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ABSTRACT During the past several years, the need for on-device deep learning has rapidly increased,
and the performance of mobile GPUs has significantly increased. As a viable approach for efficient
on-device deep learning, INT8 quantized inference has been actively studied and proposed but there are
currently few frameworks that support INT8 quantization for mobile GPUs. This paper presents a unified
framework that integrates various INT8 quantization methods, such as symmetric, asymmetric, per-layer,
and per-channel, and discusses their impact on accuracy and efficiency on recent mobile GPUs. Moreover,
we discuss the performance and accuracy of INT8 quantized Winograd convolution and propose INT8
Winograd convolution with F(2 × 2, 3 × 3), where weight tensors are quantized in INT4 and input tensors
are quantized in INT6. We evaluated the performance of INT8 methods, including INT8 Winograd, for
ResNet50, MobileNet-v1, and VGG16 on Mali G52, G72, and G76 GPUs on Odroid N2, Galaxy S9, and
Galaxy Note 10+, respectively. INT8 quantized inference based on General Matrix Multiplication (GEMM)
was 1.67× faster than FP32 GEMM for ResNet50 on Mali G52, and was further accelerated by batch
normalization folding and by the proposed INT8 Winograd convolution, achieving 2.45× speedup in total
with an accuracy loss of only 0.31%p.

INDEX TERMS On-device deep learning, INT8 quantization, INT8 Winograd convolution, mobile GPU.

I. INTRODUCTION
Deep learning has become a prevalent approach and demand
for on-device deep learning in particular has rapidly increased
in various domains such as autonomous driving, smart IoT,
robots, and so forth. On-device deep learning offers sev-
eral significant advantages compared with cloud based deep
learning where the device connects to the cloud whenever it
needs to process a deep learning task; (i) Users do not need to
send private data to the cloud, and (ii) network communica-
tion is not required, and hence (iii) energy consumption and
latency can be reduced.

However, mobile devices have significantly limited
resources and power consumption constraints compared with
cloud based systems. Recent GPUs in the cloud servers have
over a hundred streaming multiprocessors, whereas mobile
GPUs even in the current high-end smartphones have only
approximately a dozen compute units. Thus, it is challenging
to achieve real-time on-device deep learning inference, which
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is required for many applications. For example, autonomous
vehicles and robots process object detection and recognition
from incoming video streams in real-time.

Many studies have proposed various approaches to tackle
this problem, including model compression to fit DNNs into
smaller device memory [1], [2], hardware accelerators for
deep neural networks (DNNs) and neural processing units
(NPUs) [3]–[5], optimized convolution algorithms such as
Winograd convolution [6], and lightweight models for mobile
devices [7], [8]. Another approach is low-precision quanti-
zation, such as FP16 and INT8, to increase memory band-
width and computation throughput, which is the theme of this
paper.

NPUs have outperformed GPUs in terms of performance
per Watt, due to which they have been rapidly adopted
in mobile devices recently [3], [4]. However, they have
their own limitations; it is difficult or impossible for NPUs
to support custom layers since NPU APIs are not pub-
licly available or have tightly restricted usage. In contrast,
timely algorithm or model updates are possible with mobile
GPUs. In addition, recent mobile GPUs incorporate hardware
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acceleration for dot products that can complete a dot product
with four-element vectors in a single cycle [9]. We envision
that mobile GPUs will continue to be an essential component
for deep learning in mobile devices, along with NPUs.

Therefore, this paper focuses on INT8 quantization for
mobile GPUs. Although many on-device deep learning
frameworks, including TensorFlow Lite, support INT8 quan-
tization for CPUs, only a few frameworks currently sup-
port INT8 quantization for mobile GPUs: ARM Compute
Library (ACL) since version v17.12 [10] and TensorRT. How-
ever, the former is not a high-level deep learning framework,
and the latter is proprietary to NVIDIA and only works for
Jetson GPUs that consume dozens of Watts. This lack is
due to earlier mobile GPU performance being significantly
inferior to mobile CPUs, but many recent mobile GPUs out-
perform their corresponding CPUs [4], [11] and hence INT8
quantization for mobile GPUs is crucial to achieve efficient
on-device deep learning.

This paper presents a framework for INT8 quantized infer-
ence where various methods for INT8 quantization, such
as symmetric, asymmetric, per-channel, and per-layer, are
implemented. We discuss the INT8 quantization methods
and evaluate their performance (i.e., efficiency) and accu-
racy impact on different mobile GPUs. Moreover, we dis-
cuss INT8 quantization for Winograd convolution, which is
widely used for 3 × 3 convolution to reduce the number of
multiplication. INT8 quantization cannot be directly applied
to Winograd convolution because it requires transformation
of tensors, requiring extra bits. We propose to use F(2 × 2,
3 × 3) rather than F(4 × 4, 3 × 3), with carefully selected
bitwidth to maintain accuracy. The proposed INT8Winograd
convolution can utilize the same INT8 General Matrix Mul-
tiplication (GEMM) routine.

