
ψνM̄p −ψν R̄p

]
, (26)

where

T̄1 = He
{
eT1 P̄e8

}
,

T̄2 = −4
T
1 Q̄141 +4

T
2 Q̄242 + He

{
4T

1 Q̄34̄2 + 4̄
T
1 Q̄342

}
,

T̄4 = He
{
(eT1 − e

T
4 )M̄1

}
,

T̄3 = He
{
(eT5 − e

T
1 )M̄2

}
,

T̄5 = He
{
S̄1e2 + S̄2e9

}
, T̄6 = He

{
S̄3e3 + S̄4e10

}
,

T̄7 = He
{(
λ1eT1 + λ2e

T
8
)(
− Ḡe8 + AḠe1 + BF̄e4

)}
,

T̄8 = He
{(
λ3eT2 + λ4e

T
9
)(
− Ḡe9 + AḠe2

)}
,

T̄9 = He
{(
λ5eT3 + e

T
10
)(
− Ḡe10 + AḠe3

)}
,

9̄1 = He
{
4T

2 Q̄24̄2 − S̄1e1 − S̄2e8
}

+He
{(
λ3eT2 + λ4e

T
9
)
BF̄e4

}
+ eT8 R̄2e8,

9̄2 = He
{
4T

1 Q̄14̄1 − S̄3e1 − S̄4e8
}

+He
{(
λ5eT3 + e

T
10
)
BF̄e4

}
+ eT8 R̄1e8.

Then, closed-loop system (4) is asymptotically stable, and the
control gain is designed as follows: F = F̄Ḡ−1.

Proof: In the same derivation process in Theorem 3.1
and Theorem 3.2, stabilization conditions (26) can be
obtained by using Lemma 2.2 instead of Lemma 2.1, i.e., by
setting N = 0. �
Remark 5: Since the free-matrix-based integral inequality

used in [25] can be converted into Lemma 2.2 by setting
N1 = M , N2 = 0, and N3 = 0, it can be seen that
Lemma 2.2 corresponds to a conservative case of [25] and
Lemma 2.1. Hence, Corollary 3.1 can be used to show that
our performance improvement is not achieved solely through
the use of free-matrix-based integral inequality.

FIGURE 1. State response of closed-loop system.

Remark 6: The number of scalar variables (NSVs) for the
LMI-based conditions in Theorem 3.1, Theorem 3.2, and
Corollary 3.1 are given as follows:

• Theorem 3.1 : NSVs = 105.5n2 + 4.5n,

• Theorem 3.2 : NSVs = 100.5n2 + 4.5n+ mn,

• Corollary 3.1 : NSVs = 80.5n2 + 4.5n+ mn.

IV. ILLUSTRATIVE EXAMPLES
Example 1 (For Stability Analysis): Let us consider the fol-
lowing linear sampled-data system adopted in [24], [25]:

A =
[
−1 0
1 −2

]
, BF =

[
−1 1
1 0

]
. (27)

Then, as a simulation result for (27), Table 1 shows the
comparison of the maximum allowable sampling inter-
vals obtained by [15, Theorem 7], [23, Theorem 2],
[24, Theorem 4], [25, Theorem 1], and Theorem 3.1. As can
be seen in Table 1, the proposed method achieves a less con-
servative result than those of [15], [23]–[25]. Especially, from
Table 1, it can be found that the proposed method guarantees
an improved sampling interval despite using fewer NSVs than
that of [25]. Moreover, for ψ1 = 10−5 and ψ2 = 8.7530,
Fig. 1 shows the state response of closed-loop system with
x(0) =

[
0.2 −0.1

]T . As can be seen in Fig. 1, the state
converges to zero as time increases, which clearly verifies our
result listed in Table 1.
Example 2 (For Control Design): Let us consider the fol-

lowing inverted pendulum system used in [25]:

ẋ(t) =


0 1 0 0
0 0 − gm1

m2
0

0 0 0 1
0 0 g

l 0

 x(t)+


0
1
m2
0
−

1
m2l

Fx(tk ), (28)

where x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T indicates the state in
which x1(t), x2(t), x3(t), and x4(t) represent the cart position
(m), the cart velocity (m/s), the pendulum angle (rad), and
pendulum angle velocity (rad/s), respectively. In detail, m1,
m2, l, and g denote the pendulum mass (kg), the cart mass
(kg), the pendulum length (m), and the gravitational accel-
eration (m/s2), respectively. Then, for m1 = 1, m2 = 10,
l = 3, and g = 10, Table 2 shows the maximum sampling
intervals obtained by [25, Theorem 1], Corollary 3.1, and
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TABLE 1. Maximum allowable sampling interval ψ2 for ψ1 = 10−5.

TABLE 2. Maximum allowable sampling interval ψ2 for ψ1 = 10−5.

FIGURE 2. Simulation result: (a) state response and (b) control input.

Theorem 3.2 with λ1 = 8000, λ2 = 50, λ3 = 2, λ4 = 6,
and λ5 = 1. As can be seen in Table 2, Corollary 3.1
and Theorem 3.2 achieve both less conservative results and
lower computational complexity than [25]. In particular, it is
worth noting that Corollary 3.1 also provides an improved
result compared to [25], despite using a conservative free-
matrix-based integral inequality. Accordingly, as mentioned
in Remark 5, this comparison reveals that our performance
improvement is not dependent only on the use of the free-
matrix-based integral inequality. Meanwhile, for ψ1 = 10−5

and ψ2 = 0.5290, Theorem 3.2 provides the following
control gain:

F =
[
5.8264 35.1537 384.2357 206.6447

]
.

In addition, for this solution, Figs. 2-(a) and (b) show the
state response of closed-loop system and the control input,
respectively, where x(0) =

[
0.98 0 0.2 0

]T . As can be seen
in Fig. 2, the state converges to zero as time increases, which
demonstrates the availability of the above control gain as well
as our result listed in Table 2.

Remark 7: Since Theorem 3.1 and Theorem 3.2 serve dif-
ferent purposes as mentioned in Remark 4, Table 1 (for the
stability analysis) and Table 2 (for the control synthesis) do
not provide comparisons between Theorem 3.1 and Theo-
rem 3.2, but provide comparisons with other studies for their
respective purposes.

V. CONCLUDING REMARKS
This paper has investigated the stability and stabilization
problem of sampled-data control systems. In particular, to
obtain less conservative stability and stabilization conditions,
a refined Lyapunov-Krasovskii functional and two new zero
equalities have been proposed. Then, the effectiveness of the
proposed method has been verified through two examples.
In future research, the proposed method will be extended
to variable systems such as nonlinear systems, time-delay
systems, and multi-agent systems.
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