
Received October 5, 2021, accepted November 30, 2021, date of publication December 3, 2021,
date of current version December 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3132502

Context-Aware Misinformation Detection:
A Benchmark of Deep Learning Architectures
Using Word Embeddings
VLAD-IULIAN ILIE 1, CIPRIAN-OCTAVIAN TRUICĂ 1, ELENA-SIMONA APOSTOL 1,
AND ADRIAN PASCHKE 2
1Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest, 060042 Bucharest,
Romania
2Fraunhofer Institute for Open Communication Systems (FOKUS), 10589 Berlin, Germany

Corresponding authors: Ciprian-Octavian Truică (ciprian.truica@upb.ro) and Elena-Simona Apostol (elena.apostol@upb.ro)

This work was supported in part by the German Academic Exchange Service (DAAD) through the Project ‘‘AWAKEN: content-Aware and
netWork-Aware faKE News mitigation’’ under Grant 91809005 and Project ‘‘Deep-Learning Anomaly Detection for Human and
Automated Users Behavior’’ under Grant 91809358, in part by the German Federal Ministry of Education and Research (BMBF) Project
‘‘PANQURA-a technology platform for more information transparency in times of crisis’’ under Grant 03COV03F, and in part by the
European Union Project ‘‘FAST-LISA-Fighting hAte Speech Through a Legal, ICT and Sociolinguistic Approach’’ under Grant
101049342.

ABSTRACT New mass media paradigms for information distribution have emerged with the digital age.
With new digital-enabled mass media, the communication process is centered around the user, while
multimedia content is the new identity of news. Thus, the media landscape has shifted from mass media to
personalized social media. While this progress brings advantages, it also carries the risk of being detrimental
to society through the emergence of misinformation (false or inaccurate information) and disinformation
(intentionally spreading misinformation) in the form of fake news. Fake news is a tool used to manipulate
public opinion on particular topics, distort public perceptions, and generate social unrest while lacking the
rigor of traditional journalism. Driven by this current and real-world problem, in this paper, we train multiple
Deep Learning architectures for multi-class classification and compare their performance in detecting the
veracity of the news articles. To achieve accurate models in detecting misinformation, we employ a large
dataset containing 100 000 news articles labeled with ten classes (one with real news and the rest with
different types of fake news). We use two preprocessing techniques, i.e., one simple and another very
aggressive, to clean the dataset. We also employ three word embeddings that preserve the word context, i.e.,
Word2Vec, FastText, and GloVe, pre-trained and trained on our dataset to vectorize the preprocessed dataset.
For the misinformation task, we train a Logistic Regression as a baseline and compare its results with the
performance of ten Deep Learning architectures. We obtain the best results using a Recurrent Convolutional
Neural Network based architecture. The experimental results show that the models are highly dependable
on text preprocessing and the word embedding employed.

INDEX TERMS Misinformation detection, deep learning, multi-class text classification, word embeddings,
text preprocessing, benchmarking.

I. INTRODUCTION
The digital age has seen the emergence of new mass media
paradigms for information distribution, substantially differ-
ent from classical mass media. With these changes in mass
media, the users become the center of communication, their
interests being the core topic of news feeds, their views being

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Moinul Hossain .

targeted through news articles. Thus, the media landscape
has shifted from mass media to personalized social media.
Along with the advantages this progress brings, it aggravates
the risk of misinformation [42] with potentially detrimental
consequences to society [40], by facilitating the spread of
misinformation (false and inaccurate information) and dis-
information (intentionally spreading misinformation) in the
form of fake news (which, for example, appears to have influ-
enced the Brexit referendum [3] and the 2016 US presidential

162122 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2825-4355
https://orcid.org/0000-0001-7292-4462
https://orcid.org/0000-0001-6397-4951
https://orcid.org/0000-0003-3156-9040
https://orcid.org/0000-0003-4184-2397

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

election [5]). However, current trends and the accessibility
of technology render this proneness even more potentially
damaging than it has been historically, thus having dire con-
sequences to the community [50] and being amajor challenge
to democratic values (e.g., public polarization regarding elec-
tions, vaccination, etc.).

Fake news consists of news stories that are intentionally
and verifiable false, and which could mislead readers [44]
by presenting alleged, imaginary facts about social, health,
economic, and political subjects of interest [46]. Another
perspective is to directly treat false news as fake news, which
includes fabrications, hoaxes, and satires [41], [43].

Untruthful news stories have been around for a long time,
and every technological advancement, from the telegraph to
the social media, has provided new ways to create decep-
tion. Historically, the mass media industry proved to use
manipulation and follow their own agenda by adding bias
to important events, e.g., articles published in the New York
Journal in 1897 that played a prominent role in the start of the
war between the USA and Spain [14]. Currently, it is widely
believed that fake news plays a significant role in shaping
public opinion [14] and even the perception on current health
treads, e.g., SAR2-COVID19 [6] misinformation. Interna-
tional and national organization1 and governments2 have
spoken against fake news, the most current being the speech
given by the president of the European Commission, Ursula
von der Leyen.3 Thus, decisions based on facts and evidence
are compromised by fake news and the consequences some-
times are irreversible [21].

Fake news detection presents many challenges, as the
information presented in the news articles has the explicit
purpose of deceiving the reader. There is interdisciplinary
research on this subject, which tries to analyze the matter
from different perspectives. In forensic psychology, the focus
is the human vulnerability to fake news and the deceptive
styles used by disinformation propagators [52]. In computer
science research, the main objective is to find out meth-
ods of detecting fake news from multiple features like the
knowledge bases, style, how it propagates, and its credibil-
ity [52]. There is a strong accent in modern times on the
speed and volume of information. This has affected even the
way that the news is produced and consumed, by increasing
the amount of news articles as to keep up to the demand.
However, this comes with a drawback. The veracity of the
information is no longer a requirement when it is produced,
as we live in an age of ‘‘post-truth’’ in which objective facts
are less influential in shaping public opinion than emotion
and personal beliefs [20]. The consumer is now fed news that
are not necessarily based on true events but mostly aims to
manipulate the public opinion, by making the public accept
biased or false beliefs. Current research found that having
a pre-existing knowledge base against which to compare

1World Economic Forum: Digital Wildfires in a Hyperconnected World
2UK Parliament: Online Information and Fake News
3 European Commision: Fighting disinformation

news is not sufficient, because fake news may cite true facts
to support a non-factual claim. This mostly invalidates the
assumption that if the news refers to true news and is similar
to true news then it is true news as well [9].

In traditional news media, there is a psychological foun-
dation of fake news, meaning that deceptive articles are tar-
geting the vulnerabilities of the individual [43]. Consumers
not only tend to believe that their perception of reality is the
only accurate one, while those who disagree are irrational,
but they also prefer information that supports their already
established ideas and opinions. Furthermore, people tend to
agree to information so that they will be socially accepted
and will increase their self-esteem, even if that information
is not based on actual facts [51]. Moreover, publishers tend
to maximize their short-term utility, in which they maximize
their profits, while the consumers tend to maximize the sat-
isfaction they receive by supporting their prior opinions and
social image.

Recently, it was addressed and highlighted the need to have
an automatic tool of detecting deceptive news and the chal-
lenges that the development of the tool presents. As the web
data is unstructured, it demands flexible methods to verify its
truthfulness, unlike structured datasets or well-defined topics
that require a certain domain of the language [9]. However,
most tools for automatic detection of fake news consisted of
classical Machine Learning algorithms, like Support Vector
Machine (SVM) and Naive Bayesian models. These models
have high accuracy for not very large, balanced datasets, but
they have problems in building accurate models when the size
of the dataset increases exponentially. Recent research points
towards the importance of using Deep Learning classifiers in
fake news detection. Also, by adding linguistic features, e.g.,
different types of embedding algorithms, the performance of
the prediction task is increasing [16]. Thus, a benchmark of
Deep Learning Architectures using different word embed-
dings and an in-depth analysis of the models’ results for the
task of Misinformation Detection is required.

In this paper, we propose such a Deep Learning based
benchmark for Misinformation Detection that considers dif-
ferent text feature representations, such as general and
specific word embeddings. The main contributions of this
article are the following. Firstly, we perform an extensive
benchmarking study on ten different Deep Learning archi-
tectures and a Logistic Regression architecture as a baseline.
Secondly, we provide a comprehensive evaluation and anal-
ysis of the most popular context-aware word embeddings
models, i.e., Word2Vec, FastText, and GloVe, both with
pre-trained embeddings and trained on our corpus. Such a
comparison of the effects of different embedding models is
lacking in the current research. Although there are a few fake
news detection models that use dynamic word embeddings
methods, i.e., Bidirectional Encoder Representations from
Transformers (BERT) [39] [30], they use such methods as
pretrained language model, i.e., without a detailed evaluation
and discussion of the effects of the training on the results.
That is, BERT would not fit in our generic versus specific

VOLUME 9, 2021 162123

http://reports.weforum.org/global-risks-2013/risk-case-1/digital-wildfires-in-a-hyperconnected-world/
https://post.parliament.uk/research-briefings/post-pn-0559/
https://ec.europa.eu/info/live-work-travel-eu/health/coronavirus-response/fighting-disinformation_en

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

embeddings comparison and is out of the scope of this con-
tribution, as it is a pre-trained model. Thirdly, we provide a
detailed analysis of the impact of different text preprocessing
techniques on various Deep Learning models. Our experi-
mental results show that the models are highly dependable
on text preprocessing and the word embedding employed.
The experiments were conducted on a large real-world news
dataset consisting of 100 000 news articles. Fourthly, we con-
sider a multi-class fake news classification consisting of ten
classes, e.g., Fake News, Satire, Extreme Bias, Hate News,
etc. In comparison, other current solutions use either a binary
approach, i.e., the news articles’ veracity is either true or false,
or levels of veracity. Finally, we propose a preprocessing and
classification pipeline based on our findings.

In this paper, we identified some shortcomings in the cur-
rent literature, and we try to address them by answering the
following research questions:
(Q1) How do Machine and Deep Learning models perform

on the task of misinformation detection?
(Q2) What is the influence of the dataset size in the task of

misinformation detection?
(Q3) Do specific trained word embedding improve the per-

formance of Machine Learning models than pretrained
word embeddings on the task of misinformation?

(Q4) Do different preprocessing techniques improve the per-
formance of Machine Learning models on the task of
misinformation?

The main contributions of our work, which try to address
the shortcoming in the current literature, are:
(1) change the scope from binary or levels of veracity to

multi-class classification;
(2) analyzing and benchmarking multiple Deep Learning

architectures;
(3) presenting an in-depth analysis regarding:

(a) the effects of the size of the dataset on the misinfor-
mation detection task;

(b) how simple and aggressive text preprocessing
techniques influence the accuracy of Machine and
Deep Learning algorithms on the misinformation
detection task;

(c) the use of specific and generic word embeddings for
the multi-class classification task;

(d) the efficiency of Machine and Deep Learning algo-
rithms on the task of misinformation detection.

The paper is structured as follows. In Section II, we review
the current state of the art in the field of fake news detection.
We discuss themodels and the algorithms used in our solution
in Section III. We present the architecture of our solution
and discuss the implementation decisions in Section IV.
In Section V, we analyze and interpret the experimental
results. In Section VI, we discuss our findings from the
perspective of the dataset, preprocessing, word embeddings,
and algorithms. Finally, in Section VII we summarize our
findings and hint at future research directions.

