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ABSTRACT Ultra-wideband (UWB) and inertial measurement unit (IMU) fusion is an efficient method to
resolve the uncertainties of UWB in non-line-of-sight (NLOS) situations because of signals refraction, the
effect of multipath and inertial positioning error accumulation in indoor environments. Existing systems,
however, are focused only on foot-mounted IMUs that restrict the system’s implementation to particular
real situations. In this research, using foot-mounted IMU, we suggest combining UWB ranging and IMU
pedestrian dead reckoning (PDR), which can provide a generic indoor positioning solution. The issues such as
position and orientation drift, interferences and divergence in strap-down inertial navigation system (SINS)
based orientation estimates could be addressed by a UWB ranging sensor fusing with an IMU using
the extended Kalman filter (EKF). The main goal of this research is to investigate and compare two
different sensor data fusion techniques. For instance, adaptive Kalman filter (AKF) and least-squares (LSs)
incorporate a foot-mounted IMU tightly coupled to a 2D pedestrian positioning solution derived from UWB
signals. Moreover, we consider the UWB NLOS and IMU error identification. A real-time ranging error
compensation model based on the LS method and AKF positioning algorithm are used for fixing such
problems.We propose a new tightly coupled inertial navigation system (INS) with a two-way ranging (TWR)
fusion positioning algorithm to improve accuracy, integrating UWB and IMU sensors based on the EKF in
pedestrian navigation. Experiments in dynamic indoor environment validate the effectiveness of the proposed
approach that uses EKF to combine AKF and LS for error minimization.

INDEX TERMS Foot-mounted IMU, pedestrian, indoor navigation, EKF, tightly coupling, UWB.

I. INTRODUCTION
The global positioning system (GPS) is the most advanced
outdoor positioning system in recent years. However, the sig-
nal strength is in the microwave frequency range, and when
it hits the ground, the signal intensity becomes poor and does
not penetrate in a certain indoor environment [1]. Thus, for
indoor positioning scenarios, GPS is not feasible. In general,
80% of human activities are in an indoor environment, and
the demand for indoor positioning is far higher than for
outdoor placement. So, indoor pedestrian navigation (IPN)
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and positioning is considered to be one of the important tools
for persons to find their routes in wide indoor environments
such as libraries, parking lots, warehouses, shopping malls,
patient tracking in hospitals, fire emergency in a building,
etc. More importantly, the requirements can be meet in PDR
on the basis of UWB/IMU. The PDR is based on pedestrian
patterns and uses IMU sensors that include an accelerom-
eter and a gyroscope. PDR’s core features for calculating
relative motions are the estimation of stride length, head-
ing estimation and step detection. Mainly, PDR uses IMU
sensors to determine a user’s momentary movements and
estimates the user’s present position by iteratively combining
the simultaneous movements to the prior position. In [50],
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PDR can predict location with reasonable accuracy over short
time intervals, but it causes the IMU sensors to suffer from
cumulative errors as time passes. Moreover, PDR accuracy
is dependent on the precision of the prior position and the
IMU sensors; different assisting techniques can help PDR to
perform better.

For government security and commercial purposes,
high-precision location data plays an important role. Posi-
tioning technology is also commonly used in vehicle nav-
igation, search and rescue, health tracking, identification
of logistics targets, and other areas. The massive demand
for location services has spawned wireless communication
and network technologies such as UWB, Bluetooth, wire-
less fidelity (WiFi), radio-frequency identification (RFID),
and Zigbee [2], [43], [54]. Moreover, the INS enhances the
combined navigation in challenging environments, and range
observation has been expressed in GPS/INS tightly coupled
navigation through UWB with an improved robust Kalman
filter [3]. A system that uses low-cost UWB measurement
techniques to enhance the UWB/micro-electromechanical
systems (MEMS) IMU navigation has been suggested, for
instance, in an environment where the UWB positioning
system has been presented. Cardarelli et al. [55] proposed a
single IMU sensor and estimated the 3D human body centre
ofmass (CoM) displacement by amethod of the sacral marker
during treadmill walking and achieved a reliable estimation
during cyclic activities using the UKF; to focus on data accu-
racy with instrumentation of low-cost instead of real-time
applicability to avoid orientation estimation errors. A multi-
sensor fusion technique has been produced while a dynamic
location accuracy of 20 cm was achieved during the UWB
range measurements [44]. An EKF was applied to the GPS
observations, and the UWB ranges tightly coupled method
explained the additional error states and the systematic UWB
errors in real-time [5]. There are two ways to realize wireless
positioning, the received signal strength indicator (RSSI)
and time of flight (TOF). The RSSI algorithm, also known
as the fingerprint method, uses the wireless signal’s energy
attenuation model to propagate in the channel to estimate the
distance.

In [52], the GPS/INS community recognizes that the loose
paradigm is less efficient than some other systems incorpo-
rating raw sensory data at such low process levels as tight
integration, which are drift reduction with the availability of
one node, i.e., the existence of RSS measurement. The sensor
error features such as IMU biases, model parameters, among
many other factors, are some of the advantages of tightly cou-
pling integrations. A tightly coupling method in [51] is pro-
posed by implementing a Kalman filter (KF) with INS/RFID
utilizing the predicted INS range to tag between the residual.
The technique incorporates zero-velocity updates (ZUPTs)
for foot stances, zero-angular rate updates (ZARUs) for still
phases, and heading drift reduction (magnetometer). The
loosely coupled model is a low-level paradigm in which the
integration of sub positioning technologies operates inde-
pendently. The loosely coupling paradigm has the merit of

overcoming the thresholds of sub positioning techniques for
integration and is relatively easy to implement [45]. Even
though it might be figured out that the loosely coupled
model’s accuracy will ultimately be limited over time, such
a sub positioning system may not provide the position data.
On the other hand, the tightly coupling model is suggested
as a supporting system to overcome this drawback [22], [42].
In addition, the most extensively used data fusion filtering
algorithms, such as EKF, are built on KF to provide state
estimation via the data fusion paradigm [13]. There seems to
be some literature on merging UWB and inertial navigation
sensors to the researcher’s knowledge. The recent works
incorporate a hybrid 2D location tracking technique [46]
and an EKF for pedestrian tracking [47]. A loosely coupling
paradigm is defined as a system in which the data through one
or more different sensors is pre-processed before calculating
the final results, which have a minimal number of degrees of
freedom (DOF) IMU to estimate and act separately. A tightly
coupling paradigm is one in which all estimations are used to
obtain the final results immediately.

In the cases of fewer anchors, the tightly coupled model
can also be used by applying raw UWB/IMU information
mechanization algorithms in an EKF. So UWB/IMU tightly
coupled navigation is more flexible. Because the tightly cou-
pled system was significantly more accurate, robust, jam-
resistant, and less costly, a reconfigurable UWB/IMU tightly
coupled navigation filter was designed for spacecraft applica-
tion [6]. The range measurement data collected with widely
deployed UWB radio frequencies under optimum line-of-
sight (LOS) conditions are evaluated with assessed distances
using conventional UWB error assessment methods [5]. For
the simultaneous reconstruction of the Human body (attitude
and displacement), Qiu et al. [56] presented a low-cost IMU
motion capture and lightweight ZUPT technique, which dis-
tributes fifteen sensor nodes on the human limbs for calcu-
lating foot displacement. The INS can calculate the current
attitude (or orientation), velocity and location of the system
using the IMU measurements starting from some known ini-
tial point. However, as time increases, the computed naviga-
tion states such as velocity, position and attitude can rise due
to their long-term drifts, like the gyroscopes or accelerometer
biases and scale factor errors. While UWB radio technology
is recognized as an ideal platform in indoor environments
to provide accurate positioning information, it still poses a
priority for the UWB-based indoor positioning system to
consistently generate accurate location systems compared to
the significant perpetuation of LOS multipath and NLOS
proliferation [31].

