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ABSTRACT Multi-objective optimization of aerodynamic configuration for a tandem-wing unmanned aerial
vehicle (UAV) via a surrogate model is appropriate in the primary stages of aircraft design. This study
presents an adaptive sequential sampling strategy, which takes into account the principle of entropy rank and
selection pooling based on a sigmoid function (ESP), in order to save time and construct a surrogate model
database with considerable approximation accuracy. The entire procedure of optimization is divided into four
parts, involving problem formulation for design variables and objectives, database construction for the surro-
gate model, multi-objective optimization with the surrogate models, and ESP adaptive sequential sampling to
update the database. Firstly, a comparative study of the different surrogate models is carried out to assess their
approximation performance. This verifies that the radial basis function (RBF) surrogate model outperforms
the other models across the board. Then, we conduct two tests with typical mathematical problems to validate
the effectiveness and applicability of the proposed method. We also develop a multi-objective optimization
of the aerodynamic configuration for a tandem-wing UAYV, aiming to maximize the lifting coefficient at the
ascent (Crgscens) and the lift-drag ratio (K¢yyise) during the cruise. In this case, the RBF surrogate model is
proven more suitable than the other common methods to replace the real values calculated by the non-planar
vortex-lattice method (VLM) during the process of optimization. Furthermore, a comparison with large
minimal distance (LMD) sequential sampling and disposable Latin hypercube sampling (LHS) is carried
out alongside the optimization. These results show that the approximation precision achieved using ESP
strategy is greater, highlighting the superiority of the ESP adaptive sequential sampling strategy in reducing
the number of samples and raising the approximation accuracy. Finally, after the refinement of the database,
an optimal Pareto front set is obtained to guide the primary design of the aerodynamic configuration for
the tandem-wing UAV. Then, it is verified that the selected trade-off optimal design point has a better
aerodynamic performance than the initial reference point, improving Crgscens and Kepyise by 6.44% and
10.85%, respectively.

INDEX TERMS Aerodynamic configuration optimization, multi-objective, radial basis function, adaptive
sequential sampling, entropy rank and selection pooling.

I. INTRODUCTION
Recently, tandem-wing UAV's have received widespread atte-
ntion, because of advantageous aerodynamic configurations.

The associate editor coordinating the review of this manuscript and
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Compared to aircrafts with conventional designs, a tandem-
wing UAV has two pairs of airfoils situated at the fore and
rear of the fuselage, which both generate considerable pos-
itive lift. This design balances aerodynamic and structural
characteristics and the possibility of high maneuverability
of the aircraft. A lot of research has focused on analysis of
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tandem-wing aerodynamic configurations [1]-[3]. Neverthe-
less, further research has found that there are influences on
the aerodynamic characteristics for tandem-wing configura-
tions. In order to investigate these interactions, two different
methods, including tunnel experiments and numerical calcu-
lations, have been carried out for decades [4]-[7].

Wind tunnel experiments, being the most accurate way of
calculating aerodynamics, have been conducted on a series
of tandem-wing configurations. The results of these exper-
iments confirmed the capacity of the total drag reduction
and the lift increase by arranging the position between the
fore and rear wings [8]. By contrast, numerical calculations
of aerodynamics investigating tandem-wing configurations
have also been carried out in the early stage of aircraft design,
which has a financial and time cost advantage, although it
offers slight loss of accuracy [9]-[11]. Cheng et al. inves-
tigated the unsteady aerodynamics in the morphing stage
of a tandem-wing UAV by using the improved vortex lat-
tice method. This research confirmed that the vortex-lattice
method can accurately predict the unsteady aerodynamic
performance [12]. Besides, the same team also proposed
a method of predicting the lift coefficient of tandem-wing
aircraft systems based on Prandtl’s lifting-line theory [13].
The conclusions revealed the influence of some configuration
variables acting alone on the performance of the aircraft
systems.

However, it is more significant to focus attention on find-
ing the optimum aerodynamic configuration of tandem-wing
UAVs by considering all variables comprehensively. Due to
the different performance requirements in each of the dif-
ferent flight stages, especially during ascent after take-off
and during the cruising stage, the aerodynamic characteristics
that have to be considered differ from each other. Therefore,
optimization of a multiple-objective design problem needs
to be discussed. The Non-Dominated Sorting Genetic Algo-
rithm (NSGA-II) [14] has been proved effective to solve
multi-objective optimization problems. It is considered more
suitable than gradient based methods [15]-[17] used for the
aerodynamic shape optimization (ASO) of the tandem-wing
aircraft in this paper. As a kind of exploratory optimiza-
tion method, NSGA-II considers the entire design space in
the process of searching for the best configuration meaning
that it is less prone to be trapped into the local optimum
solution [18], [19].

The optimization procedure requires massive calculations
for its multiple objectives and, as such, it is challenging
to attain the corresponding aerodynamic characteristics by
use of conventional methods such as tunnel experiments and
numerical calculations, due to the time costs. In order to
tackle this issue, numerical evaluation via a surrogate model
has been applied in many studies, given it represents the
real response of the characteristics with respect to design
variables [20]-[24]. There are several kinds of surrogate
models including deep neural networks (DNN) [25], radial
basis functions (RBF), Kriging surrogate models (KRG),
weighted average surrogates (WAS), and response surface
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FIGURE 1. Technical challenge vs. alternative technical methods.

approximations (RSA), which have drawn intense attention
in relevant fields [26]. The selection of the surrogate model
used for the subsequent multi-objective optimization has a
significant influence on the accuracy of the approximation.
It is essential to take account of the general performance
of different aspects including accuracy, robustness, and effi-
ciency [27], especially for high dimension optimization cases.
Additionally, to further reduce the total number of samples
and ensure the precision of the surrogate model’s approx-
imation, a lot of effort has been made to add reasonable
samples to a database based on infilling criteria [28]—[30].
Referring to a RBF power function and curvature sampling
criteria, Huang et al. studied an improved adaptive criterion
based on the root means square errors (RMSE) feedback
and a crowdedness enhance function [31], showing broad
prospects for the applications of aerodynamic optimization.
However, most of the research into this strategy is not suitable
for multi-objective optimization procedures, which have a
requirement to balance the local refinement and the dis-
tribution exploration against two or more objectives with
even contrary tendencies, during the optimization. Therefore,
considering the challenges detailed above, in this paper we
concentrated on establishing an efficient sampling strategy to
accommodate multi-objective optimization.