II. RELATED WORK
In this section, we present some of the current work in fake
news detection. There are many articles that research this sub-
ject, mainly centered around two perspectives: the language
perspective, which refers to the actual content of the news
(headline, author, and news content), and the data mining
perspective, which refers to the social context of the news
article and the stylometric features [43].

In the linguistic approach to deception detection, it was
observed that although most liars carefully use their language
to avoid being caught, language cues that are hard to monitor
occur, such as frequencies and patterns of pronoun, conjunc-
tion, and negative emotion word usage [9]. When trying to
learn these aspects, using the simplest method of word rep-
resentation, bag-of-words, many aspects of context are lost
with n-grams. One way to improve the bag-of-words method
is to take into account the syntactic structure of the document.
Semantic analysis can also provide additional information
in deciding if facts are deceptive or not, which can be done
by comparing a personal experience with true and objective
facts. The idea behind this is that deceptive news articles will
most likely contain some contradictions or omission of facts
that are present in other articles. However useful this analysis
is, it has been restricted by the amount of available data to
compare the articles against.

Considering the data mining approach, researchers have
recently focused on applying Machine Learning techniques
to fake news detection. Also, another important research
direction is centered on adding linguistic cues to this process.

In [16] is investigated the impact of using content-based
features and Machine Learning algorithms for fake news
detection. The authors propose a benchmarking study with
different feature selection techniques, e.g., Mutual informa-
tion(, MinimumRedundancyMaximumRelevance), and sev-
eral classical Machine Learning classifiers, i.e., Naive Bayes,
SVMs, Decision Trees, k-NNs, and two ensemble meth-
ods, i.e., AdaBoost, Bagging. To accurately detect deception,
they combined the resulting feature sets and enhanced them
with Word2Vec features, obtained using a pre-trained model.
The authors claim that they also experimented with GloVe,
but without noticing relevant differences in performance.
We argue that this is not the case, as we demonstrate in
Section V, where we consider both pre-trained and spe-
cific word embedding models. Another important observa-
tion from this study is that linguistic features could pro-
vide better performance to the fake news detection task
than term-frequency features. Although this study offers
interesting results on the impact of Machine Learning and
content-based features on fake news detecting, it lacks the
ability to deliver high-quality classification results on large
datasets using Deep Learning architectures.

The impact of Hierarchical Attention Networks (HAN) on
fake news detection is tackled in [34] via SADHAN model
that introduces various latent aspect embeddings over the
HAN (Self-Attention based Hierarchical Attention Network

162124 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

BiLSTM) architecture. Thus, SADHAN is using the Atten-
tion mechanism to learn embeddings for different latent
aspects of news articles, i.e., subject, author, and domain
embeddings. The solution applies pre-trained GloVe embed-
dings that, unlike Word2Vec, relies on both local and global
word statistics. To assess the trustworthiness of a claim from
a news article, the authors also propose a technique to extract
evidence snippets, using Attention weights, that supports
or refutes the analyzed claim. Considering the presented
results, the proposed model outperforms all the analyzed
baseline architectures, i.e., CNN, BiLSTM, and two other
Attention-based architectures, emphasizing the importance of
aspect embeddings for the prediction of false news. An impor-
tant discussion that is completely missing from this article is
the utilized preprocessing mechanism and its impact on the
overall performance. From our experiments, we deducted that
the preprocessing step can have a big influence on the accu-
racy of the results. HAN-based models are also tested in [23].
Thesemodels are comparedwith CNN, LSTM, BiLSTM, and
Convolutional-LSTM, on three datasets, i.e., a small ∼6K
dataset, a medium ∼12K dataset, and a large ∼75K dataset.
The models are initialized with pre-trained GloVe embed-
dings. HAN has the best performance on the small dataset,
while Convolutional-HAN on themedium dataset. Bothmod-
els are outperformed by BiLSTM and Convolutional-LSTM
on the large dataset.

Convolutional Networks architecture is a popular Deep
Learning-based model used in classifying news articles.
Although a CNN network can be prone to over-fitting,
a deeper CNN resolves this problem [22]. Thework presented
in [22] consists of a GloVe-enabled deep convolutional-based
model, i.e., FNDNet. Their solution was compared with clas-
sical Machine Learning algorithms and several Deep Learn-
ing architectures, i.e., classical CNN with GloVe and LSTM
with GloVe. Though the FNDNet results are promising in
comparison with the other evaluated solutions, we have some
concerns about the experimental setup for the tested net-
works, especially on the small epoch numbers for each neural
network.

Another solution based on CNN architecture is presented
in [27]. The authors proposed MCNN-TFW, a multiple-level
convolutional neural network-based fake news detection sys-
tem. The architecture is actually a CNN architecture com-
bined with semantics features that are determined using a
pre-trained Word2Vec model. To measure the word’s sensi-
tivity coefficient, the authors propose the weight of sensitive
words (TFW) that is based on the formulas used in TF-IDF.
Although some of the ideas presented in this paper are inter-
esting, some improvements can be done, especially regarding
the experiments. First of all, the used datasets are rather small,
i.e., 4180 items and 6728 items, respectively. The use of deep
networks makes sense in the context of large datasets, where
traditional Machine Learning techniques are losing their effi-
ciency. Secondly, in our opinion, it would have been interest-
ing if the authors also compared their architecture with other
word embeddings enabled deep-learning solutions. Instead,

they compare it with LIWC (linguistic inquiry and word
count) features, a CNN architecture without embeddings, and
a join SVM classifier with RST (Rough Set Theory). It is
proven that most of the lexicon-based approaches, LIWC in
particular, have lower performance compared with Machine
Learning algorithms [18].

Several current fake news detection approaches use
advanced pre-trained Transformer models. BERT (Bidirec-
tional Encoder Representations from Transformers) [10] is
the most used Transformer to classify and detect Fake News.
BERT is part of a new class of word embeddings methods,
more specifically the dynamic one, and it is said that in many
Natural Language Processing tasks, it outperforms the static
embeddings methods. It uses an Attention-based mechanism,
i.e., the Transformer encoder. Although some works employ
large datasets and properly analyze the textual content [38],
the majority of the Fake News solutions use BERT on rela-
tively small datasets, and without a clear explanation of the
results [24], [30].

One model for fake news detection build on BERT is
described in [30]. The authors propose a two-stage model,
both stages having similar BERT-based architectures. In the
first stage, all the statements are classified, using two labels:
false or true, resulting in a temporary label for each state-
ment. The second stage uses some extra information, such
as the speaker’s name, job, etc., that are modeled as fea-
tures. This results in a number of fine-grained labels. For
the final label, the system considers both coarse-grained and
fine-grained labels. The experiments are done using the LIAR
dataset from PolitiFact,4 which consists of ∼12K very short
news statements. Being a relatively small dataset with little
information, the proposed model and the compared ones
have trouble learning correctly. This is why the maximum
accuracy obtained in [30] is around 40%. Whereas in [24],
the BERT-based architectures use a relatively big balanced
dataset, i.e., ∼45K items, and obtain very good results. The
solution presented in [24] has a hybrid architecture connect-
ing BERT word embeddings with RNN. The RNN network
is used to obtain document embeddings. The major issue
with this solution is that the results are not explained or
discussed, and there is no comparison with other types of
word embedding and deep networks. In [38], BERT is used as
a baseline on a large corpus consisting of∼103K documents.
This manuscript is focusing on the style of writing, i.e., the
form of text rather than its meaning. The authors proposed
two new classifiers, i.e., a BiLSTM based neural network and
a stylometric classifier. These classifiers are compared with
two baseline models, i.e., bag of words and BERT.

Recently other transformers were used for the task of
Fake News detection. RoBERTa (A Robustly Optimized
BERT pre-training Approach) [31] is a robustly optimized
method that improves BERT’s language masking strategy.
A weak social supervision RoBERTa-based model for Fake
News detection from limited annotated data is proposed

4 LIAR dataset from PolitiFact

VOLUME 9, 2021 162125

https://github.com/thiagorainmaker77/liar_dataset

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

in [45]. Another Transformer used for Fake News detection is
XLNet [48], an extension of BERT. In [13], the XLNet model
is combinedwith topic information and applied on a relatively
small annotated dataset (∼10K).

An in-depth benchmark on the subject of Fake News
detection is done in [23]. The authors consider only binary
classification on three datasets, i.e., two smaller corpora,
Liar (∼12K items) and Fake or Real (∼6K items), and a
larger corpus (Combined Corpus) consisting of ∼75K items.
For testing, the article presents traditional Machine Learn-
ing, Deep Learning, and five transformer-based models. The
neural network Deep Learning models are initialized with
pre-trained GloVe embeddings. The overall highest accuracy
values are obtained on the largest dataset. The conclusion is
that Naıve Bayes (with bi-gram) performance, the best of the
classical Machine Learning solutions tested, is on average 0.2
lower than the best tested Deep Learning networks, i.e., 0.95
for Bi-LSTM and C-LSTM, that combines a convolutional
layer with LSTM. The best performance was obtained by
RoBERTa pre-trained model, i.e., 0.96 on Combined Corpus,
but it is not made clear if they used or not fine-tuning.

Taking into consideration the presented related work,
we further exploited the use of different word embedding
techniques and Deep Learning architectures to detect news
with harmful content. Finally, we can stipulate that most of
the current solutions do not clearly present the pre-processing
step, although it is an important step that can alter the fake
news detection accuracy. As far as we know, none explore dif-
ferent variants of pre-processing techniques and their impact
on the fake news detection task. Likewise, all the studied
current solutions use pre-trained general embeddings and not
specific word embeddings done on the news corpus.

III. METHODOLOGY
In this section, we discuss the algorithms, models, and archi-
tectures used by our solution from a theoretical perspec-
tive. First, we start with a discussion of text prepossessing
and cleaning. Second, we present the mathematical formu-
lation of all the Machine and Deep Learning classification
algorithms employed for Misinformation Detection. Finally,
we discuss the Evaluation metrics to correctly do an assess-
ment of the quality of the classification algorithms.

A. TEXT PREPROCESSING
Data preprocessing is an important step in Machine Learning
algorithms because it can greatly influence its performance.
It refers to filtering out the noise or unwanted features and
improving the features both in quantity and in quality. Text
preprocessing is used to remove known common words or
stopwords. Stopwords do not bring any information gain or
add any meaning from the perspective of weighting the terms
or improving the textual context. Thus, these words acts as
noise and need to be removed. Moreover, as in the case of
stopwords, punctuation bring no information gain or improve
the news articles context and is usually removed.

Another text preprocessing technique is lemmatization,
i.e., to the process of extracting the words lemma. The lemma
is the root of the word, i.e., the base of the inflections of that
word. Lemmatization manages to minimize the vocabulary
and capture the similar meaning of some terms, even if their
inflection differs.

B. WORD EMBEDDING
1) Word2Vec
Word2Vec [32] is a shallow neural network model that is used
to produce word embeddings. The output vectors are posi-
tioned in the vector space such that common contexts are in
close proximity to each other. This allows the understanding
of the meaning of a word by looking at its context. Basically,
it tries to maximize the probability of the target word based
on the input word (Equation (1)), where wj is the target word,
wI is the input word, v′wj is the word embedding of the target
word, vwI is the word representation of the input word.

p(wj|wI) =
exp(v′TwjvwI)∑V
j′=1 exp(v′

T
wj′
vwI)

(1)

Word2Vec provides two models used in word embeddings:
the continuous bag-of-words (CBOW) and the Skip-Gram
models. The idea behind both models is based on the Dis-
tributional Hypothesis which states that different words that
appear in similar contexts have similar meaning.