We implemented quantization methods in Caffe HRT [12]
and evaluated performance and accuracy impact of the
methods on widely used CNNs such as ResNet50 and
MobileNet v1 on Mali-G52, which supports hardware accel-
eration of dot product. Considering the latency overhead and
accuracy impact, symmetric with per-channel quantization
was desirable for CNNs used in this work. Adding INT8
Winograd convolution and Batch Normalization folding,
INT8 quantized convolution achieved 2.5–3.5× speedups
compared to FP32 GEMM-based convolution with a negli-
gible accuracy loss of 0.3–1.3%p.

Overall, this work makes the following contributions:
• Various INT8 quantization methods such as symmetric,
asymmetric, per-channel, and per-layer were discussed
and implemented in an open-source framework.

• INT8 quantization for Winograd convolution was dis-
cussed and proposed; To preserve accuracy, INT8Wino-
grad convolution should employ F(2 × 2, 3 × 3) with
weights in INT4 and input feature maps in INT6.

• Extensive experiments for performance comparisons of
different INT8 methods on recent mobile GPUs.

The remainder of this paper is organized as follows.
Section II discusses related on-device deep learning and INT8

quantization studies, and Section III presents the background
of INT8 quantization and the support in the recent library and
GPUs. Section IV describes the proposed INT8 framework
and discusses various INT8 methods. Section V discusses
the challenges in INT8 quantized Winograd convolution and
proposes INT8Winograd convolution that canmaintain accu-
racy. Section VI provides evaluation results and analysis for
various INT8 methods, including the proposed INT8 Wino-
grad convolution. Finally, Section VII summarizes and con-
cludes the paper.

II. RELATED WORK
A. DEEP LEARNING ON MOBILE GPUs
Most current on-device deep learning frameworks use mobile
CPUs rather than mobile GPUs [13]–[16], mainly because
previous GPU performance was insufficient for efficient deep
learning [5] and lightweight edge devices in IoT applications
typically have very limited resources often not including
GPUs [5]. Hence only a few works studied on-device deep
learning utilizing mobile GPUs [17], [18]. However, modern
GPUs have significantly increased processing cores and out-
perform mobile CPUs [3], [4]. For example, Lee et al. [11]
showed that inference on the iPhone XS GPU was 5× faster
than the CPU in the same SoC for MobileSSD, and 12× for
MobileNet v1.

B. INT8 QUANTIZATION FOR DEEP LEARNING
INT8 quantization for deep learning has been attempted espe-
cially for mobile platforms as it can reduce model size [19]
and computation time compared with FP32. Jacob et al. [20]
introduced deep learning training with INT8 quantization for
weights and activation maps and showed that many CNNs,
including ResNet, Inception, and MobileNet, could benefit
from INT8 quantization for the inference with negligible
accuracy loss.

Several studies have considered converting DNNs trained
initially with FP32 into INT8 models. Migacz [21] showed
how to find a suitable scale factor and presented the results
using dp4a, an instruction for efficient INT8 dot product
computation on NVIDIA GPUs. Krishnamoorthi et al. [22]
analyzed accuracy from various INT8 quantization repre-
sentations and granularities, as well as end-to-end execution
time, even if the results were obtained on DSPs, not on GPUs.

Kim et al. [23] proposed a co-operative approach where
convolution layer filters were distributed over the CPU and
GPU to execute the layer simultaneously. They only applied
INT8 quantization for the CPU because GPU INT8 quantiza-
tion exhibited lower efficiency than FP16 quantization, even
on Mali T760, a high-end mobile GPU. However, contempo-
rary mobile GPUs, such as Mali G52 and many others, offer
significantly improved INT8 quantized inference support [3].

C. INT8 WINOGRAD CONVOLUTION
Winograd convolution is widely used for 3 × 3 convolution
to reduce the number of multiplications. However, INT8
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TABLE 1. INT8 support in on-device deep learning frameworks.

quantization cannot be directly applied to Winograd convo-
lution; it requires transformation of tensors to the Winograd
domain, but the large denominators in the transformation
matrices would significantly degrade the accuracy if con-
ventional INT8 quantization is applied. There are few works
that studied INT8 quantization for Winograd convolution.
Meng et al. [24] proposed a complex Winograd convolu-
tion algorithm for F(4 × 4, 3 × 3) where the construction
field is extended from rationals to complex to reduce the
denominator values, as well as filter scaling to reduce the
bidwidth required for weights. However, they did not report
execution times on actual platforms, nor the complex number
computation overheads. In contrast, we propose a new INT8
quantized Winograd algorithm for F(2 × 2, 3 × 3) which
carefully defines bitwidth smaller than INT8 for feature
maps and weights to utilize the same INT8 GEMM routine
after the transformation, and we evaluate the efficiency of
the proposed method on mobile GPUs. Yao et al. [25] pro-
posed Range-Scaled Quantization (RSQ) training method
for INT8 Winograd algorithm, targeting one-dimensional
convolution (Conv1D) equipped Automatic Speech Recog-
nition (ASR) model inference on mobile CPUs. It does not
discuss INT8 Winograd convolution for two-dimensional
convolution (Conv2D) in image recognition, and it is
quantization-aware training (QAT) approach as RSQ is
applied during fine-tuning of the pre-trained model.
Li et al. [26] proposed QAT algorithm called Lance for INT8
Winograd convolution for Conv2D. Our INT8 Winograd
convolution is post training quantization (PTQ) approach (see
Section III-B) and is for Conv2D.

