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ABSTRACT In this paper, we develop a new point-of-entry security measure for smartphone users.
We devise a concept, the ‘‘Quad Swipe Pattern’’, which includes four swipes from a user in four directions
and utilizes the user’s swipe behavior for authentication. The Quad Swipe Pattern overcomes several
shortcomings present in current point-of-entry security measures. We performed several experiments to
demonstrate the effectiveness of the Quad Swipe Pattern in smartphone user authentication.We evaluated the
Quad Swipe Pattern using fivemachine learning classifiers, three datasets of different sizes, and five different
fingers. In addition, we studied how fusion of information from multiple fingers and multiple classifiers can
improve the performance of Quad Swipe Pattern. All of our experimental results show significant promise of
the Quad Swipe Pattern as a new point-of-entry security measure for smartphones. With a Neural Network
model, the Quad Swipe Pattern achieves the Accuracy of 99.7%, False Acceptance Rate of 0.4%, and False
Rejection Rate of 0%. With Support Vector Machine, the Quad Swipe Pattern achieves the Accuracy of
99.5%, False Acceptance Rate of 0.4%, and False Rejection Rate of 1.7%. With fusion of two best fingers,
the Quad Swipe Pattern demonstrates an excellent performance of a zero Equal Error Rate.

INDEX TERMS Biometrics, authentication, smartphone security, touchscreen, swipe gesture.

I. INTRODUCTION
Smartphones continue to play a more important role in our
lives with every passing day. Individuals use their phones for
a wide variety of tasks that range from staying in touch with
friends and family, checking a credit card balance, to reading
the latest news article. Bank records, passwords, web usage,
schedules, plans, interests, and personal relationships are
all stored in smartphones. Unfortunately, this versatility in
smartphones has generated its own risks. Study [1] reports
that consolidation of vast amounts of information in one place
is the major security concern in smartphones.

To secure data on smartphones, several point-of-entry
security measures such as passwords, passcodes, and patterns
currently exist. However, none of these measures are perfect;
each of them has some limitations. One of the main issues
with passwords and passcodes is that people often choose
their entry codes for convenience, rather than security. Studies
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show that out of 204,508 iPhone passcodes, ten different pass-
codes made up 15% of the passcodes assessed [2]. The after-
math is that nearly 1 in 7 iPhones could be unlocked just by
going through the 10most common passcodes. Flaws in using
a password is further demonstrated by Li et al. [3], where
they analyzed over 100s of millions of leaked passwords from
popular Chinese and English websites. They found that the
most common password was ‘‘123456’’. Another common
password they found was the word ‘‘password’’. This study
demonstrates how smartphone users can allow their security
to be compromised by choosing simple, guessable passwords.

Another issue with password/passcode involves the
‘‘smudge attack’’ [4]. When a smartphone user uses the
phone, he/she leaves behind a trail of smudges on the screen.
‘‘Smudge attacks’’ occur when an unauthorized user looks
at the smudges on a smartphone screen and then uses those
smudges to guess a lock-screen passcode.

An alternative to a password/passcode based security pro-
tocol is a user-defined pattern, where a user needs to repli-
cate their preset pattern to unlock the phone. Unfortunately,
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researchers demonstrate grave flaws in pattern-based secu-
rity. A study shows that it is significantly easier to steal a
pattern compared to a six-digit PIN [5]. Out of 1,173 par-
ticipants, 64% were able to reproduce a pattern containing
six points. If participants were shown a pattern twice, 80%
of those tested were able to reproduce the pattern. In com-
parison, with one viewing, 11% of participants could recall
a six-digit PIN, and 27% could recall the PIN correctly after
seeing the PIN twice.

In order to combat the stealing of passwords and patterns,
researchers have developed biometric-based security proto-
cols for smartphones. Rather than using something a person
knows, a biometric-based security protocol relies on some-
thing a person has or is based on his/her behavior. Several
smartphones are currently using physical biometrics such as
fingerprint and face images. For example, iPhone’s Touch
ID uses fingerprint images in order to grant access to the
phone. While Touch ID provides a good layer of security,
it is not infallible. Article [6] highlights the flaws of Touch
ID. The small sensor used by Apple can be compromised by
dust, oils, and moisture. Apple protects its delicate sensor
by covering it with a piece of crystal. Together, the small
sensor and its crystal covering limit the amount of data that
can be captured. This limited amount of data forced Apple
to compromise on its False Acceptance and False Rejection
Rates. Additionally, studies show that it is possible for finger-
prints to be stolen and used to unlock a device [7]. Another
physical biometric protocol, facial recognition, is also being
used by several smartphones. However, face biometrics is still
challenged by lighting conditions and face orientation when
looking at a smartphone [8]. Simple things like leaning over
too far or not looking directly at the camera can foil facial
recognition software. These failures force users to rely on
their passcodes and passwords in order to gain access to their
smartphones.

A. OUR CONTRIBUTION AND NOVELTY
In this paper, we develop an authentication system for smart-
phone users, which resolves the above mentioned issues.
Specifically, we devise a concept of a Quad Swipe Pat-
tern which uses swipe behavior of a smartphone user
for authentication. The Quad Swipe Pattern is a point-
of-entry authentication measure. It includes four swipes
from the smartphone user in four directions, one from left
to right, one from right to left, one from up to down,
and one from down to up. With each swipe from a user,
behavioral information such as pressure, size, timing, posi-
tion, etc. are captured and then combined to be used for
authentication.