Motivated by the above discussions, the conflict between
the calculation time cost and accuracy is regarded as the
primary challenge of multi-objective aerodynamic configu-
ration optimization for tandem-wing aircrafts. Three critical
alternative technical methods to solve the issues (sequential
sampling strategy, numerical calculation, and surrogate mod-
els), accompanied by their key factors are shown in Fig. 1.
In this study, we propose a novel ESP adaptive sequential
sampling strategy to perform an aerodynamic configuration
multi-objective optimization for a tandem-wing aircraft via a
surrogate model. The main contributions are as follows:

(1) An adaptive sequential sampling strategy is proposed to
update the database and require fewer samples with numerical
simulation. Using this method, the entropy values are calcu-
lated based on the spatial distance to determine the rank of
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each candidate, and a sigmoid function based on the entropy
rank is used to help establish the final selection pooling. The
infilling criterion comprehensively considers the capability
of both the global and local searches. The entropy values
of candidates show the uncertainty of points to be selected
for updating the database and ensuring the exploration of the
global distribution, and the selection pooling helps to jump
out of the local optimum.

(2) Comparative simulations of three typical surrogate
models are implemented, taking into account each model’s
efficiency, robustness, and accuracy. The results indicate that
the RBF surrogate model is the most suitable for appli-
cation to the multi-objective configuration optimization for
tandem-wing aircraft. Based upon leave-one-out cross vali-
dation (LOOCYV), we propose a novel optimization method
for the shape parameters of surrogate models with parallel
calculation, which effectively improves the approximation
accuracy.

(3) In order to further reduce the time costs of the entire
optimization process, the non-planar VLM method (instead
of the conventional numerical calculation method) is utilized
to calculate the aerodynamic performance. We can then val-
idate that the errors between two numerical simulations are
narrowed into a small margin.

Il. MULTI-OBJECTIVE OPTIMIZATION PROCEDURE

Figure 2 illustrates the multi-objective optimization process
for aerodynamic configuration, which is used in this paper.
Firstly, the formulation of the problem is developed, which
considers two aerodynamic characteristics as optimization
objectives and five parametrization variables in terms of the
position distribution and wingspan between the fore and rear
wings of a tandem-wing UAV. Then, initial design points
are obtained by the design of experiment (DOE) using Latin
Hypercube Sampling (LHS) [32], which covers the whole
design space S and fits the nonlinear response effectively.
After the design of experiment, the mesh generation and
numerical calculations are implemented to evaluate the aero-
dynamic performance. The results are stored in the incipient
database, followed by construction of the surrogate model
to approximate the objectives corresponding to the design
variables, and the NSGA-II method is applied in order for
optimization. However, due to differences between the RBF
approximation and the numerical simulation, it is hard to
achieve the real Pareto-optimal Front (PoF). An adaptive
sequential sampling method to enlarge the training database
is used to eliminate approximation errors. Finally, another
iteration is carried out from the step of the RBF evaluation
construction and employing the updated database, until the
gaps of both objectives converge to a certain precision.

A. PROBLEM FORMULATION AND CONFIGURATION
PARAMETRIZATION

In this study, the tandem-wing configuration UAV including
fuselage is described in the body coordinate system OXp,YpZp,
as demonstrated in Fig. 3. The differences in aerodynamic
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FIGURE 2. Flowchart of multi-objective optimization strategy for
aerodynamic configuration.

FIGURE 3. Body coordinate system.

characteristics for tandem-wing aircraft are primarily influ-
enced by the aerodynamic interaction between the two pairs
of wings, with little relationship of the fuselage and especially
at alow angle-of-attack. This was verified with computational
fluid dynamics (CFD) and use of the lifting line method by
Cheng and Wang [13]. Five design variables are considered
from the aspect of the three-dimensional position distribution
between fore and rear wings and the wingspans of the two
pairs of wings, as shown in Fig. 4. Firstly, Stagger and Gap
represent the vertical distance and the horizontal distance of
the two lifting surfaces respectively, expressed as S; and G.
Meanwhile, the difference in the relative span length ratios
between the two pairs of wings r, = b1 /b, (b; for span length
of the fore wings and b, for span length of the rear wings)
brings different aerodynamic characteristics. This is owing
to the area variation of the fore wings’ downwash effect on
the rear wings and the rear wings’ upwash effect on the fore
wings. Moreover, reasonable selecting of the incidences of
the two wings 71, and 1 can also adjust the downwash and
upwash effects.
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FIGURE 4. Aerodynamic configuration described from two aspects.

TABLE 1. Design space.

design variables Type range
S Continuous (6¢ — 8¢)
G Continuous (=0.9¢ - 0.9¢)
Ty Continuous (0.82 - 1.50)
71/(°) Continuous 0-2.5)
72/(°) Continuous (0-2.5)

The ranges of design variables are listed in Table 1, which
is suitable to balance between generations for high quality
pneumatic profiles and limitations on folding requirements.
In this table, c is the chord of both the two pairs of wings.

In addition, a constraint is proposed in that the total refer-
ence area of the two wings Sy, is restricted to a constant for
calculation of the aerodynamic coefficients.

By aiming to optimize the aerodynamic configuration of
the tandem-wing UAV, attention is drawn to the aerodynamic
characteristics of different cases. Two typical objectives are
discussed in this paper. The first one is the lift coefficient Cr,
at a specific angle of attack (¢« = 3°) during the ascent
stage and secondly, the lift-drag ratio K = Cr/Cp under
cruise design points with a constant lift coefficient
(Cr = 0.5). In this way, the flight performance envelope,
where the velocity is set as v = 30m/s at a low altitude, can
be satisfied.