D. ON-DEVICE DEEP LEARNING FRAMEWORK
On-device inference has only recently become commonly
practical on mobile GPUs, and many on-device deep learning
frameworks still do not support INT8 quantization for GPUs.
Table 1 shows the current support for quantization in pop-
ular on-device deep learning frameworks. TensorFlow Lite
[27], [31], a widely used on-device deep learning frame-
work, and PyTorch Mobile [28], [32] only support INT8
quantization for CPUs using QNNPack [33]. Core ML [29]
from Apple supports INT8 quantization, but it is unclear
whether INT8 quantization for GPU is supported. In addi-
tion, it only supports weight quantization. TensorRT [30]
supports INT8 quantization only for NVIDIA GPUs, and
NVIDIA has yet to release low-power mobile GPUs for
smartphones.

III. BACKGROUND
A. INT8 REPRESENTATION
INT8 representation quantizes inputs into 8-bit integers,
requiring less storage space and typically faster than the
original FP32 representation. INT8 is sufficient to maintain
almost the same CNN model accuracy [22]. The input and
weight tensors in a CNN are quantized for IN8 representation
using the FP32 scale factor [20].

The original FP32 value, r, is linearly quantized into an
INT8 value, q,

q = CLAMP
(
round

( r
S
+ Z

))
, (1)

where S is the FP32 scale factor, Z is the zero point. Each layer
has unique S and Z values, and q is subsequently saturated to
the limit if q exceeds the limit. Dequantization is computed
in the opposite direction,

r = S(q− Z ). (2)

Scale factors and zero points are obtained for each layer
before CNN inference. Weights are quantized statically since
they do not change in the inference, whereas feature maps are
quantized dynamically during inference. INT8 reduces tensor
size four-fold, i.e., from 32 to 8 bit, also creating opportunities
for faster inference (see Section IV-A). Bias is quantized into
INT32 since it is added to the weight and featuremap product,
with scale factor also being the product of the two component
scale factors.

B. SCALE FACTORS
It is crucial to find themost suitable scale factor and zero point
to minimize quantization error. Scale factors can be obtained
from PTQ or QAT approaches, where PTQ finds scale factors
from trained model, and hence requires less time; whereas
QAT finds scale factors by re-training [20] which requires
more time but can minimize accuracy loss. Accuracy loss
from PTQ depends on the specific method employed. For
example, TensorRT uses KL-divergence [21], which we also
employ in this work.

C. ARM COMPUTE LIBRARY
ARM Compute Library (ACL) is a software library for effi-
cient DNN inference on ARM platforms [10], implemented
using NEON for CPUs and OpenCL for GPUs. ACL also
provides a high-level API, ACL Graph, that supports INT8
quantization for GPUs.

D. INT8 DOT PRODUCT ACCELERATION
ARMMali Bifrost GPUs, such asG52 andG76, support hard-
ware acceleration for INT8 dot product [9], [34]. An INT8
dot product for 4-element vectors is computed in in a single
instructions (G52 and G72), or even in a single cycle (Mali
G76), via built-in functions called arm_dot [35].

IV. INT8 QUANTIZED GEMM CONVOLUTION
This section proposes an INT8 quantization and inference
framework for mobile GPUs, then it explains how INT8
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FIGURE 1. Proposed INT8 quantized CNN inference (a) framework and
(b) INT8 GEMM convolution routine inside the framework.

quantization methods are implemented in the proposed
framework.

A. PROPOSED FRAMEWORK OVERVIEW
As discussed in Section II, no current on-device deep learning
framework except for some proprietary ones supports INT8
quantization for mobile GPUs. Figure 1(a) shows the INT8
quantization and inference flow of the proposed on-device
deep learning framework. Figure 1 (a)(1) shows model con-
version from FP32 to INT8, as well as finding scale factors
for feature maps in advance, typically on a server. Figure 1
(a)(2) shows the quantized inference on a mobile GPU, where
inference framework has been implemented by extending
Caffe HRT. Figure 1 (b) shows the INT8 GEMM routine
inside the framework.

As the proposed approach is PTQ, it finds scale factors
for feature maps, which will be used during inference, using
a calibration dataset. It is important that the scale factors
do not degrade model performance. We obtain scale fac-
tors and zero points for each feature map in advance using
KL-Divergence method [21]. It finds the scale factor that
makes quantized value distribution, Q(x), most similar to the
original distribution,P(x), when theKL-divergence is defined
as

KLdivergence(P||Q) = −
b∑
i=a

pi log qi +
rmax∑
i=rmin

pi log pi, (3)

where a and b are the quantized values from the thresholds,
rmin and rmax , to ignore outliers in r , using Equation (1).
It finds the scale factor that minimizes KL-divergence,
varying rmin and rmax in Equation (3).
Weights are statically quantized before inference as they

do not change during inference. They are easier to quantize
than feature maps because their distribution is narrow and
typically symmetric to the zero point [36]. Thus scale factors
for weights are obtained simply using min and max values
of FP32 weights and INT8 quantized weights are in [−127,
127]. The least value, −128, is excluded from the range to
preserve the symmetry in weight distribution [37].