Wireless infrastructure in terms of sensor nodes deployed
in a specific region is eventually needed by fusion-based
systems integrating wireless technologies. The numbers of
needed UWB sensor nodes increase considerably to ensure
that at least four UWB anchor nodes cover every possi-
ble environment position. The indoor environment, even so,
is complicated; UWB signals reflect, as result in an error
of NLOS [28]. Assuming that the INS has the attributes
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of full navigation and high precision of positioning in a
limited time, in-depth researches on UWB/INS combined
methods has been performed bymany researchers [43]. Using
UWB/IMU to identify UAV [25] and to perform indoor
pedestrian positioning [7], [27], but it is complex to realize
the tight coupling approach suggested within this paper in
practice. A UWB-based indoor positioning algorithm and
strengthened PDR has been suggested in [28], but this fusion
algorithm has the issue of blind signal area location drift error.

The cost-effectiveness of maximizing the fusion indoor
positioning system (IPS) is massively enhanced by using
an unscented Kalman filter (UKF) based IMU and UWB
fusion strategy presented in [35], [54] whereby the UWB
diversification has been used. The algorithm is capable of
handling an abstract concept of UWB anchor nodes without
such a minimal number. The same related research has been
proposed in [3] with integrating a foot-mounted IMU and
ZUPT using building heading information to combat head-
ing drifts in Kalman filter, where the results compared with
high-sensitivity GPS for a typical low-cost indoor pedestrian
navigation system. A cascaded estimation architecture pro-
posed in [4] to estimate the stepwise change of direction
and position of one or optionally both feet, respectively, with
state-of-the-art integration lowerKalman filter. Alongwith an
indirect feedback EKF comprising a strap-down navigation
technique and ZUPT detection approach with a 6DOF foot
IMU sensor, which is suitably equipped. In [21] two potential
data fusion approaches were analyzed by the multi-sensor
indoor navigation system, composed of UWB and INS sen-
sors. The methods of data fusion are incorporated, whereby
it could both be justified by the step-length update (SLU).
By using the stochastic cloningmethod, valid analysis of such
measurements was represented.

A loosely/ tightly version of the navigation filter has been
measured with real data performed by the IMU/UWB mea-
surement period. In this research, a Backpack Navigator has
been used for measurements, which was guided by the rela-
tive distance estimation of the UWB base stations (BSs). In a
standard indoor situation, the data were obtained. Typically,
like [20], [22], incorporating the results of various techniques
by using filtering algorithms is described as loosely coupled
fusion. On the other hand, while in [23], [24], the direct use
of observational measurements for integrating is described as
tightly coupled fusion. The EKF and tightly coupled fusion
techniques are more appropriate for real-time applications,
even with non-linear motions and contexts. Our research has
chosen the EKF algorithm to incorporate PDR/IMU with
the enhanced UWB positioning system. Based on the EKF,
a tightly coupled process has been proposed. We imple-
mented various UWB positioning system strategies to resolve
issues, such as range error correction and least square algo-
rithm limitation. Our major contributions of this research are
as follows:
• A novel and comprehensive indoor pedestrian naviga-
tion and positioning solution are proposed using an
improved tightly-coupled navigation model with the

combination of UWB ranging and IMU, based on the
EKF algorithm.

• A TWR method for solving the pedestrian’s clock drift
and time synchronization issues to make the positioning
results easier and more consistent to decrease position-
ing data’s latency.

• Moreover, a real-time ranging error compensationmodel
based on the LS method and AKF positioning algo-
rithm is used to fix such problems, i.e., the attitude esti-
mation in dynamic conditions. Similarly, an improved
tightly coupling comparison with loosely coupling has
been performed and simulated for pedestrian positioning
accuracy and improvement.

The remainder of the paper is organized as Section II presents
the indoor positioning and navigation of the UWB and IMU
integration. Section III describes the extended Kalman filter
realization as per the pedestrian. The experimental implemen-
tation, simulations and results are presented and discussed in
Section IV. Section V concludes the paper with future scope.

II. UWB AND IMU INTEGRATION IN INDOOR
POSITIONING AND NAVIGATION
This section initially illustrates the indoor positioning
and navigation layout with the integration of IMU and
UWB-based technology, as shown in Fig. 1. The IMU sensor
has a three-axis accelerometer and gyroscope. Apart from
that, UWB-sensors incorporates an unknown position tag and
four anchors with known positions.
Tightly and loosely coupled integration: A tightly coupling

approach determines the positions and orientation of moving
objects in dynamic indoor environments. The time differ-
ence of arrival (TDOA) method utilizes for the clock error
elimination. It synchronizes the inertial sensor errors incor-
porating UWB ranging data fusion to correct the position.
For a rigorous implementation, tight coupling and integrity
monitoring are the important features for sensors data fusion.
Upon this technology, a realistic IPN has been performed
iteratively without any deterioration [27]. These are partic-
ularly helpful for measurements of UWB ranging, in which
the outliers are common because of the effects of multipath
signals refraction in NLOS situations. Furthermore, the iner-
tial data provides accurate and consistent estimations for the
UWB measurements, which provides for enhanced outliers
detection. As a result, a system with a tight coupling is
more stable [13]. The navigation position obtained from the
UWB systems is used as measurements in an EKF, which
usually corrects the drift of an INS system. In [15], [16], the
pseudo ranges from UWB are used as measurements in an
INS indoors. Due to the poor quality of indoor measurements,
global navigation satellite system (GNSS) measurements are
not usually used directly in indoor scenarios. However, satel-
lites’ measurements can provide information before and after
entering buildings, establishing a starting point (and possibly
orientation) in the estimation, so they could be considered
decoupled measurements.
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FIGURE 1. Overview of the proposed fusion algorithm.

The loosely coupling approach refers to a system in
which the data from one or more independent sensors is
pre-processed before it can be used to calculate the optimum
results. The position estimated by this is used to initialize
the UWB received signal correlators from the anchor nodes.
If enough measurements are not received to estimate the
position based on anchors, the INS cannot provide such
information. This technique is used in [13], [14] to improve
UWB estimates with inertial measurements. To increase the
process of data fusion validity, a decision-making algorithm
is designed. Based on a random forest algorithm and channel
impulse response (CIR) data, such an algorithm evaluated
the reliability of the UWB measurements. It fused all data
when the UWB rangings were in LOS [20]. The measures
can be used in a PDR estimation with a smooth integration
scheme if the position measures are entered as position obser-
vations with a constant (and high) covariance [17]. Addi-
tionally, we suppose the system is capable of providing the
covariance matrix of the position estimate. In that case, these
measurements can be entered into an estimate either using
step length estimates [18] or INS with ZUPT [19]. Moreover,
such an approach was selected to integrate UWB ranging
and INS sensors into a unified platform [47]. In [53], the
pedestrian has carried a UWB sensor in his hands to avoid
near floor barriers to increase the anchors’ node penetration.
Meanwhile, the shoe-mounted IMU could be modified to
frequently resetting the drift of INS and the velocity of the
ankle using the stance phases.