We performed several experiments to demonstrate the
effectiveness of the Quad Swipe Pattern for smartphone user
authentication. We evaluated the Quad Swipe Pattern using
five machine learning classifiers: Support Vector Machine,
Naive Bayes, two different models of Neural Networks, and
Random Forest. We collected swipe data from 45 users in
three different sessions. We created three different datasets

to examine how Quad Swipe Pattern performs when the
size of datasets and the number of training sessions vary.
We experimented with five fingers to see the applicability
of Quad Swipe Pattern on different fingers and different
hands. In addition, we studied how fusion of information
frommultiple fingers andmultiple classifiers can improve the
authentication accuracy. All of our experimental results show
significant promise of Quad Swipe Pattern as a new point-of-
entry security measure for smartphones.

1) BENEFITS OF THE QUAD SWIPE PATTERN
The Quad Swipe Pattern is an important advancement in
smartphone security gateways. It overcomes several short-
comings present in current point-of-entry security measures.
First of all, it does not need any passcodes, PINs, or pass-
words. Not needing a passcode or password will eliminate
user errors, like choosing an easy to guess or common pass-
word. The Quad Swipe Pattern is also immune to shoulder
surfing and smudge attacks. An individual with malicious
intent will not be able to gain anything from watching the
Quad Swipe Pattern in action. The Quad Swipe Pattern also
has advantages over facial recognition. Facial recognition
requires adequate lighting and presentation of one’s face to
a camera. Unlike facial recognition protocol, the Quad Swipe
Pattern will work in any conditions so long as proper contact
can be made with the touchscreen. The Quad Swipe Pattern
based authentication system does not require extra hardware
such as an iris scanner or fingerprint scanner, which signif-
icantly can reduce the manufacturing cost of smartphones.
Finally, the Quad Swipe Pattern uses information that would
be very difficult to steal. By using biometric information that
is harder to attain, the Quad Swipe Pattern gains another edge
over the security gateways currently on the market. Millions
of people swipe on their phones every day, and hence, the
swipes required by the Quad Swipe Pattern will be an easy
way to ensure the security of their information.

The remainder of the paper is organized in the following
manner. Section II contains a review of literature related
to our work. Section III contains a detailed description of
the Quad Swipe Pattern and its implementation. Section IV
covers data collection and data processing, while Section V
discusses feature extraction. Section VI covers our experi-
mental design, while Section VII covers the results of those
experiments. Section VIII discusses our findings and finally,
Section IX puts concluding remarks.

II. RELATED LITERATURE
Once past a phone’s lock screen, a user’s access to a smart-
phone’s data is almost unlimited. Therefore, several research
groups have been working towards improving smartphone
security gateways. Modern touchscreens collect a variety of
information and that information can be used to combat secu-
rity breaches. The work of several researches demonstrate
how touchscreen data collected from smartphones can be
used to identify and authenticate individuals.
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A. STUDIES ON TOUCH GESTURES
The measurement capabilities of a modern touchscreen are
examined in detail by Wang et al. [9]. The authors explored
human finger input properties. They collected a variety
of touch data such as contact area, contact shape, and
contact orientation from a subject’s thumb, index, middle,
ring, and little fingers. The index, ring, and middle fin-
gers proved to be the best fingers from which to record
data.

Feng et al. [10] demonstrated the ability to identify a user
based on data collected from a touchscreen. The researchers
collected touch features such as touch location, swipe speed,
touch size, and the time between touch events. All of this
information was collected in the background during normal
usage of an Android device. The collected information was
used by a Decision Tree classifier to authenticate individuals.
A True Positive Rate of 91% and a True Negative Rate of 93%
was achieved.

Rilvan et al. [11] used capacitive data collected from
touchscreen to authenticate smartphone users. They
demonstrated significant promise of machine learning clas-
sifiers and principal component analysis in user authentica-
tion. They achieved 98.27% accuracy with Support Vector
Machine (SVM) and 97.78% accuracy with Random Forest.
Guo et al. [12] also experimented with capacitive touch data
for user authentication. Using SVM, they achieved a False
Acceptance Rate of 0.1% and a False Rejection Rate of 5.5%.
Their work further demonstrates how SVM is an effective
classifier when used with touch data.

Further evidence for the use of touchscreen data and
machine learning classifiers comes from the work of
Jain et al. [13]. Using an Android phone, they measured the
touch locations and pressures and obtained an Equal Error
Rate (EER) of 3.5% using SVM. Zheng et al. [14] corrobo-
rates the work of Jain et al. in their study and demonstrates
how tap behavior on a smartphone’s touch screen can be
used to authenticate users. Using the features of acceleration,
duration, pressure and size of a tap they achieved an EER of
3.6%.

Coakley et al. [15] also demonstrated the effectiveness of
tap gestures for user authentication in smartphones. They
studied a 10-digit PIN entered by 52 users and achieved
an EER of 3.9%. Chang et al. [16] experimented with 6,
8, and 10-digit PINs and observed a significant amount of
reduction in EER going from the shortest to the longest
PIN. Buschek et al. [17] experimented with 6 different PINs,
where data was collected from 28 participants over two
weeks, and obtained promising results using spatial touch
features. Another study by Buschek et al. [18] compared the
performance of an index finger and thumb by collecting tap
data from 24 participants and found thumb as the better
performer.

Ku et al. [19] explored open lock patterns for smartphone
user authentication. With an open lock pattern, the pattern
is displayed and the user log in by dragging his/her fingers
over a 3 × 3 grid of dots following the displayed pattern.

Because the pattern is open (displayed), no memorization
is required by the users. They achieved an EER of 2.66%.
Similar to Ku et al., Haberfeld et al. [20] devised a concept
of an ‘‘open code’’ biometric tap pad to authenticate users in
smartphones, which eliminates the need of memorizing PINs.
They achieved an EER of 13.56%.