Once the scale factors for feature maps and the quantized
weights, i.e., INT8 model, are obtained, the inference is made
on a mobile GPU. As shown in Figure 1(b), the quantization
is added at the start of the forward for each layer, then the
dequantization is added at the end of the layer, implement-
ing Equation (1) and (2), respectively. Most deep learning
frameworks employ general matrix multiplication (GEMM)
to perform convolution, rather than direct convolution; it
first transforms the input image tiles to be convolved into
columns of a matrix, which is referred to as image-to-column,
or im2col. Then, convolution can be computed as a matrix
multiplication of the transformed input matrix and the filter
matrix, which can lead to better locality than the direct con-
volution in many cases. After the matrix multiplication, the
output matrix is transformed back to the original shape, which
is referred to as column-to-image, or col2im. In INT8GEMM
routines, GEMM outcomes are represented in INT32. Even
if both inputs are INT8 and hence INT16 would be suffi-
cient for the product, accumulating multiple products during
dot product requires INT32 to prevent potential overflow
(GEMMLowp [38]). The output is then dequantized into
FP32, because the next layer could have a different scale
factor or may not employ INT8 quantization.

A GEMM routine for a mobile GPU is typically imple-
mented using vector instructions for Single Instruction Mul-
tiple Data (SIMD) rather than scalar instructions since most
mobile GPUs support OpenCL vectors, which can signif-
icantly increase the efficiency. Thus, the proposed INT8
GEMM routines, as well as the im2col and col2im routines,
use uchar8, i.e., a vector type for eight unsigned chars. Note
that the GEMM routine in ACL uses float4 for the FP32
inputs and also uchar8 for the INT8 inputs.

The quantization and inference for INT8 Winograd con-
volution utilizes the same INT8 GEMM routine. However,
as highlighted in a blue font in Figure 1, it requires different
size of bits for both tensors compared to the GEMM-based
convolution, which will be discussed in Section V.

B. INT8 QUANTIZATION AND OPTIMIZATION
1) SYMMETRIC AND ASYMMETRIC METHODS
When Z = 0 in INT8 representation, Equation (1) and (2)
can be restated as

q = CLAMP
(
round

( r
S

))
(4)

r = Sq, (5)

called symmetric INT8, and hence q ∈ [−128, 127]. It is
easier to compute convolutions with symmetric INT8 repre-
sentation.

Conventional 2D convolution in FP32 can be expressed as

Yn,x,y =
∑
c,i,j

Wn,c,i,j · Xc,x+i,y+j, (6)

where X, W, and Y are input feature map, input feature
weight, and output feature map for the convolution layer.
Therefore, Equation (6) can be approximated using INT8
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quantization as

Yn,x,y ≈ (SwQWn ) ∗ (SXQ
X
x,y)

= SW ·SX · (QWn ∗ Q
X
x,y)

= SW ·SX ·
∑
c,i,j

QWn,c,i,j · Q
X
c,x+i,y+j . (7)

Thus, INT8 convolution is first computed similar to FP32,
then only needs to multiply the scale factors.

The process is called asymmetric INT8 if Z 6= 0, and
quantization proceeds as Equation (1) and convolution as

Yn,x,y ≈ SW ·SX · ((QWn + Z
W ) ∗ (QXx,y + Z

X ))

= SW · SX ·
(∑
c,i,j

QWn,c,i,j · Q
X
c,x+i,y+j

+

∑
c,i,j

ZXQWn,c,i,j +
∑
c,i,j

ZWQXc,x+i,y+j

+

∑
c,i,j

ZWZX
)
. (8)

In contrast to Equation (7), asymmetric INT8 convolu-
tion requires additional computation since Z 6= 0. We use
offset computation for efficient computation, i.e., Z IN6QW ,
ZW6QIN , and 6ZWZ IN are calculated separately and added
to 6QW · QIN . We can calculate Z IN6QW and 6ZWZ IN

prior to inference since they do not have input feature
maps.
The process shown in Figure 1 supports both symmet-

ric and asymmetric INT8. Offset computation should be
added after GEMMLowp to implement asymmetric INT8
and quantization should be modified to consider the zero
point. Note that ACL provides only INT8 GEMM routine
for the asymmetric INT8 convolution; neither routines for
symmetric INT8 convolution nor the scale factor calculation
modules.
Scale factors for bothmethods are derived as follows: Sym-

metric INT8 quantization first makes a histogram for posi-
tive input feature map values with 127 bins, and then finds
the threshold to minimize KLD (discussed in Section III-B).
Weight quantization should quantize maximum absolute
weights onto ±127. In contrast, asymmetric quantization
requires the specific zero point. Therefore it finds two thresh-
olds, max and min, for an input feature map, from which a
scale factor and a zero point are obtained.