The CBOW model is based upon unigrams which is an
n-gram (continuous sequence of n terms) comprised of one
term. The sequence captures the context of the word by
averaging the context of each word in the selection window.
This allowsWord2Vec to predict the target word based on the
input context sequence and better results than Skip-Gram for
the frequent words in the dataset [32].

The Skip-Gram model uses skip-grams in defining word
context. This allows the capture of the context of more
distanced words in the sequence, and it is used to predict
the context based on an input word, opposite to what the
CBOW model does. This model should have better results
than CBOW for rare words in the dataset [32].

2) FastText
The FastText [4] model is a set of improvements on top of the
Word2Vec model [33], using both CBOW and Skip-Gram.
The first improvement refers to the drawbacks brought on
by ignoring the position of the words in the context window.
The proposed solution learns the representations of word
positions and afterwards uses them to weight the context
words. Equation (2) shows how the context vector transforms,
considering P is the set of positions [−c, . . . ,−1, 1, . . . , c],
dp is the position weight vector, ut+p is the context word at
position p and � is the pointwise multiplication operation.

vC =
∑
pεP

(dp � ut+p) (2)

162126 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

The second improvement refers to adding support for
n-grams in the CBOW model, which initially used only uni-
grams. This also improves the information brought by word
order, and removes cluttering and noise caused by unwanted
words by creating the n-gram tokens based on merging only
words with high mutual information [33].

The last improvement takes into account the information
brought by the word internal structure. Instead of simply
taking into account just the word representation, FastText also
extracts information from subwords, or character n-grams.
This allows representing words that are out of the training
dataset. Equation (3) presents the context vector, where N is
the set of character n-grams, |N | is the number of character
n-grams, vw is the word context using the above mentioned
methods and xn is the vector representation of the character
n-gram.

vC = vw +
1
|N |

∑
nεN

xn (3)

3) GloVe
GloVe [36] is an unsupervised Machine Learning algo-
rithm that generates word embeddings. It does so by first
constructing a term co-occurence matrix, that contains the
frequency with which each word appears in context with
another word. The number of contexts is combinatorial so
the dimensions of this matrix are very large. Equation (4)
presents the co-occurence ratio probabilities employed by
this embedding, where vwi , vwj , vwk are the representations of
words wi,wj,wk , and Pwiwk ,Pwjwk are the probabilities that
wordwi appears in context with wordwk and wordwj appears
in context with word wk , respectively.

F(vwi , vwj , ṽwk) =
Pwiwk
Pwjwk

(4)

As F should encode information from the vector space of
the words, and that vectors spaces are linear, for keeping said
linearity, Equation (4) becomes Equation (5).

F((vwi − vwj)
T ṽwk) =

Pwiwk
Pwjwk

(5)

In word co-occurence matrices the context word can be
exchanged with the actual word, seeing as there is no exact
distinction between them. This generated the requirement that
F should be a homomorphism between groups (R,+) and
(R>0,×) (Equation (6)).

F((vwi − vwj)
T ṽwk) =

F(vTwi ṽwk)

F(vTwj ṽwk)
(6)

Equation (7) is obtained by replacing Equation (5) in
Equation (6), where Xwiwk is the frequency word wi appears
with word wk and Xwi is the number of times the word wi
appears.

F(vTwi ṽwk) = Pwiwk =
Xwiwk
Xwi

(7)

If F is an exponential function, we can extract the loga-
rithm (Equation 7). As log(Xwi) is independent of wk , it can
transform in a bias bwi for vwi and adding a bias b̃wk for ˜vwk
restores the symmetry (Equation (9)).

vTwi ṽwk = log(Pwiwk) = log(Xwiwk)− log(Xwi) (8)

vTwi ṽwk + bwi + b̃wk = log(Xwiwk) (9)

This form is ill-defined because the log diverges for zero
arguments. Also, this model assigns equal weights to all
co-occurrences, which can bring noise. That is why GloVe
proposes a weighted least squares regression model with a
loss function. Equation (10) presents the loss function, where
V is the size of the vocabulary and f is a weighting function
defined by:

• f (0) = 0 so that the log converges with x converging to 0
• f (x) non-decreasing so rare co-occurences are not
overweighted

• f (x) small for large values of x so frequent
co-occurences are not overweighted

J =
V∑

i,j=1

f (Xwiwj)(v
T
wi ṽwj + bwi + b̃wj − log(Xwiwj))

2 (10)

Thus, GloVe works by extracting information from the log
of the co-occurence probability ratio, meaning the difference
of the log of the co-occurence probabilities. Because of the
symmetry, it actually extracts information from the difference
of word vectors. That is why themodel shows good results for
word analogies or finding the same meaning for synonyms in
the same contexts.

C. MACHINE AND DEEP LEARNING ARCHITECTURES
1) LOGISTIC REGRESSION
Logistic Regression models a relationship between predictor
variables and a categorical response variable. The model
estimates the probability of an independent variable to fall
into a certain level of the categorical response given a set
of predictors. Given a set of classes Y = {yκ |κ = 1, k}

and a document dataset X = {xi|i = 1, n}, the model
computes the probability of a class yκ given a document di
as p(y = yκ |x = xi). The probability is the sigmoid function

(σs(z) = 1
1+e−z) that maps documents to classes in order to

determine the parameters of the weight vectorw and the bias b
that fit the regression line. Equation (11) presents the Logistic
Regression probability.

p(y = yκ |x = xi) = σs(wxi + b) =
1

1+ e−(wxi+b)
(11)

To estimate the classes ŷi = argmaxyκ∈Cp(y = yκ |x =
xi) and to determine the parameters w that give the best
results, the algorithm maximises the log likelihood using
gradient descent [49]. The log likelihood function guaran-
tees that the gradient descent algorithm can converge to the

VOLUME 9, 2021 162127

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

global minimum. Equation (12) presents the log likelihood
function l(w), where yi is the real class of document xi.

l(w) =
n∑
i=1

(yi log (σs(wxi))− (1− yi) log (1− σs(wxi)))

(12)

2) RECURRENT NEURAL NETWORKS
Recurrent neural networks (RNN) are a class of neural net-
works that are used in sequence processing, because of their
ability to cache the previous outputs and add their information
to the current inputs. This means that the model can pro-
cess sequences of any length, while the model size does not
change. This presents some unique architectural opportuni-
ties regarding the number of inputs and outputs:
• one to one - equivalent to a regular neural network
• one to many - used in image captioning
• many to one - used in sentiment analysis
• many to many - used in Machine Translation
The input xt at each time step t serves as input to the RNN

alongside the activation from the previous time step ht−1.
Equations (13) presents the hidden and the output functions,
where
i) xt is the input at time step t;
ii) ht is the output, or next hidden state;
iii) ht−1 is the previous hidden state;
iv) Wh andWy are the weights corresponding to the input xt ;
v) Uh is the weight corresponding to the previous hidden

state ht−1;
vi) bh, by, and bh are the bias vector.
vii) σ is the activation function, i.e., sigmoid, hyperbolic

tangent, etc.;

ht = σ (Whxt + Uhht−1 + bh)

yt = σ (Wyxt + by) (13)

3) GATED RECURRENT UNITS
The Gated recurrent unit is an improved RNNmodel that uses
two gates to decide the information that will be passed to
the output, i.e., the update gate (ut) and the reset gate (rt).
The update gate (ut) has the responsibility of determining
how much of the information from previous time steps will
be passed to the next time steps. The reset gate (rt) decides
how much of the information from previous time steps will
be forgotten. The candidate activation vector (ĥt) calculates
the current memory state. The ĥt vector is computed as a
function of the current input and the previous hidden state
filtered using the reset gate. Equation (14) presents the update
and reset gates, where

i) xt is the input at time step t;
ii) ht is the output, or next hidden state;
iii) ht−1 is the previous hidden state;
iv) ĥt is the candidate activation vector;
v) Wu, Wr , and Wh are the weights corresponding to the

input xt ;

vi) Uu, Ur , and Uh are the weights corresponding to the
previous hidden state ht−1;

vii) bu, br , and bh are the bias vector.
viii) σs is the sigmoid activation function;
viii) σh is the hyperbolic tangent activation function;
ix) � is the element-wise multiplication function.

ut = σs(Wuxt + Uuht−1 + bu)

rt = σs(Wrxt + Urht−1 + br)

ĥt = σh(Whxt + Uh(rt � ht−1)+ bh)

ht = (1− ut)� ht−1 + (1− ut)� ĥt (14)

4) LONG SHORT-TERM MEMORY NETWORKS
When handling long-term dependencies, the vanilla RNN
encounters a phenomenon that affects the gradient, the van-
ishing or the exploding gradient. This phenomenon causes the
actual limitations in how far away in time are the captured
dependencies. The exploding gradient can be fixed using
the gradient clipping technique, which, as its name suggests,
refers to limiting the gradient at a certain threshold. To deal
with the vanishing gradient, some functions called gates are
used.

The long short-termmemory (LSTM)model is an example
of model that uses these gates and in addition to the loops in
the RNN, they also have extra information called memory.
There are 3 gates in a LSTM model: input gate, output gate,
and forget gate. The inputs to the LSTM at each time step are
xt , the current input, ht−1, the previous hidden state, and ct−1
the previous memory state. The outputs at every time step are
ht , the current hidden state, and ct , the current memory state.
Equation (15) shows the expressions of each gate (i.e., ft , it ,
ot), the current hidden state (ht) and current memory state
(ct), where:

i) xt is the input at time step t;
ii) ht is the output, or next hidden state;
iii) ht−1 is the previous hidden state;
iv) c̃t is the cell input activation vector;
v) ct is the current memory state;
vi) ct−1 is the previous memory state;
vii) Wf , Wc, Wi, and Wo are the weights for each gate’s

current input;
viii) Uf , Uc, Ui, and Uo are the weights for each gate’s

previous hidden state;
ix) bf , bc, bi, and bo are the bias vectors;
x) σs is the sigmoid activation function;
xi) σh is the hyperbolic tangent activation function;
xii) � operator is the Hadamard product, i.e., the

element-wise multiplication function.

ft = σs(Wf xt + Uf ht−1 + bf)

it = σs(Wixt + Uiht−1 + bi)

ot = σs(Woxt + Uoht−1 + bt)

c̃t = σh(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it ∗ c̃t
ht = ot � tanh(ct) (15)

162128 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

As LSTM is good at processing sequences, meaning it is
able to capture past information, it seems natural to have
something that is able to capture future information. This is
done by the bidirectional LSTM, which is an LSTM with
two hidden states, one that processes the input in its forward
manner, while the second hidden state processes the input
backwards.

5) CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (CNN) are a class of deep
neural networks that are specialized in detecting patterns in
space, unlike RNNs which detected patterns in time. CNNs
are usually employed in computer vision, but they showed
great results in text classification as well. Basically, instead
of inputting a matrix of pixels from an image, in text classifi-
cation the input is a 1-dimensional array, to which the CNN
applies a window of convolution that can extract n-grams.

