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ABSTRACT Power Supplies are a key part of the modern Internet and Communications Technologies (ICT)
industry. Modern Uninterruptible Power Supply (UPS) systems are modular and as such, consist of several
Power Supply Units (PSUs). Even though various PSU designs are used to optimize operation efficiency
at specific loading conditions they engender inefficient operation at other loading conditions. In order to
optimize the energy efficiency in various loading conditions, this paper proposes a novel power supply
multiplexing system engaging different combinations of PSUs which are controlled through machine
learning techniques to maximize efficiency depending on the loading conditions. Each PSU combination
is given a state number. Due to the vast number of combinations (states) that can occur in such systems and
redundancy requirements, machine learning techniques are proposed. It is shown that by using the proposed
novel system, an efficiency improvement of over 78% can be achieved in low loading conditions and an
average 5.23% in all loading conditions.

INDEX TERMS Datacenter, machine learning, energy efficiency, power supply units.

I. INTRODUCTION
The vast and fast growth in the last decade of IoT, data
processing, electric mobility and other energy consuming
industries has led to a huge increase in the demand for power
supplies [1]–[3]. Uninterruptible Power Supplies (UPS) are
used to supply power for Internet and Communications
Technology (ICT) equipment within datacenters or micro-
datacenters to ensure quality and availability of power. ICT
equipment are devices that can store and process data, such
as servers, disc stations, data switches, transceivers etc.,
which are installed in infrastructures called datacenters. Dat-
acenters of sizes up to one ICT rack are referred to as
micro-datacenters.

In 2018, the global datacenter energy consumption reached
a total of 205 TWh which was equivalent to 1% of the
global electricity consumption [4] and it is projected that in
2030 this will correspond to around 3.8-12% of the global
energy consumption [5]. Taking into consideration that the
energy fed in a Datacenter is shared between UPS systems
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and Cooling systems [5], it can be easily deducted that the
energy efficiency of UPS systems is of great importance.
Back in 2011, the average energy losses of UPS systems
could reach 18% [6] but modern state of the art UPS sys-
tems have efficiencies of over 90% for loads over 10% of
full load [7]. The proposed system presented in this study
shows that energy efficiency improvements of up to 78% can
be achieved without compromising the security of supply.
The comparatively lower efficiency of the power supplies in
small loads is one of the key challenges for the datacenters
today [8], [9], [5]. An ICT rack can have a power consumption
from zero to 22 kW [10]. Furthermore, the load is not easy
to predict since the power consumption depends on the CPU
loading of the servers and other systems installed within
the rack such as the number of equipment installed, the set
cooling temperature and other parameters. Based on their
application and power output level, power supplies can vary
depending on their converter types and the switching devices
used. A PSU in general has maximum efficiency at a specific
load region.

Several research studies have been conducted for improv-
ing the energy efficiency of UPS systems. In [11], up to
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98.55% efficiency on 20% of loading has been shown. Alter-
nativemethods use novel dynamic range programmable PSUs
where the high efficiency load region could be extended so as
to have more than 90% efficiency from 5%-100% of loading
conditions [12]. This has a compromise however in the peak
efficiency (peak efficiency is 93.1% which is relatively low
compared to PSUs that are optimized to work with specific
loading regions).

Monitoring the parameters of a UPS towards improved
efficiency and redundancy was proposed in [13], by changing
the state of charge and other parameters of a UPS system.
Optimized switching of internal, parallel power supplies that
are incorporated in a server is proposed in [14]. Although
it demonstrated great results in improving the efficiency
of server systems, this solution has several limitations. For
example, the server can only have a few power supplies,
all power supplies in the server should be the same and the
loading factor range is small compared to a whole datacenter.
Activation and deactivation of different PSU modules in dat-
acenters for energy efficiency improvement as a concept was
introduced in [15].

Although a few years ago, datacenters used to work with
Alternating Current (AC) UPS systems, datacenters now
use DC 48 V UPS systems. This occurred after Facebook
and Google announced the ‘‘open compute project’’ which
proved that DC 48 V systems present better energy effi-
ciency [16]–[18]. Load sharing between same size and type
PSU systems, AC or DC, has been previously presented [19]
and [20] but studies on load sharing between different in size
and type PSUs has not been done up to date. PowerMultiplex-
ers have been recently used by TI to select the input between
different types of power receptors for personal computers
such as barrel-jack, USB cable, wireless charging etc. [21],
but these are not related to energy efficiency improvements.