Leran et al. [21] focused solely on zoom-in and zoom-out
gestures for user authentication and identification in smart-
phones. They extracted a rich set features from zoom gestures
and obtained an authentication performance of EER 10.6%
using SVM classifier. They achieved the best identification
performance of accuracy 65.5% accuracy, precision 69.6%
precision, and recall 67.9% using the random forest (RF)
classifier.

B. STUDIES ON SWIPE GESTURES
Because our work uses swipe gestures for user authentication,
below we describe the works focusing swipe gestures.

De Luca et al. [22] is one of the earliest works utilizing
swipe gestures for user authentication. They collected swipe
data from 48 participants using multiple swipe patterns. They
applied the Dynamic Time Warping algorithm [23] for clas-
sification. Using pressure, swipe coordinates, and touch size
features they achieved an accuracy of 77%.

SaeBae et al. [24] demonstrated the plausibility of using
multiple simultaneous swipes on a touchscreen to identify
a user. A multi-touch gesture was recorded on an iPad’s
touchscreen which consisted of placing all five finger tips
on the screen and moving them in specific ways. Movements
included pivoting the four fingers around the thumb in both
the clockwise and counter clockwise direction, as well as
dragging all fingertips across the screen. Twenty-two multi-
touch gestures from 34 users were tested for user authen-
tication. Using a single multi-touch gesture, they achieved
an EER of 10% and using double multi-touch gestures, they
achived an EER of 5%.

Frank et al. [25] experimented with horizontal and verti-
cal swipes, where data was collected from 41 users. They
extracted 27 features from each swipe and performed classi-
fication using K-nearest neighbors (KNN) and SVM. Using a
single swipe gesture, they achieved an EER of 13% and using
12 swipe gestures, they achieved an EER of 4%.

Shahzad et al. [26] demonstrated a successful use of ges-
tures for the secure unlocking of touch screen devices. The
authors designed 39 simple gestures that were easy to per-
form and finally selected 10 most effective gestures. They
performed experiments by collecting a set of 15009 training
samples from 50 users. Using three gestures, they achieved
and EER of 0.5%.

Antal et al. [27] worked with horizontal swipes for user
authentication on phones. They recorded micro movements
during swipes and extracted a rich set of features. They
achieved an EER of 4% using a single swipe gesture.

Kumar et al. [28] developed an authentication system
for smartphone users by fusing information from typing,
swiping, and phone movement patterns. They performed
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experiments on touchscreen data collected from 28 users and
achieved an accuracy of 93.33% using feature-level fusion of
swiping and phone movement patterns.

Siirtola et al. [29] studied context-based swipe gestures for
continuous user authentication in smartphones. The users
performed the swipes within different contexts such as while
reading, navigating, sitting orwalking. They observed that the
performance of swipe gestures were significantly affected by
the differing contexts.

Rilvan et al. [30] used capacitive swipes for user athenti-
cation and identification in smartphones. A capacitive swipe
is defined as a series of capacitive frames extracted from the
user’s swipe. After preprocessing the capacitive frames, they
applied principal component analysis for feature extraction
and SVM for classification. They achieved an accuracy of
79.88%.

C. OUR STUDY
While much research has been conducted to explore smart-
phone gestures and swipes, our work differs from the previous
work in several ways. The biggest difference between our
Quad Swipe Pattern and the previously mentioned research
is our intent to design an easy to use smartphone security
gateway. Most of the research discussed previously explores
the plausibility of authenticating an individual continuously.
Unlike these studies, the Quad Swipe Pattern is designed to be
used as a gateway security protocol rather than a continuous
authentication protocol. We find three works, specifically,
Ku et al. [19], Haberfeld et al. [20], and Shahzad et al. [26]
who explore point-of-entry authentication using touch ges-
tures like ours and eliminate the need for memorizing pass-
word, PIN, or passcode. Ku et al. [19] explore open lock
patterns, Haberfeld et al. [20] explore open passcodes, and
Shahzad et al. [26] explore custom gestures. Our experimen-
tal results show that the Quad Swipe Pattern achieves a better
performance than these three studies. The Quad Swipe Pat-
tern relies on using a series of four swipes in four directions,
which allows collecting more information to make a better
authentication decision.

The Quad Swipe Pattern advances the state-of-the-art in
other ways too. We perform rigorous experiments to learn
the effectiveness of different fingers in user authentication.
Specifically, we explore five different fingers from two hands
and fusion of multiple fingers. We did not find any previous
work that explored different fingers so rigorously. Addition-
ally, we define a rich set of features, explore five machine
learning classifiers, and fusion of multiple classifiers.

III. QUAD SWIPE PATTERN
A. BASICS
Figure 1 (a) shows the Quad Swipe Pattern we designed for
user authentication in smartphones. The Quad Swipe Pattern
includes four swipes in four directions. The four swipes
recorded are from left to right, top to bottom, right to left,
and bottom to top. The Quad Swipe Pattern is designed to be
simple and easy to use. The slight curve in the guiding arrows

FIGURE 1. Quad Swipe Pattern: (a) shows the concept and (b) shows
when it is used in our Android application for data collection. In (b), the
red ‘‘RIGHT THUMB’’ text informs a participant of what finger to use,
while the yellow arrow indicates a participant’s next swipe. The ‘‘1 of 5’’
in the center of the arrows indicates which round of swiping a participant
is on. In this screenshot, the user is on the first swipe of the first round.

makes it quicker and easier for users to transition from one
swipe to the next. Swiping around a set of arrows is very easy
and mimics swiping motions often used throughout the day.
The Quad Swipe Pattern uses the center of the screen so that
the users are comfortable with the swiping.