Let’s consider a sequence of words w1,w2, . . . ,wn as
example, each represented by a vector of dimension d . When
applying a 1-dimensional convolution with a CNN, this fil-
ters the input using a window of size k that slides over the
sequence. Equation (16) presents a simple convolution unit,
where xi = [wi,wi+1, . . . ,wi+k] is the vector of filtered
words, w is a weight vector and σ is a non-linear activation
function.

ri = σ (wxi) (16)

In practice there are usuallymore filters applied to the same
input, so the weight vector w becomes a weight matrixW and
a bias b is introduces (Equation (17)).

ri = σ (Wxi + b) (17)

Another feature of the CNN is the support for multiple
input channels. In image classification this is mainly used to
separate the RGB color components, but in text processing
this allows the inclusion of part-of-speech tags, or the seman-
tic dependency tree.

The convolutional layer in CNN is usually followed
by a MaxPooling layer, which extracts the most relevant
information provided by the convolution operation, and then
outputs to a fully-connected linear layer that acts as the actual
classifier.

6) RECURRENT CONVOLUTIONAL NEURAL NETWORKS
A CNN uses a window of a specific size to capture the word
context. This comes with the drawback that if the window
size is too small, the whole context will not be captured, and
if the window size is too large, data sparsity appears.

A recurrent convolutional neural network (RCNN) solves
this CNN limitation by employing a recurrent layer as a con-
volutional layer [26]. This way, instead of sliding a window
of fixed size and capturing a limited size context, the bidirec-
tional recurrent structure will capture both the left context and
the right context of the word in their entirety. Equation (18)
presents the left and right context vectors, where

i) σ is a non-linear activation function;
ii) Wl andWr are weights applied to the previous word left

context and next word right context;
iii) cl(wi−1) and cr (wi+1) are the left context of the previous

word and right context of the next word;
iv) Wsl and Wsr are the weights of the embedding of the

previous word and of the next word, respectively;
v) e(wi−1) and e(wi+1) are the embeddings for the previous

word and for the next word, respectively.

cl(wi) = σ (Wlcl(wi−1)+Wsle(wi−1))

cr (wi) = σ (Wrcl(wi+1)+Wsre(wi+1)) (18)

The final vector representation of the word becomes the
embedding of the word concatenated to the left and right
context vectors. Equation (19) presents the output of the first
layer.

xi = [cl(wi); e(wi); cr (wi)] (19)

Equation (20) presents the output to the second layer,
where W (2), b(2) are the weights and biases for the second
layer.

y(2)i = σh(W
(2)xi + b(2)) (20)

Equation (21) presents the third layer, i.e., the MaxPooling
layer that extract the most important semantic factors from
the whole document.

y(3) = maxni=1y
(2)
i (21)

After MaxPooling, a fully connected linear layer that han-
dles the actual classification. Equation (22) presents this
layer, where W (4), b(4) are the weights and bias of the output
layer.

y(4)i = W (4)y(3) + b(4) (22)

The probability of a document xi to be in class yκ can be
determined by applying a softmax function (Equation (23)).

p(y = yκ |x = xi) =
ey

(4)
κ∑k

j=1 e
y(4)j

(23)

7) ATTENTION LAYER
RNNs can be used to predict a sequence based on an input
word, or to predict a word based on an input sequence. More-
over, if two RNNs are used one after the other, a sequence
can be predicted from an input sequence, an use case mainly
encountered inMachine Translation. This type of architecture
is called an encoder-decoder network.

Now, seeing that the encoder is a sequence to word model
and the decoder is a word to sequence model, the responsi-
bility of the encoder is to capture in one vector the meaning
of the whole input sequence, which can prove difficult for
large input sequences. Here the Attention mechanism comes
in handy. This model assigns importance to hidden states of
the encoder and the final context vector that will be the input

VOLUME 9, 2021 162129

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

to the decoder is actually the original vector with assigned
importance weights for each time step.

Equation (24) presents the mathematical formulation of the
Attention mechanism, where

i) e(wt) is the embedding of the word wt ;
ii) M is the length of the sequence;
iii) W and b are the weights matrix and the bias, respec-

tively, of the linear layer of the Attention mechanism;
iv) v are the weights that emphasize the most important

dimensions in the space created by the linear layer;
v) αwt is the importance weight of the word wt ;
vi s is the final value of the context vector;

vii) σh is the sigmoid activation function;
viii) σsm is the softmax activation function.

uwt = σh(We(wt)+ b)

αwt = σsm(v
T uwt)

s =
M∑
t=1

αwt e(wt) (24)

The values of α are defined as the result of a softmax
function, meaning that the sum of every αwt equals to 1, so the
Attention mechanism can be interpreted probabilistically.
This shows that each value of αwt is actually the probability
that the corresponding word vector e(wt) is important to the
current context.

The described mechanism applies only to the encoder
network, meaning that this Attention model can be used
anywhere where a context word with importance weights for
each time step state is necessary.

8) REINFORCEMENT LEARNING-BASED
ADVERSARIAL NETWORKS
Generative adversarial networks (GAN) represent a frame-
work of models, where two neural networks contest in a
zero-sum game, meaning that each network gain or loss is
balanced by the loss or gain of the other network. One net-
work is called the discriminator and it is trained to categorize
if the input data is real or not. The other network is called the
generator and it generates fake data for the discriminator to
classify.

GANs showed good results in computer vision and image
classification, but seeing that the generator generates continu-
ous data, it cannot be used for discrete data like text. To avoid
this limitation, the Reinforcement Learning based Adver-
sarial Networks for Semi-supervised learning (RLANS)
framework combines reinforcement learning with adversarial
networks [28].

In the RLANS framework the discriminator, also known
as predictor, is trained with labeled and unlabeled data using
policy gradient, and the reward is decided by the judge that
identifies predicted and real labels.

For text classification the predictor is based on LSTMs.
Let x = {w1, . . .wT |wt ε {0, 1}k} be a sequence of T one-hot
encoded vectors and y ε {0, 1}c the one-hot encoded classifi-
cation label, where k is the number of words in the vocabulary

and c is the number of classes. At the final step, there is a fully
connected layer with a ReLU activation function, which gives
hc ε R1×d , followed by a softmax function. Equation (25)
presents the probability of the predicted label, where B ∈
Rd×c and bp ∈ R1×c are the weight matrix and the bias
vector, respectively, of the final layer.

Pθ (ŷi = 1|x) = Pθ (ŷi = 1|w1, . . .wT)

=
exp(hc · B(:,i) + b

(i)
p)∑c

j=1 exp(hc · B(:,j) + b
(j)
p)

(25)

The predictor tries to maximize the reward decided by
the judge. Equation (26) presents the reward maximization
function, where Y is the set of classes, Pθ (ŷ|x) is the output
of the predictor and the action-value V (ŷ, x). Equation (27)
presents the action-value function, where DL and DU the set
of labeled and unlabeled examples and Jφ(x, ŷ) the output of
the judge.

R(θ) = E[R|X , θ] =
∑
ŷ∈Y

Pθ (ŷ|x)V (ŷ, x) (26)

V (ŷ, x) =


1 if x ∈ DL & ŷ = y,
0 if x ∈ DL & ŷ 6= y,
Jφ(x, ŷ) if x ∈ DU .

(27)

The judge network is also based on LSTMs. At each time
step t , a sub-network with the same structure as the output
layer of the predictor estimates the label ot ∈ R1×c which
is concatenated with the true label y for labeled examples
or estimated label ŷ for unlabeled examples. The output part
of the judge gets as input a weighted combination of the
concatenation [o, y]β =

∑T
t=1 βt [ot , y], where β ∈ RT is

a weight vector. The weight vector is represented by two
layers: a fully connected one with a ReLU activation function
and a sigmoid function. The ReLU function is presented in
Equation (28), where Wo(1) ∈ R2c×2c is the weight matrix
and bo(1) ∈ R1×2c is the bias vector. Equation 29 presents the
sigmoid function, where Wo(2) ∈ R2c×1 is a vector and bJ a
bias scalar.

o(1) = ReLU ([o, y]β ·Wo(1) + bo(1)) (28)

J (y;w1, . . .wT) =
1

1+ e−(o
(1)·Wo(2)+bJ

(29)

The judge tries to minimize the cross-entropy
(Equation (30)).

H (x, y) = min
φ
−E(x,y)εDL [logJφ(x, y)]

−ExεDU ,ŷ∼Pφ [log(1− Jφ(x, ŷ))] (30)

D. EVALUATION
To evaluate the quality of the classification method and
correctly interpret the algorithms output for the fake news
detection task, we use three metrics, i.e., accuracy, precision,
and recall.

Before computing each measure, we need to construct a
confusion matrix that holds the following information:

162130 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

• TPi (True Positive) is the number of observations that
belong to the yi class and are classified correctly, i.e.,
ŷi = yi;

• FNi (False Negative) is the number of observations that
belong to the yi class and are classified as yj(i 6= j), i.e.,
ŷi 6= yi;

• FPi (False Positive) is the number of observations that
belong to the yj(i 6= j) class and are classified as yi, i.e.,
ŷj = yi;

• TNi (True Negative) is the number of observations that
belong to the yj(i 6= j) class and are classified correctly,
i.e., ŷj = yj.

The average accuracy refers to the ratio between correct
predictions and total predictions. Thus, average preci-
sion measures the per-class effectiveness of a classifier.
Equation (31) presents the average accuracy.

Accuracy =
1
n

n∑
i=1

TPi + TN i

TPi + FPi + TN i + FN i
(31)

The macro precision averages the precision for each class,
i.e., the proportion of correctly predicted positive outputs out
of all positive predictions. Thus, macro precision measures
the average per-class agreement of the data class labels with
those of the classifiers. Equation (32) presents the macro
precision.

Precision =
1
n

n∑
i=1

TPi
TPi + FPi

(32)

The macro recall refers to the average of the recall for each
class, i.e., the proportion of correctly predicted positive out-
puts out of all actual positives. Thus, macro recall measures
the average per-class effectiveness of the classifier to identify
labels. Equation (33) presents the macro recall.

Recall =
1
n

n∑
i=1

TPi
TPi + FN i

(33)

IV. PROPOSED SOLUTION
The architecture of our misinformation detection solution is
represented by a series of specialized modules with different
roles that contribute in classifying the news article in its
category, as we can see in figure 1. The first module is the
Text Preprocessing Module, which takes the news article as
input and outputs the clean text version. The Word Embed-
ding Module outputs a vector representation of the clean text
news articles’ terms. The Misinformation Detection Module
employs the word embeddings and supervised Machine and
Deep Learning algorithms to label each news articles and
determine their veracity. The quality of classification is mea-
sured by the Evaluation Module.

The Text Preprocessing Module has the responsibility of
transforming the input news article into a more simplified
version of it by eliminating noise and unwanted words or
inflections of words. We employ two pipelines, a simple one

that lemmatizes the text, and a more aggressive one that
removes a lot of terms that bring no information gain.

The Word Embedding Module maps the terms resulted
from the Text Preprocessing Module to vector representa-
tions. This module reduces the dimensionality of documents
considerable as well as the memory requirements but man-
ages to capture the contextual, semantic, and syntactic
information.

The Misinformation Detection Module uses different clas-
sifier algorithms to analyzes the vector representations of the
news articles and outputs their category.

The last module, the Evaluation module, is responsible
for measuring the performance of the above classifier, using
known metrics such as accuracy, precision and recall.

The source code for our architecture and the used dataset
are freely available online on GitHub .5

A. TEXT PREPROCESSING MODULE
For text preprocessing, we implemented two pipelines
Lemma Text Preprocessing and Aggressive Text Prepro-
cessing. Lemma Text Preprocessing uses lemmatization and
replaces pronouns with the -PRON- token. The Aggressive
Text Preprocessing transforms the text to UTF-8, removes
stop words and punctuation, extracts lemmas, and transforms
the text to lowercase.