The novel concept of efficiency improvement by activating
and deactivating combinations of unequal in size and type
PSUs is presented in this work.

The main elements and contribution of the work are the
following:
• Derivation of a new mathematical formula for load shar-
ing of different type and size PSUs which is experimen-
tally verified.

• The novel PSU Multiplexing system for improved effi-
ciency. The proposed system activates those PSUs the
combination of which presents maximum efficiency for
the specific loading condition. For small loads for exam-
ple, low power PSUs should be enabled and for larger
loads, fewer but higher power capacity PSUs should
operate in order to achieve maximum efficiency.

• The control strategy of the proposed PSU multiplexing
system using machine learning techniques. The control
strategy calculates the efficiency for different combina-
tions of PSUs (states) and passes the information for
maximum efficiency to the multiplexing system, main-
taining at the same time the requirement for N+1, N+0
or N+N redundancy.

The remaining sections of the article are organized as
follows. In section II of this work, the typical structures of
UPS in datacenters are presented and the effect of loading
conditions is analytically explained. The concept of PSU
multiplexing is also elaborated. Section III provides themath-
ematical model for calculating the efficiency of a PSU and
it is shown that load sharing between similar and dissimi-
lar PSUs is related to the open circuit voltage and internal
resistance of the PSU. In section IV, the mathematical model
is experimentally verified. In section V the new PSU multi-
plexing concept is analyzed and in section VI, the machine
learning algorithms are presented. Finally, the overall system
performance is discussed in section VII where the energy
efficiency improvement is evaluated.

II. EFFECT OF LOADING FACTORS ON PSU EFFICIENCY
AND USE OF MULTIPLEXING TECHIQUES FOR EFFICIENCY
IMPROVEMENTS
A. LOADING FACTORS AND ASSOCIATED EFFICIENCIES OF
PSUs IN DATACENTERS
Due to the criticality of datacenters (storing and processing
critical data); there is a high redundancy requirement for all
stages. As a result, datacenters are categorized in Tier levels
from 1-4 according to their redundancy capability. TIER III
and TIER IV datacenters need redundant paths for all stages
of the electrical and mechanical systems [22], [23]. Every
stage of the installation for any fault or maintenance situation
should have ‘‘N’’ capacity in kW (where ‘‘N’’ stands for
‘‘Need’’). The datacenter UPS systems are therefore designed
with loading factors of 30-50% [8], for N+N (need plus need)
or N+1 configuration case as shown in Fig. 1 and Fig. 2
respectively.

The loading factor of a PSU can directly affect the effi-
ciency. This is mainly due to the structure of the PSU and the
no-load loss of the power electronics converter circuits such
as PSUs. It is uncommon and very rare for a system to have
the same constant power consumption. Therefore, to be able
to address and improve the overall energy efficiency of UPS
systems in a micro-datacenter, the loading conditions in each
instance must be considered.

For a N+N redundancy, the loading condition of the UPS
is in fact close or under to 50%. For N+1 redundancy
the loading condition can exceed 50% but then again, the
loading factor is not constant. It can be shown from actual
measurements that the workloads in ICT equipment can
deviate by more than 45% [24]. ‘‘Virtualization’’ is a tech-
nique used to move workload from one ICT equipment to
another in order to increase the loading factor and hence
efficiency [10], [25].

In Fig. 3, a chart with the power consumption for 24 hours
from an actual server system is shown. The server is installed
in a datacenter of an ICT organization in Cyprus, serving
office data storage. It can be seen that the load in a single
server during a 24 h period can deviate by more than 34.8%
(from 209 W to 321 W).
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FIGURE 1. Typical N+N UPS datacenter configuration.

B. THE NEW CONCEPT OF PSU MULTIPLEXING FOR DC
UPS SYSTEMS
Multiplexing is a technique used in telecoms in order to
send multiple signals or streams of information over a single
communications link. Interpreting PSUs as multiple sources
of power instead of information and considering the DC load
bus as the single communication link, a PSUmultiplexing can
be used to select which and howmany PSUswill be employed
at any instant depending on the load.