B. DATABASE CONSTRUCTION BASED UPON NUMERICAL
CALCULATION

1) DESIGN OF EXPERIMENT

In this paper, a set of design points, selected by the design
of experiment technique as training samples, is employed
to construct the initial database for the surrogate model.
This consists of a group of design variables X! = (Sti,
G, r}’;, rf, 1:2i) and two objective functions Yl = (Cll;, Ki).
In the M-dimension space, LHS divides each design variables
X; (j € [1,M]) into N intervals of equal probability, and
each interval is sampled once at a random order. Then, a
M x N coupling LHS is constructed [33]. To uniformly
discretize the design space, and achieve the most precise,
but least number of training samples for the meta model, the
values of each design variables’ dimensions can be combined
casually.
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FIGURE 5. Constitute and direction of a single vortex ring.

2) MESH GENERATION AND NUMERICAL CALCULATION

In this study, a conflict exists between precision and effi-
ciency of the calculation of aerodynamic characteristics for
the tandem-wing aircrafts, especially in the process of opti-
mization where there are masses of iterations. The high
fidelity numerical simulation method, computational fluid
dynamics (CFD), has been commonly employed but with a
high computational time cost. Recently, the non-planar VLM
has been gradually applied as a helpful numerical calculation
method, which can lead to an expeditious and accurate aero-
dynamic design and optimization procedure, due to the fact
that it has a lower computational time cost than that of the
CFD method.

Taking into account the camber of aerofoil, the non-planar
VLM method discretizes the center camber surface of wings
to generate a series of mesh surfaces with the horseshoe vor-
texes replaced by vortex rings attached to each mesh surface.
Each vortex ring consists of six vortex segments, of which the
leading vortex segment is placed at the quarter chord line of
the mesh element, and the tailing vortex segment is aligned
with the quarter chord line of the next downstream mesh
element. The other four segments connect the line from the
tailing edge point of the mesh element, to the leading vortex
segment and the tailing vortex segment, coinciding with both
side boundaries of the mesh element. The collocation point is
located at the three-quarter chord line of the mesh element’s
center symmetry, of which the normal direction determines
that of the mesh element. The schematic diagram of a single
vortex ring is shown in Fig. 5.

Meanwhile, horseshoe wake vortices extend behind the
mesh of the wing trailing edge, simulating the surface effect
more accurately. The direction of wake vortices are the same
as that of the freestream velocity, and the magnitude of the
vortex ring is equal to that of the trailing edge vortices of
the adjacent upstream vortex ring. The schematic diagram,
Fig. 6 shows the distribution of vortex rings in the non-planar
VLM for the tandem-wing configuration.

According to Biot-Savart Law, the induced velocities gen-
erated by each vortex segment can be obtained as follows

= o - ] M
7T |r x | il 2]
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FIGURE 6. The distribution of vortex rings in the non-planar VLM for the
tandem-wing configuration.

where I' represents the vortex intensity, r; and r, represent
the spatial vector from the starting point and the ending
point of each vortex segment, to the collocation points, and
ro represents the vector from the starting point to the ending
point of the vortex segment.

Next, the total induced velocity V;; generated by the jth vor-
tex ring at collocation i can be derived as the resultant velocity
of the induced velocities generated by all six segments of the
Jjth vortex ring.

Vij = Tjvij = Tj(vijia + vija3 + vij3a + vijas + vijse + vije1)
2

where v;; represents the induced velocity at collocation i
generated by jth vortex ring with the unit vortex intensity.

On the other hand, based on the fact that the intensity of
the wake vortex is equal to that of the trailing vortex of the
upstream mesh element, the induced velocities generated by
the vortex rings near the tailing edge of the lifting surfaces
can be calculated by the computational formula for horseshoe
vortices, which is expressed as

V:F Voo X 1

4r [r2l(Ir2l = Voo - 12)

I dnl 4 1r2Dry x r2)

4t |ril[r2|(lrllr2] 4 r1 - r2)

r Voo X 1

4t |ril(iril = Voo - 11)
where V, represents the vector of the freestream velocity.

According to the Neumann boundary condition, which
means that the flow cannot go through the center camber
surface at the collocation point, the local velocity should be
orthogonal to the normal vector of the corresponding collo-
cation point. This is expressed as

3

p

(Voo + D Tyvy) - i = 0. @)
j=1
By applying (4) at all collocation points of the two wings

on the tandem-wing aircraft, a linear system of equations can
be obtained.

[Al{T'} =B (5)
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where,
Vil -h1 s Vip, t N
V21 sh st Vop, t M2
[A] = . . . (6)
Vi1 My -+« Vipny, * i,

{T} =TTy Ty 1" ©)
{B) = [~Veo -1, —Voo 12, - . =Veo -1y, 17 (8)

where 1, = 2N is the number of collocation points.

By solving the linear system of equations above, the inten-
sity of each vortex ring can be obtained. According to the
Kutta-Joukowski Theroem, the forces acting on each mesh
element are derived as

Fi = p(; = Ty)Vi x lip + p(I'; = TR)V; x b3
+p(Ty —Tyr)Vi x laa + p(y — Tyr)Vi x Ise
+ o = T)Vi x lg 9

where I';, 'y, ', T, Ty, and T'yg represent the intensities
of the current mesh vortex ring, the upstream mesh vortex
ring, the left mesh vortex ring, the right mesh vortex ring,
the upstream left mesh vortex ring, and the upstream right
mesh vortex ring, respectively. l12, b3, 134, I56, lg1 Tepresent
the vector from starting points to ending points of each
corresponding segment of the current mesh element, and
Vi represents the resultant velocity vector at the current mesh
collocation point.

Then, the vector of the aerodynamic force can be decom-
posed into the lift and the induced drag, which can be
expressed as

2N
L= Fu
j=1

2N
D= Fj-u
j=1

where u; = [—sina, cose, 0]7 and uy = [cosa, sina, 017
represent the unit vector in the lift direction and induced drag
direction, and « is the angle of attack.

(10)

3) VALIDATION OF THE NUMERICAL CALCULATION
METHOD

In the present study, a lot of research implemented the
flow solution validation method based on numerical calcu-
lations for aerodynamic characteristics of aircrafts [34]-[36].
Xie et al. validated the aerodynamic characteristics obtained
by using non-planar VLM compared against the experimental
data from the wind tunnel tests [37]. Our previous com-
parative work, which used CFD method, adequately vali-
dated the accuracy and capability of non-linear VLM when
calculating aerodynamic characteristics for tandem-wing
aircraft [11], [12]. The results are shown in Fig. 7. It was
indicated that non-planar VLM had acceptable calculation
accuracy, which was in agreement with the test results of the
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FIGURE 7. The calculation accuracy of non-linear VLM compared
with CFD.