A. INS-BASED STATE PROPAGATION
The tactical and navigation IMUs would maintain position
and orientation long enough, but one person cannot easily
use them due to their cost, weight, and volume. Due to size
and cost requirements, the only IMUs available are of the
MEMS type, but due to their noise level and bias variability,
they can only estimate the position accurately for a few
seconds. The angle measures can triangulate for the position
calculation when a measure of a person’s displacements is
available. It is possible to use a strong integration of the
measures, improving the estimation and using measurements

even when there are not enough to achieve a position. In [8],
proposed to use the measures of the length and change of
angle of the PDR steps to propagate the estimate in an EKF
and subsequently correct the estimates according to multiple
measures received, including the angle of incidence obtained
from a Ubisense’s UWB system [9].

Jiménez et al. [10] proposed to place fiducial markers in
the IMU carried by a person so that a system of cameras
with known positions can measure the person’s angles to
be located. These angles of incidence are used as measure-
ments in a Kalman filter propagated with the IMU measure-
ments. Long et al. [11] proposed a method to correct the
orientation using the magnetic field. The horizontal plane’s
orientation is measured during the stance stage to correct
the gyroscope bias in an EKF. This approach allows the
use of the magnetic field, but as in [12], they are affected
by magnetic disturbances generated by metallic structures,
motors, etc. The magnetic field’s projection in the horizontal
plane is used to estimate the orientation errors to the iner-
tial system. If these are not detected as disturbances, they
are corrected using the EKF of a PDR based on INS [11].
Ashraf et al. [57] proposed a magnetic pattern (MP) with
convolutional neural networks (CNNs) by performing indoor
localization. The database is built using MP that happens at
the measuring points, and the position is determined through
CNN, which compares the user-collected MP to the database.
The visual-inertial EKF technique has been presented in [29]
for the full filter state entirely in robocentric terms. Extrinsic
camera biases, as well as additive IMU biases, are also calcu-
lated. The relative navigation principles are used to reset the
step keyframe to enforce the consistency and observability of
the usually heading states and unobservable position while
significantly improving these features’ estimation accuracy
and consistency [30].

B. UWB SENSOR POSITIONING PROCESSING ALGORITHM
Generally, wireless signal-based positioning techniques
are classified into range-based and non-range-based tech-
niques [43]. Typically, the UWB based positioning approach
incorporates the ranging algorithm with these phases.

VOLUME 9, 2021 164209



R. Ali et al.: Tightly Coupling Fusion of UWB Ranging and IMU PDR for Indoor Localization

FIGURE 2. (a) and (b) shows the SDS-TWR ranging system.

The first phase is to estimate the position and angular
data, and the second phase is to use the measurement
position and angular data to determine the location. The
widely used approach for measuring the distance between
two-node is the TOF range. The UWB positioning plat-
form is the MAX2000/DWM1000 ranging chip developed by
Ireland’s DECAWAVE company. DWM1000 is a system on
a chip (SoC) system solution, ranging accuracy within 30cm,
has the advantages of small size, low cost, anti-multipath
interference, etc. In terms of hardware implementation, the
solution uses the TOF method to measure electromagnetic
waves’ flight time in the medium. The specific process
is a TWR method; i.e., the anchor (anchor node) and the
tag (target) are not performed. Time synchronization relies
on the recorded signal transmission and arrival timestamps in
the two-hand handshake signal to measure electromagnetic
waves’ flight time. The symmetric double-sided two-way
range (SDS-TWR) system [36] is adopted mostly by recent
researches in TOF to minimize the effect of the synchroniza-
tion of clocks among nodes, as seen in Fig. 2. Simultaneously,
it is not possible to solve the frequency drift induced either
by crystal clock drift. The SDS-TWR system, in addition,
takes a longer process time. We suggest a novel SDS-TWR
optimization algorithm in our method to rectify the problem.
Due to its highly reliable results on clock-drift error reduction
when response times are symmetric, this is themost identified
TWR approach in the literature.

In (1), TOF represented as Tpro between device A and B,
from device A as Tround1 represented the duration of time to
send the polling message to receive the reply message at the
same way from device B as Tround2 represented the time is
to send the reply message to obtain the final message from
device A. From devices A and B, similarly, Treply1 and Treply2
are the delays of time.{

Tround1 = 2Tpro + 2Treply2
Tround2 = 2Tpro + 2Treply1

(1)

hence, between devices A and device B, TOF would be
obtained as per (2),

Tpro =
Tround1 × Tround2 − Treply1 × Treply2
Tround1 + Tround2 + Treply1 + Treply2

(2)

FIGURE 3. Positioning algorithm of four-UWB anchor nodes.

hence, distance (d) can be represented as per (3),

d = vTpro (3)

where v represents the propagation velocity of the electro-
magnetic wave.

We follow the multi-lateration since performing the range
phase to decide the tag location through the distancemeasure-
ments. In detail, the trilateration overview is demonstrated,
as seen in Fig. 3, where the distances from the tag to four-
UWB-nodes have been estimated. Certainly, the tag must
be placed at the four-circles intersection centred on four-
UWB-nodes in the 2-dimensional plane. The trilateration
consequence is unique, and know that the four-UWB-nodes
aren’t really in a single direction.

Suppose an unknown tag is placed at (a, b) and ith

UWB-anchor node is placed at (ai, bi). In (4) the accurate
difference in between the ith UWB-anchor node as well as
the unknown tag di could then be defined as,

di =
√
(ai − a)2 + (bi − b)2 (4)

Assume, the measured distance represented by d ′i in
between the ith UWB-anchor node of the unknown tag. The
variance seen between accurate distance as well as the esti-
mated distance can be defined here as (pi = di − d ′i ).
In terms of dealing with its spectrum of noise, the weighted
adaptive Kalman filtering approach is used to reduce the N
value. In particular, each distance specifies a function of an
unknown tag position as presented in (5) and (6).

d21 = (a1 − a)2 + (b1 − b)2

d22 = (a2 − a)2 + (b2 − b)2

d2n = (an − a)2 + (bn − b)2
(5)

where,

X =


a2 − a1 b2 − b1
a3 − a1 b3 − b1
...

...

an − a1 bn − b1

 , ε =

[
a
b

]
(6)

y =


a22 + b

2
2 − d

2
2 − (a21 + b

2
1 − d

2
1 )

a23 + b
2
3 − d

2
3 − (a21 + b

2
1 − d

2
1 )

...

a2n + b
2
n − d

2
n − (a21 + b

2
1 − d

2
1 )

 (7)
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Let the (7) be subtracted by (6), after all we will achieve (8).

Xε = y (8)

thus, (9) shows the filtering positioning algorithm result of
the ε,

ε = (XTX )−1XT y (9)

In the filtering positioning technique, a certain weight is
incorporated for each range value. Certainly, the ranging
error is lower throughout the ranging phase whenever the
carrier is closest to the UWB anchor node. Thus, for the
lower ranging value, we select a greater weight; in this
case, the positioning accuracy will be even further enhanced.
To that end, we suggest a weighted adaptive Kalman filtering
algorithm to address and fix the problem. The inverse of the
range value ‘‘d ′′ is represented as the weighting coefficient λ
as seen in (10).

λ =


1
d 1 0 0 0
0 1

d 2 0 0

0 0
. . . 0

0 0 0 1
d n

 (10)

Then, theweighted adaptiveKalman filtering algorithm result
of ε̂ is defined as in (11),

ε̂ = (XTλX )−1XTλy (11)

C. IMU SENSOR POSITIONING PROCESSING ALGORITHM
Fan et al. [37] performed research on the transformation of
various coordinates and the estimation of the attitude function
change in INS. The main principles, such as the coordination
of complex models, and associated function analysis of the
coordinate transformation are mainly discussed in this paper.