The new concept of Power Supply Unit Multiplex-
ing (PSUM) using multiple and different power supply units
proposed in this work, aims at designing a highly efficient
UPS system that can control redundancy levels of N+0,
N+1 or N+N. Depending on the loading condition, different
PSUs are activated or deactivated creating different states,
representing combinations of different number and size of
PSUs that are ON or OFF. The number of different states that
a system with ‘‘k’’ similar PSUs can have is ‘‘k’’. A system
with ‘‘y’’ different PSUs can have 2y different states. Each
state has a different energy efficiency performance for the
same load output. Some of the states are measured, but due
to the huge number of states that can be created, not all data
are available for all states since it would necessitate enormous
resources and time.

In order to be able to estimate the efficiency of different
states, to identify the state that gives the highest efficiency

FIGURE 2. Typical N+1 UPS datacenter configuration.

FIGURE 3. Power measurements on a HP ProLiant BL685c server.

at each load-instance and at the same time maintaining the
redundancy levels required for every loading condition, the
use of machine learning techniques is probably the ideal
solution. The machine learning system is trained first through
the measured data and then is used to estimate the effi-
ciency of new states, identifying afterwards the best state
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that the system should operate to achieve the maximum
possible efficiency under N+0, N+1 and N+N redundancy
conditions.

III. MATHEMATICAL MODELING OF PSU POWER AND
EFFICIENCY
A. RELATIONSHIP BETWEEN EFFICIENCY AND POWER
OUTPUT
A basic block diagram of an AC to DC Power Supply
Unit (PSU) is shown Fig. 4.

FIGURE 4. PSU circuit block diagram.

The power losses in the power supply system are calculated
by the losses arising from the individual stages of the PSU
such as the rectification stage, the PFC stage and the DC-DC
conversion stage and are given by:

Ptotal−loss = Prec + Ppfc−loss + Pdc−dc loss (1)

Rectifier and PFC losses are given by [12]:

Prec = 2 � V � f � Iin (2)

Ppfc−L = I2sw � Rds−On pfc + I2in−rms � Rind + Pc.pfc loss (3)

Pdc−dc L = Psw−loss + Ptrans−loss + Pind−loss + Pcap (4)

Ptrans−L = Ptr−con−loss + Pno load loss (5)

where:
Prec: power losses from the rectification stage
Ppfc−L : losses of the power factor correction stage
Pdc−dc L : losses of the DC-DC converter circuit
Psw loss: MOSFET switch losses of the DC converter circuit

(conduction and switching losses)
Ptrans−L : transformer losses
Pind loss: inductor losses
Pcap−loss: capacitor losses in DC-DC converter circuit

Ptr−con−loss: transformer load and frequency dependent
losses
Pno load loss: transformer no load loss.
In order to identify the relation between input and output

power in a PSU, all losses in the system are re-arranged to
be given as a function of input and output power. Neglecting
the switching losses in the DC-DC conversion part (due to
ZVS strategies used in such converters) and after rearranging
and expanding the equations, the efficiency and input/output
powers are given as (6) and (7), shown at the bottom of the
page, where [11]:

Ptr−hysterisis = Kh � V � f � Bn (8)

Ptr−eddy = Ke � V � f2 � B2 (9)

where:
Ke and Kh are the eddy and hysteresis loss constants,
Peddy: eddy current losses (W ),
B: flux density (Wb/m2),
f : the frequency of the magnetic reversals per second (Hz),
t: core material thickness (m),
V : core volume (m3),
n: Steinmetz exponent ranging rom 1.5 to 2.5 depending

on material.
Vin: input voltage to the PSU (V),
Vf : forward voltage drop on the input rectifier diodes,
ton: MOSFET switches on-time (PFC circuit) (s),
fsw: switching frequency of the PFC circuit (Hz),
Rds−On dc out : MOSFETS on-resistance, DC-DC output

stage (�),
Rload : load equivalent resistance in (�),
Rind−pfc: equivalent DC resistance of the PFC inductor (�),
Rtr .dc−dc: transformer equivalent DC resistance (�)
Vboost : boost PFC output voltage (V).
The losses in the switching devices and the magnetic cop-

per losses are load dependent, while core losses are not load.
Since the voltage at the load is kept within a specific voltage
region (48-54 V DC), it can be concluded from (7) & (8) that
core losses occur even at no load conditions. Inductor core
losses are negligible compared to thewinding (copper) losses.
In transformers on the other hand, the core losses are higher

Pout = α � Pin + β � P2in + Pno−load loss (6)

a =

[
1− 2 Vf

Vin cos(ϕ)
− ton.fsw

]
[
1+ 2Rds−On dc outRload

]
β

=

[
Rind−pfc+Rds−On pfc

V 2
inCos(ϕ)

2 +
4Rds−On dc in+2Rind dc−dc+2Rtr .dc−dc

V 2
boost outCos(ϕ)

2

]
[
1+ 2Rds−On dcoutRload

]
Pno−load loss = Ptr−hysterisis + Ptr−eddy + Pcontroller (7)
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FIGURE 5. Equivalent simplified circuit of parallel PSUs connected to a
common variable load.

because of the small number of winding turns in relation to
the large core volume.