A key benefit of the Quad Swipe Pattern is its creation of
a comprehensive swipe profile. The design of Quad Swipe
Pattern allows collecting touch data on different portions
of the smartphone screen. By collecting data from different
sections of the phone-screen, we are able to build a com-
plete swipe profile for a user. For example, a right handed
individual may interact differently with the right portion of
the screen than the left, or a person may swipe differently
when swiping up or down. Overall, the Quad Swipe Pat-
tern is designed to be simple and easy to use, while also
building a comprehensive swiping profile of an individual.
The combination of these two factors allows the system to
quickly capture data and compare it to a user’s comprehensive
profile.

B. IMPLEMENTATION
To implement the Quad Swipe Pattern and collect data from
smartphone users, we developed an Android application.
Fig. 1(b) shows the Quad Swipe Pattern used in our Android
application. The application required the participants to swipe
clockwise around a square pattern of arrows. A participant
would make four swipes on the screen following an arrow
highlighted in yellow. One swipe across the top of the screen
to the right, one down the right side of the screen, one to the
left across the bottom of the screen, and finally one swipe
up across the left edge of the screen. To guide participants
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through the data collection, the arrow of current swipe was
highlighted in yellow as the user swiped through the Quad
Swipe Pattern. During these swipes, biometric swipe data
were collected from each participant. The coordinates of a
swipe were recorded along with the pressure on the screen,
the duration of the swipe gesture, and the size of touches
during a swipe. One set of fours swipes was considered to
be one round. Each participant was required to complete
five rounds of swipes for each finger. Data were collected
from five fingers of a participant: right index finger, right
thumb, left index finger, left thumb, and the middle finger
on a participant’s self-identified dominant hand. In total,
25 rounds of swipe data were collected from one participant
during a session. Multiple directions and rounds were used to
build a more comprehensive profile of a participant’s swipes.
Multiple fingers were tested to see how different fingers
perform on Quad Swipe Pattern.

IV. DATA
A. DATA COLLECTION
The participants in our experiment were students, faculty,
and staff at Southern Connecticut State University. None of
the participants were compensated for their time and there
was no risk to the participants since they were interacting
with a smartphone’s touchscreen in a normal manner. Nexus
5 smartphones were used for data collection. Our Android
application was deployed and run on each device in order
for participants to use the Quad Swipe Pattern. The partici-
pants needed approximately 5 minutes to complete the data
collection procedure. We collected data in three sessions.
In each session, a participant gave 25 rounds of data. In total,
45 participants gave their swipe data. All 45 participants gave
data at least in one session, 15 participants gave data at least
in two sessions, and 10 participants gave data in all three
sessions.

B. DATA PREPROCESSING
In order to prepare the data for training the machine learning
classifiers and testing, the data were cleansed by removing
irregularities. In a session, a participant gave five rounds
of swipes by each finger. In each round, the participant
swiped in four directions. So, for each finger, a session
should ideally have five swipes in each direction. However,
sometimes exactly five swipes were not recorded in each
direction. Sometimes extraneous swipes were recorded in
some directions. Also sometimes a swipe was missing in
some directions. We handled this irregularities very carefully.
If more than five swipes were recorded in some direction,
we accepted the first five swipes and removed the others
in that direction. If less than five swipes were recorded
in some direction, we estimated the features of the miss-
ing swipe by averaging the corresponding feature values of
the recoded swipes in that direction. In addition to elimi-
nating irregularities, we removed outliers from the feature
values. We used Gaussian distribution technique for outlier
detection.

TABLE 1. List of features extracted from a swipe.

V. FEATURE EXTRACTION
We extracted 34 features from a swipe in one direction.
A round of swipes consists of four swipes in four directions.
Hence, we extracted 34*4 (which is equal to 136) features
from one round of swipes, which were fed into the machine
learning classifiers for training and testing. Table 1 shows the
list of features we used in our study. Below, we briefly explain
these features.

1) PRESSURE FEATURES
Pressure features record howmuch force a participant imparts
on the screen during a swipe. The ‘‘Start Point Pressure’’
feature records the force of the touch at the beginning of the
swipe. The ‘‘End Point Pressure’’ feature measures the pres-
sure on the screen at the end of the user’s swipe. The ‘‘Max-
imum Pressure’’ feature measures the greatest amount of
pressure a participant exerts on the screen during a swipe. The
‘‘Minimum Pressure’’ feature measures the smallest amount
of pressure a participant imparts on the screen. The ‘‘Average
Pressure’’ feature sums all of the pressures recorded during
a swipe and then finds the mean. The Pressure values in
Nexus devices range from 0 to 1, with 0 being no pressure
and 1 being the maximum pressure.

2) SIZE FEATURES
The size of a touch during swiping is recorded by the number
of pixels activated by the touch event. The ‘‘Start Point Size’’
feature records the size of the touch at the beginning of a
swipe. The ‘‘End Point Size’’ feature records the size of the
touch at the end of a swipe. The ‘‘Maximum Touch Size’’
feature records the largest area touched during a swipe. Simi-
larly, the ‘‘MinimumTouch Size’’ feature records the smallest
area touched during a swipe. The ‘‘Average Touch Size’’
feature represents the average touch size during a swipe.

3) COORDINATE FEATURES
These features record the touch screen coordinates activated
during a swipe. The coordinates are measured on a screen
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where the origin, ( 0, 0) , is located in the top left corner of
the screen, the X-axis runs horizontally along the top of the
screen, and the Y-axis runs vertically along the left edge of
the screen. The X-coordinates increase approaching the right
edge of the device’s screen and the Y-coordinates increase
approaching the bottom edge of the screen. The ‘‘Maxi-
mum X Coordinate’’ feature records the largest X-coordinate
touched during a swipe, while the ‘‘Maximum Y Coor-
dinate’’ feature records the largest Y-coordinate touched
during a swipe. The ‘‘Minimum X Coordinate’’ feature
records the smallest X-coordinate touched during a swipe.
The ‘‘Minimum Y Coordinate’’ feature records the smallest
Y-coordinate touched during a swipe. The ‘‘Average X Coor-
dinate’’ and ‘‘Average Y Coordinate’’ features represent the
mean of all X and Y coordinates, respectively, touched during
a swipe.