The integrated positioning model effectively solves the
NLOS interference or occlusion interference in indoor posi-
tioning. When the anchor and card pseudo-range measure-
ments have NLOS errors, the combined positioning model
will switch the positioning solution to the INS in time and
switch to the combined model after the NLOS interfer-
ence disappears. Therefore, the integrated positioning system
has high accuracy, good stability, and strong environmental
adaptability−the integrated positioning process of the inertial
navigation as seen in Fig. 4.

The black axis in Fig. 4. represents the mainline of the
integrated positioning model, which realizes SIN, real-time
pose shifting, 3-axis position output, speed and attitude. The
purple axis represents the correction solution, which realizes
Sage-Husa adaptive filtering and NLOS discrimination etc.,
and gives the error amount of the current state of the sys-
tem [49]. The red axis represents the filter feedback, and the
error amount of the measurement update solution fed back
to the system state. It can be concluded from the positioning
effect that the combined positioning model based on the
graph optimization model can effectively estimate the head-
ing information of pedestrian movement. The UWB ranging

value provides new constraints on the pedestrian walking
trajectory. Such constraints are easy to adjust the pedestrian
walking trajectory to the optimal state. A visual understand-
ing is that the shallow coupling combination model can
rotate and move the PDR trajectory to match a more realistic
trajectory.

D. ADAPTIVE KALMAN FILTER ESTIMATION IN NLOS
In a complex indoor environment, the probability and statis-
tical characteristics of noise are not static. E.g., the IMU is
susceptible to temperature changes, and the measured value
is offset; UWB ranging has multipath interference errors in
some environments [48], [20]. Although it is impossible to
accurately model this kind of random noise, an effective
and feasible way is to appropriately adjust the mean and
variance of the noise to make the white noise approximated
by the model closer to the real situation. The AKF estimation
algorithm identifies the mean and variance of noise online
to adapt to the complex and changeable noise characteristics.
Generally, the amplitude of the inertial data noise of the IMU
changes slowly. The adaptive estimation only considers the
mean and variance of the observed noise online to simplify
the calculation process [12].

The innovation sequence of the filter is equal to the differ-
ence between a priori measurement estimate and the posterior
sensor measurement. To a certain extent, the innovation value
reflects the performance of AKF estimation, so Sage-Husa
adaptive estimation uses this feature to identify process and
measurement noises [49]. Let r be the measured noise’s
deviation value; then the noises characteristic identifies
as (12).{
rk+1 = (1−dk+1)rk + dk+1(δzk−h(δx−x ))
Rk+1 = (1−dk+1)Rk + dk (ξk+1ξTk+1−Hk+1P

−

k+1,H
T
k+1)

(12)

where dk+1 = 1−b
1−bk+1

represents the weight of the current
residual, b is the attenuation factor. The mean value rk+1
and variance Rk+1 of the measurement noise are estimated
as the residual historical sequence (r1, r2 . . .Rk ) and the new
residual weighting. The residual historical information will
increase with time and contribute less and less to the identi-
fication algorithm (13).{

ξk+1 = Zk+1 − Hk+1X
−

k+1 − rk+1
Kk+1 = P−k+1,H

T
k+1(Hk+1P

−

k+1,H
T
k+1 + Rk+1)

−1 (13)

Sage-Husa AKF estimation is a sub-optimal estimator. It uses
the autocorrelation characteristics of the residual sequence to
make online statistics of the mean and variance of the system
noise. It has good results in practical applications.

1) PROCESSING OF NLOS
There is a very significant jitter error in the UWB positioning
system, i.e., the NLOS error, as seen in Fig. 5. The NLOS
error is closely related to the current environment. When
obstacles in the linear path of the transmission signal or the
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FIGURE 4. A conceptual model of inertial navigation process.

multipath effect are obvious, the range finding value is likely
to be extremely inaccurate [13]. The fundamental reason for
the inaccurate ranging is that the UWBhardware acceptsmul-
tipath electromagnetic signals and recognizes the first signal
as a straight signal without delay. This mechanism performs
well for most LOS conditions. Compared with the straight
signal, the signal power on the NLOS path in the received
signal attenuates more. Therefore, this feature can be used
to judge the error detection of the UWB hardware straight
signal, which has a certain validity. The specific method of
NLOS judgment is represented as (14).

dB = fP− rxP =

{
< TH_1 (LOS)
>= TH_2 (NLOS)

(14)

where fP represents the power of the first path of the wireless
signal received by UWB, rxP represents the total power of
the wireless signal received by UWB, and dB represents the
signal gain, i.e., the power ratio of the first path to the total
power of the wireless signal. When the dB value is small,
it indicates that the total power of the wireless signal is mainly
concentrated on the first path, and the ranging quality is good;
on the contrary, the power of the signal is scattered on each
path, and the ranging quality is poor, which is most likely to
be an NLOS situation. In addition, the tightly coupled inte-
grated navigation model provides a probabilistic consistency
test for the rationality of the data. In the EKF, the innovation
is an orthogonal, time uncorrelated, white noise sequence and
normalized Gaussian noise.

The target’s specific coordinates could be achieved if the
threshold is located and the UWB anchors are in LOS. The
residual is very minimal at this point. The hyperbolic planes
of TDOA can converge in a region because of the NLOS
channels between the target and the UWB/IMU sensors on
PDR. The target’s location is unknown at this time. The
residual would, of course, be incredibly large. As a result, the
residual threshold could be used to decide whether an NLOS
situation exists.

III. REALIZATION ON EXTENDED KALMAN FILTER
There are mainly two techniques when applying the Kalman
filter to non-linear problems for the data fusion in UWB/IMU
tightly coupled positioning and navigation. The first consists
of using a first-order Taylor series around a static reference
path, resulting in what is known as a linearized Kalman
filter [31]. It is a useful technique when there is a large
amount of a priori information about the problem, such as in

FIGURE 5. A schematic layout of signal NLOS error source.

satellite tracking, since the approximate orbit of the satellite
is known in advance. The main problem with this approach
is that the same reference path is used for the estimation
process duration. The errors will grow without a limit if
there is a large difference between the system’s state and the
reference path. To avoid such a problem, the solution is to
linearize using a Taylor series around a dynamic reference
trajectory continuously updated with state estimates that are
products of the observations. Each time a new state estimate
is calculated, a new, better, and more accurate reference path
is recalculated and incorporated into the estimation process.
When a first-order Taylor series is used, the resulting filter
is known as the EKF [31], while if a second-order Taylor
series is used, the second-order EKF is obtained [32]. In this
work, the standard or first-order EKFwill be used exclusively,
based on the assumption of a non-linear system model and
a non-linear observation model; the equations are described
below. In the EKF, the system has to be represented by a
non-linear equation of the form (15).{

xk−1 = f (xk , uk )+ vk
vk ≈ N (0,Qk )

(15)

where f (.) is a non-linear transition function, and vk
represents a Gaussian white noise disturbance, with
mean E [v(k)] = 0 and covariance Qk , fulfilling that
E
[
vk (i)vTk (j)

]
= δijQk (i).

As in the system model, the model that relates the
observations to the state is also expressed by a non-linear
equation (16). {

zk = h(xk )+ wk
wk ≈ N (0,Rk )

(16)

where h(.) is a non-linear observation function, and wk is a
Gaussian white noise disturbance, with mean E [w(k)] = 0
and covariance Rk , fulfilling that E

[
wk (i)wTk (j)

]
= δijRk (i).