Table 1 presents an example that compares the original
article text with the two proposed processing pipelines.

The Lemma Text Preprocessing keeps named entities case,
but changes the rest of the text to lowercase. The word inflec-
tions are replaced with their lemmas, i.e., is becomes be. The
pronouns are replaced with the token -PRON- which helps in
lowering the vocabulary size and allows finding connections
between all pronouns, regardless of gender or number.

Furthermore, we remove pronouns, not to de-balance
classes. Although it is proven that a large number of pronouns
is a feature for fake news detection [17], the models can
become biased. Thus, the networks can give more importance
to this dimension and consider it a representative feature
when discriminating between the different classes. The punc-
tuation and stopwords are kept.

The Aggressive Text Preprocessing removes punctuation
and stopwords. As pronouns are considered stopwords, they
are also removed. The text is also lemmatized, and only the
root of the words are stored. Furthermore, named entities are
transformed to lowercase. Using this pipeline, the vocabulary
size is further reduced.

In some tasks such as Information Retrieval and Text
Mining, both stop words and punctuation are seen as noise,
and by removing them, the accuracy of the model might
improve. The curse of dimensionality [2] is also removed
by minimizing the vocabulary size. We note that there are
specific situations when the stopwords and punctuation are
relevant. Thus, we consider these two approaches.

5Source Code https://github.com/ilievladiulian/misinformation-detection

VOLUME 9, 2021 162131

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

FIGURE 1. Misinformation Detection Architecture Pipeline.

For this module we used the SpaCy6 and theNLTK7 Python
libraries. These libraries provide useful modules for Text
Analysis and Natural Language Processing, e.g., text and
sentence tokenization, part-of-speech tagging, dependency
parsing, stop words dictionaries, word stemming and lemma-
tization, etc..

B. WORD EMBEDDING MODULE
We used three context-aware word embedding models:
Word2Vec Skip-Gram model, FastText Skip-Gram model,
and GloVe. We chose the Skip-Gram model over the CBOW
model because it preserves the word context, allowing the
model to capture the context of more distant words in the
sequence. GloVe also manages to preserve the local and
global context by encoding the words co-occurrence matrix
within the embedding.

For each of the word three word embedding described in
the Section III, we used two different sets of 300-dimensional
word vectors:

i) Generic Word Embeddings containing existing pre-
trained word embeddings;

ii) Specific Word Embeddings containing trained word
embeddings on our dataset.

These two approaches are employed in order to determine
how much the embeddings influence the classification task.

We obtained the SpecificWord Embeddings by training the
Word2Vec and FastText models available in the GenSim8

library, and the GloVe model provided by the glove_python
package.9

After we applied hyperparameter tuning using the
questions-words dataset [29] that contains pairs of analogies
from different domains, we ended up with the following
parameters for training the Specific Word Embeddings. The
best models are obtained when using a window size of 10,
meaning that the maximum distance between the current
word and the predicted word is 10. The minimum count is set
to 2, i.e., the minimum frequency for a word to be taken into
account. The number of workers is set to 10 and the number
of interactions to 10.

6https://spacy.io/
7https://www.nltk.org/
8https://radimrehurek.com/gensim/
9https://github.com/maciejkula/glove-python

For the Generic Word Embeddings, we use the GloVe vec-
tors trained on the Wikipedia 2014 and Gigaword 5 dataset,
the Word2Vec vectors trained on the Google News dataset,
and the FastText vectors trained on the Common Crawl
dataset.

C. MISINFORMATION DETECTION MODULE
The Misinformation Detection Module contains Machine
and Deep Learning algorithms (Table 2) implemented
in Pytorch10 using GPUs.

We chose Logistic Regression to be the baseline for our
classification as it is a classical supervised Machine Learning
algorithm similar to the perceptron which is proven to be
robust for correlated features. Thus, when there are many
correlated features as it happens with textual data, Logistic
Regression assigns a more accurate probability to the correct
label. CNN architectures are frequently used for classification
in fake news detection. In the literature, there are also many
small variations of this architecture (e.g., [27]). One of the
main advantages of using CNN is that it is computationally
efficient. RNN based architectures are also been used to
detect misinformation, although there are a couple of known
issues, i.e., gradient vanishing and exploding problems. There
are several solutions if this problem occurs. Firstly, RNN can
be used in hybrid architectures. In general, they are used with
convolutional layers (e.g., [1]). Secondly, a specific variant
of RNN can be used, LSTM, which can efficiently capture
long-range dependencies in the text. There are many LSTM
based approaches for the detection of fake news (e.g., [47]).
Thirdly, GRUs are an improvement from the basic RNN
architecture, as they can capture long-term dependencies to
learn the linguistic features from the news articles (e.g., [35]).
Attention mechanisms can be added to the neural networks,
which can lead to better performance in detecting the fake
news. These mechanisms are used to indicate important parts
of a news article, by looking over all the information and then
generating the proper word according to the context of the
current word it works on. The RLANS model combines rein-
forcement learning with adversarial networks (GAN), using
a judge to reword the quality of unsupervised classification
done by a predictor. Although it was used in text classifica-
tion, this model was never used in fake news detection.

10https://pytorch.org/

162132 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

TABLE 1. Preprocessing techniques example (Note: The text was truncated and the example is for showcase purposes only).

TABLE 2. Machine and deep learning algorithms.

D. HYPERPARAMETER TUNING
After applying hyperparameter tuning, we have reached the
following configurations. The adversarial network is trained
over 100 epochs with early stopping with a batch size of 16.
Similarly, the other models are trained for 100 epochs with
early stopping and a batch size of 4.

There are some setup parameters common to each classi-
fier, like the input size of 300, given by the size of the word
vectors and an output size of 10, given by the number of
labels. Each model used the same optimizer Adam. Adam is
configured with a learning rate of 0.0001 and a weight decay
of 0.0005, to minimize the cross-entropy loss function.

The Logistic Regression model, the RNN, the LSTM, the
GRU, the RCNN and the Attn + LSTM are initialized with a
256-dimensional hidden layer. Moreover, the recurrent mod-
els have their hidden state reset after each batch so that they do
not introduce information from the previous word sequence
in the next word sequence which will act as noise.

The CNN uses 1 input channel corresponding to the news
content, 16 output channels which are passed to MaxPool-
ing layer, and a stride of length 1 for the kernel. We use
cross-validation to determine that the best the kernel size is 3.
We also test the CNN with kernel sizes of 5 and 7.

E. EVALUATION MODULE
We implemented the three evaluation metrics presented in
Section III using Python. For evaluation, we train the model
on the training dataset and obtain the predictions ŷi for each
document xi. Then we compute the confusion matrix for the

test dataset. Finally, we obtain the average accuracy, macro
precision, and macro recall using the values in the confusion
matrix.

V. EXPERIMENTAL RESULTS
In this section, we first present the dataset, its size, and the
labels used. Then, we analyze the classification results of
our benchmark w.r.t. the preprocessing pipeline, the word
embeddings, and the architecture.

A. DATA SET
The dataset used for experiments is the open source Fake
News Corpus dataset available on Github.11 The dataset has
been also used for determining the veracity of news articles
in [25] by using sampling to create a fake and reliable dataset.
In this work, we take a multi-class approach. It is comprised
ofmore than 9million news articles that contain the following
information: the domain of the news provider where the
article was found, the type of news that acts as its label, the
actual content of the news, its title, its authors and others. For
these experiments, we use only the news content and their
label.

An example of an entry in the dataset is ‘‘Obama’s The
Greatest Criminal In History Say Trump And Joe Arpaio
Because He Forged His Birth Certificate (Video)’’ labeled as
fake. The experiments were run in two sets, each of themwith
a different preprocessing pipeline.

The first preprocessing applies a SpaCy lemmatization,
which transforms the phrase into ‘‘Obama ’ be greatest
criminal in history say Trump and Joe Arpaio because -
PRON- forge -PRON- birth certificate’’. As we can see, the
words suffered a lowercase transformation, the pronouns are
replaced with the token -PRON-, and each word was replaced
with its lemma.

The second preprocessing pipeline consists of a more
aggressive approach, which removed all known English stop-
words present in the SpaCy and NLTK packages, removed all
punctuation, and only after that a SpaCy lemmatization was
applied. This changes the dataset entry to ‘‘obama greatest
criminal history say trump joe arpaio forge birth certificate’’.

For our experiments we used 10 of the classes available
in the dataset, each class represented by 10 000 documents.
Table 3 presents the available classes.

11https://github.com/several27/FakeNewsCorpus

VOLUME 9, 2021 162133

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

After preprocessing, the raw text, the lemma text pre-
processing, the aggressive preprocessing and class for each
article is stored in a single instance MongoDB v4.2.15.
Thus, by utilizing a NoSQL document-oriented database,
we manage to 1) improve the article retrieval process for the
word embedding models and classification algorithms and
2) remove the need to reapply the preprocessing pipeline each
time the algorithms are use.

The dataset is split as follows: 20% is used for the testing
dataset and 80% for the training dataset. We keep the distri-
bution of labels equal for both training and testing datasets,
i.e., 10% of records for each data set are labeled with the same
class. Moreover, for the adversarial network the train set was
split even further into 50% labeled and 50% unlabeled data.
Again, the distribution of labels is kept to achieve balanced
datasets.

TABLE 3. News articles classes.

B. RESULTS
We tested all the 11 classification models using each of the
three word embeddings with each of the processing pipelines
described above. We split the dataset using an 80%-20%
training-testing ratio with random seeding. For each split,
wemaintain the stratification of the labels. For all our models,
we employ an early stopping mechanism. Each algorithm
was executed 10 times before computing an average for
each metric. We use an NVIDIA R© DGX Station

TM
contain-

ing 4 NVIDIA R© V100 Tensor Core GPUs for our experi-
ments. Table 4 presents the results.

1) LEMMA TEXT PROCESSING RESULTS
Table 5 presents the results for Lemma text preprocessing.
We notice that the accuracy of the Logistic Regression model
is well below the accuracy of the Deep Learning models,
excepting the RNN, the Attention RNN, and the RLANS
regardless of embedding, i.e., Generic or Specific Word
Embeddings. Also, it looks like Logistic Regression is the
only model that consistently performs worse when using
Specific Word Embeddings vectors instead of Generic Word
Embeddings ones. This suggests that the vectors resulted
from training word embedding algorithms on our own dataset
are more dense and the linear layer in the Logistic Regression
model cannot find a hyperplane that separates the classes with
a high enough accuracy.

The results for the RNN and the Attention RNN are better
for the SpecificWord Embedding but worse for GenericWord
Embeddings when compared to the Logistic Regression.
Moreover, it seems that for Generic Word Embeddings, the
Attention mechanism provides an increase in performance,
of about 10% accuracy forWord2Vec and FastText. However,
the Attentionmechanism does not seem to improve the results
for Specific Word Embedding. In the case of the RNN, the
Word2Vec embedding shows an increase of 15% in accuracy
when trained on our dataset.

The Bidirectional RNN model shows an increase in accu-
racy of about 20% over the Logistic Regression model for
the Generic Word Embeddings and about 40% for the Spe-
cific Word Embedding vectors. The difference of accuracy
between these embedding types is of 1% for GloVe and
FastText, and a 7% increase for Word2Vec. This shows that
less noisy word vectors relative the misinformation detection
task can influence the overall performance of the model,
especially for Word2Vec vectors.