TABLE 2. Mesh independency analysis strategy.

Mesh elements

spanwise chordwise total
17 4, 10, 20, 30, 40, 50 68~850

chordwise spanwise total
40 1,5,9,13,17,21 40~840

CFD method. On the other hand, the balance between the
computational efficiency and accuracy of non-planar VLM
indicates that it is suitable to be applied in the preliminary
design stage, as well as detailed design stage, of aircraft.

Mesh independence analysis is necessary to approximate
aerodynamic performance using the numerical calculation
method. Two crucial parameters of the mesh element for
non-planar VLM, involves the number of mesh elements
along the span wise direction and chord wise direction respec-
tively, explicitly shown in Table 2. Meanwhile, the variation
of the attack angles to be verified range from -2° to 4°. The
results of the mesh independence analysis are demonstrated
in Fig. 8. It is indicated that, as the angle of attack increases,
the lift coefficient and the induced drag coefficient both tend
to stabilize gradually with the refining of the mesh along
the two directions. For the sake of the time cost, a combi-
nation of mesh element numbers along the two directions
Np = 40, N, = 17 are selected, in the meantime, to consider
the accuracy of the simulation.

C. SURROGATE-MODELING TECHNIQUES

During the multi-objective optimization process, there are
abundant calculations of the objective functions. Numerical
simulation poses an expensive time cost, which significantly
influences the optimization efficiency. Instead of perform-
ing costly numerical simulations, a surrogate model can
be used to evaluate the real functions. Many scholars have
researched different surrogate techniques [38]-[40]. These
methods seem to be advantageous in certain instances but
still struggle to perform well in others. In this study, we intro-
duced common surrogate-model methods, including response
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FIGURE 8. Mesh independence analysis.

surface methodology (RSM), the Kriging model (KRG), and
the radial basis function model (RBF).

1) RESPONSE SURFACE METHODOLOGY

The response surface methodology (RSM) employs a statis-
tical regression technique by fitting a simple polynomial to
the responses obtained from simulations or experiments. The
response surface model can be expressed as a general form:

Nv Nv Nv

Nv
fo=Bo+ ) BXi+ Y Y BiXiXj+ ) BiX? (1)
i=1

i=1 j=1 i=1

where f; represents the response of unknown functions, and
X;, X; represent the design variables. Nv is the number of
design variables, and By, B;, B, and B;; are the regression
coefficients for the constant, linear, intersection, and square
terms, respectively. Based on the least square method, the
vector 8 can be derived as follows:

B=x"x)"'xTy (12)
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where Y is the real values of functions to be estimated, and
X is the GRAMIAN matrix related to the number of design
variables and the order of the polynomial response surface.
It is observed that RSM has the advantage of constructing an
approximation model simply and quickly, but it is not suitable
for solving problems that are highly non-linear.

2) KRIGING SURROGATE MODEL

The Kriging surrogate model correlates related information
of unknown spatial objectives with known spatial samples.
In essence, it is an improvement of the regression algorithm,
which employs covariance to measure the degree of spatial
correlation at each sample point, including linear regression
and variation function. For an expensive function y = f(x),
x € N, the predictor y is defined as:

¥ =alx)+ Bx) (13)

where «(x) is the regression model, and S(x) shows a stochas-
tic process with an assumption of the following covariance:

Covlb(x'), b(x))] = a>R(0, x', X)) (14)

where R(0, x', x/) is the spatial correlation function with
parameters 6, and o is the standard deviation.

Alternative types of correlation models involve Linear,
Spherical, Cubic, Spline, and Gaussian methods, in which
Gaussian is the most commonly used in the Kriging surrogate
model.

3) RADIAL BASIS FUNCTION

Radial basis function (RBF) is a surrogate model with a linear
combination of basis functions. For the database (X, Yj)
G = 1,2,---,m) in the real-value space %", the RBF
interpolation model can be constructed as follows:

n
F= wid(x =, xen (15)

i=1
where m is the number of the objectives; n is the total
number of sample points and || - || is the Euclidean norm.
In a linear system Ao = f with a symmetric matrix A; =
o(lx =¥ and f = [V, Y2, Y17 G = 1,2, om)
for each objective, the coefficients « = [, a2, - -- s,
are produced by the interpolation conditions. A univariate
continuous radial basis function ¢ includes many forms, such

as the multi-quadric function ¢(r) = 1/+/r% + ¢? and the
Gaussian radial function ¢(r) = e~ ¢, whereby c is the
shape parameter of the RBF model.

4) PARAMETER OPTIMIZATION FOR SURROGATE MODELS

In order to choose an adequate surrogate model for use
during the process of multi-objective optimization, a series
of comparative simulations were implemented to explore
the performance of the three different surrogate models: the
response surface methodology, the Kriging model, and the
radial basis function model. It is necessary for the KRG and
RBF surrogate models to have a proper value selection for
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the shape parameter ¢ and the initial parameter 6p. In order
to be highly accurate, the RBF and KRG models depend
on the number and the distribution of the data points, the
data response, and the accuracy of the calculation [41]. It is
more accurate and adaptable to optimize the shape param-
eter, compared with choosing a constant value. To evaluate
the adequate shape parameters and the initial parameters for
various problems, a leave-one-out cross validation (LOOCYV)
method was applied, without additional function evaluations.
For each step i in the process, all the points except X',
which served as the test point, were used to construct a RBF
or KRG surrogate model, and the resulting errors between
the approximation values and the actual ones are termed to
be LOO errors. After a loop of every sample point tested,
an indicator RMSE was obtained, which can be expressed as

VY (- f)?
— (16)
ZZizl Ifil

where f; are the actual values and f, are the estimated values.