Similar to the linear Kalman filter, the EKF algorithm is
based on a prediction-correction cycle, with the difference
that a first-order Taylor series linearize non-linear functions.
The equations are shown below without their mathematical
development. The interested reader can find various proofs
in [33], [34] among others.
Prediction: Given the state estimation of the system and

its covariance matrix x̂k|k ,Pk|k at time k , the prediction
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x̂k+1|k ,Pk+1|k at time k+1 is calculated as per (17) and (18).

x̂k+1|k = f (x̂k|k , uk ) (17)

Pk+1|k = ∇x f .Pk|k .∇x f T + Qk (18)

where the Jacobian of the state transition function ∇x f eval-
uated in the state x = x̂k|k is defined as (19).

∇x f =
∂f
∂x
|x=x̂k|k=


∂f 1
∂x1

. . .
∂f 1
∂xn

...
. . .

...
∂f n
∂x1

. . .
∂f n
∂xn


x=x̂k|k

(19)

Correction: At the instant of time k + 1, the observation
zk+1 is carried out, and using the prediction of the state
calculated in the previous phase, the estimate of the state is
corrected according to the (20) and (21).

x̂k+1|k+1 = x̂k+1|k + K|k+1.z̃k+1 (20)

Pk+1|k+1 =
[
I − Kk+1.∇xh

]
Pk+1|k (21)

where (20) is the correction for the state estimate, and (19) is
the correction for the state covariance, and the terms.

z̃k+1 = zk+1 − h(x̂k+1|k+1) (22)

Sk+1 = ∇xh.Pk+1|k .∇xhT + Rk+1 (23)

Kk+1 = Pk+1|k .∇xhT .S
−1
k+1 (24)

where (22) represent the innovation, (23) the innovation
covariance, (24) the suboptimal (or quasi-optimal) Kalman
gain, and the observation function is linearized by the
Jacobian ∇xh as (25), evaluated using the last prediction of
the state x = x̂k+1|k .

∇xh =
∂h
∂x
|x=x̂k+1|k=


∂h1
∂x1

. . .
∂h1
∂xn

...
. . .

...
∂hn
∂x1

. . .
∂hn
∂xn


x=x̂k|k

(25)

A. SENSOR MODEL
1) MOTION AND INERTIAL SENSOR DATA
The inertial sensor’s error model adopts the first-order
Markov noise model, and the noise of the inertial element
includes Gaussian white noise and Gauss-Markov noise,
as seen in (26).{

f̃k = f̃kbf ,k + Gauss(0, σf )
bf ,k = e−β1T bf ,k−1 + Guass(0, σbf )

, (26)

Among them fk , f̃k , bf ,k respectively represent the 3-axis
ideal, measurement, and zero-drift specific force values of the
accelerometer’s sensing target, 1T is the sampling period,
Ta = 1/β is the correlation time of the first-order Markov
process (σf , σb,f ). They are the zero drift uncertainty of the
accelerometer and the Gaussian-Markov noise driving vari-
ance [41]. Similarly, the model of a gyroscope is similar to

that of an accelerometer. Checked the relevant MEMS-IMU
sensor data manual, and configured the performance param-
eters of the low-cost inertial element as seen in Table. 1.

2) UWB POSITIONING MEASUREMENT
The measurement equation of the UWB ranging system is
expressed as (27).

R̃ =‖ Xl − Xbs ‖ +v (27)

where Xbs represents the space coordinate system of the
UWB BS, which needs to be calibrated in advance, v is the
pseudo-range error amount, which is Gaussian white noise,
and R̃ represents the pseudo-range value between the UWB
card and the UWB BS. The accuracy of pseudo-range value
measurement dramatically determines the overall positioning
accuracy of the system. When the UWB measurement error
is too large, it is easy to cause problems such as inaccurate
positioning. In NLOS, the (28) is the noise of UWB ranging
f̃k is modeled as a white noise model and the pseudo-range
value.

r̃ = r + v, (28)

where (29) represents Gaussian noise with a mean value of
zero and a standard deviation of 0.1m. For the NLOS situation
in the scene, this paper makes the following assumptions.
a) Set UWB ranging at time t: The probability of NLOS

error is p(NLOS | t) ∼ U (t) uniformly distributed, which
means that the probability of NLOS in the scene at each
moment is equal.
b) Suppose that the UWB pseudo-range at time t has

a NLOS error, then the amount of error eNLOS obeys the
bi-modal Gaussian distribution, the amount of error caused
by NLOS is around 0.4 or 0.8m. Therefore, the pseudo-range
measurement value after mixing the NLOS error.

r̃ = r + v+ eNLOS , (29)

B. SYNCHRONIZATION OF THE IMU AND UWB SIGNALS
PROCESSING
For the built-in sensor system, the synchronised informa-
tion collection and analysis of the two sensing modules
are important. The UWB obtains the distributed information
when the sensor system detects a motion. It is possible to
measure the angular velocity and acceleration of the IMU to
achieve the displacement and attitude through the DS-TWR
technique [39]. Similarly, some variations from the actual
value of the displacement are measured while using two
sensors; therefore, we mitigate the optimum estimate of the
position through the EKF. As parameters for the sensor, the
sensors’ calculated values have been used for the EKF to
select the feasible closest real value. Ultimately, the optimum
location estimation and attitude variance of the present time
are retrieved for the sensor system. The conceptual model as
presented in Fig. 6.
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TABLE 1. IMU parameter configuration table in the simulation experiment.

FIGURE 6. Synchronization of the IMU and UWB Signals processing.

C. PEDESTRIAN TRACK ESTIMATION SYSTEM
To reduce the inertial system’s position integration error,
some researchers have proposed an INS based on gait detec-
tion called the pedestrian track estimation system. The walk-
ing movement’s characteristic is that the pedestrian’s feet
repeatedly accelerate and decelerate relative to the ground,
manifested as a periodic zero-crossing point of the speed [38].
Therefore, the accurate determination of pedestrian stance
3 provides the speed observation value for the inertial system,
significantly improving the inertial navigation positioning
accuracy.

Pedestrian track estimation system is also called step-and-
heading system (SHS). There are four key steps to realize
the SHS system: gait detection, step/stride length estimation,
heading angle estimation, and two-dimensional position cal-
culation [26]. Gait detection refers to using historical data
of inertial elements to determine whether a pedestrian is in
a stance state. The trajectory and law of the pedestrian’s
footsteps during walking as seen in Fig. 7(a). The angular rate
as simulated in Fig. 7(b), to ensure gait detection accuracy,
the typical SHS system requires the inertial measurement
unit to be mounted on shoes or legs and make the inertial
measurement unit consistent with the pedestrian course.

Step/stride estimation and heading angle estimation pro-
vide the SHS system with step length and step direction data,
practically the same as pure INS system. Both are equal to a
single integral of inertial data. Finally, the two-dimensional
position calculation superimposes the above-segmented gait
geometry to form a pedestrian walking trajectory section. The
SHS system itself is a potential INS. The difference is that it

FIGURE 7. (a) Pedestrian gait posture.(b) Angular rate.

uses gait detection technology to segment (divide) INS data
and output gait data, summarising the system into a series of
(step length, heading) pairs [40]. Therefore, the SHS system
still suffers from cumulative errors. For long-term navigation
services, other information needs to be integrated for global
correction.

