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ABSTRACT The problems of the A − IFS and A − IVIFS theories are analyzed and to solve them, their
Dempster-Shafer theory based redefinition is developed and a new concept called Belief-Plausibility number
(BPN ) is introduced. The BPN can be applied beyond semantics of usual fuzzy sets and the A − IFS.
Two main sources of uncertainty generating the A − IVIFS are considered: an uncertainty coursed by
the membership and non-membership functions multiplicity and an uncertainty of inputs. For the fuzzy
inputs, the definition of the fuzzy-valued BPN is proposed. The developed approach to treat interval-valued
intuitionistic fuzzy objects and their Belief-Plausibility re-definitions allowed us to introduce a set of
useful definitions. It is important that some of the them were not earlier mentioned in the literature. The
corresponding new arithmetical operations with such objects are proposed. The practical usefulness of the
introduced approach is illustrated by the solution of the real-world Fuzzy-Valued Belief-Plausibility multiple
criteria problem of the rawmaterial suppliers selection on the steel rolling plant. The obtained results allowed
us to state that the introduced Belief-Plausibility approach can be successfully used in the analysis and
applications independently, without the use of the A− IFS concepts. This approach owns visible advantages
in comparison with the A− IFS based one.

INDEX TERMS Belief-plausibility numbers, fuzzy-valued belief-plausibility multiple criteria problem
of the raw material suppliers selection, interval valued and fuzzy valued belief-plausibility numbers,
intuitionistic fuzzy values, new operational laws with belief-plausibility objects.

I. INTRODUCTION
A. ANALYSIS OF SOME MODERN THEORIES CONCERNED
WITH THE CONCEPT OF INTUITIONISTIC FUZZY SETS
The classical definitions of the Intuitionistic fuzzy sets theory
(A − IFS) and the Interval-valued Intuitionistic fuzzy sets
theory (A − IVIFS) were introduced by K. Atanasov [1] and
K. Atanassov and G. Gargov [2], respectively, and recognized
to be practically useful extensions of the Fuzzy Set theory
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(FST ) [3]. In the framework of the A − IFS, besides the
degree of membership µ, the non-membership degree ν and
the hesitant degree π are considered. It is postulated that
0 ≤ µ, ν, π ≤ 1 and µ+ ν + π = 1. The A− IVIFS theory
deals with interval extensions of µ, ν and π . Currently, the
methods of these theories are actively applied for the solu-
tion of multiple criteria decision making problems (MCDM )
[4]–[7] and group MCDM problems [8] in different real-
world areas. In this paper, we restrict ourselves to citing only
several recently published papers in the field we deal with.
We think they more than satisfactory present the nowadays
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state of art in the field of the MCDM problems solution under
intuitionistic uncertainty. But we do not intend to make a
comprehensive analysis of theA−IFS andA−IVIFS practical
applications.

However, there are some methodological problems of the
A− IFS and A− IVIFS discussed in the literature.

The first of them is the difficulty that an expert experi-
ences when assigning real values to µ and ν. It was noted
by many scholars that sometimes experts insist on such
values that their sum µ + ν occurred to be greater than
1 what is unacceptable in the framework of the intuitionistic
theory.

To avoid or at least alleviate this problem, some extensions
(corrections, modifications) of the A− IFS were developed.
The chronologically first of them is the so-called Neutro-

sophic Set theory (NST ) [9]–[12].
In terms of A − IFS, the basic assumptions of NST are

presented in the form:
0 ≤ µ + ν + π ≤ 3 for the completely independent

components (µ, ν, π ∈ [0, 1]), 0 ≤ µ + ν + π ≤ 1 for
the mutually dependent components (µ, ν, π ∈ [0, 1]).
It is seen that theNST conceptually differs from theA−IFS

by the accepted assumption that the components µ, ν, π are
completely independent.

In our opinion, this assumption is not in line with reality
and common sense although seems to be correct from the pure
mathematical point of view.

This assumption in the NST means that the event µ =
1, ν = 1 and π = 1 is admissible and therefore the first
constraint 0 ≤ µ + ν + π ≤ 3 is fulfilled. Let µ, ν and π
be the degrees of truth, false and indeterminacy, respectively
(in terms of theNST ). Therefore, in the case of complete truth
(µ = 1), according to the formal logic and common sense, the
false degree is equal to 0 (ν=0) with no indeterminacy (π=0).
Obviously, the similar conclusions can be inferred in the cases
of complete false, complete indeterminacy andµ = 0, ν = 0,
π = 0. In other words, we can state that the great truth is
always accompanied by the small false and indeterminacy.
Many of similar statements that will be in compliance with
common sense and the formal logic can be claimed. Sowe can
say that the hypothesis of the components µ, ν and π inde-
pendence seems to be completely invalid in the framework
of the problem we deal with and the assumption of mutually
dependent components is directly originated from the formal
logic and common sense.

It is somewhat surprising that the events µ = 1, ν = 1 and
π = 1 and µ = 0, ν = 0, π = 0 are qualified in [12]
as a paradox and its formal definition is considered as an
advantage of the NST . It is not only our opinion, but in any
case, it seems preferable to use theories free of paradoxes,
e.g. the A − IFS theory in the considered case. It is also
important that described paradoxes occur in the two diametric
asymptotic cases µ = 1, ν = 1 and π = 1 and µ = 0, ν = 0,
π = 0 achievable in the NST . Of course, the theory with so
bad asymptotic properties is not a good choice if we deal with
the real-world applications.

Formally, if the hypothesis of mutually dependent com-
ponents is accepted, then the basic constrain of the NST
0 ≤ µ+ ν + π ≤ 1 is more general than that in the A− IFS
(π + µ+ ν = 1). This fact was used in the so-called Picture
fuzzy sets theory [13]. As a basic of this theory, the so-called
refusal degree r such that µ+ ν+π + r = 1 was introduced.
According to the Oxford Dictionary, the term ‘‘refusal’’ cor-
responds the rejection from something. Therefore, in consid-
ered case, it should be equivalent to the rejection from the
analyzing the problem at hand. So, if this degree r is greater
than 0, then we can not begin the studies at all and the refusal
disappears when we are doing something, e.g. solving the
MCDM problem. Therefore, the refusal degree has no sense
even on the semantic level of analysis.

The operations defined on themathematical objects ofNST
in [14] are shown to have some important drawbacks [15].
As a compromise, in [15] the more simple operations were
proposed, but without analysis of their properties. The mathe-
matical operations with the objects of NST developed in [14],
[15] are obtained as simple mechanical extensions of oper-
ational laws earlier defined in the A − IFS theory. In our
papers [7], [16], [17], we revealed 6 important drawbacks
of these operations, which should be directly inherited in
operations with objects of NST .

Finally we can say that although the NST perhaps can
be interesting for pure mathematicians, it look as impracti-
cal extension of the A − IFS based on the rather artificial
hypothesis.

The Pythagorean fuzzy set theory (PFSS) was proposed
in [18] based on the simple and clear reasoning [19]. Its
somewhat modified version is presented here as follows.

Let µ = 0.8 be the membership degree and the ν = 0.5 be
the corresponding non-membership degree. Since µ + ν >
1, we have no the intuitionistic fuzzy value. Then if in the
considered example we will change µ and ν by µ2 and ν2,
respectively, we will get µ2

+ ν2 < 1. So in accordance with
the definition introduced in [19], in this example we have the
truly intuitionistic fuzzy value.

Although such a reasoning seems to be acceptable, two
obvious questions arise: Assuming that µ is a membership
degree, what is the sense of µ2 in a natural language? What
were logical arguments in favor of the squared degree, while
the third, fourth, and so on degrees look to be even more
attractive and promising?

Becausewe did not find answers on these questions, we can
say that theymay be treated as important vital methodological
issues of the PFSS.
The obvious important practical question can be formu-

lated as follows: does the PFSS always guarantee µ2
+ ν2 <

1? The answer is not positive, e.g. if µ = 0.9 and ν = 0.5,
then µ+ ν > 1 and µ2

+ ν2 > 1.
To be fair, we should note here that the author of the PFSS

said of only limited range of this theory applications: ‘‘. . .we
observe that intuitionistic membership grades are all points
under the line x + y ≤ 1 and the Pythagorean membership
grades are all points with x2 + y2 ≤, 1. We see then that the
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Pythagorean membership grades allow for the representation
on a larger body of nonstandard membership grades than
intuitionistic membership grades’’ [19].

In our opinion, we can agree with this statement, but only
if the reasonable answers on the above questions will be
formulated. Also we can say that because the PFSS pretends
to be an extension of the A− IFS, the use of its methods can
only enhance the possibility of violating the basic constraint
µ + ν ≤ 1. Therefore, the practical usefulness of the PFSS
seems to be very doubtable.