Taking the optimization process of the shape parameter
for the RBF surrogate model based on LOOCYV as an exam-
ple, a nonuniform shape parameter, randomly based on the
selecting strategy for different sample points was proposed
as follows [42],

¢i = Copr X [1.0 +rand;(—1.0, 1.0) x 8]
(= 1,2, ..., Ityay) (17)

RMSE =

where It,,4, 1s the maximum number of iterations, 8 = 0.1 is
a constant random coefficient, and ¢, represents the optimal
value of the shape parameter at the current optimization step
with the minimum of RMSE as the single objective. Then, the
new parameter c; is generated for construction of the RBF
model and the ¢, is updated via a comparison between c;
and ¢,y at the last iteration. In addition, the adaptive random
search coefficient 8 in Equation (17) is expressed as

B =0.05+0.25 x A%

ax

i=1,2,...,Max (18)

where Max is the maximum iterations. It ensures both search
speed at the initial phase and convergence precision in the last
stage.

The method above shows great accuracy and effectiveness
of approximation without much of an increase in complex-
ity and computational cost [42]. However, the simple opti-
mization structure may cause trapping in the local optimum
and insufficient searching precision. In order to enhance the
global search performance of the non-uniform search strategy
in all aspects, this paper employs a method of parallel com-
puting with an adaptive random search coefficient. The best
optimization solution can be chosen from multiple obtained
solutions. The method effectively decreases the probability of
falling into the local optimum, where the number of parallels
corresponds to the number of computer cores.

Likewise, the optimization of the initial parameter for the
Kriging model is developed in similar process.
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5) COMPARISON OF DIFFERENT SURROGATE MODELS

In order to comprehensively test the performance of the
three different surrogate models, we performed comparative
studies composing of a series of multi-objective functions
with the same mathematical structure (e.g. FONT [43]) as the
standard reference value for the surrogate approximation. The
expression of the test function is as follows. As is illustrated,
with step-by-step iterations of the training database update,
both the RMSE with the KRG and RBF surrogate models
decrease gradually, but the RMSE with the RSM surrogate
model develop no obvious downward trend.

fie)=1—exp(=Y_ " (i—1/¥/m?)

FONT: =
fro=1—exp(=)_~ (i+1/v/my?)

x; €[0, 1]

(19)

where m is the number of design variables.

In this part of the study, a training database with 100 data
lines was using the Latin Hypercube method, so that three
surrogate models would not perform poorly, especially in the
high-dimensional test problems. Then, three typical perfor-
mance index, including accuracy, robustness, and efficiency,
were used to assess the quality of the different surrogate
models. Below, we describe the evaluation criteria in detail.

The accuracy is the capability of the approximation to get
close to the real values, which can be measured with R2,
expressed as

N £y2
RP=1- —Zﬁl(ﬁ f) (20)
Y (i —fi?
where N is the number of training samples, f; is the actual
value, ﬁ is the estimated value, and f; is the averaged actual
value.

The robustness refers to the capability of the surrogate
models to retain a consistent level of accuracy across differing
problems. Consequently, in this work, the design variable
number of the alterable test problems ranged from 3 to 10
with a controlled interval, and the prediction accuracy of each
case was calculated to achieve the average behaviors.

The efficiency represents the calculation effort in con-
structing the surrogate models and approximating a new
response. In this work, the efficiency of each surrogate model
was measured according to the time cost for establishing the
surrogate model with a size of 100 and predicting a set of new
input points with a size of 1000.

The results of these comparative approximations, with dif-
ferent surrogate models are as follows. Fig. 9 shows the vari-
ations of the R%-metric to the approximation values obtained
by RSM, KRG, and RBF respectively, with a design variable
number v=[3,5,7,9,10]. It is apparent that the accuracy of
RBF is higher than the other two models and that the precision
of RSM is the worst, no matter which design variable number.
Additionally, according to the accuracy calculation results
for the two-objective function FONT, the RBF surrogate
model performs steadily and is strongly robust, despite a
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FIGURE 9. The variations of the R2-metric to the approximation values by

different surrogate models for the multi-objective function.

TABLE 3. Comparison in computing efficiency with different surrogate
models.

surrogate models calculation time

RSM 0.1351s
KRG 0.1181s
RBF 0.0534s

slight decrease in the accuracy as the design variable number
increases. By contrast, the other models both have sharp
declines in their accuracy performance. On the other hand,
Table 3 lists the time taken to calculate each of the predic-
tion sets, which adequately demonstrates the RBF surrogate
model’s advantage of computational efficiency.

D. MULTI-OBJECTIVE OPTIMIZATION BASED ON NSGA-II

In this paper, the goal was to perform a multi-objective opti-
mization of the aerodynamic shape of a tandem-wing UAV,
which depends on the selection of the optimal search method.
The non-dominated sorting genetic algorithm NSGA-II [44]
has been widely used in the academic community all over
the world, and has been shown to outperform other methods.
NSGA-II has no difficulty in maintaining a wide spread of
solutions over the achieved Pareto-optimal Front, based upon
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a rank and crowded comparison strategy. It can also reduce
the computation cost but retain a high degree of accuracy by
using a method of fast non-dominated sorting [14].

E. ADAPTIVE SEQUENTIAL SAMPLING STRATEGY

It is usually difficult for researchers to attain an adequate
number of samples in the initial stages, which has a sig-
nificant influence on the precision of optimization. Fewer
design points may cause a large gap away from the real
Pareto-optimal Front, but a high number of samples require
a big computational cost without an advantage or obvious
increase in the calculation accuracy. Therefore, this study
proposed an ESP adaptive sequential sampling strategy to
solve this contradiction.

To begin with, an initial sample distribution based on the
LHS and with an empirical size of vx (v+1) was implemented
(v=design variables), which usually produces widely devi-
ating results in most optimization problems. A crude RBF
approximation model was built using these initial sample
points to perform the multi-objective optimization. Then,
additional training samples were chosen in the design space
according to a certain sampling criterion, and a non-VLM
numerical calculation was carried out before updating the
database. The loops of this process did not stop until the
optimized results converged to a specified precision. Thus,
two essential factors (local refinement and distribution explo-
ration) in the adaptive sequential sampling procedure deter-
mined the performance of the multi-objective optimization,
which had to maintain a balance between themselves.