2) PER-CHANNEL AND PER-LAYER METHODS
A layer can have multiple scale factors and zero points, each
channel in the layer having its own scale factor and zero point,
which is called per-channel rather than per-layer quanti-
zation [22]. Per-channel quantization can improve approx-
imation and accuracy because it uses more suitable scale
factors differently for each channel in the layer. However, this
requires more memory accesses to scale factor and zero point
arrays during quantization and dequantization.

3) BATCH NORMALIZATION FOLDING
The batch normalization layer normalizes input feature maps
for mini-batches by recentering and rescaling,

OUT = γ ·
IN − µ
σ
+ β, (9)

which improves network stability, and hence network perfor-
mance [39].

Batch normalization (BN) folding integrates BN layer
parameters into the convolution layer, where convolution
layer weights, W , and bias, B, are modified into Wfolded and
Bfolded as

Wfolded =
γ

σ
W ,

Bfoled =
γ

σ
(B− µ)+ β. (10)

BN folding can accelerate inference by reducing memory
accesses by fusing BN and convolution layers. There are only
a few arithmetic operations per element in BN, without any
dot product in particular. Thus, INT8 quantized computations
are unnecessary considering their computational overhead,
and we apply INT8 quantization after BN folding instead.
For Wfolded , we need not modify quantized weights but only
multiply the original weight scale factor by γ

σ
to update the

scale factor for symmetric INT8 quantization. Unlike the
original convolution layers, we can no longer neglect the bias
but must apply appropriate quantization for the bias in BN
folded convolution layers. For Bfolded , the scale factor of bias
is updated by multiplying the weight scale factor and feature
map scale factor, and hence it is quantized to INT32.

V. INT8 WINOGRAD CONVOLUTION
This section starts with the introduction of Winograd convo-
lution algorithm, then it discusses the accuracy impact due to
INT8 quantization and proposes suitable INT8 quantization
for Winograd convolution that does not degrade accuracy.

A. FP32 WINOGRAD
Winograd convolution reduces the number of multiplications
at the cost of increased additions [6], [40] and can be applied
to 2D convolutionwith filter size 3×3 and 5×5when stride=
1 [41]. Thus it is widely used for 3 × 3 convolution, which
is the most popular 2D convolution, as it typically leads to
better efficiency than GEMM-based convolution. As shown
in Equation (11), Winograd convolution transforms the input
and weight tensors into theWinograd domain where the num-
ber of multiplications is reduced to the minimal filters and
the multiplications are subsequently performed in a batched
GEMM. Then, the output tensor in the Winograd domain is
transformed back to the original domain.

rout = AT
(
GwGT � BT rinB

)
A, (11)

wherew is a filter, rin is an input tile, rout is an output tile in the
original domain, and� is an element-wise product. B,G, and
A are transformation matrices for input(rin), weight(w), and
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output in the Winograd domain, respectively. Output tile size
differs depending on filter size: it can be 4×4 and 2×2 for 3×
3 filer size, which is the most widely employed filter size in
2D convolution. In general, Winograd convolution with filter
size r×r and output tile sizem×m is denoted as F(m×m, r×r).
Transformation matrices for F(2× 2, 3× 3) introduced in [6]
are as follows:

BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 ,

G =


1 0 0
1
2

1
2

1
2

1
2
−
1
2

1
2

0 0 1

 ,

AT =
[
1 1 1 0
0 1 −1 −1

]
. (12)

Since B is a constant matrix of integers, the transformation
can be done as additions, and other transformations can also
be done using additions. Element-wise multiplications still
require multiplications but the number of multiplications is
smaller than matrix multiplication. Element-wise multipli-
cation can be efficiently computed as a batched GEMM by
reshaping the matrices.

As the number of multiplications is larger in F(4×4, 3×3)
than in F(2 × 2, 3 × 3), Winograd convolution achieves 4×
reduction in multiplication operations for F(4 × 4, 3 × 3),
whereas 2.25× reduction for F(2×2, 3×3). In contrast, since
the denominator in the G matrix is larger in F(4 × 4, 3 × 3)
than F(2 × 2, 3 × 3), convolution computation errors using
the former tend to be larger than the latter [42]. On the other
hand, Winograd convolution requires more memory space to
store transformed results [43].

B. INT8 WINOGRAD F(4 × 4, 3 × 3)
No current deep learning framework supports INT8 Wino-
grad convolution. This subsection discusses the challenges
and issues in INT8 Winograd convolution.

In conventional Winograd convolution in FP32, F(4 × 4,
3 × 3) can achieve larger speedup than F(2 × 2, 3 × 3),
as discussed in Section V-A. However, F(4 × 4, 3 × 3) is
not suitable for INT8 quantized computation. The weight
transformation matrix for F(4× 4, 3× 3) is

G =



1
4

0 0

−
1
6

−
1
6

−
1
6

−
1
6

1
6

−
1
6

1
24

1
12

1
6

1
24

−
1
12

1
6

0 0 1


, (13)

which includes division by 24 and hence is unsuitable for
INT8 representation since this would increase quantization
error. To avoid division, one could first multiply each matrix,
G and GT , by 24 in advance, and then divide the transformed
output in INT32 by 242 = 576. However, multiplication of
both G and GT by 24 would multiply some elements in w by
242 = 576. Since the maximum value an INT8 can represent
even in an unsigned form is 28 − 1 = 255, we cannot apply
this approach and F(4×4, 3×3) cannot retain accuracy with
INT8 GEMM.