B. LOAD SHARING ANALYSIS
It can be theoretically and experimentally shown that using
the same PSU type, size and brand, the load is shared
between the number of parallel PSUs. For example, each
PSU would supply 2 kW when four identical PSUs are
connected in parallel to an 8 kW load. In large datacen-
ters, modular UPS systems are used that consist of multiple
PSUs working in parallel in order to gain redundancy and
modularity.

The use of dissimilar PSUs, as well any kind of multiplex-
ing strategy (as the one proposed in this work) is not used by
any of the current system structures because of reasons that
have to do with the security-of-supply. The proposed PSU
multiplexing strategy does not affect the security of supply
and significant benefit in the energy efficiency occurs. PSUs
are voltage-controlled systems in which the voltage depends
on the loading condition. A PSU system with higher open
circuit voltage and lower internal resistance may provide
more power to the load. The equivalent simplified circuit is
shown in Fig. 5.

Using the equivalent circuit proposed in this work, the
equation of output power as a function of output voltage, load
and internal resistance can be derived for different PSUs and
is given by:

Pout−m =
(Voc−m − Vout)

rm
(10)

For multiple PSUs it can be shown that connecting ‘‘w’’
number of PSUs of type A and ‘‘q’’ number of PSUs of type B
in parallel supplying a common load, the voltage at the output
is given by:

Vout =

[
wVoc1

r1
+ qVoc2r2

− Pout
]

w
r1
+

q
r2

(11)

where: Voc1 is the PSU 1 open circuit voltage, Vout is the
output voltage of the system, r1 is the internal resistance of
type 1 PSU and w & q are the number of PSUs of type 1 and
2 respectively connected to the system. The Power output of
the system consisting of ‘‘w’’ PSUs of type A and ‘‘q’’ PSUs
of type B is given by:

Pout = w � Pout1 + q � Pout2 (12)

FIGURE 6. Output voltage vs. power output for micro-pack and
R4850G2 PSUs.

It is obvious from (10), (11), and (12), that each of the
PSUs, shares a portion of the output load based on the internal
resistance, the open circuit voltage and the total load.

IV. EXPERIMENTAL VERIFICATION OF MATHEMATICAL
MODELS
A. VERIFICATION OF RELATIONSHIP BETWEEN POWER
AND OUTPUT VOLTAGE
The first part of the experimental set up was to prove that
the relationship between output voltage and power is linear as
given from (10). The linear relationship of output voltage and
power can be verified experimentally as shown in the voltage
vs. power output charts, Fig. 6, for PSUs R4850G2 and Eltek
Valere Micro-Pack. The linear relationship of output voltage
and power is due to the control system of the PSUs, whose
main goal is to keep the output voltage of the PSU within
specified range limits.

B. VERIFICATION OF RELATIONSHIP OF EFFICIENCY AND
OUTPUT POWER
The next experimental set up was to measure the input and
output power of single PSU units of types Eltek Valere
Micro-pack and Huawei R4850G2 respectively in different
loads, in order to derive the efficiency vs. power output,
Fig. 7. As shown, the micro-pack has a higher efficiency than
the R4850G2 for loads under 250Wbut cannot supply greater
loads. The R4850G2 has higher peak efficiency compared to
the Micro-pack and a full load power output of 3 kW.

In order to verify the theoretical results regarding the sys-
tem efficiency for a combination (states) of different PSUs,
different set-upswhere used. The experimental block diagram
is shown in Fig.8.

Four PSU Eltek Valere micro-Pack modules and two
Huawei R4850G2 PSUs are used in total. To verify the math-
ematical model, the open circuit voltage for each PSU was
measured and the internal resistance calculated using a fixed
load. Results are shown in Table 1.
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TABLE 1. PSU measurements with no load.

FIGURE 7. Efficiency vs. power of Eltek Valere micro-pack and Huawei
R4850G2.