In order to balance local refinement and distribution explo-
ration, we proposed an adaptive local incremental sampling
method, based on the strategies of increasing entropy and
selection pooling (ESP). This attempted to avoid a disordered
searching process for the optimal adding points. *Entropy’ as
a chemical terminology is used to describe the perplexity of
a system. As the entropy increased, the degree of chaos in the
system kept rising. In this paper, an entropy was defined to
represent the uncertainty in the set of points to be selected
for updating the training samples. Each of the m points in
the candidate set had an Euclidean distance from the n cur-
rent training sample points. Accordingly the object property
matrix D = (djj)mxn is expressed as follows

di -+ din
D= o 21
dml dmn

where dj; is regarded as the Euclidean distance between the ith
candidate point and the jth training point. Then, in this m x n
system, the entropy of the ith candidate point is defined as

n
j=1

where k = 1/Inn and fj = d;j/ 3 ;_, djj. In this way, the
distribution exploration is achieved by selecting the addi-
tional points according to the order of entropy. The large
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value represents high uncertainty within the system, which
means there is a low degree of accuracy in predicting the
corresponding domain.

Nevertheless, it is also important to maintain the global
diversity of the system at the same time as ensuring its global
precision. We implemented an adaptive local incremental
selection approach based on the entropy calculated above.
In this study, a sigmoid function [45] was defined to assign the
disturbance number of the individual in sparse areas. In this
study, there was a selection pooling with a scale of Sy,
consisting of the candidate points alongside their duplicates,
and constructed using the sigmoid function with a non-linear
property. Where the function variable was the entropy value
mentioned above, this selected more additional reasonable
points for addition to the database to construct surrogate
models. After a process of entropy normalization, the sigmoid
function could be expressed as follows

(wh— DI+ ——)
y= uh — 1 {
wh—1DA=2h—1)2+——) 05<h<l

uh — 1
(23)

0<h<05

where h is the normalized entropy, and uh is the maximum
clone value. Fig. 10 shows the variation trend of the clone
values y with different normalized entropy values. Then,
to construct the selection pooling, the duplicate number of
each candidate Dup is defined as Dup = floor(y). On the
other hand, as far as local refinement is concerned, it was
beneficial to choose the current Pareto front points as the
candidate set, which extended the local optimum character
during the optimization process and enhanced the probability
of approaching the real PoF. Furthermore, in order to avoid
becoming trapped in the local optimum solution, each of
elements in the selection pooling was seen as a center around
an adequate & neighborhood of themselves, of which the
radius is expressed as

R = pdpin (24)

where u is a scaling factor, and d,,;, represents the minimum
distance between the candidate points and the training sam-
ples. Then, the final adding sample is a certain point in the
neighborhood of the selected center.

Ill. TESTABILITY VERIFICATION WITH A MATHEMATICAL
PROBLEM
In this paper, two tests with a typical mathematical problem
such as FONT were carried out in order to evaluate the
applicability, effectiveness and superiority of the RBF surro-
gate model combined with the adaptive sequential sampling
strategy for multi-objective optimization, whilst maintaining
a balance between distribution exploration and local refine-
ment. The expression of the test problem is shown as Eq. (19).
In the first test, the three surrogate models (RSM, KRG
and RBF) were used as alternatives for calculating the
real values of the test functions, during the process of the
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FIGURE 10. The variation trend of the clone values y with the sigmoid
function.

multi-objective optimization and based upon the ESP sequen-
tial sampling method. In this case, five design variables were
decided, and the LHS method was used to produce the initial
training database with 30 data lines. By running the search
with uses of the optimization algorithm NSGA-II, the initial
population was set to 100 with a maximal evolution number
of 400. The parameters of cross recombination and mutation
probabilities were 0.9 and 0.1. Then, after 60 iterations of
updating different surrogate models, three groups of results
were obtained. Also, relative errors, denoted by RMSE of
training samples with LOOCV method, were monitored as
an evaluation index of each model, as shown in Fig. 11.

As it is illustrated, with step-by-step iterations of the train-
ing database updated, the RMSE with both the KRG and RBF
surrogate models decreased gradually, but the RMSE with the
RSM surrogate model developed no obvious downward trend.
Comparing the RMSE convergence of two arithmetic cases
with the KRG and RBF surrogate models, suggests that the
RBF surrogate model performs better than the KRG model
in terms of accuracy, especially for the first objective. The
RMSE values of the first objective RBF estimation decrease
from 5.22% to 0.22% by adding 60 reasonably selected points
to the 30 samples originally selected. The corresponding
values for the KRG surrogate model just reached 0.78%.
Therefore, it is shown that the RBF surrogate model is the
most effective and suitable for the multi-objective optimiza-
tion procedures described in this work.

In the other test, according to the validation results
obtained above, the RBF surrogate model with the superi-
ority on accuracy and efficiency was chosen for application
to a performance comparison between the proposed adap-
tive ESP sequential sampling strategy and a previous largest
minimum distance (LMD) method. Fig. 12 illustrates the
RMSE convergence trends of two-objective functions with
different training sample infilling criterion. Meanwhile, the
RMSE of disposable Latin hypercube sampling was con-
tained as a benchmark to show the efficiency of the sam-
pling strategy proposed above. In Fig. 12, it is obvious that
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FIGURE 11. RMSE convergence of the two-objective function with
different surrogate models.

approximation precisions with both sequential sampling
methods were almost larger than the benchmark, espe-
cially for the first objective. Nevertheless, the RMSE values
appeared to be on the decline gradually to the target after
adding more refinement samples. If RMSE= [0.011, 0.0061]
is taken as the benchmark, the LHS method needed to
increase [40,40] samples and LMD sampling method needed
to add [30,25] samples, and the ESP adaptive sequential sam-
pling method required only [13,24] samples. From the aspect
of RMSE convergence trends, the ESP sampling strategy
shows that there was a faster decline in prediction errors and
smaller fluctuations than that of the LMD method.