The Spherical fuzzy sets theory SFSS [20] is the formal
extension of the PFSS since it is based on the introduced
constrain µ2

+ ν2 + π2
≤ 1. It is seen that SFSS have all the

negative properties of the PFSS additionally complicating the
problem (see analysis in [12]).

The main problem of the PFSS and SFSS as well as of
A − IFS, is the assigning of appropriate values to the com-
ponents µ, ν and π such that they provide the basic constrain
(µ + ν ≤ 1) in the presence of objectively existing, but
not explicitly defined (nearly undefined) mutual dependence
between the components. Contrary to the NST , we are insist-
ing that the dependence of components always takes place
(may be, implicitly) and is originated from human thinking
and logic.

It is not so difficult to fancy how important this problem
is in practice for an expert who takes part in the solution of,
e.g. the MCDM problems. The method for solution of this
and some other collateral problems will be presented in this
paper below.

In this paper, we will present a new method focused on the
solution of this and the set of other collateral problems that
is based on the redefinition of A− IFS and A− IVIFS in the
framework of the Dempster-Shafer theory of evidence (DST ).

Based on the provided analysis, we introduce a new math-
ematical object called Belief-Plausibility number (BPN ),
which can be reduced into its particular cases: an ordinary
fuzzy number (the value of a membership function) and an
intuitionistic fuzzy number. It is important that this object can
be applied in an analysis completely separately, without using
terms of ordinary fuzzy sets and the A − IFS, as it is typical
for more general theories.

The above review concerns with the problems of
intuitionistic fuzzy numbers.

Meanwhile, the second set of important problems we
have revealed are typical in the membership µ(x) and non-
membership ν(x) (x ⊆ X ) functions building. There are many
approaches to the presentation of these functions proposed
in the literature. In the papers [21]–[26], the triangular form
of these functions was used and in [27] their interval val-
ued triangular versions were proposed. Currently the most
used are trapezoidal [28]–[34] and interval valued trapezoidal
[35]–[41] µ(x) and ν(x) functions.

The natural limitations concerned with the too simple tri-
angular and trapezoidal shapes of µ(x) and ν(x) functions
are currently overcoming by the use of piece-wise linear
functions consisting of different numbers of pieces. Most

known of them are Pentagonal [42]–[46], Hexagonal [47],
Heptagonal [48]–[50], Octagonal [51], Nanogonal [52] and
Hexadecagonal [53] intuitionistic fuzzy functions. Obvi-
ously, with the increasing the number of used pieces, such
functions tend to be close to some smooth generally non-
linear functions. The use of non-linear µ(x) and ν(x) func-
tions is presented in [54], [55].
While analyzing the above papers, we have found that their

authors do not care of the logically justified properties of
these functions in the asymptotic cases when µ(x) = 0 or
ν(x) = 0 orµ(x) = 1 or ν(x) = 1. In these papers, we see that
according to introduced mathematical presentations of µ(x)
and ν(x) and even their graphical illustrations, we can observe
inX thewhole areas where, e.g.µ(x) = 1, while ν(x) > 0 and
even is rising or decreasing in such an area. We insist that
this contradicts to common sense. Really, if µ(x) = 1, then
we have a complete (100%) certainty that some event has
occurred. Therefore there is no place for the opposite event
and hesitation, i.e. it should be ν(x) = 0 and π (x) = 0.
The similar analyzes can easily be done for other asymptotic
cases.
Let us consider the more meaningful confirmation of the

above statements.
Let’s assume that we want to establish the truth of the

statement that Admiral Nelson was a gentleman based on the
judgments of individuals from a sample of 100 people. First
consider the case when 20 people called Nelson a gentleman
because he bravely fought for his Homeland, 30 people did
not call him a gentleman because he was a pirate and the
remaining 50 people found it difficult to assess. Then we
can introduce the degree of Nelson membership in the ‘‘Club
of gentleman’’ as µ=0.2, the non-membership as ν=0.3 and
hesitation degree as π=0.5.

Then let us suppose that all people in the sample refused
to recognize Admiral Nelson as a gentleman. Obviously,
we have µ = 0. It is clear that in this case we have ν = 1
and π = 0, since we simply do not have people who could
say anything else. Indeed, since everyone completely rejected
Nelson’s belonging to gentlemen, then there are physically
no those who would have hesitated in the assessment, hence
π=0. At last, the complete rejection of Nelson’s belonging
to gentlemen (µ=0) means the complete acceptance of the
opposite hypothesis of Nelson not being a gentleman i.e.
ν=1. This can be inferred formally as follows: since by
definition it always should be µ + ν + π=1 and in our case
we have µ = π=0, then ν=1.
We have found the only one paper [42], where the authors

saying nothing about correct properties of the symmetrical
pentagonal µ(x) and ν(x) functions in asymptotic cases, have
constructed µ(x) and ν(x) in such a way that the desired
properties were fulfilled. Unfortunately, in this paper, the
functions µ(x) and ν(x) were defined to be equal to 0.5 in the
points of their intersection. It is easy to see that in such a case,
for piece-wise linearµ(x) and ν(x) we getµ(x)+ν(x) = 1 for
any x ⊆ X . This corresponds to the definition of the ordinary
fuzzy set, not an intuitionistic one.
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It is interesting that there are no definitions of asymptotic
properties of the functions µ(x) and ν(x) in the classical
Atanassov’s works [1], [2], perhaps because they looked to
be too obvious. Nevertheless, based on the above analysis,
we can state the strong definitions of the discussed properties
should be relevant in the basic definitions of the A− IFS and
A− IVIFS. In the current paper, they will be included in these
definitions.

We have not found in the literature clear and practical
approaches tomathematical formulation of the functionsµ(x)
and ν(x) in such a way that all asymptotic properties and
basic constraints µ(x) + ν(x) ≤ 1, µU (x) + νU (x) ≤ 1
(µU (x) and νU (x) are the upper bounds of corresponding
interval-valued membership and non-membership functions)
will be fulfilled jointly. In the current paper, such an approach
will be proposed.

B. ACTUAL PROPOSITIONS
In the literature, we have found only the examples of the use
of Atanassov’s definition of IVIFS, whereas in [17] we have
revealed its limitations and drawbacks and proposed a new
correct definition based on representation of the A − IVIFS
in the framework of DST . Such a redefinition allowed us to
develop new operational laws free of revealed drawbacks.
Nevertheless, this definition needs upgrading taking into
account the above analysis.

The main new results of our work are as follows:

1) Based on our experience, we can state that there are two
main sources of uncertainty leading to the need for the
use of A− IVIFS. The first of them is an interval uncer-
tainty coursed by the multiplicity of the functions µ(x)
and ν(x), e.g. proposed by different experts. The second
source is the consequence of the interval uncertainty of
input data, e.g. in theMCDM . And if input data we deal
with are presented by fuzzy values, we meet the case of
fuzzy-valued intuitionistic fuzzy set FVIFS.

2) The described above general approach to treat the
interval-valued intuitionistic fuzzy objects and their
Belief-Plausibility (based on the DST ) extensions
allowed us to introduce a set of new fruitful definitions,
some of the them, e.g. the definition of Fuzzy-Valued
Belief-Plausibility value (FVBPV ) were not even men-
tioned in the literature in any form.

3) The corresponding new operational laws with these
mathematical objects following from these definitions
are proposed. They all and especially the definition
of FVBPV , were thoroughly analyzed under general
methodological principles and their practical useful-
ness is illustrated by the real- world case study based
on the solution of the DST based uncertain MCDM
problem of the raw material supplier selection on the
steel rolling plant under triangular fuzzy input data.

4) The obtained results allow us to state that the
introduced mathematical objects BPN , IVBPN and
FVBPN can be successfully used in the analysis and

applications independently, without the use of concepts
of the A−IFS and such an approach has obvious advan-
tages in comparison with the A− IFS based approach.

The rest of the paper is set out as follows.
In Section 2, we analyze the properties of the DST exten-

sion of A − IFS and its practical advantages for a decision
maker in assigning certain real values to the parameters of
A−IFS. As the result of provided studies, a newmathematical
object called Belief-Plausibility number (BPN ) is introduced.
It is shown that the BPN has at least two particular cases:
usual fuzzy number (the value of a membership function) and
intuitionistic fuzzy number. It is emphasized that the BPN
can be successfully applied completely separately not using
terms of usual fuzzy sets and theA−IFS and this is the typical
feature of more general theories.