FIGURE 8. Block diagram of experimental verification.

Following this, the input and output current and voltage
at different load levels was measured using combinations of
1-3 PSUs and efficiency levels are identified as shown in
Table 2. For an output load of 156 W the highest efficiency
is achieved with one PSU module. Comparing the case of
three with two PSUs, it seen that the combination of three
has a higher efficiency than the combination of two. It can
be easily deducted that in each loading condition, a different
PSU combination is required for optimal efficiency.

The same experiment was implemented using PSUs of type
Huawei R4850G2. The results are shown in Table 3. Finally,
an experimental setupwas implemented to check load sharing
between the different types of PSUs.

TABLE 2. Eltek Valere micro-pack efficiencies of 1–3 PSUs.

TABLE 3. Huawei efficiencies of 1–2 PSUs.

Based on measurements taken using different modules and
load sharing, the mathematical model is verified and a dataset
of 36 states is built using different PSU combinations. Each
state represents a number of PSUs to be activated from each
type and represents a selection in the multiplexer. As stated
previously, the number of states depends on the number of
different PSUs.

The case study presented examines a datacenter with a
20 kW load. Two types of PSUs are used with however
multiple numbers from each type. To maintain N+N redun-
dancy where required, eighty 250WEltek ValereMicro-pack
PSUs and another seven 3 kW R4850G2 PSUs are required.
The total available UPS power would therefore be 41 kW,
satisfying the N+N requirement. This combination of PSUs
implies 560 different states (80× 7). To prove the concept in
the context of this work, only 36 states were created. The 36
states (combinations) are created empirically since the trend
of efficiency against power output of each of the PSUs is
known.

An optimal selection out of 560 states could lead to even
better results in terms of efficiency improvement. As shown in
Fig. 9, the experimental results verify themathematical model
with an error lower than 2% for loading conditions between
0-15% and lower than 0.5% for loading conditions between
15-100%.

V. PSU MULTIPLEXING TECHNIQUE
The efficiency of PSUs varies with load. Most PSUs present
their highest efficiency in the loading region between 30-60%
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FIGURE 9. Experimental and mathematical comparison of efficiency vs.
power output for R4850G2 PSUs.

FIGURE 10. Proposed machine L. controlled PSU multiplexing system.

of full load as shown in Fig. 7. In typical datacenters today,
the load is equally shared between multiple parallel PSUs
in all loading conditions. In the proposed PSU multiplexing
technique, individual PSUs are switched ON and OFF to
achieve maximum conversion efficiency. The diagram of the
proposed PSU Multiplexing system is shown in Fig. 10.
A system with ‘‘y’’ same PSUs can have a number of y
different states, but if a system has ‘‘y’’ different PSUs, the
number of states can be created is 2y. Each state has a different
energy efficiency performance for the same load output.

A dataset with 36 different states and 4 UPS is built and fed
to the machine learning system. As proposed in this work,
multiplexing (i.e., selecting between different sources) of
different PSUs leads to significant energy efficiency improve-
ments. This can be seen in the projected efficiency vs. output
power chart shown in Fig. 11.

Efficiency improvement of up to 78% can be achieved
in very small loads and an impressive 13.62% efficiency
improvement at around 10% of the 20 kW full load can be
achieved with the proposed system, Fig. 11.

VI. MACHINE LEARNING
Changing between known states of PSU combinations to
achieve maximum energy efficiency, could be easily done
through optimization techniques without the need of machine
learning algorithms. On the other hand, a single change in
the dataset (such as a PSU malfunction or change of PSU

FIGURE 11. Efficiency vs. power comparison between standard UPS
systems and the proposed PSU multiplexing ups system together with the
efficiency gain (grey curve).

parameters) could lead to overall system malfunction, since
the mathematical model changes, if linear optimization con-
trol techniques are used. Furthermore, a PSU multiplexing
system as proposed can have a huge number of different
states. To be able to use optimization control systems, all
efficiency states against load mathematical models should be
evaluated. Changing a PSU type in the system, would lead
to change of mathematical modeling in many states of the
system. Therefore, with optimization models a change of a
PSUmodel would need a change inmathematical formulation
of a big number of states which is computationally expensive.
In the contrary, changing a PSU model in a machine learn-
ing controlled system, would just need new data (measured
data of efficiency against load) and re-training. Summarizing,
machine learning techniques could be easily used in applica-
tions where adaptive control is needed such as in the proposed
system.