Let us consider Winograd convolution in F(4 × 4, 3 × 3)
could be done in INT16 GEMM. Input and weight are in
INT8, and multiplying the constant in advance requires more
bits; filter transformation needs to multiply 576 and input
transformation 100 in the worst case, requiring additional 10
and 7 bits, respectively. Thus, transforming from INT8 matri-
ces would require 18 and 15 bits for weights and inputs,
respectively. However, if weights were quantized in 6 bits
rather than 8, transformation with constant multiplication
could fit in INT16 and GEMM could be done in INT16.
Although INT16 GEMM can be slower than INT8 GEMM,
the efficiency loss is relatively small. On the other hand, if we
truncate 8 bits to make the results fit in INT8 by shifting
INT16 results to the right by 8 bits, error becomes too large.
Therefore, F(4× 4, 3× 3) is not suitable in INT8.

C. INT8 WINOGRAD F(2 × 2, 3 × 3)
INT8 quantization for F(2 × 2, 3 × 3), on the contrary,
requires only additional 4 bits for weight and 2 bits for
input; multiplication by 9 and 4 are required in the weight
transformation using G and GT in Equation (12), and in the
input transformation usingB andBT , respectively. If we lower
precision by quantizing weight and input to INT4 and INT6,
then both results can be represented in INT8. Error due to
lowered precision (i.e., 4 and 2 bits for weight and input,
respectively) remains negligible (see Section VI).

Therefore, we propose INT8 Winograd convolution F(2×
2, 3× 3) using INT8 GEMM, as shown in Figure 2(b). FP32
inputs are quantized in INT6 to allow input transformation to
fit in INT8, and FP32weights are statically quantized in INT4
to ensure that filter transformation results can also fit in INT8.
Each transformationmatrix in the filter transformation,G and
GT , is multiplied by 2 in advance to avoid divisions. Thus,
batched GEMM output is INT32 and should be divided by
22 = 4. Note that element-wise multiplications are computed
as a batched GEMM as mentioned before.

VI. EXPERIMENTS
A. SETUP
We used Caffe HRT [12] as the baseline deep learning
framework for our experiments, and extended it to support
the proposed INT8 GEMM and INT8 Winograd convolution
quantization. Caffe HRT is built on top of ACL (v19.05) and
provides the same Caffe interface, which allowed us to easily
implement the discussed quantization methods. We imple-
mented in Caffe HRT the INT8 features that ACL does not
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FIGURE 2. (a)INT8 GEMM convolution and (b)INT8 Winograd
F(2 × 2,3 × 3) convolution with INT6 and INT4; it can employ the same
INT8 GEMM routine.

support, such as INT8 Winograd convolution, symmetric
methods, and per-channel method; and extended Caffe HRT
to utilize INT8 features ACL supports, such as asymmetric
and per-layer method. Since ACL has neither scale factor
calculation, nor BN folding, those features were implemented
in the proposed framework.

CNN models used in the evaluation were ResNet50,
VGG-16, and MobileNet v1. FP32 models were pre-trained
Caffe models, from which INT8 models were obtained in the
proposed framework.

Devices used in the experiment were Galaxy S9 with Mali
G72 MP18 [44], [45], Note 10+ with Mali G76 MP12 [46],
[47], and Odroid N2 with Mali G52 MP2 [48], which
all supported INT8 dot product hardware acceleration (see
Section III-D). ACL Graph was run on the three devices
whereas Caffe HRT was only run on Odroid since it cannot
run on Android.

B. ON-DEVICE INFERENCE ON CPUs AND GPUs
Before examining the effect of the proposed INT8 methods
including INT8 Winograd convolution, we compared INT8
quantized CNN inference with FP16 and FP32 inference
on various mobile GPUs to confirm that INT8 quantized
inference was the fastest. Although Caffe HRT provides
the same Caffe interface and employs ACL low-level APIs,
data copy between Caffe BLOB and ACL tensor makes it
unsuitable for measuring and comparing end-to-end execu-
tion time of CNNs. Therefore, we measured execution time
with ACL Graph (v19.05), which supports INT8 quantized
CNN inference for both CPUs and GPUs. Note that ACL
Graph supports neither INT8 Winograd convolution nor any
other INT8 methods discussed in this paper. Consequently,
FP32 and FP16 convolution embraced GEMM andWinograd
implementations, whereas INT8 convolution was only imple-
mented with GEMM.