Section 3 is devoted to the justification of new definitions
of membership and non-membership functions, their interval
extensions inspired by two revealed sources of interval uncer-
tainty. The case of fuzzy-valued input data is considered. It is
shown that in such a case we should deal with fuzzy-valued
intuitionistic fuzzy set FVIFS. The corresponding definitions
in the spirit of BPN , i.e. Belief-Plausibility set (BPS), Belief-
Plausibility value (BPV ), Interval-Valued Belief-Plausibility
value (IVBPV ) and Fuzzy-Valued Belief-Plausibility value
(FVBPV ) are introduced. The new arithmetic operations with
local criteria represented by BPV s and dependent on interval
and fuzzy arguments are proposed.

In Section 4, we present the real-world case study.We have
solved the Belief-Plausibility based MCDM problem of the
raw material supplier selection on the steel-rolling plant,
when Belief-Plausibility local criteria are dependent on fuzzy
arguments. The problem formulation based on the FVBPV
definition was chosen as the more correct, general and con-
venient than that in terms of the fuzzy-valued intuitionistic
fuzzy set FVIFS.
It is worthy to note that in the current paper we consider

only components of IFV and Belief-Plausibility values pre-
sented by real values, real valued interval and real valued
fuzzy values. Therefore, the modern theories based on the
so-called complex fuzzy sets, the relativistic fuzzy sets and
so on, are out of scope of the current paper as based on the
practically incomparable concepts.

Section 5 concludes the paper with some remarks.

II. THE STUDIES OF THE DST EXTENSION OF THE A − IFS
NUMBER. INTRODUCTION OF A NEW MATHEMATICAL
OBJECT BELIEF-PLAUSIBILITY NUMBER
For the readers convenience, we present here some basic
definitions of the Dempster-Shafer theory of evidence
(DST ) [56], [57] in the extent needed for our analysis.
A Dempster-Shafer (DS) belief structure is represented by

a basic probability assignment (bpa) which is a mapping m
from subsets of X into a unit interval, m : 2X → [0, 1] such
that m(∅) = 0,

∑
A⊆X

m(A) = 1. The subsets of X with positive

(non zero) values of m are called focal elements.
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The measure of belief is defined as

Bel(Y ) =
∑
∅6=Z⊆Y

m(Z ). (1)

The measure of plausibility can be presented as

Pl(Y ) =
∑

Z∩Y 6=∅

m(Z ). (2)

It is seen that Bel(Y ) ≤ Pl(Y ).
A measure of ignorance about an event Y and its com-

plementary Y is treated as the length of the so-called belief
interval [Bel(Y ),Pl(Y )] (BI ). It can be considered also as
imprecision of the ‘‘true probability’’ of Y [57].
A cornerstone of DST is the problem of combination of

evidence having different origins.
This problem is very important and many different combi-

nation rules may be found in the literature.
The DST extension of A− IFS we have proposed in [58],

[59], but here we will analyze it to expand its capabilities to
solve the problems described in the previous section.

It was found in [59] that the set (µ, ν, π ) can represent
a mass (or probability) assignment in the framework of the
DST [56], [57]. That can be clarified as follows.

It can be seen that when analyzing some object O in the
framework of theA-IFS, we implicitly deal with the following
propositions: Yes: x ∈ O, No: x /∈ O, (Yes,No): no of the
propositions x ∈ O and x /∈ O cannot be rejected (the case of
indeterminacy or hesitation).

Thereforeµ can be treated as themass of evidence assigned
to O or as the focal element of the basic assignment function:
m(Yes) = µ. Similarly we get m(No) = ν. Since π is usually
considered to be a hesitation degree, the evident proposition
ism(Yes,No) = π . Because in theA−IFS theorywe haveµ+
ν + π = 1, we can state that the triplet µ, ν and π represents
an ordinary basic assignment function in theDST . Therefore,
the DST values of belief and plausibility can be obtained as
follows: Bel = m(Yes) = µ and Pl = m(Yes)+m(Yes,No) =
µ + π = 1 − ν and the belief interval is presented as BI =
[Bel,Pl]. We can see that as the result of above redefinition,
the basic components of the A− IFS (µ, ν, π ) transfer to the
basic triplet of theDST (m(Yes),m(No),m(Yes,No)) or to the
belief interval BI .

So based on such a redefinition of an intuitioniistic fuzzy
number < µ, ν > in the framework of the DST , we obtain a
new object, which informal presentation does not include the
terms ‘‘intuitionistic’’ and ‘‘fuzzy’’.

Therefore, to avoid possible confusions, here we introduce
a new notion ‘‘Belief-Plausibility Number’’ (BPN ). Its formal
definition formulated also taking into account our remarks
concerned to the asymptotic properties (see previous section)
is presented as follows:
Definition 1: ABelief-Plausibility Number is amathemat-

ical object presented by the belief interval BI = [Bel,Pl],
where Bel = m(Yes), Pl = m(Yes) + m(Yes,No) and if
Bel = 0, then Pl = 0 or if Bel = 1, then Pl = 1.

In general, this definition looks as somewhat extended def-
inition of a belief interval in the DST . Nevertheless, the
Definition 1 is very important in context of further analysis
from the methodological reasons.

First, it is remarkable that this definition does not con-
tain any terms of the ordinary and intuitionistic fuzzy sets
theories. So it can be used separately, based only on the
mathematical tools of the DST . Meanwhile, always, when it
is really needed, the BPN can be transformed to the A− IFS
presentation of the problem at hand using the expressions
Bel = µ and Pl = 1− ν.
In the other asymptotic case, when Bel = Pl, the BPN

reduces to the usual fuzzy number.
Obviously, based on the above analysis we can conclude

that the direct use of the DST formalism seems to be more
general approach than those based on the A − IFS or the
ordinary fuzzy sets theory.

Nevertheless, one can say that as the intuitionistic fuzzy
number A =< µ, ν > can be converted to the object A =
[µ, 1− ν], this last object can be naturally treated as a usual
interval. But such an interval does not present any useful
information with exception that some variable takes values in
this interval. Besides, let A =< 0.6, 0.2 > and after conver-
sion we have the usual interval A = [0.6, 0.8]. Then using
the corresponding interval arithmetic addition rule, we get
A+A = [1.2, 1.6]. This interval is completely out of the unit
interval and cannot be reconverted to an intuitionistic fuzzy
number. On the other hand, using the idempotent addition
operation with belief intervals defined in [16], we have no
problems with the re-conversion. Therefore, we can say that
the interpretation of intuitionistic fuzzy numbers as usual
intervals is not useful and provides additional undesirable
problems.

According to the commonly accepted generic scientific
paradigm, the problem, which cannot be solved based on
a given theory, may be solved by the use of a more gen-
eral theory if such a theory exists. Therefore we should to
aware that the DST can truly serve as a generalization of
the A − IFS. We can see that only few of generic elements
of the DST have been applied above for redefinition of all
elements of the A− IFS. So the DST looks as a more general
theory than the A − IFS and it should be expected that by
applying the A − IFS objects in the framework of the DST ,
we can obtain new results that are not achievable in the
A − IFS setting and we can solve problems unsolvable in
the A − IFS. This is not especially new idea as the DST
is a generic theory for some reputed theories that deal with
the uncertainty modeling. It is proved that the probability
and possibility theories are the specific asymptotic cases of
the DST . In [16], [17], we showed that the DST general-
izes the A − IFS and its interval-valued extension. In [60],
we proved that the DST can serve as a fruitful generaliza-
tion of the hesitant and interval-valued hesitant fuzzy sets.
In [61], we presented theDST generalization of the rule-base
evidential reasoning in the A − IFS environment. This
approach we used in [62] for the type 2 diabetes diagnostic.
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We used the DST extension of the A− IFS to generalize the
TOPSIS method in [7]. There is especially close link between
the DST and the rough set theory and it is really difficult
to point out a more general theory between them [63]. The
advantages of the DST were considered in [64], but we are
aware that the DST is the more general theory as contrary to
the rough set theory it origins the2 set of derived theories.

Consider the advantages provided us by the DST redefini-
tion of the A − IFS. The essential practical problem of the
classical A − IFS is that decision makers or experts often
experience considerable difficulties in assigning of such real
values to µ and ν that always the inequality µ + ν ≤ 1 will
be fulfilled.