As expected, the GRUmodel shows even better results than
the Bidirectional RNN, with about 5% increase in accuracy
for both Generic and Specific Word Embeddings. This sug-
gests that there is useful information in long dependencies in
the input sequences, dependencies that the RNN could profit
very well from. Moreover, this confirms the hypothesis that
Specific Word Embeddings for the task of misinformation
detection improve the model results, with an increase of 10%
accuracy for Word2Vec and 4% for FastText. However, when
using GloVe, the performance drops with 2%. As in the
case of the unidirectional RNN and the Bidirectional RNN,
it seems Word2Vec embeddings find the greatest improve-
ment when trained specifically on this dataset.

The Attention GRU model improves the performance
of the simple GRU. In the case of the Generic Word
Embeddings, there is an increase in accuracy of 3, 9 and 6 %
for GloVe, Word2Vec and FastText, reaching a steady accu-
racy of 82% for all three embedding algorithms. The behav-
ior is similar for the Specific Word Embeddings, showing
an increase of 4 and 2% for GloVe and FastText over the
simple GRU. This is not the case for Word2Vec, but seeing
that for custom trained vectors, Word2Vec already increased
the performance, it is not surprising to not see an obvi-
ous improvement. It seems that for custom trained vectors,
a steady accuracy of 82% was reached as well.

The LSTM performance is worse than GRU and Bidirec-
tional RNN, with a drop in accuracy of almost 20%. This
suggests that the parameters of the model could be more
fine-tuned for this task. The custom embeddings improved
the results with an increase of 1% in accuracy when using
GloVe, a 6% increase for FastText. As expected after ana-
lyzing the previous models, the Word2Vec embedding profits
most from the custom training by showing and increase of
23% in accuracy.

When adding the Attention mechanism to the LSTM,
we find consistency in the results of the model across all
embeddings, seeing an accuracy of 81% when using GloVe

162134 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

TABLE 4. Experimental results. Note 1: The italic bold numbers present the best results for each metric given a combination of algorithm, embedding
model, and text processing steps. Note 2: The overall best results are marked with bold underlined.

TABLE 5. Lemma text preprocessing results.

VOLUME 9, 2021 162135

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

and FastText, regardless if the vectors were custom trained or
not. Here, Word2Vec improves the results again, increasing
the 79% accuracy when using the Generic Word Embeddings
to an 81% accuracy when using custom vectors, performance
similar to the other embeddings.

For CNN, the overall performance of this model is sim-
ilar to the performance of the LSTM with Attention, so it
performs better than the recurrent models. This suggests that
useful information is encoded in the context of the words,
something that the CNN is able to capture using its kernel.
Here we also see an increase of 2% in accuracy when using
GloVe and Word2Vec. However, we see a drop in accuracy
for FastText of 5% when trained on our dataset.

The RCNN shows the most promising performance from
all the tested models. Its accuracy is 5-6% higher than both
CNN and LSTM with Attention, regardless of the word
embedding. While for GloVe and FastText there are not
noticeable differences, the Word2Vec embedding sees an
increase of 3% in accuracy for vectors trained on our dataset.
The results are influenced by the way the network learns to
detect misinformation. The first major difference between
this architecture and the other architectures is that the network
uses a CNN window of a specific size to capture the word
context. The second difference is related to the enhanced
word embedding created by concatenating the left and right
context which are learned separately.

The RLANS model has a lower accuracy than the LSTM
for Word2Vec (4%) and FastText (1%) when using the Spe-
cific Word Embeddings, but a higher accuracy for GloVe
(11%). Similarly to the LSTM model, using custom trained
vectors shows an increase of 28% in accuracy for Word2Vec
and 9% for FastText. However, the GloVe embedding shows
a drop of 6% in accuracy. Since the discriminator network
that does the actual classification is based on an LSTM,
we would expect results at least in the same range as the
LSTM. This expectation is supported when comparing the
results of the custom trained embeddings of RLANS with the
LSTM, where we see a higher accuracy for RLANS for each
of the embedding employed.

2) AGGRESSIVE TEXT PREPROCESSING RESULTS
Table 6 presents the results for Aggressive Text Preprocess-
ing. For Logistic Regression, we see that the accuracy when
using the Generic Word Embeddings drops by approximately
1%, but the accuracy for the Specific Word Embeddings
increased by 19% for GloVe, 6% for Word2Vec, and 15%
for FastText. This shows that punctuation and stopwords
introduce noise in the Logistic Regression model.

The RNN shows more consistent results across embed-
dings when using the Generic Word Embeddings. However,
the use of the Specific Word Embeddings does not show
an increase in accuracy for all embeddings. Instead, for
Word2Vec and FastText we see a drop of 2% in accuracy,
while for GloVe we observe an increase of 4%.

For the BiRNN model, the aggressive preprocessing
shows a drop of 1% in accuracy when using the Generic

Word Embeddings. Similarly, when using the Generic Word
Embeddings, we see an increase in accuracy, especially for
Word2Vec (6%) over the baseline.

The Attention RNN shows an increase in accuracy for
Aggressive Text Preprocessing compared to Lemma Text
Preprocessing regardless the vectors were obtained using
Generic or Specific Word Embeddings. We observe that for
the generic GloVe vectors, the accuracy is higher with 10%,
for Word2Vec with 2%, and for FastText with 1%. Moreover,
Word2Vec shows one more time that custom trained vectors
on the dataset bring an increase in accuracy (10%).

Similarly to the Attention RNN, the GRU also has higher
accuracy. For Specific Word Embeddings, the accuracy
increases with 1% when using the GloVe embedding. For
Generic Word Embeddings vectors, the accuracy increases
with 2% and 5% when using the Word2Vec and FastText,
respectively. Again, custom trained Word2Vec shows an
improvement of the model accuracy, increasing it with 6%.

The results for the Attention GRU are similar, regard-
less of the preprocessing pipeline. They are in the range
of 82-83% accuracy for the Generic Word Embeddings,
dropping to 81-82% for Specific Word Embeddings. For
LSTM, we observe that an higher accuracy is obtained when
comparing the two preprocessing pipelines with Generic
Word Embedding. For GloVe the increase is 15%. Word2Vec
obtains an increase in accuracy of 2%, while FastText an
increase of 3%. When using custom trained GloVe, the
accuracy drops by 15% when compared to the accuracy
obtained by the pre-trained vectors. The network trained with
Word2Vec obtains an increases in accuracy of 25%, while
with FastText the increase is 18%.

The Attention LSTM shows a higher pre-trained
Word2Vec accuracy (2%) but a lower pre-trained FastText
accuracy (3%). The results for custom trained vectors are
similar, regardless of the preprocessing, excepting GloVe,
where we see a 2% lower accuracy.

The results of the CNN are lower for the aggressive prepro-
cessing, with a 2%drop for GloVe and a 2%drop for FastText.
The Specific Word Embeddings improve the accuracy by 1%
for GloVe and 3% for Word2Vec. For FastText, the accuracy
decreases by 6%. These results show that the context window
of the CNN finds important information in stopwords and
punctuation.

Similarly to the CNN, the RCNN also shows a drop of
1-2% in accuracy for all embeddings when using the aggres-
sive preprocessing, which supports the hypothesis that the
context window extract information from punctuation and
stopwords. The results of the custom trained Word2Vec com-
pared to the pre-trained Word2Vec are consistent with the
other models, where we see an increase in accuracy larger
than the other embeddings (2.5%).

The RLANS network shows a lower accuracy for
pre-trained GloVe (12%), but a higher one for pre-trained
Word2Vec (2%). The pre-trained FastText behaves the same.
When SpecificWord Embeddings are used, the network accu-
racy drops by 2% for GloVe vectors, while for Word2Vec

162136 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

TABLE 6. Aggressive text preprocessing results.

vectors increases it with 18%, and FastText with 20%.
This behavior is similar to the raw text preprocessing
pipeline.

VI. DISCUSSION
In this section, we discuss the findings and analyze the results
of our benchmark. First, we discuss and compare with current
literature our findings w.r.t. the dataset. Second, we analyze
the results from the text preprocessing perspective and com-
pare our results with current approaches. Third, we examine
the importance of pre-trained and trained word embeddings
and present the advantages and drawbacks of current tech-
niques. Lastly, we address the impact of the preprocessing
pipeline and word embeddings on the models’ classification
quality.

A. DATASET
The misinformation detection problem is a complex task that
requires large datasets to accurately determine news content
veracity. In the current literature, most papers test their pro-
posed solution on relatively small datasets,e.g., 3 004 news
articles in [16], 422 news articles in [44], 4 180 and 6 728
news articles in [27], etc., with the largest containing under
50 000 news articles [24]. Although we emphasize that some
of them also use larger corpora, e.g., 103,219 documents

in [38]. Likewise, in some cases, the dataset consists of short
news statements, e.g., the PolitiFact dataset with 12.8K short
texts, which directly influences the accuracy of the predic-
tion model, as can be seen in [30], where the best accuracy
is ≈ 40%.
We chose to address this shortcoming by using a large

dataset containing 100 000 news articles. Furthermore, the
current research articles only address the misinformation
detection problem using either a binary approach, i.e., the
news articles’ veracity is either true or false, e.g., [41], [43],
[44], etc., or levels of veracity [24]. None of the current
approaches uses a dataset that contains fake news labeledwith
different categories.

Our approach brings new insights regarding the detec-
tion of different types of misinformation. We observe that
some neural networks manage to obtain a score of over
80% for precision and recall. We can conclude that a
clear separability between the classes can be achieved
between real and different kinds of misinformation articles,
even though 90% for the dataset contains verifiable false
news. Thus, Neural Networks together, with Generic and
Specific Word Embeddings trained on Lemma and Aggres-
sive Text Preprocessing, manage to clearly differentiate
between real and fake news as well as different types of
misinformation.

VOLUME 9, 2021 162137

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

B. LEMMA vs. AGGRESSIVE TEXT PREPROCESSING
Text preprocessing is an import step employed for both Text
Analysis and Natural Language Processing tasks. Text pre-
processing is used to remove terms that bring no information
gains and to minimize the vocabulary. This step can greatly
influence the accuracy and quality of Machine and Deep
Learning models.

In the current research, the majority of the proposed
approaches for fake news detection do not employ this very
important step [16], [22], [27], [30], [34] or use very shal-
low text preprocessing, e.g., in [24] the authors eliminated
question marks, website addresses, links, e-mail addresses,
duplicate named entities (the most repetitive words of this
type were eliminated from the entire dataset).

In our approach, we employ two different text prepro-
cessing pipelines to determine the influence upon the clas-
sification models. The two approaches are Lemma Text
Preprocessing and Aggressive Text Preprocessing, described
in detail in Section IV. The experiments (Table 4) show
that the Aggressive Text Preprocessing pipeline obtains bet-
ter results w.r.t. the Machine Learning algorithm and word
embedding. The results show 15 <Model, Text Preprocess-
ing, Word Embedding> pairs that obtain the highest accuracy
when using Lemma Text Preprocessing and 18 pairs with the
highest accuracy when using Aggressive Text Preprocessing.
Furthermore, the results are also highly dependent on the
word embedding.

Figures 2, 3, and 4 present the comparison between Lemma
andAggressive Text Preprocessing when using GenericWord
Embeddings. Figures 5, 6, and 7 present the comparison
between Lemma and Aggressive Text Preprocessing when
using Specific Word Embeddings.