The Pareto fronts attained by the ESP adaptive sequen-
tial sampling strategy during the iteration process for the
two-objective functions (FONT) is compared with the real
front, as shown in Fig. 13. It is obvious that the obtained
Pareto fronts with RBF approximation can press close to the
real front gradually as the sample points increase, although
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FIGURE 12. RMSE convergence by different sampling methods.

the first several are revealed to be far away from the real
front. Additionally, in order to quantitatively describe the
astringency and distribution of the proximate Pareto fronts
with the RBF meta model, the inverted generational distance
performance index (IGD) [46] is applied in this paper, and
can be expressed as follows

20epd(v, Q)
|P]
where P and Q represent the point set evenly distributed along
the real Pareto fronts and the Pareto optimal solution set
obtained using RBF approximation respectively, and d(v, Q)
is the minimal Euclidean distance of the individual in the
set P away from the population Q. Thus, it can be seen that
the smaller value means the better combination property of
the algorithm. The variation curves of IGD with different
sequential sampling procedures in the test FONT are shown
in Fig. 14. It was demonstrated that both IGD values were
in a trend of decline as the sample points were reasonably

IGD(P, Q) = (25)
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FIGURE 13. Pareto fronts obtained by the ESP and LMD sequential
sampling strategies compared with the real front.

increased. Moreover, the final values of the ESP sampling
method achieved a stable level of less than 1% as the sequen-
tial sampling algorithm stopped, while the IGD values of
LMD method achieved only 1.3%. The results suggest that
the ESP sampling strategy performed excellently.

To sum up, the results of the tests highlighted that the
adaptive ESP sequential sampling strategy proposed in this
paper possesses the capability and the potential to improve the
accuracy of the RBF surrogate model with a smaller sample
size, which is used to replace real response values in respect
of optimization variables during the search process. It was
also effectively proved that the Pareto fronts obtained by
applying RBF approximation to the multi-objective optimiza-
tion can be very close to the real front. On the other hand,
similar results of two different tests demonstrate that the pro-
posed sampling method is suitable for many multi-objective
optimization problems, and therefore has great prospects for
applications in other scenarios.
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IV. THE ADAPTIVE ESP SEQUENTIAL SAMPLING FOR
AERODYNAMIC OPTIMIZATION

A. OPTIMIZATION OBJECTIVES AND CONDITIONS

In this section, the proposed adaptive ESP sequential sam-
pling method for aerodynamic optimization was implemented
on a scaled model of the tandem-wing aircraft. In this applica-
tion, we took X = (S, G, rp, 71, T2)7 as the design variables
and regarded ¥ = (Cr,K = CL/CD,')T as the objectives,
where Cp; represented the induced drag calculated using
non-planar VLM. It should be pointed out that the zero-lift
drag coefficient was neglected, because the zero-lift coeffi-
cient is approximately invariable for different configurations
with the same Reynolds number and viscosity coefficient
in low speed flight conditions. Then, the following aerody-
namic configuration optimization mathematical model can be
constructed.

Max : [Cp(o)]ascent
[K = CL/CDi]cruise
St : Qascent = 3°
Creruise = 0.5
Area = constant
H=0m

(26)

B. OPTIMIZATION RESULTS AND DISCUSSION
e Case 1

Latin Hypercube and non-planar VLM were used to pro-
duce an initial database. Then, we carried out a comparison
of the prediction accuracy of the three different surrogate
models. The applicability of this method combined with
the proposed ESP sampling method for strongly non-linear
aerodynamic optimization was executed again. In this case,
the initial database size was 30, and in view of computation
cost for aerodynamic configuration optimization, the initial
population and the maximal evolution number during the
process of NSGA-II were set to 80 and 400, respectively.
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FIGURE 15. RMSE convergence by different surrogate models.

The RMSE variation trends with a 80-step iteration are shown
as Fig. 15.

According to the results, from the aspect of both accuracy
and robustness, the capability of the RBF surrogate model to
deal with the strongly non-linear problems was validated and
sufficient to be considered superior to the other models.

o Case 2

Considering the influence of the initial sample points
on the optimization, two different initial sample sizes, 30
and 40 samples with 6 and 8 times the number of design
variables, were applied with the sequential sampling. Next,
the adaptive sequential sampling was carried out after
adding 80 samples to the initial database. The convergence
process of RMSE for both objectives between RBF prediction
and numerical approximation were recorded. In order to show
the superiority of the proposed ESP adaptive sequential sam-
pling strategy, a largest minimum distance (LMD) method
was used as a contrast [47]. The comparison results are
demonstrated in Fig. 16 and Fig. 17.
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FIGURE 16. RMSE convergence of two objective functions with 30 initial
samples.

In Fig. 16, RMSE with 30 initial samples for lifting
coefficient C; and lift-drag ratio K decreases 69.9% and
69.6% respectively by using ESP adaptive sequential sam-
pling, while the responding values are 48.4% and 41.2%
when using LMD sequential sampling. Similarly, in the case
whereby there are 40 initial samples, as shown in Fig. 17, the
RMSE decrements of C;, and K reach 77.1% and 58.4% with
ESP strategy, far exceeding the 54.1% and 18.8% reductions
achieved with the LMD method. It appears to show that
the precision of ESP adaptive sequential sampling was a
significant improvement compared with the LMD method,
especially for the lift-drag ratio K during flight cruises.
Additionally, as the sample points increased, the precision
of the two objectives steadily declined when using the ESP
strategy, unlike the drastic fluctuation with the LDM method.
Therefore, the efficiency of the database’s refinement using
ESP adaptive sequential sampling strategy was far better than
the LMD method. Table 4 shows the added sample numbers
needed to achieve the final accuracy (initial4-80 samples)
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FIGURE 17. RMSE convergence of two objective functions with 40 initial
samples.

of the LMD method and the accuracy (initial4-80 samples) of
the LHS disposable sampling method respectively, by using
the ESP strategy with different initial samples. Taking a case
of 30 initial samples, in comparison with the LMD method
and LHS method, ESP adaptive sequential sampling reduced
the number of the numerical calculation more than 51 and 43
times, respectively, which signifies it would save time when
running aerodynamic configuration optimization problems.
Meanwhile, as we can see comprehensively in the two cases,
the convergence process for both of the objectives was syn-
chronous despite the difference in the initial sample sizes.
Therefore, we verified that database refinement capabilities
of the ESP adaptive sequential sampling strategy were insen-
sitive to the initial sample size.