We define two additional features based on the coordinates
of the screen. The ‘‘Slope from Start to End Point’’ and
‘‘Slope from Start toMid Point’’ features allow us to compare
how coordinates change over the course of a swipe.

4) VELOCITY FEATURES
Velocity features are measured in pixels per millisecond. The
‘‘Average Swipe Velocity’’ feature represents the average
velocity of a swipe. The greatest instantaneous velocity of a
swipe is recorded as the ‘‘Maximum Swipe Velocity’’. Swipe
velocity is also broken down into X and Y components.
The ‘‘Minimum X Velocity’’ records the slowest instanta-
neous X-component of velocity for a swipe. The ‘‘Minimum
Y Velocity’’ records the slowest instantaneous Y-component
of velocity for a swipe. The ‘‘Average XVelocity’’ records the
average X-component of velocity for a swipe. The ‘‘Average
Y Velocity’’ records the average Y-component of velocity for
a swipe. The ‘‘Maximum X Velocity’’ records the greatest
instantaneous X-component of velocity for a swipe. The
‘‘Maximum Y Velocity’’ records the greatest instantaneous
Y-component of velocity for a swipe.

5) TIME FEATURES
The ‘‘Time from Start to Max Pressure’’ feature records the
time that elapses between the beginning of a participant’s
swipe and the point at which the maximum pressure is
recorded. The goal of this feature is to identify the time of the
swipe at which a participant puts the most force on the screen.
The ‘‘Time from Start Point to End Point’’ feature records the
length of time it takes for a participant to complete his or her
swipe.

6) DISTANCE FEATURES
The ‘‘Distance from Start to Max Pressure’’ feature provides
the Euclidean distance from the start of a participant’s swipe
to the point at which the maximum pressure is recorded.
The ‘‘Distance from Start to End Point’’ feature provides
the Euclidean distance between the start and end points of
a swipe. The ‘‘Swipe Arc Length’’ feature provides the arc
length of a swipe.

7) OTHER FEATURES
We define three more features which combine the pressure,
size, and time. The ‘‘Product of Size and Time’’ feature is
calculated by multiplying the total area touched with the
duration (time) of the swipe. The ‘‘Product of Max Size and
Pressure’’ feature is calculated by multiplying the maximum
size with the maximum pressure. The ‘‘Swipe Momentum’’
feature is calculated by multiplying the sum of all pressures
with the duration (time) of the swipe.

After the features are extracted, we applied the z-score
normalization technique to scale all of the features.

VI. EXPERIMENTS
A. AUTHENTICATION PROCEDURE
The goal of theQuad Swipe Pattern is to provide a reliable and
secure method for user authentication. User authentication in
a smartphone is the process of determining whether a person
has clearance to use the phone. An authorized user is allowed
to use the device, while an unauthorized user is rejected and
barred access. Our authentication procedure is implemented
using a binary classifier. The classifier is trained using labeled
samples. The training samples are either labeled ‘‘genuine’’
for an authorized user or ‘‘impostor’’ for an unauthorized
user. After training, the classifier is tested with a set of
unlabeled samples. In our experiments, a classifier generates
two different types of decisions: (1) a binary decision, where
a test sample is either labeled as ‘‘genuine’’ or an ‘‘impostor’’
and (2) a confidence value, which is a dissimilarity score
and ranges from 0 to 1. The closer the score is to 0, the
more certain the classifier is that the test sample belongs to a
genuine person.

B. DATA DIVISION
We have divided our collected data into three sets: Dataset 1,
Dataset 2, andDataset 3. These three datasets are used to eval-
uate how the amount of training data affects the performance
of Quad Swipe Pattern. It was anticipated that more training
data per participant would allow for the construction of a
more complete swipe profile. A better swipe profile would
allow for improved performance.

Dataset 1 contains the swipe data collected from 45 par-
ticipants, where each participant gave data in one session.
Dataset 2 contains the swipe data collected from 15 par-
ticipants, where each participant gave data in two sessions.
Finally, Dataset 3 contains the swipe data collected from
10 participants, where each participant gave data in three
sessions. In a session, a participant gave 5 rounds of swipe
data for each finger we experimented with. Every Dataset
(1, 2, and 3) was divided into training and testing sets. Three
rounds of swipe data for each finger, from each session, were
used for training and the rest two rounds of data were used
for testing. As a result, the training part of Dataset 1 has three
rounds of swipe data for each finger per person, the training
part of Dataset 2 has six rounds of data for each finger per
person, and finally, the training part of Dataset 3 has 9 rounds
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TABLE 2. Dataset statisticcs.

of swipe data for each finger per person. Table 2 shows a
summary of our data division. Note that Dataset 1 contains
the maximum number of participants, however, the smallest
amount of training data for each participant. In contrast,
Dataset 2 and 3 contain a smaller number of participants, but
more training data for each participant.

C. MACHINE LEARNING CLASSIFIERS
We performed our experiments with five machine learning
classifiers: Support Vector Machine (SVM), Naive Bayes
(NB), two different models of Neural Networks: Neural
Network-3 (NN-3) and Neural Network-28 (NN-28), and
Random Forest (RF). Below, we briefly explain these clas-
sifiers.