1) GAIT DETECTION
The primary task of SHS is the recognition of steps or strides
in motion data. A stable algorithm must ensure accurate step
detection. There are currently two main types of algorithms.

1) Stance detection algorithm (Stance detection), to iden-
tify the cycle of a foot on the floor. The sensor is
installed on the feet of pedestrians. Generally, these
algorithms are suitable for measuring the number of
steps, but the effect of step segmentation between step
and step in motion data is very poor.

2) Step cycle detection algorithm (Step cycle detection),
which detects the cycle of sensor data caused by
repeated motion during walking, involves searching
for repetitive patterns or repetitive motion data events
(such as pedestrian heels repeatedly leaving and touch-
ing the ground). These algorithms are very suitable for
step segmentation [26].

The typical stance detection algorithm is based on the idea of
the threshold. The principle is that during the standing period
when the foot touches the ground, the sensor is stationary,
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the inertial sensor detects the pedestrian movement is not
large. The threshold is set to recognize this posture easily.
A successful stance detection assumes that each step’s foot
is a gait of walking, and the pedestrian stance discrimination
model is expressed as per the mathematical equation (30).

Z ({sf̃k , sw̃k }wk ) < γz (30)

where Z (.) is the zero-rate verification function in the sta-
tistical sense {sf̃k , sw̃k }wk , is the inertial measurement unit’s
sensor data in the window wk and γz is the zero-rate detection
threshold. Certainly, the zero rate value implied here can
be used as a pseudo-measurement value of the observation
equation, namely represented as (31),

z̃k = ṽk∀k : Z ({sf̃k , sw̃k }wk ) < γz (31)

2) GAIT STEP-LENGTH ESTIMATION
Basically, the SHS system is also a kind of INS system, so the
system motion equation is expressed as (32),

npk
nvk+1
qk+1
δf ,k+1
δω,k+1



=


I I1T 2 . . . −R1T 2/2 O
O I . . . −R1T . . .

. . . . . . �(−δω,k ) . . . O
O . . . . . . e−β11T e−β21T



×


npk
nvk
qk
δf ,k
δω,k

+

R1T 2/2 O
R1T . . .

. . . qk⊗
O O

[ sf̃ksw̃k
]
+ Bkek (32)

Gait detection gives the movement when the pedestrian
stance appears and indirectly provides the motion state’s
speed observation value, so it is brought into the observation
equation, and the following measurement equation can be
obtained as (33).

Z̃k = H

npknvk
qk

+ nk (33)

where H = [O I3×3 O] is the observation matrix, and nk is
the measurement noise. Therefore, according to the motion,
as mentioned above model, measurement equation, and gait
pseudo-measurement value to achieve the EKF, the target
position, speed, and other information can be estimated. This
calculation method is called the ZUPT algorithm.

However, all the error states of the Kalman filter under the
ZUPT model are not completely appreciable. Ideally, when
the system is at zero-velocity in a continuous period, the
target has no acceleration in all directions, i.e., g = qk⊗sf̃kq

∗
k .

It has been proved in literature [25] that the EKF is only
observable for speed vk , roll and pitch, but not for position
pk and heading angle ψk . If the process noise is ignored, the

covariance of the considerable state variables will decay and
tend to zero within a period of time, indicating no difference
between the state estimate and the true value. The filter
converges to the true value. Therefore, during the pedestrian
standing, the covariance matrix of the system after a certain
period of zero rate correction will be approximated as (34).

cov(pk , vk , ψk ) =

 Ppk 03×5 Ppk ,ψk
05×3 05×5 05×1
PTpk ,ψk 01×5 Pψk

 (34)

The accuracy of the IMU and UWB modules is assessed
in this section, as shown in Fig. 8. A gait has been per-
formed to calculate the step after the sensor device has been
connected to the foot. An IMU measurement was made on
the experimenter’s shoes to achieve the gait distance. The
displacement has beenmeasured using the relative position of
the IMUdirection point as a reference point. The twomodules
calculate the displacement of repetitive gait events. Fig. 8(a),
the black indicator (bolds) represents the two modules’ mea-
surement effects for 12 gait activities performed 12 times. The
IMU moduents during gait activities are shown in Fig. 8(b).
When the system detects that the stride is at zero-velocity, the
velocity in the state quantity quickly converges to the correct
value, and the variance is stable and tends to zero. The follow-
ing conclusions are drawn from the covariance matrix (34).

The random variable position pk , heading angleψk and the
random variable speed vk , [φk , θk ] is not statistically relevant.
Due to the first-order Markov hypothesis in the state space
and the translational rotation invariance of the state equation.
This means that the recurring speed vk and [φk , θk ] values are
irrelevant to the current position pk and heading angle ψk .
Therefore, ZUPT cannot reduce the uncertainty (variance) of
current position pk and heading angle ψk . In other words,
if we reset the system position pk and heading angle ψk at
a certain moment, after generating a new relative position
and relative heading angle. Adding them to the pre-reset state
value does not cause any numerical difference to the system.
The reset system means that the position pk and the heading
angle ψk need to be set to zero. If the estimated position and
heading angle are expressed as dpl and dψl after the l

th reset,
the pedestrian track estimation system is based on the step
length unit (35).[

Xl
xl

]
=

[
Xl−1
xl−1

]
+

[
Rl−1dpl
dxl

]
+ wk (35)

where Xl and xl represent the three-dimensional position in
the global coordinate system and the heading angle of the
carrier coordinate system relative to the coordinate navigation
system in the horizontal plane (36).

Rl =

cos(xl) −sin(xl) 0sin(xl) cos(xl) 0
0 0 1

, (36)

the local coordinate system’s rotation matrix relative to the
coordinate navigation system when the system was the last
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FIGURE 8. (a) Gait variance curve applying ZUPT (b) Gait displacement,
velocity and acceleration.

FIGURE 9. Track estimation system based on gait segmentation.

reset. The noise is assumed to be white noise, and its variance
can be expressed (37).

cov(Wl) = cov(
[
Rl−1dpl , dxl

]
)

=

[
Rl−1dPlR

T
l−1 Rl−1dPl ,ψl

dTPl ,ψlR
T
l−1 dψl ,ψl

]
, (37)

the covariance matrix cov(Wl) represents the cumulative
uncertainty of the position pk and the heading angle ψk
since the system has been reset last time. It is also equal to
the variance value of the covariance matrix converted to the
coordinate navigation system.

To obtain the gait (dpl , dψl ) from the INS, it is important
to select a reasonable reset time point, i.e., to segment the
gait of the PDR system accurately. The condition that the gait
segmentation must meet is that the EKF has converged at the
time of gait segmentation, i.e., the variance of some states
in formula (34) tends to zero. And there is no correlation
between the position quantity pk and the heading angle ψk .
Obviously, the longer the standing duration, the higher the
EKF’s convergence, and the smaller the cross-correlation
covariance in the covariance matrix. This means that gait seg-
mentation should be performed while pedestrians are stand-
ing, as shown in Fig. 9. If the standing time is too short, the
cross-correlation between the state quantities in formula (34)
may not yet converge.

In short, the necessary conditions for gait segmentation
are summarized as sufficiently low cross-correlation of state
variables and preventing repeated resetting of the same con-
vergence process. When this condition is established, the sys-
tem applies for reset operation, and the judgment condition
becomes (38).

(Pvxk < γp) ∧ (cp < cmin), (38)

where cmin represents the minimum sampling times between
two resets. When the stance is about to end, or the application
reset duration has reached the maximum, the reset operation
will be executed as (39).