When comparing the two preprocessing techniques, w.r.t.
the Generic Word Embeddings, we find the following results.
When using the Generic GloVe embedding (Figure 2), the
highest accuracy is obtained by the RCNN model for both
preprocessing techniques, where the Lemma Text Prepro-
cessing presents slightly better results than the Aggressive
Text Preprocessing, i.e., 86.86% vs. 85.35%. For the Generic
Word2Vec (Figure 3), we achieve the highest accuracy for
Lemma Text Preprocessing when using RCNN, i.e., 84.72%.
While the highest accuracy for the Aggressive Text Prepro-
cessing with this embedding is obtained by the Attr + GRU,
i.e., 83.28%. When employing the Generic FastText embed-
ding (Figure 4), we observe a similar trend as when using
the GloVe embedding. Again, the RCNN model obtains the
highest accuracy with 86.14% for Lemma Text Preprocessing
and 85.54% for Aggressive Text Preprocessing.

We obtain the following results when comparing the two
preprocessing techniques, w.r.t. the Specific Word Embed-
dings. The highest accuracy is achieved by RCNN when
using the Specific GloVe embedding for both text prepro-
cessing techniques (Figure 5), with 86.20% and 84.83% for
Lemma Text Preprocessing, Aggressive Text Preprocessing,
respectively. We observe a similar pattern when employing

FIGURE 2. Lemma vs. aggressive text preprocessing using the generic
GloVe embedding.

Word2Vec (Figure 6) and FastText (Figure 7). Both models
have a higher accuracy than GloVe w.r.t. the best configu-
ration. The overall best model is again RCNN. For Specific
Word2Vec, the accuracy of RCNN is 87.56% and 85.69% for
Lemma Text Preprocessing, Aggressive Text Preprocessing,
respectively. While for Specific FastText, the accuracy of the
model is 85.68% and 84.85%, respectively.

By analyzing only the combinations < Model, Text Pre-
processing, Word Embedding > that obtain the highest accu-
racy, we can conclude that the Lemma Text Preprocessing
gives better results thanAggressive Text Preprocessing. Thus,
we observe an improvement of Lemma Text Preprocessing
over Aggressive Text Preprocessing between 0.60% (for the
combination < RCNN, Lemma Text Preprocessing, Generic
FastText>) to 1.87% (for the combination< RCNN, Lemma
Text Preprocessing, SpecificWord2Vec >).

C. GENERIC vs. SPECIFIC WORD EMBEDDINGS
Pre-trainedWord2Vec was employed in the models presented
in [27] and [16]. Moreover, the authors in [16] also exper-
imented with GloVe, claiming that they did not observe
important differences. Pre-trained GloVe embeddings were
also used by [22], [34]. Furthermore, in [22], the authors
claim that they also tested their models using Word2Vec but
obtained lower results. Pre-trained BERT-BASE was used
in [24] and [30]. All these models use word embeddings

162138 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

FIGURE 3. Lemma vs. aggressive text preprocessing using the generic
Word2Vec embedding.

as black boxes none of them were trained on the dataset or
fine-tuned the parameter. Furthermore, the current literature
lacks a comprehensive discussion comparing different word
embeddings and transformers.

To test the performance of word embeddings for the task
of misinformation detection, we use three word embeddings
Word2Vec, FastText, and GloVe. Both Word2Vec and Fast-
Text are trained using the Skip-Gram model. We also used
two approaches for our word embeddings: Generic Word
Embedding (pre-trained) and Specific Word Embeddings
(trained on our corpus).

The experiments show that both approaches for creating
word embedding, i.e., Generic and Specific, provide
similar results. Although, we obtain the overall best
result using Specific Word Embedding, i.e., RCNN with
Word2Vec trained with the Aggressive Text Preprocessing
output.

The Word2Vec trained models obtain the overall best
results. Although FastText has lower evaluation scores than
Word2Vec, it outperforms GloVe on a series of models.

Figures 8, 9, and 10 present the comparison between
Generic and Specific word Embeddings for each employed
model when using LemmaText Preprocessing. Figures 11, 12,
and 13 present the comparison between Generic and Specific
word Embeddings for each employed model when using
Aggressive Text Preprocessing.

FIGURE 4. Lemma vs. aggressive text preprocessing using the generic
FastText embedding.

When comparing Generic vs. Specific Word Embeddings
with Lemma Text Preprocessing, we obtain the follow-
ing results. Regardless of the embedding, we obtain the
highest accuracy with the RCNN model. Generic GloVe
(Figure 8) and FastText (Figure 10) perform better than
their Specific versions. For GloVe, we achieve small differ-
ences between the accuracy w.r.t. model. The LogReg and
the attention-based models (i.e., textscAttr + RNN, Attr +
GRU, Attr + LSTM) work better with Generic FastText.
While, the simple Recurrent Networks (i.e., RNN, BiRNN,
GRU, LSTM), the Convolution Networks (i.e., CNN, RCNN)
and RLAN present higher performance when employ-
ing the Specific FastText Embedding. Specific Word2Vec
(Figure 9) obtains a higher accuracy than Generic Word2Vec.
We observe considerable differences in accuracy when com-
bining Word2Vec with the Recurrent Networks (i.e., RNN,
GRU, LSTM) and RLAN model.

We achieve similar patterns when comparing the Generic
and Specific Embeddings for Aggressive Text Preprocessing.
Generic GloVe (Figure 11) and FastText (Figure 13) obtain
higher accuracy than their Specific conteparts. For these two
embeddings, the highest accuracy is obtained with the RCNN
model. For GloVe, we observe considerable differences in
performance (i.e.,∼15%) when employing the LSTMmodel.
FastText presents similar results as in the case of Lemma
Text Preprocessing. Generic FastText obtains higher results

VOLUME 9, 2021 162139

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

FIGURE 5. Lemma vs. aggressive text preprocessing using the specific
GloVe embedding.

for LogReg, RNN and Attr + RNN models. While, Specific
FastText perform better with LSTM and RLAN The high-
est accuracy for Specific Word2Vec (Figure 12) is achieved
with RCNN, while Generic Word2Vec with Attr + GRU.
The LogReg, RNN, Attr + GRU, and Attr + LSTM mod-
els obtain better results with the Generic Word2Vec. For
Attr + LSTM, we observe similar results regardless of the
embedding training mode. Furthermore, we observe high
differences in performance between Generic and Specific
Word2Vec for the LogReg, Attr + RNN, GRU, Attr + LSTM,
and RLAN models.

In conclusion, for the Generic Embeddings, we obtain the
highest accuracy for the pairs that use RCNNwith theGeneric
GloVe and Generic FastText, regardless if we employ the
Lemma or the Aggressive Text Preprocessing. The difference
in accuracy range between 0.46% (for<RCNN, Lemma Text
Preprocessing, Generic GloVe Embedding>) and 0.69 (for<
RCNN, Aggressive Text Preprocessing, Generic FastText
Embedding >). When using the Specific Embeddings, the
highest accuracy is obtained for the pairs that employ Specific
Word2Vec. Thus, the difference in accuracy range between
2.41% (for< RCNN, Aggressive Text Preprocessing, Specific
Word2Vec Embedding >) and 2.84% (for < RCNN, Lemma
Text Preprocessing, SpecificWord2Vec Embedding >).

D. MACHINE vs. DEEP LEARNING ALGORITHMS
In the current literature, solutions for the fake news detec-
tion task include models using classical Machine Learning

FIGURE 6. Lemma vs. aggressive text preprocessing using the specific
Word2Vec embedding.

algorithms [16], [22], [27], as well as Deep Learning archi-
tectures [22], [24], [30], [34]. These approaches rarely use
hyperparameter tuning or present the hyperparameters used
for their architectures [16], [27], [30]. Furthermore, many
neural network models are trained for a very small number
of epochs, e.g., the authors in [22] train a CNN for 5 epochs
and an LSTM for 10.

In our proposed architecture, we use Logistic Regression
and multiple neural network models. Logistic Regression is
used as a baseline for the misinformation detection task.
For all our models, we employ an early stopping mecha-
nism. Using hyperparameter tuning, we obtain the best values
for both our Specific Word Embeddings and classification
models. We note that grid search is an exhaustive process
and should be finely tuned when searching for best hyper-
parameters values. The results show that the performance
of RNN is greatly improved using either Bidirectional and
Attention mechanisms. All three architectures achieve the
best results using Specific Word Embeddings: RNN with
GloVe, while BiRNN and RNNwith an Attention mechanism
withWord2Vec. The text preprocessing also has an impact on
the models, RNNwith and without the Attention mechanisms
manages to produce better results using the Aggressive Text
Preprocessing, while BiRNN achieves better results with the
Lemma Text Preprocessing. We can observe that these net-
works learn better document representations when the word
embeddings are trained on the specific dataset and that the

162140 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

FIGURE 7. Lemma vs. aggressive text preprocessing using the specific
FastText embedding.

RNN model performs better when the word co-occurrence is
encoded in the embedding. Thus, the word context is better
preserved for the documents used. Furthermore, for Bidirec-
tional networks, punctuation and stopwords seam to play an
important role due to the nature of the network of analyzing
the document form two directions, i.e., right to left and left to
right.

Similarly to the RNN models, GRU and LSTM perfor-
mance are improved using Attention mechanisms. For the
LSTM and the GRU with and without an Attention mech-
anism, the best results are obtained using the Aggressive
Text Preprocessing pipeline and Word2Vec. The best results
are achieved by LSTM with an Attention mechanism using
the Lemma Text Preprocessing Pipeline and FastText. Both
architectures that use Attention obtain better results with the
Generic Word Embeddings, while the other two with the
Specific Word Embeddings. We can conclude the following.
Firstly, the context added by the co-occurrence matrix brings
no additional information to any of the networks. Thus, all
these architectures require a word embedding that for a target
word (in the case of Word2Vec) or and n-gram (in the case of
FastText) manages to predict the source context. The results
prove that complex RNN networks require the textual context
to output quality models. Secondly, for complex recurrent
networks, Specific Word Embeddings work better due to the
context extracted from textual data that was stripped of any

FIGURE 8. Generic vs. specific GloVe embeddings for lemma text
preprocessing.

irrelevant information. Thirdly, when an Attention mecha-
nism is employed, the models work better with pre-trained
word embedding as they provide a wider and more com-
plex representation of terms. This complex representation is
needed by the Attention layer that minimizes the information
loss by looking over all the information the original text
holds and then generating the proper word according to the
context of the current word it works on. Finally, for the LSTM
with an Attention mechanism, the Lemma text enhances the
information reacquired by the Attention layer to generate
the proper words by adding into the context stopwords and
punctuation.

For the CNN, RCNN, and RLANS models, the best results
are obtained using the Lemma Text Preprocessing pipeline
and Specific Word Embeddings.

The CNN model achieves the best results using the GloVe
word embedding. We can observe that due to its con-
volution and MaxPooling mechanisms, the CNN architec-
ture manages to learn better document representation when
additional information, i.e., stopwords, punctuation, word
co-occurrence, is stored within the embedding. Thus, the
convolution operator manages to correctly store the word
context and preserver document representation by creating
an accurate classification model, although it significantly
reduces the dimension of an embedding.

VOLUME 9, 2021 162141

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

FIGURE 9. Generic vs. specific Word2Vec embeddings for lemma text
preprocessing.

The RCNN and RLANS architectures obtain the best
results using the Word2Vec embedding. As in the case of
the LSTM and GRU networks, we observe that these models
produce better results when the word context is the target of
the embedding model and the word embedding is not pre-
trained. Furthermore, the models learn better document rep-
resentations when additional information is preserved within
the word embedding, i.e., stopwords and punctuation.