1) SUPPORT VECTOR MACHINE
The Support Vector Machine (SVM) classifier works by cre-
ating a set of hyperplanes that separate data into different
classes [31]. A good hyperplane is characterized by having
a decent amount of separation between self and the nearest
point of training data. SVM is effective at generalizing and is
a memory efficient algorithm. Because of the limited amount
of computing power available in a smartphone, it was critical
to explore this memory efficient algorithm on our data. After
performing preliminary experiments, we chose linear kernel
to implement the SVM.

2) NAIVE BAYES
The Naive Bayes (NB) classifier works by assuming that all
of the features are independent [32]. We considered explor-
ing Naive Bayes in our study because it works very fast,
which is an expected feature of a point-of-entry authentica-
tion protocol in smartphones. The Naive Bayes classifier is
implemented using scikit-learn’s default settings which uses
an alpha value of 1.0 [33], [34].

3) NEURAL NETWORKS
Neural Networks (NN) are modeled after connections made
in the human brain. The network works by taking data from
the input layer, and then passing it through one hidden layer or
a series of hidden layers which is responsible for generating
the output. The nodes in one hidden layer make connections
with nodes in other layers or with the input layer. These
connections between layers are weighted and the weights
determine what information is used to make a classifica-
tion decision. In the final layer of the network, the output

is presented. In our experiments, we modeled two Neural
Networks: (1) Neural Network 3 (NN-3), which is light
weight and (2) Neural Network 28 (NN-28), which is heavy
weight.

The NN-3 is our light weight neural network because it has
only one hidden layer with three nodes. This neural network
was configured in this manner due to its fast training and
testing times, an important characteristic given the hardware
resources of a smartphone. While our light weight neural
network contains only three nodes in its sole hidden layer, the
heavy weight neural network, NN-28, has 28 nodes per hid-
den layer. NN-28 has 8 hidden layers, seven more than NN-3.
This neural network was configured in this manner to explore
how more nodes and layers would affect the performance of
a neural network. The heavy weight network also allows us
to evaluate if the speed penalty of the more complex network
is a worthwhile trade-off.

4) RANDOM FOREST
The Random Forest (RF) classifier creates a multitude of
decision trees in order to make its classification decision [35].
The decisions returned by all of these trees are then com-
bined to produce a final decision. We wanted to examine
how our Quad Swipe Pattern performs with an ensem-
ble learning method. As an ensemble method, we chose
RF because of its promising performance in a previous
study [11].

D. FUSION
In our experiments, we also examined how Quad Swipe
Pattern performs when information from two best performing
fingers are fused, and also, when information from five clas-
sifiers are fused. The fusion of two best performing fingers,
for each classifier, was accomplished by taking the average
of the individual feature values of the two fingers. The two
best preforming fingers differed for each dataset and for
each classifier. When the classifier generated a binary deci-
sion (genuine/impostor), the best two fingers were chosen
based on the accuracy. When the classifier generated a con-
fidence value, the best two fingers were chosen based on the
EER.

We fused the information from five classifiers at the deci-
sion or score level. When the classifiers generated binary
decisions (genuine/impostor), we applied majority voting to
make a final decision. When the classifiers generated confi-
dence values, we averaged those values to estimate a fused
score.

E. EVALUATION METRICS
1) ACCURACY, FAR, AND FRR
When a binary decision was requested from the classifier,
a confusion matrix [36] was constructed. A confusion matrix
gives: True Positive (number of correctly labeled genuines),
True Negative (number of correctly labeled impostors), False
Positive (number of incorrectly labeled impostors), and False
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Negative (number of incorrectly labeled genuines). Several
performance metrics were derived from the confusion matrix.
The Accuracy is the percentage of correct predictions. The
False Positive Rate (FPR) is the percentage of impostors
which were incorrectly labeled as genuine. This is also
referred to as the False Acceptance Rate (FAR). The False
Negative Rate (FNR) is the percentage of genuine samples
which were incorrectly labeled as impostors. This is also
called the False Rejection Rate (FRR).

2) DET CURVE
The Detection Error Trade-off (DET) curve [37] plots
the False Acceptance Rate (FAR) and False Rejection
Rate (FRR) as the decision threshold goes from zero to one.
To generate this curve, confidence values were obtained from
the classifier. DET curves are useful when the testing set
does not contain approximately equal numbers within the two
classes, which was the case in our study. The DET curve can
be used to determine another metric, the Equal Error Rate
(EER). This is one of the most commonly reported metrics,
and represents the point where the FAR is equal to the FRR.
A perfect biometric system in terms of accuracy would have
an EER of zero.

VII. RESULTS AND ANALYSIS
A. ACCURACY, FAR, AND FRR
Tables 3, 4, and 5 show the Accuracy, FAR, and FRR obtained
by five machine learning classifiers and five fingers, where
the experiment was performed on Dataset 1, 2, and 3, respec-
tively. The rightmost three columns (labelled ‘‘Fusion of
Best Two Fingers’’) in each table show the performance of
the fusion of two best fingers. For each classifier, the best
two fingers were selected based on Accuracy. The Accuracy
values of the two best fingers which were used in fusion are
marked in red in the tables. For example, in Table 3, Left
Thumb andMiddle finger were fused for SVM and Left Index
finger and Left Thumb were fused for Naive Bayes. The
bottom row in the table shows the performance of Majority
Voting applied on five classifiers.