When using the DST extension of A − IFS, we are only
dealing with the belief interval BI = [Bel,Pl], not consider-
ingµ and ν at all, but meanwhile we do not forget that initially
we had based on the following representation: Bel = µ and
Pl = 1− ν = µ+ π .
So an expert or a decision maker is asked to assign to

the Bel and Pl, the real values laying in the interval [0, 1].
If an expert has assigned a certain value to Bel, then he/she
should inevitably assign a greater value to the plausibility
Pl. This is the natural consequence of two premises: the
definitions of belief Bel = µ and plausibility Pl = µ + π

in context of the A − IFS and the semantics of a natural
language reflecting the specificity of human thinking. For
instance, imagine we consider the possibility of some future
political event E . In this case, Bel(E) is our belief in the
appearance of E (somehow guaranteed estimation) and Pl(E)
is the plausibility of E appearance, which can be naturally
treated as the degree to which the event E cannot be excluded
or as a greatest admissible degree of belief tolerable in some
specific favorable situations, and so on. It is easy to see that in
the considered case, an expert should use only such degrees
Bel and Pl that the constraint Bel ≤ Pl should always been
held.

This also follows from the semantics of a natural language
and common sense and does not provide problems for an
expert in assigning correct real values to Bel and Pl. The
constraint Bel ≤ Pl is the DST form of µ ≤ 1 − ν and
therefore of µ+ ν ≤ 1.

We can see that the analyzed practical problem of the
classical A − IFS disappears in the framework of the DST
extension. It is worthy to note here that using the pro-
posed approach based on the defined above BPN , we do
not need to use the somewhat artificial and heuristic Neu-
trosophic, Pythagorean and Spherical sets theories with their
derivatives.

The other problem of the classical A−IFS is the drawbacks
of commonly used mathematical operations with intuition-
istic fuzzy numbers (IFN ). In [16], using several persua-
sive examples we showed that the classical operations with
IFN s possess 6 negative properties (two of them were firstly
found in [65]), which may lead to unacceptable results of
the real-world problems solutions (more information can be
found in [16]). This is not so surprising as even the definitions

of these operations seem to be controversial, e.g. the multipli-
cation by a scalar looks as completely unacceptable or wrong
operation as it is directly defined by the power operation.
Therefore in [16], using the dual origin of a belief interval,

which is an interval comprising a true power of some state-
ment and at the same time is a usual interval, we inferred in
the framework of the DST redefinition of the A− IFS, the set
of operations with belief intervals representing corresponding
IFN s. These operations are free of above mentioned draw-
backs (this was proved formally with the use of relevant the-
orems). It is important that the introducedDST redefinition of
the A− IFS generates new operations, particularly the power
operation where both operands are belief intervals, which can
be used for the extension of theWeighted Geometric operator,
but cannot be defined within the framework of the classical
A− IFS. This fact confirms the superiority of the DST based
approach over the classical A− IFS, i.e. the DST redefinition
is a more general theory in the relation to the A− IFS.
The DST extension of the interval-valued A − IFS was

introduced in [17].
Here we present ones more important practical argument

in favor of the separate use of the BPN (see Definition 1
above) without any terms from A − IFS. In communica-
tions with experts, we found that they easily and willingly
set the values of the degree of membership. Very often in
technological practice, particular criteria are formulated in
the form of trapezoidal fuzzy number the top of which is the
interval of the best values of the parameter and the bottom
is the interval of acceptable values. Experts are used to this
and are willing to use it. However, with the degree of non-
membership, difficulties arise.
Let us say the expert sets µ=0.2. Then he/she automati-

cally sets ν=0.8. Moreover, he/she considers other values of
ν as erroneous. It is quite possible that such a probabilistic
style of thinking, which is a consequence of a good higher
education, prevents the widespread use of methods of A−IFS
to solve real-world problems, although there are other reasons
of rather psychological nature. But in any case, this is the
problem of the A− IFS.
At the same time, when the experts were asked to evaluate

the BPN , there were no noticeable problems. It is charac-
teristic that sometimes the experts offered their own inter-
pretations of the belief interval BI . Among them the most
successful and transparent was the interpretation of the BI =
[Bel,Pl] as the interval between pessimistic and optimistic
assessments of the membership degree.
It is worth noting that our approach is flexible enough. For

example, if someone wants to use only theµ and ν formalism
of the A − IFS, he/she can first obtain from experts the
estimations of BPN s (avoiding the above discussed problems
concerned with the estimation of ν) and then convert BPN s
into µ and ν based on the expressions µ = Bel, ν = 1− Pl.
We should note here that in practice, we can meet the

data available with such a structure that the µ and ν

appear objectively without expert’s judgments. (see examples
in [61], [66]).
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Summarizing we can state that the introduced DST redef-
inition of the A − IFS is fruitful and justified from both
theoretical and practical points of view.

III. NEW REPRESENTATIONS OF PEACE-WISE
MEMBERSHIP AND NON-MEMBERSHIP FUNCTIONS,
THEIR INTERVAL EXTENSIONS BASED ON THE REVEALED
SOURCES OF INTERVAL AN FUZZY UNCERTAINTY
In the previous section, we considered only intuitionis-
tic fuzzy numbers and Belief-Plausibility numbers without
explicit pointing out their origins. Here we will consider
objects characterizing by the functions µ(x) and ν(x), i.e.
if A ⊂ X then it is defined by the functions µA(x) and
νA(x). In the literature [21]–[41] the such type objects as A
are called intuitionistic fuzzy numbers. Taking into account
that in the previous section we called so (very reasonably) the
objects of a different kind, here we will call objects of type A
defined byµA(x) and νA(x), intuitionistic fuzzy values (IFV ).
We are not going to introduce here any new terminology.
Here we just use the terms ‘‘number’’ and ‘‘value’’ to indicate
the differences between the two analyzed types of objects.
Similarly, the objects defined by the Bel(x) and Pl(x) will be
called Belief-Plausibility values (BPV ).

We deliberately do not give strict definitions at the begin-
ning of our analysis as they will appear later when all the
necessary prerequisites are formulated.

A. DEFINITION AND BUILDING OF THE REAL-VALUED
IFV s AND BPV s
As it was stated in the previous section, one of the problem
of the known IFV definitions [21]–[41] are the controversial
asymptotic properties.

Let us consider a typical case presented in Fig. 1a. We can
see that in the interval [x2, x3] we have ν(x) = 0, i.e.
with the 100% of certainty (π (x) = 0) we should exclude
non-membership and therefore we have a case of complete
membership (µ(x) = 1). But we have such a result only in
one point in the [x2, x3]. In the interval [x4, x5], we deal with
the 100% of non-membership as µ(x) = 0. So it should be
ν(x) = 1 in this interval, but we see that 0 < ν(x) ≤ 1.

Let us consider this problem from the more general point
of view. Really, if µ(x)= 1, then we have a complete (100%)
certainty that some event has occurred. Therefore there is no
place for the opposite event and hesitation, i.e. it should be
ν(x) = 0 and π (x) = 0. The similar analyzes can easily be
done for other cases.

At first glance, this problem can be solved by the small
correction as in Fig. 1)b, but however, this will not save the
expert from the need to justify the feasibility of using such
uncertain data (in the intervals [x2, x3] and [x4, x5]) and this
is also not always possible.

The next flaw of the known approaches is the lack of clear
instructions on how to build the µ(x) and ν(x) functions so
that it always executes 0 ≤ µ(x)+ ν(x) ≤ 1.

Let us consider the simple triangular functions µA(x) and
νA(x). It is easy to see that if they intersect in some x

and 0.5 < µA(x) = νA(x), then 1 < µA(x) + νA(x),
x ∈ A and we have no an IFV . If µA(x) = νA(x) =
0.5 we obtain an ordinary fuzzy value: µA(x) + νA(x) = 1,
x ∈ A. In the case of µA(x) = νA(x) < 0.5, we have
µA(x) + νA(x) < 1, x ∈ A, but the problems similar to
those presented in Fig. 1a automatically arise. The similar
situation we meet in the case of trapezoidal functions µA(x)
and νA(x).
For the sake of simplicity, hereinafter wewill consider only

triangular (not necessary simple) types of the functionsµA(x)
and νA(x).
Although we showed that the simple triangular cannot pro-

vide acceptable non-controversial presentation of the func-
tions µA(x) and νA(x), the use of the small extension of
triangular-the Pentagonal (piece-wise linear functions based
on 5 reference points) IFV s [47]–[51] generally can solve
this problem. In Fig. 2, we can see the example of such a
presentation of the intuitionistic fuzzy value. It is seen that
the lesser are the values of µA(x) and νA(x) in the point of
intersection, the lesser is the uncertainty (hesitation degree)
of the IFV . This may help in building the µA(x) and νA(x).
Also we can see that all reasonable asymptotic properties are
fulfilled.