The dataset used to train the model included actual mea-
surements and calculated values based on (6) but are also
comparable with manufacturers datasheets.

A. MACHINE LEARNING ALGORITHMS
1) CLASSIFICATION MODEL
When dealing with such a problem, a variety of machine
learning algorithms can be applied. In this work, due to the
non-linearity of the input/output relationship, linear models
were avoided. The comparison of different algorithms is
shown in table 4. As shown, the Random Forest (RF) clas-
sifier has the higher test precision, test recall and F1-score.
On the other hand, the K-NN classifier requires significantly
shorter training and prediction time compared to the other
methods, with however, very similar test recall and test F1
score results in. K-NN is a non-parametric method which
does not require training. A K-NN classifier assigns class
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TABLE 4. Comparison of different classification algorithms.

membership based on neighbor plurality votes. Then, K-NN
regression obtains the k nearest neighbor average output
value. One of the key strengths of the K-NN algorithm,
is its ability to constantly adapt to new data, which leads
to easy adaptability to multi-class problems like the current
case. In the contrary, due to its no training characteristic, this
algorithm can become slow as data increases.

Although RF algorithm requires training, it can be faster
in later predictions. RF is an ensemble method, using mul-
tiple decision trees and averaging their predictions. This
usage of multiple decision trees improves the accuracy of
the prediction and avoids overfitting. Moreover, RF can work
well for both categorical and continuous values, which is an
expectation in this case, given the categorical redundancy
input feature, and continuous efficiency feature. Besides that,
similar to K-NN, RF can be easily applied on multi-class
classification problems. In the contrary, the RF algorithm
is computationally complex during training, since requires
creation of numerous decision trees.

Therefore K-Nearest Neighbor (KNN) and Random For-
est (RF) techniques proved to be the best solutions for the
PSU Multiplexing problem. The model is designed with two
inputs and two outputs.

The inputs are:

• The power output level of the load

◦ PLoad ∈ R+
• The redundancy input

◦ 0,0 – No redundancy
◦ 0,1 - N+1 redundancy
◦ 1,1 – N+N redundancy

The outputs are:
- The state selection based on the load
- The efficiency of the state in the specific load.
The two outputs were dealt by two different models, one

performing multi-class classification (state output) and one
performing regression (efficiency output).

For the supervised classification task, by performing the
non-parametric method K-NN with 5 neighbors, an average
precision of 98.81% was achieved, a recall of 98.34% and an

TABLE 5. Comparison of different regression algorithms.

F1-score of 98.44%. Moreover, a classification accuracy of
98.34% was achieved.

Finally, applying the random forests method, which uti-
lizes the strengths of decision trees and avoids overfitting, the
outcome can be improved drastically. The classification accu-
racy when using random forests classifier can reach 99.34%,
while the average precision, recall and F1-scores reached
values of 99.38%, 99.34% and 99.34% respectively. The
number of estimators used within our model where 1000 and
were chosen using cross-validation.

2) REGRESSION MODEL
The comparison of different regression algorithms is shown
in Table 5. As shown in Table 5, RF and K-NN regressors
have significantly lower validation standard deviation, and
test Mean Squared Error (MSE) values compared to Artificial
Neural Networks (ANN). Despite RF regressor has signifi-
cantly higher training duration time compared to K-NN, it has
lower MSE.

Using the supervised regression task and performing the
non-parametric method K-NN with 5 neighbors (chosen
using cross-validation) a score of 96.7% R2 and a MSE
score of 3.88 e-06 was achieved with one case of efficiency
prediction error higher than 1% (1e = 3.15%). On the other
hand, using random forests regressor with 1000 estimators the
score was improved to 99.59%, the MSE score was improved
to 4.87 e-07 and the efficiency miss-match was in all cases
lower than 1%.

3) FINAL MODEL SELECTION
Both the regression and classification algorithm models can
achieve great results that could be used to choose the best state
in which the system should operate and predict the expected
efficiency. Although the K-NN method does not need to
be data-trained, random forest models appear to give better
results which are however computationally more expensive
during training. However, in real time applications, a trained
random forest algorithm model should be faster than K-NN
which needs to run through all available data. Therefore, our
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FIGURE 12. Flow chart of the machine learning main program.

final model was chosen to include the random forest classifier
for the state choice, and the random forest regressor for the
efficiency prediction.

The flowchart of the implemented main code of our
machine learning program is shown in Fig.12.