1) PERFORMANCE OF INDIVIDUAL CLASSIFIERS
(NON-FUSION)
When we consider the performance of individual classifiers
without any fusion (i.e., no fusion of fingers and no fusion of
classifiers), Neural Network 28 (NN-28) and Support Vector
Machine (SVM) are the two best classifiers based on the
results reported in Table 3, 4, and 5. For Dataset 1 (see
Table 3), NN-28 gives better Accuracy and FAR than SVM
for almost all fingers (for some fingers, Accuracy values are
the same). However, SVM outperforms NN-28 in terms of
FRR for all fingers except the Left Index finger. For Datasets
2 and 3 (see Table 4 and 5), NN-28 outperforms SVM in terms
of all three metrics Accuracy, FAR, and FRR for almost all
fingers. BothNN-28 and SVMachieve their best performance
with Middle finger and Dataset 3, where NN-28 achieves

Accuracy 99.7%, FAR 0.4%, FRR 0% and SVM achieves
Accuracy 99.5%, FAR 0.4%, FRR 1.7%.

RandomForest (RF) andNeural Network 3 (NN-3) achieve
very good Accuracy and FAR, however, give very high FRR
which is not acceptable in smartphone settings considering
user convenience. Similarly, Naive Bayes is also not a good fit
because of its poor performance in all combinations of fingers
and datasets.

2) PERFORMANCE OF FUSION
When we fuse information from two best fingers, we see
significant improvement in FAR in all datasets. For example,
for Dataset 3, SVM gives FAR of 0.9% with Right Thumb
and 0.4% with Middle finger. Fusion of these two fingers
produces zero FAR. However, this improvement in FAR
comes at the expense of higher FRR. Though FRR values
are high in Datasets 1 and 2, they are tolerable in Dataset
3 which has more samples in the training set. For Dataset 3,
Neural Network 28 and SVM give outstanding performance
with fusion of Right Thumb and Middle finger. Neural Net-
work 28 achieves Accuracy 99.5%, FAR 0%, and FRR 5%.
Support vector machine (SVM) achieves Accuracy 99.2%,
FAR 0%, and FRR 8.3%. Majority voting of five classifiers
also improves the FAR at the expense of higher FRR, when
compared with the best individual classifier. Dataset 3 gives
tolerable FRR values. Two best performances by majority
voting for Dataset 3 are Accuracy 99.3%, FAR 0.2%, FRR
5%with Right Thumb and Accuracy 98.8%, FAR 0.2%, FRR
10% with Middle finger. If we compare fusion of two best
fingers with majority voting of five classifiers, we see that
fusion of two best fingers provides more security with zero
FAR.

3) WHICH FINGER GIVES THE BEST RESULT?
In Tables 3, 4, and 5, the Accuracy values of two best fingers
are marked in red. We see that Middle finger continuously
gives outstanding performance almost for all classifiers and
in all three datasets. Generally people do not use their Mid-
dle finger for swipes because of its position. The Middle
finger is located between the Index finger and Ring finger,
which makes it less comfortable for swiping. Perhaps this
phenomenon gives high variability to the Middle finger when
it is used for swiping.

4) IMPACT OF USING MORE TRAINING SAMPLES
It is evident from Tables 3, 4, and 5 that the overall perfor-
mance of the classifiers improves when more training sam-
ples are used to create a user profile. Specially, we observe
significant improvement of FRR fromDataset 1 to 2 and from
Dataset 2 to 3. Recall that Dataset 1 uses data collected in a
single session, Dataset 2 uses data collected in two sessions,
and Dataset 3 uses data collected in three sessions.

B. DET CURVES
Figures 2, 3, and 4 show the DET curves obtained by
five machine learning classifiers, where the experiment
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TABLE 3. Accuracy, FAR, and FRR obtained by five machine learning classifiers and five fingers, where the experiment was performed on Dataset 1. The
rightmost three columns (labelled ‘‘Fusion of best two fingers’’) show the performance of the fusion of the two best fingers. For each classifier, the best
two fingers were selected based on accuracy. The accuracy values of the two best fingers which were used in fusion are marked in red. For example, left
thumb and middle finger were fused for SVM. The bottom row shows the performance of majority voting applied on five classifiers.

TABLE 4. Accuracy, FAR, and FRR obtained by five machine learning classifiers and five fingers, where the experiment was performed on Dataset 2.

TABLE 5. Accuracy, FAR, and FRR obtained by five machine learning classifiers and five fingers, where the experiment was performed on Dataset 3.

was performed on Dataset 1, 2, and 3, respectively.
Subfigures (a)-(e) in each figure include six DET curves: five
curves generated from five fingers and one curve generated
from the fusion of best two fingers. For each classifier, the
best two fingers were selected based on EER. Subfigure (f) in
each figure shows five DET curves corresponding to five fin-
gers, each curve generated from the fusion of five classifiers.
In each of the subfigures, there is a black dotted line that runs
through the DET curves. This is the EER line and each DET
curve’s EER can be found upon it. Our observations from
Figures 2, 3, and 4 are given below.

(1) Considering individual classifier performance (with-
out any fusion of fingers or classifiers), SVM and Neural
Network 28 (NN-28) consistently outperform the other three
classifiers in all three datasets. Both SVM andNN-28 achieve
near perfect EER of 0.0 with Middle finger on Dataset 3.
Random Forest (RF) achieves some good performance
across all three datasets, whereas, Neural Network 3 (NN-3)
achieves good performance only for Dataset 3.

(2) Fusion of two best fingers significantly improves the
performance of all classifiers in all datasets. For Dataset 3
(see Figure 4), we achieve near perfect EER of 0.0 with SVM
and NN-28. The impact of the fusion of the two best fingers
is more noticeable in Dataset 1 and 2 (see Figures 2 and 3),
where the performance of an individual classifier is not per-
fect. Fusion of five classifiers using the average of the scores
does not demonstrate significant performance improve-
ment when compared with the best performing individual
classifiers.

(3) In Datasets 1 and 2, the Middle finger does not always
demonstrate the best performance; however, in Dataset 3,
where more training samples per participant are used, the
Middle finger consistently demonstrates the best perfor-
mance. This provides strong evidence that when more sam-
ples are used to create a user profile, in addition to giving the
best performance, it also gives consistent performance.