Of course, the proposed approach to building the functions
µA(x) and νA(x), which is focused on their intersection is not
unique. Nevertheless, we recommend it as providing great
convenience, when it is implemented as the graphical inter-
face: by dragging and dropping with the mouse that pointed
out on possible intersections and holding other reference
points to be stable, we can easily establish suitable forms of
µA(x) and νA(x).
The above premises allow us to introduce some formal

definitions.
Theorem 1: If the Pentagonal membershipµA(x) and non-

membership νA(x) functions such that µA(x) = 1, when
νA(x) = 0 and µA(x) = 0, when νA(x) = 1, intersect in the
points where µA(x) = νA(x) < 0.5, then µA(x)+ νA(x) < 1,
x ∈ A.

Proof: Follows directly from the geometric
construction. �
Of course, the same theorems hold for piece-wise

linear functions µ(x) and ν(x), e.g., for the Hexago-
nal, Heptagonal, Octagonal IFV s and so on, as well as
for any normalized convex µ(x) and the corresponding
concave ν(x).
Definition 2: The Pentagonal intuitionistic fuzzy value

(PIFV ) is the mathematical object defined by the pentago-
nal membership µA(x) and non-membership νA(x) functions
intersecting in the points, where µA(x) = νA(x) < 0.5 such
that µA(x) = 1, when νA(x) = 0 and µA(x) = 0, when
νA(x) = 1.
Obviously, in any fixed x1 ∈ A from PIFV we get
the intuitionistic fuzzy number IFN = PIFV (x1) =<
µA(x1), νA(x1) >.
The Pentagonal intuitionistic fuzzy functions µA(x) and

νA(x) can be presented as follows:

VOLUME 9, 2021 163753



P. Sevastjanov et al.: New Definitions of Intuitionistic and Belief-Plausibility Based Local Criteria

FIGURE 1. The controversial a) and the formally correct b) membership and non-membership functions.

FIGURE 2. The example of the correct membership µA(x),
non-membership νA(x) and hesitation πA(x) functions.

Let the interval [x1, x5] be the support of A ⊂ X (see
Fig. 2). Then based on Fig. 2 we get:

µA(x) = h1
(x − x1)
(x2 − x1)

, if x ∈ [x1, x2];

µA(x) = h1 + (1− h1)
(x − x2)
(x3 − x2)

, if x ∈ [x2, x3];

µA(x) = 1, if x = x3;

µA(x) = 1− (1− h2)
(x − x3)
(x4 − x3)

, if x ∈ [x3, x4];

µA(x) = h2
(x5 − x)
(x5 − x4)

, if x ∈ [x4, x5];

νA(x) = 1− (1− h1)
(x − x1)
(x2 − x1)

, if x ∈ [x1, x2];

νA(x) = h1
(x3 − x)
(x3 − x2)

, if x ∈ [x2, x3];

νA(x) = 0, if x = x3;

νA(x) = h2
(x − x3)
(x4 − x3)

, if x ∈ [x3, x4];

νA(x) = h2 + (1− h2)
(x5 − x)
(x − x4)

, if x ∈ [x4, x5],

h1, h2 ≤ 0.5. (3)

Significantly less problems we meet when building the
BPVA(x) = [BelA(x),PlA(x)], as in this case only what
we should worried about of is the holding the constraint

FIGURE 3. The example of the correct belief BelA(x), plausibility PlA(x)
and non-membership νA(x) functions.

BelA(x) ≤ PlA(x) and asymptotic properties seem to be
obvious and do not need additional explanations.

The formal definition of the BPVA(x) is as follows:
Definition 3: The Belief-Plausibility value (BPV ) is the

mathematical object defined by the functions BelA(x) and
PlA(x) such that PlA(x) = 0, when BelA(x) = 0, PlA(x) = 1,
when BelA(x) = 1 and 0 ≤ BelA(x) ≤ PlA(x) ≤ 1, x ∈ A.
For any fixed x1 ∈ A from BPV we get the Belief-Plausibility
number BPN = BPV (x1) = [BelA(x1),PLA(x1)].
It is remarkable that in comparison with the case of IFV ,

in this definition there is no need for any simplification, e.g.
the use of only Pentagonal functions.

The example is shown in Fig. 3.

B. INTERVAL-VALUED EXTENSIONS OF THE IFV s AND
BPV s RESULTING FROM THE MULTIPLICITY OF
MEMBERSHIP AND NON-MEMBERSHIP FUNCTIONS
PRESENTATION
This is the case when, e.g., differed experts are asked to
present own versions of functions µA(x) and νA(x). The
correct interval-valued Pentagonal Intuitionistic fuzzy value
IVPIFV defined by the interval valued functions [µA(x)] and
[νA(x)] in presented in Fig. 4. It is easy to see that to get a cor-
rect IVPIFV it is enough to take care that at the points of inter-
section of the upper bounds of the interval functions [µA(x)]
and [νA(x)] it is always performed µAU (x) = νAU (x) ≤ 0.5.
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FIGURE 4. The correct interval membership [µA(x)] and non-membership
[νA(x)] functions.

FIGURE 5. The example of the correct interval-valued belief [BelA(x)] and
plausibility [PlA(x)] functions.

Definition 4: The Interval-Valued Pentagonal Intuition-
istic fuzzy value IVPIFV is the IF object presented by
the interval-valued membership and non-membership func-
tions < [µAL(x), µAU (x)], [νAL(x), νAU (x)] > such that if
µAL(x) = 0, µAU (x) = 0, then νAL(x) = 1, νAU (x) = 1 and
if µAL(x) = 1, µAU (x) = 1, then νAL(x) = 0, νAU (x) = 0,
while at the points of intersection of the upper bounds of
the interval functions [µA(x)] and [νA(x)] it is always held
µAU (x) = νAU (x) ≤ 0.5.
For any fixed x1 ∈ A from IVPIFV we obtain the
interval-valued intuitionistic fuzzy number IVIFN =

PIFV (x1) = < [µAL(x1), µAU (x1)], [νAL(x1), νAU (x1)] >

consisting of two intervals, which may intersect or not (this
will be studied below).

The interval-valued Belief-Plausibility value IVBPVA(x)
defined by the corresponding interval belief [BelA(x)] and
plausibility [PlA(x)] functions is presented in Fig. 5.

The natural constraint should be held for the upper bounds:
BelAU (x) ≤ PlAU (x). This constraint can be redefined in
the framework of the A − IFS (-taking into account that
BelAU (x) = µAU (x) and PlAU (x) = 1 − νAL(x)) as follows:
µAU (x) + νAL(x) ≤ 1. This important constraint is absent in
the Atanassov’s definition [2] and was first introduced in our
paper [17].

But here we will call it ‘‘soft constraint’’ since it does
not prevent the cases when BelAU (x) ≥ PlAL(x) as in

the example in Fig. 5 (left side), which can be treated as
controversial situations. Therefore, the ‘‘strong constraint’’
BelAU (x) ≤ PlAL(x) that prevents the controversial situ-
ations like that in Fig. 5 (right side) reduces to its A −
IFS form µAU (x) + νAU (x) ≤ 1, which is the same as
in [2].

It is easy to see that if the strong constraint is held, then the
soft constraint is fulfilled as well, but not vice verse.

Besides, as we deal with interval extensions of belief and
plausibility functions, the natural thing is the extension of
the basic inequality Bel ≤ PL to its interval extension
[BelA(x)] ≤ [PlA(x)], where inequality is treated in the
interval form.

There are many methods for interval comparison proposed
in the literature. The most popular ones were studied in [67],
where it was found that the simplest method based of inter-
vals midpoints comparison provides results not the worst
than even the complex methods based on the probabilistic
approach [68]. Then the above interval inequality can be
presented as BelAL(x)+ BelAU (x) ≤ PlAL(x)+ PlAU (x).
Of course, having three possible constraints, we should

present thee different definitions of IVBPVA(x), but since the
last of them seems to be the some compromise between two
first considered constraints, we propose here the following
definition:
Definition 5: The Interval-valuedBelief-Plausibility value

IVBPVA(x) is the object represented by the interval-valued
belief [BelA(x)] and plausibility [PlA(x)] functions such that if
BelAL(x) = BelAU (x) = 0, then PlAL(x) = PLAU (x) = 0 and
if BelAL(x) = BelAU (x) = 1, then PlAL(x) = PLAU (x) = 1,
while BelAL(x)+ BelAU (x) ≤ PlAL(x)+ PlAU (x).
For any x1 ∈ A from IVBPV we obtain the Interval-
Valued Belief-Interval number, which can be defined as
follows:
Definition 6: The Interval-ValuedBelief-Plausibility num-

ber under uncertainty coursed by multiplicity of belief and
plausibility functions is presented by the belief interval
bounded belief interval:

IVBP = IVBPV (x1) = [[BelAL(x1),

BelAU (x1)], [PlAL(x1),PlAU (x1)]]. (4)

The introduced IVBPN is the belief interval bounded by
two intersecting or not belief intervals. We can state that
the intervals [BelAL(x1),BelAU (x1)] and [PlAL(x1),PlAU (x1)]
can be formally treated as the belief intervals since in the
Exp.(2) we have 0 ≤ BelAL(x1) ≤ BelAU (x1) ≤ 1 and
0 ≤ PlAL(x1) ≤ PlAU (x1) ≤ 1. In the Definition 6, the
presentation of IVBPN differs from that in [17], which in
the current notation can be presented as follows: IVBPN =
[[BelAL ,PlAL], [BelAU ,PlAU ]]. We can say that a new Defi-
nition 6 may be treated as the upgraded version of that intro-
duced in [17] as it is the direct interval extension of the real-
valued BPN when the actual interval uncertainty is originated
frommultiplicity of belief and plausibility functions, whereas
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FIGURE 6. Calculation of BelA(x), PlA(x) and νA(x) functions of interval
argument [x1, x2].

the definition from [17] is formulated without specifying the
source of the interval uncertainty.