(Z ({sf̃k , sw̃k }wk ) ≥ γz) ∨ (cd > cmax), (39)

Among them, cmax represents the maximum sampling
times of continuous application for reset. Conditions in
(algorithm.1, numbers 10 and 11) are indispensable in gait
segmentation, and together they constitute an effective gait
segmentation mechanism. After gait segmentation, the INS
outputs the mileage information of pedestrian tracks. There-
fore, the position calculation only needs to accumulate
mileage information to obtain the target’s coordinate value.
The equation of motion is expressed as (40).[

Xl
xl

]
=

[
Xl−1
xl−1

]
+

[
Rl−1 0
0 1

] [
dpl
dxl

]
+ wl, (40)

where Xl represents the 2D position of the target and xl
represents the heading angle of the target relative to the world
coordinate system. The control quantity (dpl , dxl ) represents
each step’s displacement and rotation angle relative to the
previous step provided by the PDR system gait segmentation.
And wl represents the cumulative error of each step is mod-
elled as Gaussian white noise, its mean is 0, and the variance
is time-varying and given by PDR.

The PDR system divides the inertial data and generates a
series of (step length, heading) pairs, and the algorithm of gait
segmentation is expressed as follows.

IV. EXPERIMENTAL IMPLEMENTATION, SIMULATIONS
AND RESULTS
This paper transplants the algorithm to the embedded
STM32F407 microcomputer platform as the main controller
chip, as seen in Fig. 10, to realize the UWB/IMU combined
positioning system based on EKF. The indoor positioning test
in the actual environment is carried out in the corridor of the
robotics laboratory of the School of Information Engineer-
ing, as shown in Fig. 11. The main experimental processes
are; 1) where hardware configuration has a 4-UWB anchor
(MAX2000/DWM1000) and a 6-axis 1 UWB/MEMS-IMU
(MPU6050) card node on the top of the right foot to ensure
that there are no obstructions (or obstacles) on the rect-
angular path of all anchors and card, 2) The experimenter
walks around the prescribed rectangular path as shown in
Fig. 12(a), 3) Other staff members realized the NLOS situ-
ation during the experiment, standing in front of the anchor
node.

164216 VOLUME 9, 2021



R. Ali et al.: Tightly Coupling Fusion of UWB Ranging and IMU PDR for Indoor Localization

Algorithm 1 Gait Segmentation for PDR System
1: k := l := cp := cd := 0
2: pk := vk := 03×1
3: qk := [coarse self − initialization]
4: Pk := [intial velocity, roll and pitch uncertainity]
5: (Xl , xl ) := [intial position andheading]
6: PXl ,xl := [intial position and heading uncertainity]
loop

7: k := k + 1
8: ([pk , vk , qk ] ,Pk )← (

[
pk−1, vk−1, qk−1

]
,Pk , f̃k , w̃k )

//zupt - aided inertial navigation
9: cp := cp + 1
10: if (Pk < γp) ∧ (cp > cmin) then
11: cd := cd + 1
12: end if
13: if (Z ({sf̃k , sw̃k }wk ) ≥ γz) ∨ (cd > cmax ) then
14: l := l + 1
15: dpl := p̄k , dψl = φ̄k ,Pwl
16: pk := vk := 0, ψk = 0
17: Pk[1:3,9]×[1:3,9] := 04×4
18: cp := 0, cd := 0
19: ([Xl , xl ] ,Pl )← (

[
Xl−1, xl−1

]
,Pl−1, dpl , dψl ,Pwl )

//step - wise dead reckoning
20: end if
21: return loop

The UWB anchors were placed near the gait (pedestrian)
trajectory, as shown in Fig. 12(a), where the key points
are marked as the fixed point as P and anchors as A in
2D coordinates for measurement purposes seen in Table 2.
The UWB tag and IMU have been mounted on the shoe of
the experimenter. The experimental structure is rectangular
because the combined positioning algorithm has been used
primarily to enhance pedestrian tracking accuracy. Fig. 12(a)
represented 2D which is illustrated in the experimental scene.
The anchors are represented as A(1)- A(4) and P(1)- P(6)
denotes the fixed point, where the experiment conductor
starts at P(1) as the (starting point), then moves around P(2),
P(3), P(4), P(5), and P(6) before returning to P(1), as seen by
the red arrows. Before the actual test, the IMU system was
adjusted and mounted on the experimenter’s foot. The X-axis
points to the right side of the (body), the Y-axis points to
the forwards’ (body), and the Z-axis point upwards. The two
positioning systems’ timestamp (TS) data is used to achieve
time synchronization during the data-gathering phase.

A. GAIT TRACK ON VARIOUS RECTANGULAR
TRAJECTORIES
The simulation experiment scene is positioned with a length,
width, and height of 300×150×50cm, as seen in Fig. 11 and
with a simulation in Fig. 12(a). The black circles represent
the anchor’s location, and the red triangle points represent
the origin coordinates. The target movement process and
target motion state undergo various states such as linear
motion, circular motion, acceleration, deceleration, and uni-
form motion. After combined positioning and calculation,
the system error accuracy is controlled within 10cm, and the
speed is controlled with 6m/s. The positioning system pays
more attention to pedestrian location services.

FIGURE 10. UWB/IMU main controller platform.

In this research, MATLAB R2016b has been used for
simulation purposes. Performing the simulation to set the
trajectory passing points’ position and posture can auto-
matically generate a smooth motion trajectory. Fig. 12 dis-
plays the IMU-measured position, UWB-measured position,
and fusion results after moving around the trajectory once.
It seems to be clear to see from the obtained results.

1) NLOS obstruction of the experimenter’s ankle induced
a bias error in the system of UWB. The positioning
error affected byNLOS has been seen in the positioning
outcome of UWBmany times, as seen in Fig. 12(a), and
the error in the top left corner was found crucial. Even
though positioning accuracy improved efficiency for
indoor environments applications, the outcomes have
been unstable due to ambient interference from the
UWB system.

2) As shown by the deviation between black and blue lines
in Fig. 12(b), an apparent systemic error in the IMU
estimation has also been challenging for the system
to clarify. Therefore the present position determined
by combining the previous moment’s deviations in this
case. Hence, the position, on the other hand, remained
reasonably constant, and the errors for a single gait
hasn’t been significant.

3) The above two methods performances have been incor-
porated for the UWB/IMU combined system. The iner-
tial data has been used to adjust the UWB positioning
data to make it more reliable, as well as the UWB data
has been used to correct for the inertial positioning.
The fusion technique corrected the two-set of measure-
ments data, resulting in more efficient and reliable final
positioning results, as seen in Fig. 12(c).

The positioning effect is shown in Fig. 12; pedestrians stay
on the ground, where the footsteps’ trajectory curve shows
the real-time pedestrian movement.

1) UWB RANGING AND IMU INTEGRATED POSITIONING
AND COMPARISON
The indoor positioning system with UWB/MEMS-IMU inte-
grated positioning EKF filter and UWB ranging is realized
to draw the true trajectory and output of the positioning
system error curve, as shown in Fig. 14. When there is an
NLOS error in the ranging value, the UWB ranging system’s

VOLUME 9, 2021 164217



R. Ali et al.: Tightly Coupling Fusion of UWB Ranging and IMU PDR for Indoor Localization

FIGURE 11. Indoor positioning experimental setup scene.

FIGURE 12. Rectangular pedestrian tracks along the estimated positions.