B. DATA PREPROCESSING
The data pre-processing necessitates initial evaluation of the
representation of each class within the dataset. The analysis
of the data showed that some of the states might be under-
represented, while other cases might be over-represented as
illustrated in Fig. 13. For example, state 36, is presented in
more than 20% of cases that show optimal efficiency, while
state 2 for example is represented in less than 1% of cases.

However, balancing between state representation, should
be avoided since the under-represented states also represent
less observed high efficiency cases. Moreover, the increased
representation of states that are optimal at higher PLoad values
are more frequent due to the fact that power supplies tend
to have higher efficiency in loading conditions of 30-60%
of full load and therefore large size power supplies have a
larger representation of power output in this region. Addition-
ally, those few under-represented and over-represented states
accumulate a minority of the possible states represented in
the dataset.

FIGURE 13. State representation chart. In this chart is shown the
percentage that each of the 36 states showed optimal efficiency. i.e., state
22 had optimal efficiency for 5% of the time.

FIGURE 14. No redundancy case, most efficient state per load.

The dataset was split in a training set and a test set. The
latter was chosen by randomly sampling 10% of the existing
data. The training set consisted the remaining data. Moreover,
due to the nature of the inputs, where PLoad can achieve
higher values compared to the discrete values of the redun-
dancy input, standardization was performed which ensured
zero mean and unit variance of each feature. This measure,
although it can theoretically be skipped for random forests
classifiers and regressors, it was kept within the implementa-
tion as it is not harmful and helpful for the machine learning
problem solution.

C. MACHINE LEARNING MODEL RESULTS
As stated previously, the machine learning model solves the
optimization problem based on 3 options in terms of redun-
dancy, namely N+1, N+N and No redundancy (N+0) cases.
The results for no redundancy case are shown in Fig. 14.

The system uses 12 different states to have optimized effi-
ciency from 0-20000 W. It can be easily seen that efficiency
of the UPS system is above 95% for all load conditions
above1200 W, and above 92.5% for loads above 40 W. The
efficiency gains are shown in more detail in Fig. 11.
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FIGURE 15. N + 1 redundancy case, most efficient state per load.

FIGURE 16. N + N redundancy case, most efficient state per load.

The optimized solution of the PSU Multiplexing, with
N+1 redundancy is shown in Fig. 14. The system is using
12 different combinations of PSUs (States) to achieve max-
imum efficiency of conversion and at the same time keep
N+1 redundancy. As shown in Fig. 15., the efficiency in N+1
optimized PSU Multiplexing solution, is above 95% for all
loads above 2000 W (10% of full load).

The solution of N+N redundancy case can be seen in
Fig. 16. It is obvious from the chart, that only 7 states
are changing in N+N optimized efficiency solution, but the
efficiency of conversion for optimized N+N is lower than
optimized N+1 and N+0 cases. The efficiency of conversion
of N+N case with the optimized PSU Multiplexing system,
is higher compared with the conventional system solution
(Without PSU multiplexing) for all loads between 0-9000 W
(i.e. 0 to 45% of full load).

VII. CONCLUSION
This work proposes a novel system with a PSU Multiplexing
technique usingmachine learning algorithms that improve the
efficiency of conversion in a DC UPS system by maintaining
the required redundancy of the power supply. Different PSUs
are measured experimentally and characterized in terms of
efficiency against load and a mathematical model is built to
give efficiency values of different PSU combinations. Each
PSU combination is represented by a state and each state has

a different efficiency performance in a given load power out-
put. The PSU multiplexing controller using machine learn-
ing techniques, identifies the ideal state for each load. It is
shown that an efficiency improvement of up to 78.9% can
be achieved for loads of about 40 W compared to existing
PSU systems without multiplexing. Furthermore, a 24.52%
efficiency improvement can be achieved for loads of 1 kW, a
13.62% for loads of 2 kW and an average efficiency improve-
ment of 5.23%. for all loads. Taking into consideration that
modern datacenters use modular UPS systems (with multi-
ple PSUs), the cost to include multiplexing in the existing
systems is negligible. A 5.23% energy saving is a significant
improvement considering that datacenters consume about 1%
of the annual global energy. Finally, the new system can also
be applied in other AC to DC power supply systems such
as in the electric vehicle industry (electric chargers). If the
proposed system is applied in older UPS systems with lower
efficiency PSUs, even better results may be achieved.
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