C. INTERVAL-VALUED EXTENSIONS OF THE IFV s AND
BPV s AS THE CONSEQUENCE OF THE INTERVAL NATURE
OF INPUT DATA
First we should say that introducing interval and fuzzy input
data in the intuitionistic framework is not a purely mathemat-
ical exercise, but is justified by the specificity of real-world
problems (see Section 4).

Suppose x be some parameter defining values of the cor-
responding local criterion represented by the IVIFV (x) or
IVBPV (x), where values of x belong to the interval of unsta-
ble measurements: x ∈ [x1, x2] as it is shown in Fig. 6.
Generally for calculating the value of IVBPN , the following
definition can be used:
Definition 7: The Interval-ValuedBelief-Plausibility num-

ber under uncertainty coursed by interval nature of
input data is the belief interval bounded interval num-
ber defined by the belief and plausibility function as
follows:

IVBPN = IVBPV ([x1, x2])

= [[ inf
x∈[x1,x2]

(BelA(x)), sup
x∈[x1,x2]

(BelA(x))],

[ inf
x∈[x1,x2]

(PlA(x)), sup
x∈[x1,x2]

(PlA(x))]]. (5)

It is important that in this case, we obtain again the belief
interval bounded by belief intervals, since in the Exp.(3) we
have always 0 ≤ infBel ≤ supBel ≤ 1 and 0 ≤ infPl ≤
supPl ≤ 1. So the Definition 7 is the upgraded version of
that in [17] as it directly specifies the source of interval uncer-
tainty. In the considered case (see Fig. 6), the general expres-
sion (3) can be simplified to IVBPN = IVBPV ([x1, x2]) =
[[BelA(x1),BelA(x2)], [PlA(x1),PlA(x2)]]. In this exam-
ple, there are no intersections between the resulting
intervals.

In the example presented in Fig. 7, the functions BelA(x)
and PlA(x) have their maximum equal to 1 and the function
νA(x) has its minimum equal to 0 in [x1, x2].

FIGURE 7. Calculation of BelA(x), PlA(x) and νA(x) functions of interval
[x1, x2], where the sup(BelA(x)) and sup(PlA(x)) are achievable.

As the result, we obtain: IVBPN = IVBPV ([x1, x2]) =
[[BelA(x1), 1], [PlA(x1), 1]]. It is seen that in this case, all the
resulting intervals are intersecting. It is shown in Fig. 7 and in
Fig. 8 that all possible mutual locations of resulting intervals
can be obtained. It is important that we often meet the inter-
secting intervals [BelA(x1),BelA(x2)] and [PlA(x1),PlA(x2)]
such that BelA(x2) > PlA(x1) with the relatively wide area of
intersection as in Fig. 7. Of course, we can complete eliminate
this area redefining the results of the IVBPN calculation as
follows:

IVBPN = IVBPV ([x1, x2]) = [[BelA(x1),PlA(x1)],

[BelA(x2),PlA(x2)]]. It is easy to see (Fig. 6) that in this
case, we get two relatively small intervals [BelA(x1),PlA(x1)]
and [BelA(x2),PlA(x2)] with the great gap between them.
So instead of obtained in the direct calculations infor-
mation we have the gap, which the width can serve as
the measure of information lost. So such an approach
seems to be at least unproductive with great information
losses.

Therefore, we will use here the described above approach
based on the Exp.(3) and its simplification.

It should be stressed that there are no any confrontational
or debatable assumptions and methods in the Definition 7.
So we should not reject from any information obtained with
its use, but only properly treat and apply it in the analysis. For
example, we have found that the width of the Bel and Pl inter-
vals intersection is gradually decreasing along with lowering
an interval uncertainty, i.e. the width of input interval. So this
intersection area should be used in analysis. Also, it can be
considered as an indeterminacy area, where nor the belief
estimation and no the plausibility one cannot be excluded
and this is entirely in the spirit of the Dempster-Shafer theory
formalism.

It is important that although we have introduced here two
different definitions 6 and 7 for the IVBPN and they some-
what differ from that in [17], the common thing in these def-
initions is the introduced concept of belief interval bounded
by belief intervals. On the other hand, the Definitions 6 and 7
are the specified and upgraded versions of that in [17] as they
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FIGURE 8. Calculations of the interval-valued [BelA(x)], [PlA(x)] and [νA(x)] functions of real-valued arguments.

FIGURE 9. Calculating the triangular TFVBPN , which depends on the
triangular fuzzy input variable.

originated from the different sources of interval uncertainty,
while in the definition from [17] there are no any indications
of uncertainty sources.

D. TRIANGULAR FUZZY EXTENSION OF THE IFV s AND
BPV s ORIGINATED FROM THE TRIANGULAR FUZZY
NATURE OF INPUT DATA
Suppose A = (x1, x2, x3) is the simple triangular fuzzy value
representing the range of measured values of the input param-
eter x, where [x1, x3] is the interval of all measurements and
x2 is the point, around which the measurements are observed
most frequently, so that in the point x = x2, we have the top
of A, i.e. the value of its membership function is equal to 1.
Let BPVA(x) be the Belief-Plausibility value representing

some criterion in theMCDM task by the corresponding belief
and plausibility functions BelA(x) and PlA(x). Then the value
of this criterion for the fuzzy argumentA = (x1, x2, x3) can be
obtained as the Triangular Fuzzy-Valued Belief-Plausibility
Number TFVBPNA = BPVA(A), which in our case of simple
triangular A, can be presented by the mapping of A on the
BelA(x) and PlA(x) as it is shown in Fig. 9.

We can see that the resulting TFVBPNA is the belief inter-
val bounded by the triangular fuzzy numbers BelA(A) and
PlA(A) defined on the unit interval and such that BelA(A) ≤
PlA(A). So these triangles can be treated as the special Tri-
angular Belief-Plausibility numbers. Therefore we can intro-
duce the following definition:
Definition 8: The Triangular Belief-Plausibility Number

is the belief interval bounded by the special Belief-Plausibility
triangular fuzzy numbers defined on the unit interval.

In this case (see Fig. 9), the values of these bounding triangles
can be calculated as follows:

BelA(A) = (BelA(x1),BelA(x2),BelA(x3)),PlA(A)

= (PlA(x1),PlA(x2),PlA(x3)).

It is seen that BelA(A) and PlA(A) can intersect. In such cases,
the small interval in the intersecting area, similarly to the
considered in the above section interval extension, can serve
as the measure of uncertainty coursed by the uncertainty of
the input triangular fuzzy value A = (x1, x2, x3). This is an
interesting and useful feature of the developed approach, but
now it is out of scope of this paper.

E. THE ARITHMETIC OPERATION WITH LOCAL CRITERIA
REPRESENTED BY BPNs DEPENDENT ON INTERVAL AND
FUZZY ARGUMENTS
The defined in the previous sections uncertain values IFV ,
IVIFV , BPV , IVBPV based on the different types of uncer-
tainty, can be directly used in the calculation, which usually
are provided applying the α-cuts representation of uncertain
values. For example, this approach is justified in the solution
of the Transportation Problem [47].

It is important that in this case, only the operations with
uncertain values reduced to the operations with intervals
on the α-cuts are used, while the operations with uncertain
numbers are not needed at all.

Therefore, our approach based on the introduction of the
separate definitions and operational rules for uncertain values
and uncertain numbers is methodologically justified.

When dealing with the MCDM problems, we usually deal
with calculation of local criteria values based on some func-
tions of the important parameters. Then we use these val-
ues in different aggregation modes. Therefore, if we have
the MCDM problem under uncertainty, then we should use
the such values as the numbers IFN , IVIFN , BPN , IVBPN ,
TFBPN defined above depending on the type of uncertainty
occurred.