Figure 3 shows the speedups of INT8 and FP16 quantized
inference on a CPU and a GPU, compared to FP32 inference
on a GPU. On Odroid N2 and Galaxy Note 10+, INT8
GPU is the fastest with all three CNN models, showing large

FIGURE 3. CNN inference speedup on various devices with FP32, FP16,
and INT8 representations. Baseline is FP32 GPU for each device.

speedups against FP32 GPU; up to 3.03× with ResNet50 on
N2, and up to 2.5× with MobileNet v1 on Note 10+, which
corresponds to 1.6× faster than INT8 CPU on Note 10+.
INT8 CPU, as well as INT8 GPU, is faster than FP32 GPU in
most cases on Note 10+ since it is equipped with Cortex A75,
which is much faster than Exynos M3 in S9 and Cortex-A73
in N2.

However, on Galaxy S9, INT8 GPU is not the fastest; FP32
GPU is the fastest with VGG16, and FP16 GPU is fastest with
MobileNet v1. INT8 GPU is fastest only for ResNet50, but
by less than 10%. This is because Mali G72 in S9 does not
support single-cycle integer dot product acceleration unlike
Mali G76 in Note 10+. Mali G52 in N2 neither supports it
but, as the cache size in Mail G52 is smaller than Mali G72,
the locality improvement due to INT8 quantized inference is
relatively larger in Mali G52 than in Mali G72 in S9. Due
to the similar reason, INT8 CPU is slower than FP32 CPU
in S9; Exynos M3 in S9 and Cortex-A73 in N2 are based
on ARMv8 Instruction Set Architecture (ISA) and do not
support integer dot product extension; it is supported since
ARMv8.2 ISA, which Cortex-A75 in Note10+ is based on.
Also, the cache size of Cortex-A73 is smaller than that of
Exynos M3. On the other hand, VGG16 results in smaller
speedups than other models in all three devices. This is
because VGG16 convolution layers are all 3 × 3 and are
implemented in Winograd convolution in FP32. However,
as ACL does not support INT8 Winograd convolution, INT8
quantized inference runs 3× 3 layers in VGG16 as GEMM-
based convolution, resulting in a smaller speedup or even a
slower execution than FP32. Another reason is that the size
of feature maps in VGG16 is larger, incurring larger overhead
in quantization and dequantization.

In summary, INT8 inference is faster than FP16 or FP32
inference, and recent mobile GPUs lead to faster inference
than CPUs.

C. INT8 METHODS FOR ON-DEVICE GPU INFERENCE
1) INT8 QUANTIZATION
This section examines effects of the proposed INT8 methods,
including INT8 Winograd convolution, for efficiency and
accuracy. Accuracy and execution time were measured in
Caffe HRT rather thanACLGraph, onOdroidN2 (Mali G52),
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FIGURE 4. End-to-end execution time for INT8 methods with ResNet50 on Mali G52 MP2. P.L: per layer, P.C: per channel.

TABLE 2. Top-1 accuracy of various INT8 methods for ImageNet.

since we implemented each method in Caffe HRT, as shown
in Table 2.

Accuracy loss is very small, generally less than −1.0%p
except for asymmetric and per-layer (−1.7%p) with
MobileNet v1, and INT8 Winograd convolution without
BN folding; INT8 Winograd convolution showed −1.2%p
for VGG16, which has no BN layers. With BN folded,
however, INT8 Winograd accuracy loss was small for
ResNet50 (−0.31%p). Winograd convolution cannot be
applied for MobileNet v1 since it has no 3 × 3 convolution
layers.

Accuracy difference between asymmetric and symmetric
methods was small (0.1–0.7%p). However, asymmetric over-
head was not negligible compared with symmetric (Figure 4).
Therefore, we used symmetric method to measure effects of
the other methods.

Per-channel is more accurate than per-layer method,
as expected; although the differences are as small as
0.09%p for VGG16, accuracy from per-channel method with
ResNet50 is also higher (0.21%p) than per-layer method.
BN folding even increases accuracy;+0.13%p for ResNet50
and +0.3%p for MobileNet v1, compared to per-channel
without BN folding.

Figure 4 shows an end-to-end execution time with the
INT8 methods, including INT8 Winograd convolution. FP32
GEMM is the baseline but FP32 Winograd is also presented
for comparison with INT8 Winograd because the speedup
of INT8 Winograd over FP32 GEMM comes from INT8
quantization and Winograd algorithm itself, among which

only the former is of our interest. Overall speedups with
fastest INT8 quantized inference are 2.45× for ResNet50,
3.52× for VGG16, and 1.60× for MobileNet v1.

INT8 GEMM inference with asymmetric (Figure 4(c)),
which turned out to be the slowest INT8 configuration,
is still 1.21× to 2.41× faster than FP32 GEMM inference.
BN folding enabled further speedups (compare Figure 4(g)
and (h) with (d) and (f), respectively). BN folding integrates
BN into the convolution layer, reducing computational load
and global memory (see Section IV-A), providing a further
1.30–1.47× speedups.
Since Winograd convolution can only be applied to 3× 3

and not 1 × 1 convolution layers, INT8 Winograd con-
volution speedups are presented only for ResNet50 and
VGG16. In Figure 4 for ResNet50, INT8 Winograd convo-
lution speedup over INT8 GEMM is not obvious as it is an
end-to-end execution time including all layers, not just 3× 3
layers. Thus Figure 4(f) for ResNet50 is similar to (d), and
(h) is similar to (g). In contrast, as the convolution layers of
VGG16 are all 3 × 3, inference time with INT8 Winograd
convolution(Figure 4(f) for VGG16) is significantly smaller
than INT8 GEMM inference time(Figure 4(d)).