FIGURE 13. (a), (b) and (c) represent UWB/IMU combined positioning speed and attitude.

output is unstable, showing a large position jitter [42]. The
combined positioning system is not affected where the error
is controlled within 0.1 m–indicating that the combined posi-
tioning model based on EKF can effectively track the target’s
position, which has a more significant non-linear approxima-
tion accuracy. It can quickly converge near the true value,
improving the susceptibility of the UWB ranging positioning
system to NLOS interference; however, the positioning sys-
tem exhibits poor performance in the height direction, which
verifies the conclusion of the BS layout transmission system
error.

By comparing the position error curves of the accelerom-
eter and gyroscope, as shown in Fig. 15(a) and (b), besides
Fig. 13(a), (b) and (c) show the UWB/IMU combined posi-
tioning model, which can also provide accurate speed and

position information of the target’s, respectively. The EKFfil-
ter’s poor accuracy can be an NLOS error in the range, so the
filter cannot recognize such a situation. The position amount
is corrected to deviate from the actual value, where the new
LOS pseudo-range value appears. The measurement in the
update and non-linear processing link, the first-order approx-
imation error is too large because the step size is too large,
and the filter has a brief jitter. The UKF filter calculation is
more significant than that of the EKF, but it’s unsuitable for
some platforms with tight computing resources.

The mileage information estimated by the PDR system is
very accurate in a short time. When the PDR system does
not include an IMU, i.e., accelerometer and gyroscope, the
PDR knows nothing about the system’s heading information.
Therefore, the feasible idea is to use the ranging information

164218 VOLUME 9, 2021



R. Ali et al.: Tightly Coupling Fusion of UWB Ranging and IMU PDR for Indoor Localization

FIGURE 14. UWB/IMU combined positioning trajectories error.

provided by UWB positioning to estimate the heading angle
and, at the same time, establish the distance constraint of the
historical trajectory of the target to correct the divergence of
the position integral to realize a positioning system with low
accuracy. The PDR system assumes that the sensor is close to
the foot (there is no relative movement), and the sensor speed
is zero at the moment of walking and standing posture (the
foot touches the ground or the foot leaves the bottom). Its
application means that the integration of open-loop inertial
data only occurs during the foot’s swing phase. The drift is
limited for such a process with a short integration duration,
so short/mid-term position tracking is feasible. However, for a
reliable output system, the PDR system must be applied only
when the foot (sensor) is stationary, and the sensor installed
on the higher part of the foot may cause problems. From the
perspective of the transition from standing to foot swing, the
heel is lifted soon after the pedestrian steps down. Therefore,
the sensor installed in the middle of the foot will experience
upward acceleration when the foot starts to lift. Therefore,
there will be some small accelerations before the end of the
standing phase. The above simulation experiment success-
fully verified the effectiveness of the integrated navigation
algorithm.

2) LOOSELY AND TIGHTLY COUPLING, AND OTHER
ALGORITHMS IMPACT ON UWB/IMU
The tracking results of both loosely and tightly coupling
approaches have been compared. The black trajectory shows
the real tracking route during the simulation experiment,
as shown in section IV (A) Fig. 12(a). At the same time,
comparing the UWB/IMU integration through loosely and
tightly couplings. The red curve in Fig. 16(a) represents the
loosely coupling, and the blue curve represents the tight
coupling during the experiment. Using the tightly coupling
algorithm on UWB/IMU to estimate the pedestrian track
showsmore stability than the loosely coupling algorithm. The
tightly coupling algorithm’s accuracy is greater and better
than the loosely coupling, as seen from the figures because

TABLE 2. Key-points pedestrian trajectory and UWB anchors position
coordinates (in centimeter).

FIGURE 15. UWB ranging and IMU positioning error comparison based
on (a) accel and (b) gyro biases.

it’s similar to the actual motion trajectory. As a result, the
tightly coupling method’s position is more consistent and
accurate when the variances are compared. The UWB sys-
tem pedestrian tracking result shows a few positioning jump
points because of the NLOS error during the gait process. The
overall positioning error is minimized since the jump point
is corrected in the tightly and loosely coupled algorithms.
The tightly coupling has an estimated positioning accuracy
of around 11cm, which is 53.26% better than the loosely
coupling, which is 38.24% in cumulative distribution.

Moreover, the EKF fusion positioning algorithm is first
compared to the AKF and LS positioning algorithms on the
UWB/IMU, as shown in Fig. 16(b). In addition, the tightly
and loosely coupling methods have been performed on these
algorithms and compared in terms of efficiency and the
positioning error compared among the LS, AKF and EKF
algorithms. It means that observation noise seems to have
a large effect on the measurements. The accuracy could be
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FIGURE 16. (a) Tightly and loosely comparison on pedestrian gait
navigation (b) Algorithms comparison on the trajectories of integrated
UWB/IMU position.

greatly improved after using the proposed EKF algorithm on
AKF and LS, and the findings are much closer to the actual
trajectory, as shown in Fig. 16(b). Furthermore, it can be seen
that the EKF path remains stable as the observation noise
variance increases. Like the process noise variance increases,
the carrier’s motion becomes curvilinear, as shown in Fig. 12.
The path accuracy can be greatly improved after using the
proposed EKF algorithm, and the results are much closer to
the actual trajectory.

V. CONCLUSION AND FUTURE SCOPE
In this research, an indoor environment foot-mounted PDR
navigation approach is proposed by integrating the IMU and
UWB ranging sensor fusion to provide a generic indoor
positioning accuracy solution. We applied EKF to incorpo-
rate a foot-mounted IMU in a tightly coupled fashion to a
2D pedestrian positioning solution through UWB signals by
comparing the AKF and LS. Moreover, the paper considered
the UWBNLOS IMU error identification during gait. A real-
time ranging error compensation model of integrated IMU
and UWB trajectories comparison is simulated through AKF
and LS, similarly with a new tightly coupling and loosely
coupling in a TWR manner for the effectiveness of pedes-
trian positioning accuracy and improvement. Therefore, the
experiments in a dynamic indoor environment validated the
efficacy of the above-proposed approaches for error min-
imization. Future research in the indoor environment will
enhance positioning results by randomly incorporating dual
foot-mounted IMU gait movement with the help of tightly
coupling fusion of UWB ranging and IMU PDR in an effec-
tive and robust method.

ABBREVIATIONS
UWB Ultra-wideband.
IMU Inertial measurement unit.
NLOS Non-line-of-sight.
PDR Pedestrian dead reckoning.
EKF Extended Kalman filter.
AKF Adaptive Kalman filter.
LSs Least-squares.
INS Inertial navigation system.
TWR Two-way ranging.
SDS-TWR Symmetric double-sided two-way range.
GPS Global positioning system.
IPN Indoor pedestrian navigation.

CoM Center of mass.
WiFi Wireless fidelity.
RFID Radio-frequency identification.
MEMS Micro-electromechanical systems.
RSSI Signal strength indicator.
MP Magnetic pattern.
CNN Convolutional neural networks.
TOF Time of flight.
KF Kalman filter.
ZUPTs Zero-velocity updates.
ZARUs Zero-angular rate updates.
DOF Degrees of freedom.
LOS Line-of-sight.
UKF Unscented Kalman filter.
IPS Indoor positioning system.
SLU Step-length update.
BSs Base stations.
CIR Channel impulse response.
GNSS Global navigation satellite system.
SINS Strap-down inertial navigation system.
TDOA Time difference of arrival.
SHS Step-and-heading system.
TS Timestamp.
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