C. TIME ELAPSED FOR TRAINING AND TESTING
Table 6 presents the training and testing times required for
each of the five classifiers. We recorded the timing infor-
mation only for dataset 1. Also, for non-fusion experiments,
we recorded the timing information only for middle finger
experiments. Overall, the fastest classifier to train was the
Naive Bayes. It took only 43 milliseconds. Naive Bayes was
also the second fastest at evaluating the unseen dataset with a
testing time of 5 milliseconds. After Naive Bayes, SVM was
the second fastest classifier to train with a time requirement of
143 milliseconds. The testing time for SVM was 18 millisec-
onds, which was 3 milliseconds higher than the testing time
for NN-28. Though NN-28 was faster than SVM in testing,
it was almost 13 times slower than SVM in training. NN-3
was faster than NN-28 in both training and testing. Random
Forest appeared as the slowest individual classifier in both
training and testing.

The experiment that took the longest period of time to
completewasmajority voting.Majority voting took 7192mil-
liseconds in training and 416milliseconds in testing. The time
required by the fusion of the best two fingers fell between the
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FIGURE 2. DET curves obtained by five machine learning classifiers, where the experiment was performed on Dataset 1. Figures (a)-(e) include six DET
curves each: five curves generated from five fingers and one curve generated from the fusion of best two fingers. For each classifier, the best fingers
were selected based on EER. Figure (f) shows five DET curves corresponding to five fingers, each curve generated from the fusion of five classifiers.

FIGURE 3. DET curves obtained by five machine learning classifiers, where the experiment was performed on Dataset 2.

time required by experiments with individual finger and the
majority voting. Longer computation time was expected for
fusion experiments sincemore data were used for training and
testing than in the individual finger experiments.

VIII. DISCUSSION
Experimental results show that the Quad Swipe Pattern
achieves its best performance (individually) with Neural

Network 28 (NN-28) and Support Vector Machine (SVM).
Generally, NN-28 takes longer training time than SVM and
also it needs more training samples than SVM to be trained.
In our experiment we trained both NN-28 and SVM with an
equal number of training samples. Interestingly, both clas-
sifiers performed equally well. The most important thing
is both classifiers achieved only 0.4% FAR which is really
critical for any authentication system. At the same time,
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FIGURE 4. DET curves obtained by five machine learning classifiers, where the experiment was performed on Dataset 3.

TABLE 6. Time elapsed for experiments.

NN-28 achieved zero FRR and SVM achieved 1.7% FRR,
which is also critical because in smartphone user authen-
tication, user convenience is one of the most important
requirements.

We experimented with five fingers to see the applicability
of the Quad Swipe Pattern on different fingers and different
hands. While the Middle finger consistently gives the best
performance, we did not find a finger/hand for which the
Quad Swipe Patten works miserably. It means that the user
can use any finger/hand for authentication using Quad Swipe
Pattern. This is a big benefit because it gives users full flexi-
bility of choosing any finger/hand.

Both fusion of fingers and fusion of classifiers proved
to be effective on Quad Swipe Pattern. Specifically, with
fusion of Right Thumb and Middle Finger, NN-28 and SVM
produce zero FAR, i.e., no impostor is allowed. Fusion of
classifiers using majority voting achieves the best FAR of

0.2%, which is a 50% improvement over the best individ-
ual FAR. A limitation of fusion of two best fingers is user
inconvenience, where a user has to give four swipes two
times (with two different fingers). Sometimes users may
feel reluctant to use multiple fingers during authentication
in smartphones. A limitation of fusion of classifiers is time
required by multiple classifiers, which also creates user
inconvenience.

A crucial part of our experimental design was to create
three datasets of different sizes and evaluate how the amount
of training data affects the performance of our Quad Swipe
Pattern. As anticipated, we found that more training samples
represent users better and improve the performance of Quad
Swipe Pattern. Dataset 3, which consisted of the maximum
number of training samples to create user profiles, produced
a FAR of 0.4% with an individual classifier, 0.2% with a
fusion of classifiers, and 0% with a fusion of the best two
fingers.

A big difference between our work and existing related
work is that existing work explores the plausibility of
using swipe data only in continuous user authentication.
In contrast, our intent in this paper is to show a path
of using swipe data for point-of-entry authentication in
smartphones. In addition, in devising the idea of Quad
Swipe Pattern, we defined several features appropriate for
this pattern and did extensive experiments to see their
effectiveness.

IX. CONCLUSION
In this paper, we developed a novel point-of-entry security
measure called ‘‘Quad Swipe Pattern’’ for smartphone users
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and demonstrated its effectiveness with rigorous experiments.
The results of our experiments provide very promising evi-
dence for Quad Swipe Pattern’s introduction as a new smart-
phone point-of-entry security measure. The most important
thing to notice is that the Quad Swipe Pattern demonstrates
excellent performance with numerous Machine Learning
classifiers, fingers, and datasets.We have already said that the
Quad Swipe Pattern has several benefits over existing point-
of-entry measures for smartphone user authentication; such
as (1) users do not need to memorize a password/pattern or
select an easy-to-guess password/pattern, (2) shoulder surfers
are no longer a threat, (3) smudge attacks become useless,
(4) it is free from restrictions of lighting and face orientation,
(5) it does not require extra hardware such as fingerprint
scanner, (6) it is not time consuming like iris recognition,
and (7) because users are habituated with swiping all day,
the Quad Swipe Pattern is an easy-to use measure for them.
Because of all these benefits and high performance, the Quad
Swipe Pattern has the potential to be the next generation of
point-of entry security measure.
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