Then the corresponding operational laws with these num-
bers should be defined. In [16], [17], we showed that the
classical arithmetical operations with the IFN s and IVIFN s
are suffered from a set of important drawback that may lead to
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unacceptable, illogical results. Therefore, in [16], [17] based
on the redefinition of A−IFS and A−IVIFS in the framework
of DST , the sets of new operations with BPN s and IVBPN s
free of the revealed drawbacks of the classical operations with
the IFN s and IVIFN s were proposed and justified.
Based on the above conclusions, we will use directly the

numbers BPN s, IVBPN s and TFBPN s to represent local
criteria in the MCDM problem or the numbers obtained by
theDST based redefinition (extension) of the problems firstly
defined in context of the A − IFS or the A − IVIFS. These
operations are originated from the dual nature of a belief
interval, which simultaneously can be treated as an interval
containing a power of some statement and as an ordinary
interval included in the unit one.

So based on the first above treatment of a belief interval,
the addition operation with belief intervals was inferred in
such a way that it is idempotent one and provides a belief
interval as the result. These demands can be provided only by
the averaging operation. The other operations used inMCDM
were defined as those in the classical interval arithmetic.

So for the real-valued BPN1 = [Bel1,Pl1], BPN2 =

[Bel2,Pl2], . . . ,BPNn = [Beln,Pln] in [16], it was obtained:

BPN1 ⊕ BPN2 ⊕ . . . .⊕ BPNn =

[
1
n

n∑
i=1

Beli,
1
n

n∑
i=1

Pli

]
.

(6)

BPN1 ⊗ BPN2 = [Bel1Bel2,Pl1Pl2]. (7)

αBPN = [αBel, αPl], (8)

where α is a real value. This operation is correct only for α ≤
1 since for α > 1 this operation cannot not always provide
a correct belief interval. This restriction is admissible as α is
usually used in the operations with belief intervals to solve
MCDM problems, where α is less of 1 as it serves being the
local criterion weight.

BPNα = [Bel(A)α,Pl(A)α], (9)

where α ≥ 0.

BPNBPN2
1 = [BelPl21 ,PlBel21 ]. (10)

It is worth noting that the last operation cannot not be defined
in the body of classical A− IFS.
With the use of corresponding theorems, we have proved

in [16] that these operations have good algebraic properties
and free of revealed drawbacks of the conventional operations
defined in the framework of the A− IFS.

Here we present the more justified than in [17], upgraded
set of arithmetical operations with IVBPN s obtained with the
use of Definition 7 for the case of interval uncertainty of input
data, as based on these operations the operation laws with
TFVBPN s used in the case study in Section 4 were inferred.
Let

IVBPN1

= IVBPV ([x11, x12]) = [[Bel1(x11),Bel1(x12)],

[Pl1(x11),Pl1(x12)]] = [[Bel11,Bel12], [Pl11,Pl12]]

and

IVBPN2

= IVBPV ([x21, x22]) = [[Bel2(x21),Bel2(x22)],

[Pl2(x21),Pl2(x22)]] = [[Bel21,Bel22], [Pl21,Pl22]].

Then

IVBPN1 ⊕int IVBPN2 ⊕int . . .⊕int IVBPNn

=
1
n

[[
n∑
i=1

Beli1,
n∑
i=1

Beli2

]
,

[
n∑
i=1

Pli1,
n∑
i=1

Pli2.

]]
.

(11)

IVBPN1 ⊗int IVBPN2

= [[Bel11Bel21,Bel12Bel22],

[Pl11Pl21,Pl12Pl22]]. (12)

αIVBPN1= [α [Bel11,Bel12] , α [Pl11,Pl12]]

= [[αBel11, αBel12] , [αPl11, αPl12]] , α < 1.

(13)

IVBPNα1 =
[[
(Bel11)α , (Bel12)α

]
,
[
(Pl11)α , (Pl12)α

]]
.

(14)

IVBPNBPN
1 =

[
[Bel11,Bel12][Bel,Pl] , [Pl11,Pl12][Bel,Pl]

]
=

[[
(Bel11)Pl, (Bel12)Bel

]
,
[
(Pl11)Pl ,(Pl12)Bel

]]
,

BPN = [Bel,Pl]. (15)

IVBPN IVBPN2
1 =[

[
(Bel11)Pl22 , (Bel12)Bel21

]
,[

(Bel12)Pl22 , (Pl12)Bel21
]
]. (16)

These operations have good algebraic properties and are free
of the drawbacks of corresponding operations defined in the
A − IVIFS. This is easily proved using the same theorems
as in [17] replacing the BelL in them with Bel11, the PlL

with Bel12, the BelU with Pl11 and PlU with Pl12 in the first
operand and by making similar replacements in the second
one.

Let

TFVBPN1 = ((Bel11,Bel12,Bel13), (Pl11,Pl12,Pl13)),

TFVBPN1 = ((Bel21,Bel22,Bel23), (Pl21,Pl22,Pl23)).

Then

TFVBPN1 ⊕fuzzy TFVBPN2 ⊕fuzzy . . .⊕fuzzy TFVBPNn

=
1
n
[

(
n∑
i=1

Beli1,
n∑
i=1

Beli2,
n∑
i=1

Beli3

)
,(

n∑
i=1

Pli1,
n∑
i=1

Pli2,
n∑
i=1

Pli3.

)
]. (17)

TFVBPN1 ⊗fuzzy TFVBPN2

= ((Bel11Bel21,Bel12Bel22,Bel13Bel23),

(Pl11Pl21,Pl12Pl22,PL13Pl23)). (18)

αTFVBPN1
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FIGURE 10. The local criteria of the steel ingots heating process quality before the hot rolling.

= ((αBel11, αBel12, αBel13),

(αPl11, αPl12, αPl13)), α < 1. (19)

TFVBPNα1
= ( ((Bel11)α, (Bel12)α, (Bel13)α),

((Pl11)α, (Pl12)α, (Pl13)α) ). (20)

TFVBPNTFVBPN2
1

= ((BelPl2311 ,BelPl2212 ,BelPl2113 ), (PlBel2311 ,PlBel2212 ,PlBel2113 )).

(21)

The introduced operations with TFVBPN s have good alge-
braic properties and are free of the drawbacks of those defined
in the A − IFS for INIFV s. The corresponding theorems are
obtained from those proved in [17] by simply replacing the
notation and so they are not represented here.

IV. CASE STUDY: THE SOLUTION OF TRIANGULAR FUZZY
BELIEF-PLAUSIBILITY MCDM PROBLEM OF THE RAW
MATERIAL SUPPLIER SELECTION ON THE STEEL-ROLLING
PLANT
In this section, we present the example of the practical
application of the developed methods for the solution of
the triangular fuzzy Belief-Plausibility MCDM problem of
the raw material supplier selection for the Belorussian Mini
Metallurgical Plant BMMP based on the quality estimation
of the ingot heating process before the hot rolling at the
rolling mill 850. The plant was erected and commissioned on
a ‘‘turn-key’’ basis in 1984 by ‘‘Voest-Alpine’’.

The basic rawmaterial used in theBMMP is themetal scrap
delivered by different suppliers and therefore characterizing
by different chemical compositions affected the product qual-
ity. For example, if one scrap consist mainly of cutted ships
and another one contains many pressed cars then to use them
often different technologies should be applied.

In [69], we presented the solutions of two fuzzy multiple
criteria optimization problems on the BMMP, but their appli-
cability was restricted by the need to solve these problems for
everyone new supplier.

Therefore, based on the compromise technology providing
not the best, but at least acceptable product quality for the
considerable group of suppliers, it was proposed to make the

multiple-criteria selection of them. The compromise technol-
ogy was proposed by the Voest-Alpine, but not taking into
account the specificity of the Belorussian suppliers.

The ingot heating process was chosen as a the basic one as
it is the process immediately preceding the rolling and in a
great extent determining its quality.

Therefore, the problemwas formulated as follows: to make
the selection of the metal scrap suppliers based on their
ability to ensure highmultiple criteria estimations of the ingot
heating process quality.

In this process, the ingots are heated in methodical gas
furnaces. The methodical furnace with walking beams of the
mill 850 is designed for heating continuously cast blooms
with a cross section of 250× 300 and 300× 400 mm with a
length of 2.5 to 5.5 m with a layout step of 150 and 200 mm,
respectively. The total length of the furnace is 23m, according
to the location of the burners, it is divided into seven sections,
which can be divided into methodical, two the so-called
welding and homogenizing zones.