After 80 iterations of refinement, the Pareto fronts of each
iteration based on NSGA-II were obtained by using the ESP
adaptive sequential sampling strategy. Figure 18-19 show
the variation process of the Pareto fronts at several typical
steps with different initial sample sizes (30 and 40). It was
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TABLE 4. The added sample numbers by using ESP strategy to get the accuracy by LMD and LHS sampling.

Added samples size

Total samples size Added samples size Total samples size

Objective Initial samples size (LMD sampling) (LMD sampling) (LHS sampling) (LHS sampling)
lifting coefficient 30 29 59 37 67
Cr(a =3°) 40 27 67 37 77
lift-drag ratio 30 23 53 19 49
Keruise 40 24 64 40 80
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FIGURE 18. Pareto fronts of typical steps obtained by ESP with 30 initial
samples.

indicated that when applying ESP adaptive sequential sam-
pling strategy to enrich the database with refinement points,
the Pareto front converges gradually to the final ones in
two different initial sample size cases. Figure 20 shows the
terminal Pareto fronts obtained using the ESP method with
the two different initial sample sizes. It is clear that there was a
negligible difference of no more than 0.3% on terminal Pareto
fronts obtained with 30 and 40 initial samples, which further
evidences the convergence of a multi-objective optimization
strategy based on ESP adaptive sequential sampling and the
credibility of optimization results.

On the other hand, as shown in Fig. 20, four typical
design points (A,B,C,D) were picked out of terminal Pareto
fronts in the case of 30 initial samples, to determine the
optimal Crgscent and Kepyise With a clear conflict. Point A
has the highest lift-drag ratio during the cruise compared
with other points, while point D has the highest lifting coef-
ficient at the ascent stage. Additionally, the performance
of the initial layout of the tandem-wing UAV is used as
a reference point (Cp = 0.761, K = 24.157) to help
evaluate the optimal Pareto fronts. As a comparison, point
B performs better in cruising but worse at the ascent than
the reference point. Point C and points located in the dotted
lines from point B to point D had good behavior during
both two periods, which are the best choices for the aero-
dynamic configuration of the tandem-wing UAV. Point C
was selected as the optimized layout, improving aerodynamic
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FIGURE 20. Terminal Pareto fronts obtained by ESP with different initial
sample sizes.

characteristics of aircraft comprehensively. A quantitative
performance comparison between the reference aerodynamic
layout and optimized layout is shown in Table 5. It is pre-
sented that the Cruscens and Kepyise Of the optimized lay-
out improved 6.44% and 10.85% respectively, based on the
non-planar VLM numerical calculation. Furthermore, Table 5
also shows that the only slight differences between RBF
approximations and numerical calculation, narrowed to no
more than 0.53% for both two objectives. Therefore, the
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TABLE 5. Performance comparison of results between reference aerodynamic layout and optimized layout.

RBEF results VLM results Errors
CLu scent K. cruise CLu scent K. cruise CLa scent K. cruise
Reference layout 0.765 24.145 0.761 24.157 0.53% 0.05%
Optimized layout 0.811 26.821 0.810 26.778 0.12% 0.16%
Improvement 5.87% 11.08% 6.44% 10.85% - -

optimization results indicate that use of the ESP adaptive
sequential sampling method is a reasonable multi-objective
optimization strategy.

V. CONCLUSION

This study proposed an adaptive sequential sampling-based,
multi-objective optimization process in order to optimize the
aerodynamic configuration optimization of a tandem-wing
UAV via a surrogate model. Considering the huge computa-
tional and time costs of the optimizing process when using
non-planar VLM to consider two aerodynamic objectives,
a surrogate model based on LOOCYV was used to obtain the
optimal shape parameter. To select the most advantageous
surrogate model with the best predictive capabilities amongst
the common alternative methods, a comparison based on
indicators such as accuracy, robustness, and efficiency was
developed. The result was that the RBF surrogate model had
a superior and more comprehensive performance. In order to
further decrease the size of the database without forsaking
accuracy, an adaptive sequential sampling strategy taking into
account the principle of entropy rank and a selection pooling
method, was proposed for use the infilling criterion. In this
way, the ability to search for global uncertainty regions and
the ability to jump out of local optimal points were both
guaranteed during the optimization process.

Three alternative surrogate models combined with ESP
adaptive sequential sampling were engaged in two-objective
optimization, validating the outstanding performance of the
RBF surrogate model. On this basis, the integration of the
RBF surrogate model and the ESP sampling strategy was
explored and compared against LMD sampling and the dis-
posable LHS method. The results demonstrated that the
approximation errors of the RBF decreased sharply as the
sequential sampling proceeded, greatly exceeding that with
the same size of samples generated by previous methods.
It was concluded that the ESP sampling strategy had the capa-
bility of saving calculation and time costs, and applicability.
Besides, the Pareto fronts obtained during the sequential
sampling procedure also got very close to the real fronts,
highlighting the effectiveness of the ESP method. Conse-
quently, these findings were applied to the tandem-wing UAV
for the purpose of optimizing the aerodynamic configuration.
Likewise, the RBF prediction accuracy of the aerodynamic
characteristics to be optimized rose gradually as the sample
points increased. Comparative research into LMD sampling
and the LHS method showed that the prediction accuracy
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produced by the ESP sampling strategy was also more effi-
cient. Meanwhile, it was explored whether the sizes of the
initial sample database applied to the optimization had an
impact on the results, and this revealed a synchronous trend,
suggesting the insensitivity of the initial sample size to the
sequential sampling. Eventually, compared with initial design
aerodynamic layout of the tandem-wing UAYV, the obtained
Pareto fronts could be divided into two regions with three
typical design points. A point producing a balance between
the maximal Crggeen; and maximal K., Was selected as
the final optimal design point. The obvious improvement
in the aerodynamic characteristics implied that the adap-
tive ESP sequential sampling optimization strategy could
be applied during the preliminary design stages of aircrafts,
in practical engineering.

This work was limited by the fact that the aerodynamic
characteristics of the tandem-wing UAV were calculated
using non-planar VLM, with which the numerical simula-
tion precision is lower than high fidelity experimental and
CFD methods. Therefore, further studies will be imple-
mented by fabricating the prototype based on the optimized
tandem-wing configuration, using the CFD method, and con-
ducting experiments on aerodynamic characteristics to verify
the feasibility.
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