INT8 symmetric method (Figure 4(e)) is 3–11%p faster
than INT8 asymmetric method (Figure 4(c)) because asym-
metric requires additional computation for the offset. Thus,
symmetric method is preferable considering the negligible
accuracy difference with asymmetric method as discussed
before.

Per-channel (Figure 4(d)) is comparable or only slightly
slower than per-layer. Therefore, we used per-channel when
measuring other methods since accuracy loss for per-channel
is smaller than per-layer.

2) INT8 GEMM LAYER ANALYSIS
Figure 5 shows speedups of INT8 GEMM over FP32 GEMM
for each convolution layer. INT8 GEMMwas computed with
symmetric and per-channel methods without BN folding on
Odroid N2. Speedups for 3× 3 convolution layers are larger
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FIGURE 5. Layer-by-layer speedup of INT8 GEMM over FP32 GEMM(Cin-WHin-Cout ).

FIGURE 6. INT8 Winograd convolution speedup over FP32 GEMM for different shapes of layers (Cin-WHin-Cout ).

FIGURE 7. INT8 Inference speedup with arm_dot.

than for 1 × 1 convolution layers, with geometric mean
speedup for 3 × 3 convolution being 3.2×, whereas 1 × 1
convolution 2.0×.

Speedups for 1 × 1 convolutions are largely proportional
to parameter size; whereas speedup is not proportional to
parameter size for VGG16, beyond certain amount of com-
putation. Speedup from INT8 quantized convolution arises
from two folds; (1) input and weight tensor sizes are 4×
smaller, hence they can better fit in the cache, and (2) INT8
dot product for four-element vectors can be executed in a
single instruction in a Mali GPU. When ALU operations are
not the performance bottleneck, as in many current 1 × 1

convolution layers, speedup is affected by the first factor,
i.e., increased INT8 GEMM locality. On the contrary, if ALU
operations are the performance bottleneck, then those layers
benefit from the second factor.

3) INT8 WINOGRAD LAYER ANALYSIS
Figure 6 shows 3 × 3 convolution layer speedups of INT8
Winograd convolution over FP32 GEMM. Again, Winograd
convolution is not applicable for MobileNet v1 as it does not
have 3 × 3 convolution layers. INT8 GEMM is faster than
FP32 Winograd convolution for all layers, and INT8 Wino-
grad convolution is faster than INT8 GEMM. Mean speedup
from INT8Winograd convolution is 5.2×, which corresponds
to 2.6× compared to FP32 Winograd convolution and 1.63×
compared to INT8 GEMM convolution. As Winograd con-
volution reduces the number of multiplications (Section V),
it significantly improves performance when the bottleneck
is ALU operations; most VGG16 layers achieves more than
2× speedups.

4) INT8 DOT PRODUCT HARDWARE ACCELERATION IN GPU
Hardware acceleration for INT8 dot product is supported in
GPUs since Mali G52 (see Section III) via a built-in function,
arm_dot, which can be called inside an OpenCL kernel.
The first and the second bar of Figure 7 are INT8 GEMM
inference speedups against FP32 GEMM inference, with and
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without arm_dot. The third bar shows the speedup of INT8
GEMM with arm_dot compared to without arm_dot.
On Galaxy Note 10+ with Mali G76, arm_dot is executed
in a single cycle, and hence arm_dot speedups are very
large (5× to 8×). On Odroid N2 with Mali G52, however,
arm_dot is executed in single instruction but not in a single
cycle, with arm_dot speedups being in the range of 1.8×
and 2.2×. Note that, on Mali G76, INT8 GEMM without
arm_dot is even slower than FP32 GEMM. This is because
the cache size in G76 is larger, reducing the relative gain from
INT8 quantized model size.

VII. CONCLUSION
This paper studied INT8 quantized CNN inference accuracy
and efficiency effects on mobile GPUs. We discussed dif-
ferent INT8 quantization methods, many of which are not
supported in current on-device deep learning frameworks,
such as ACL and TensorFlow Lite. We implemented them
in a unified framework to compare performance. Moreover,
we proposed INT8 Winograd convolution with F(2 × 2,
3 × 3) where weight tensors are quantized in INT4 and
input tensors in INT6, considering extra bits required for
the transformation. Consequently, the proposed INT8 Wino-
grad can be computed in INT8 with negligible accuracy
loss.

INT8 GEMM was 1.67× faster than FP32 GEMM for
ResNet50 on Mali G52. With BN folding and INT8 Wino-
grad convolution, it was further accelerated to 2.45×, while
retaining accuracy (−0.31%p). The large speedups of INT8
quantized inference were possible due to hardware accelera-
tion called arm_dot in Mali GPUs.
As the future work, we plan to evaluate the efficiency and

accuracy of INT8 quantized inference on NPUs with various
CNNs.
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