Three parameters of the process quality were considered:
the scale thickness δ to be minimized as it directly represent
the metal losses, the accuracy of heating T to be maximized,
and the maximum temperature difference in the ingot 1T
at the time of unloading to be minimized because it causes
thermal stresses that can lead to the destruction of the ingot
during rolling.

The corresponding membership functionsµδ ,µT andµ1T
(or Belδ , BelT and Bel1T ) representing the local criteria of
the process quality are presented in Fig. 10. The membership
functions of the criteria µδ , µT and µ1T were proposed by
the technologists based on the carried earlier industrial exper-
iments, their experience and intuition. The criteria µδ and
µT were nearly directly based on the existing technological
instructions. More details are presented in [69].

The crucial for the considered problem thing is that after
defining the membership functions, the technologists refused
to present the non-membership ones. They argued such a
rejection insisting that presenting the criteria by member-
ship functions they had used exhaustively all the informa-
tion available and therefore there is no place for any non-
membership functions, which in their opinion seem to be
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something artificial senseless mathematical constructions.
Perhaps this was coursed by the psychological problem to
give a negative assessment (non-membership), when a pos-
itive one (membership) is already established.

Therefore, wewere forced to abandon the use of theA−IFS
methods to solve the problem, at least explicitly.

Meanwhile, technologists experts were willing to answer
the question: What would be your maximum permissi-
ble (optimistic) estimate of membership (plausibility, PL) if
theBel = µ is a guaranteedminimum estimate? The obtained
estimates of the plausibility degrees are approximately pre-
sented in Fig. 10 by the piece-wise linear functions.

The weights (relative importance) of the local criteria were
calculated using the matrix of the linguistic pairwise compar-
isons of the criteria provided in the verbal form by experts.
The method developed in [70] was used (see more details
in [69]).

The following weights were obtained: wδ = 0.076, wT =
0.477 andw1T = 0.447 for the local criteriaµδ ,µT andµ1T ,
respectively.

For all considered parameters of the process quality, their
measurements were carried out for the sets of ingots produced
from the scrap delivered by competing suppliers. Since the
measurements of δ and1T required the use of very expensive
methods based on the partial destruction of ingots it was not
possible to obtain a sufficient number of measurements to
apply rigorous statistical methods. Therefore, the results of
measurement for each considered ith supplier were presented
by triangular fuzzy numbers as follows:

Ai = (a1i, a2i, a3i),Bi = (b1i, b2i, b3i),Ci = (c1i, c2i, c3i),

(22)

where Ai, Bi andCi are triangular fuzzy numbers representing
the results of measurements of δ, T and1T , respectively. For
example, the interval [a1i, a3i] is the range of all obtained
measurements of δ and a2i is the point of their visible con-
centration.

Then the generalized criterion GCi should be presented
as the convolution of local criteria with their weights. The
weighted sum convolution was chosen as the more flexible
than other popular aggregation modes as it provides the
trade-off of low values of some criteria with high values
of others. The TFBPN s representing the values of the local
criteria for the corresponding triangular fuzzy arguments are
presented in Fig. 11-13. The results of intermediate cal-
culations for the four considered suppliers are presented in
Table 1. The values of the obtained TFBPN s were calculated
as follows:

BelTrδi = (Bel(a1i),Bel(a2i),Bel(a3i)),

PlTrδi = (Pl(a1i),Pl(a2i),Pl(a3i)),

BelTrTi = (Bel(b1i),Bel(b2i),Bel(b3i)),

PlTrTi = (Pl(b1i),Pl(b2i),Pl(b3i)),

BelTr1Ti = (Bel(c1i),Bel(c2i),Bel(c3i)),

PlTr1Ti = (Bel(c1i),Bel(c2i),Bel(c3i)).

FIGURE 11. Calculating the triangular value of FVBP local criterion
dependent on the triangular fuzzy δ.

FIGURE 12. Calculating the triangular value of FVBP local criterion
dependent on the triangular fuzzy T .

FIGURE 13. Calculating the triangular value of FVBP local criterion
dependent on the triangular fuzzy 1T .

TABLE 1. The calculations of FVBPNs.

Then using the operations (15) and (17), we inferred the
generalized criterion GCi presentation for the considered
problem as follow:

GCi= (BelGCi,PlGCi) = ((wδBelTrδi + wTBelTrTi
+w1TBelTr1Ti),(wδPlTrδi+wTPlTrTi+w1TPlTr1Ti)).

The results are presented in Fig. 14 and Table 2.
Analyzing the results presented in Fig. 14 and Table 2,

without additional calculations we can conclude that
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FIGURE 14. The TFVBPNs representing the generalized criterion GC for the considered four suppliers.

TABLE 2. The calculations of FVBPNs.

BelGC1 < BelGC2 < BelGC3 < BelGC4 and PlGC1 < PlGC2 <

PlGC3 < PlGC4 . Therefore the final rating of the suppliers
can be presented according to the rating of the generalized
criterion of the heating process quality, which was obtained
using the delivered by the competing suppliers raw materials
as follows: GC1 < GC2 < GC3 < GC4.
Of course, in general, the comparison of TFBPN s is not so

easy problem as above and the corresponding method for its
solution should be developed. But this is out of scope of this
paper and now it is in the final stage of elaboration.

The considered case study illustrates the ability of the pro-
posed approach, based on the Belief-Plausibility formalism,
to solve the real-world problems independently, without use
the A− IFS concepts. It is shown that such an approach owns
obvious advantages in comparison with the A − IFS based
one.

V. CONCLUSION
The contributions of this work into development of the meth-
ods for uncertainty modeling are as follows:

1. The several important internal theoretical and practical
problems of the A− IFS and A− IVIFS theories are analyzed
and approaches to their solutions based on the redefinition
of them in the framework of the DST are developed. When
analyzing the ability of the novel Neutrosophic, Picture,
Pythagorean and Spherical sets theories to solve the problems
of the classical A−IFS theory, some their own limitations and
drawbacks are revealed.

2. It is shown that these drawbacks prevent the solution of
the A− IFS problems, whereas the proposed approach based
on the DST is free of them and performs better than these
novel theories and the A− IFS.
3. The properties of the DST extension of the A − IFS

and its practical advantages for a decision maker in assigning
certain real values to the parameters of A− IFS are analyzed.
As the result of provided studies, a new mathematical object

called Belief-Plausibility number (BPN ) is introduced. It is
shown that the BPN has at least two particular cases: an usual
fuzzy number (the value of a membership function) and an
intuitionistic fuzzy number. It is emphasized that the BPN
can be successfully applied completely separately not using
terms of usual fuzzy sets and theA−IFS and this is the typical
feature of more general theories.

4. We have not found in the literature clear and practical
approaches to mathematical formulation of the membership
µ(x) and non-membership ν(x) functions in such a way that
all asymptotic properties and basic constraints µ(x)+ ν(x) ≤
1, µU (x) + νU (x) ≤ 1 (µU (x) and νU (x) are the upper
bounds of corresponding interval-valued membership and
non-membership functions) will be fulfilled jointly. There-
fore, in the current paper, such an approach is proposed.

5. It was found that there are two main sources of uncer-
tainty leading to the need for the use of A− IVIFS, The first
of them is an interval uncertainty coursed by the multiplicity
of the functions µ(x) and ν(x), e.g. proposed by different
experts. The second is the consequence of interval uncertainty
of input data, e.g. in the MCDM . And if input data we deal
with are presented by fuzzy values, we meet the case of
fuzzy-valued intuitionistic fuzzy set FVIFS.
6. The described above general approach to treatment of

interval-valued intuitionistic fuzzy objects and their Belief-
Plausibility (based on the DST ) extensions allowed us to
introduce a set of new fruitful definitions, some of the them,
e.g. the definition of Fuzzy-Valued Belief-Plausibility value
(FVBPV ) were not even mentioned in the literature in any
form.

7. The corresponding new arithmetical operations with
such mathematical objects, following from these definitions,
are proposed. They all, and especially the definition of
FVBPV , were thoroughly analyzed under general method-
ological principles and their practical usefulness is illustrated
by the real- world case study based on the solution of the
DST based uncertain MCDM problem of the raw material
supplier selection on the steel rolling plant under triangular
fuzzy input data.

8. The obtained results allowed us to state that the
introduced mathematical objects BPN , IVBPN and FVBPN
can be successfully used in the analysis and applications
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independently, without the use of the A − IFS concepts and
such an approach possesses obvious advantages in compari-
son with the A− IFS based approach.

The main directions of our future researches will be an
extension of the proposed general approach to the cases when
an uncertainty is originated jointly from themultiplicity of the
Bel and Pl functions formulations and uncertainty of input
data (functions arguments), and the development of methods
for the comparison of the Belief-Plausibility based objects
characterising by different uncertainty levels.
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