E. MISINFORMATION DETECTION
For the task of misinformation detection, the size of the
dataset impacts the performance ofMachine and Deep Learn-
ing algorithms. As the size of the dataset increases, the
chances of overfitting decreases as the algorithms manage
to learn better representations that improve generalization.
Moreover, the size of a training dataset directly impacts the
quality of the mapping function approximated by deep neural
networks.

The size of the vocabulary is another important factor that
impacts the misinformation detection task. Although some
information is lost, by lemmatizing the words we observe that
the models manage to differentiate to provide good results
that differentiate between the types of misinformation. Also,
by minimizing the vocabulary, the runtime of the Machine
Learning algorithms decreases. We observe that depending
on the model some networks learn better using aggressive
text preprocessing while others learn better using specific
text preprocessing. This behavior is highly influenced by the

FIGURE 10. Generic vs. specific FastText embeddings for lemma text
preprocessing.

FIGURE 11. Generic vs. specific GloVe embeddings for aggressive text
preprocessing.

activation functions used by cells as well as the different types
of layers employed for developing the model.

162142 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

FIGURE 12. Generic vs. specific Word2Vec embeddings for aggressive text
preprocessing.

FIGURE 13. Generic vs. specific FastText embeddings for aggressive text
preprocessing.

Linguistic features also play an important role [7] for mis-
information detection, as different pieces of news use specific

terms, e.g., science and technology related news articles,
while others use more generic, e.g., political or click bate
related articles. These local (at document-level) and global
(at dataset-level) linguistic features are encapsulated together
with semantics, syntactics, and context using word embed-
dings, although there is only one representation for a word
using word embeddings. By using specific word embedding,
we manage to better represent the misinformation linguistic
features within the dataset. Using generic word embeddings
these representations add information from the datasets they
were trained on, datasets that are not collected for the task of
misinformation.

The current Machine and Deep Learning methods
employed do far for fake news detection have shown promis-
ing results. Although these methods obtain high accuracy
for the misinformation detection problem using either a
binary approach or levels of veracity, there is still a place for
improvements when dealing with multi-class misinformation
detection. Firstly, hyperparameters chose to solve binary
approaches do not work well for multi-class ones [8]. Thus,
the hyperparameters determined to discriminate between two
classes or between classes with different veracity levels might
be over-represented in the classification task. This can lead
to detecting the wrong discriminative features used in the
case of multi-class misinformation classification. Secondly,
the features used for binary approaches or different verac-
ity levels do not work as well for multi-class approaches.
If articles from different types of fake news are group together
under the same class, some important features that are repre-
sentative for some labels get underrepresented when building
models that use only one label for the entire group. Lastly,
Machine Learning algorithms that are trained on small binary
datasets with multiple features tend to overfit instead of
creating generalized models [12]. By adding multiple labels,
overfitting is minimized.

VII. CONCLUSION
In this paper, we present our findings regarding Context-
Aware Misinformation Detection using Deep Learning
Architectures. We employ two text preprocessing pipelines
(i.e., Lemma and Aggressive Text Preprocessing), three
context-aware word embeddings (i.e., Word2Vec, FastText,
and GloVe), and ten Neural Networks for performing
multi-class classification. The context-aware word embed-
dings are either pre-trained (Generic Word Embeddings)
or custom trained on our dataset (Specific Word Embed-
dings). We propose a preprocessing and classification
pipeline based on our findings. The dataset used for
the experimental validation contains 100 000 news arti-
cles labeled either as real or with different types of fake
news (e.g., Conspiracy Theory, Junk Science, Hate News,
etc.). Furthermore, we provide a thorough discussion of
our results and an extended analysis of the performance
of the employed classification algorithms w.r.t. text pre-
processing and word embedding training approach and
model.

VOLUME 9, 2021 162143

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

Our benchmark experiments showed that eachDeep Learn-
ing model, except the unidirectional RNN, performed better
than Logistic Regression, which is used as a baseline. More-
over, it seems that the LSTMwith Attention provides the best
results in the set of recurrent models. CNN performed very
well on its own, proving that the global context of the words
is incorporated, i.e., the word co-occurrence matrix, in the
misinformation classification task. This result confirms that
CNN architectures obtain improved results when the global
and local word contexts are encoded within the embedding.

The experimental results obtained by the benchmark show
that most models have an increase in accuracy when using
custom trained word vectors on our dataset. Word2Vec Skip-
Grammodel manages to better encode the local context when
the Specific Word Embeddings are used. The models that
use this embedding show a constant increases in accuracy.
LSTM presents the highest increase in accuracy, with almost
20% when trained with the Specific over the Generic Word
Embedding. We conclude that the performance gain of the
neural networks when using the custom trained Word2Vec
Skip-Gram model manage to learn an improved represen-
tation of documents for the classification task using local
context. Thus, the misinformation detection performance is
improved when there is no influence from outside informa-
tion as the embedding better captures the word context within
the dataset.

When comparing the performance of the models w.r.t.
text preprocessing, we observe that the overall behavior is
similar. The Word2Vec still benefits the most from changing
the Generic Word Embeddings to Specific ones. The RCNN
obtains the highest accuracy of all the models, regardless
of the preprocessing. However, there are some differences
between the two preprocessing pipelines. The results show
that the task is simplified for Logistic Regression when stop-
words and punctuation are removed, but the accuracy drops
for the models that use convolution windows, like the CNN
and the RCNN.We conclude that the context window extracts
useful information from punctuation and stopwords.

Overall, the RCNN model with Specific Word2Vec Word
Embeddings trained on the Lemma Text Preprocessing obtain
the overall best results, i.e., the accuracy, precision, and recall
are 87.56%, 87.55%, and 88.11%, respectively. We conclude
that these results are obtained because of the local word
context preserved within the Word2Vec embedding and of
the added sentence context within the hidden layers of the
network.

In the context of misinformation detection, it is also worth
investigating other quantitative and qualitative methods for
building textual features, such as sentiment analysis [15] or
topic modeling [19]. These approaches can be used to better
understand the dataset and determine if any bias in discrim-
inating between different types of misinformation types is
added through the integration of such features in the neural
models.

One direction that shows promise for future research is
to add an Attention mechanism to the bidirectional LSTM

from the RCNNmodel, combining the improvements brought
on by Attention mechanisms with the performance of the
RCNN on its own. Also, we believe that better hyperpa-
rameter calibration is required so that the RLANS increases
its results. Furthermore, we plan to create heatmaps for the
attention-basedmodels and analyze the output of the convolu-
tional layers for CNNs to enhance the results’ interpretability.

Another future direction would be to analyze how new
embeddings perform within our architecture, e.g., Mis-
spelling Oblivious Word Embeddings (MOE) [37], which
shows great promise in the case of data with misspelled or
Mittens [11], which is an extension of GloVe that learns
domain-specialized representations. Furthermore, we plan
to use transformers (e.g., BERT [10], XLNet [48], etc.) to
determine if the accuracy of misinformation detection can be
improved.

ACKNOWLEDGMENT
(Vlad-Iulian Ilie, Ciprian-Octavian Truică, and Elena-
Simona Apostol contributed equally to this work.)

REFERENCES
[1] O. Ajao, D. Bhowmik, and S. Zargari, ‘‘Fake news identification on Twitter

with hybrid CNN and RNN models,’’ in Proc. 9th Int. Conf. Social Media
Soc., Jul. 2018, pp. 226–230.

[2] I. Assent, ‘‘Clustering high dimensional data,’’ Wiley Interdiscipl. Rev.,
Data Mining Knowl. Discovery, vol. 2, no. 4, pp. 340–350, 2012.

[3] M. T. Bastos and D. Mercea, ‘‘The Brexit BotNet and user-generated
hyperpartisan news,’’ Social Sci. Comput. Rev., vol. 37, no. 1, pp. 38–54,
Feb. 2019.

[4] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[5] A. Bovet and H. A. Makse, ‘‘Influence of fake news in Twitter during the
2016 US presidential election,’’ Nature Commun., vol. 10, no. 1, pp. 1–14,
Dec. 2019.

[6] D. P. Calvillo, B. J. Ross, R. J. B. Garcia, T. J. Smelter, and A.M. Rutchick,
‘‘Political ideology predicts perceptions of the threat of COVID-19 (and
susceptibility to fake news about it),’’ Social Psychol. Personality Sci.,
vol. 11, no. 8, pp. 1119–1128, Nov. 2020.

[7] A. Choudhary and A. Arora, ‘‘Linguistic feature based learning model
for fake news detection and classification,’’ Expert Syst. Appl., vol. 169,
May 2021, Art. no. 114171.

[8] G. Collell, D. Prelec, and K. R. Patil, ‘‘A simple plug-in bagging ensemble
based on threshold-moving for classifying binary and multiclass imbal-
anced data,’’ Neurocomputing, vol. 275, pp. 330–340, Jan. 2018.

[9] N. J. Conroy, V. L. Rubin, and Y. Chen, ‘‘Automatic deception detection:
Methods for finding fake news,’’ in Proc. 78th ASIST Annu. Meeting, Inf.
Sci. Impact, Res. Community, vol. 52, no. 1, pp. 1–4, 2015.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2019, pp. 4171–4186.

[11] N. Dingwall and C. Potts, ‘‘Mittens: An extension of GloVe for learning
domain-specialized representations,’’ in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics, Hum. Lang. Technol., (Short Papers), vol. 2,
2018, pp. 212–217.

[12] V. Feldman, R. Frostig, and M. Hardt, ‘‘The advantages of multiple classes
for reducing overfitting from test set reuse,’’ in Proc. Int. Conf. Mach.
Learn., 2019, pp. 1892–1900.

[13] A. E. A. Gautam, ‘‘Fake news detection system using XLNet model with
topic distributions,’’ in Proc. CONSTRAINT Shared Task (AAAI), 2021,
pp. 189–200.

[14] A. Gelfert, ‘‘Fake news: A definition,’’ Informal Log., vol. 38, no. 1,
pp. 84–117, Mar. 2018.

162144 VOLUME 9, 2021

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning Architectures Using Word Embeddings

[15] B. Ghanem, P. Rosso, and F. Rangel, ‘‘An emotional analysis of false
information in social media and news articles,’’ ACM Trans. Internet
Technol., vol. 20, no. 2, pp. 1–18, May 2020.

[16] G. Gravanis, A. Vakali, K. Diamantaras, and P. Karadais, ‘‘Behind the
cues: A benchmarking study for fake news detection,’’ Expert Syst. Appl.,
vol. 128, pp. 201–213, Aug. 2019.

[17] M. Hardalov, I. Koychev, and P. Nakov, ‘‘In search of credible news,’’ in
Proc. Int. Conf. Artif. Intell., Methodol., Syst., Appl., 2016, pp. 172–180.

[18] J. Hartmann, J. Huppertz, C. Schamp, and M. Heitmann, ‘‘Comparing
automated text classification methods,’’ Int. J. Res. Marketing, vol. 36,
no. 1, pp. 20–38, 2019.

[19] S. Helmstetter and H. Paulheim, ‘‘Weakly supervised learning for fake
news detection on Twitter,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social
Netw. Anal. Mining (ASONAM), Aug. 2018, pp. 274–277.

[20] K. Higgins, ‘‘Post-truth: A guide for the perplexed,’’ Nature, vol. 540,
no. 7631, p. 9, Dec. 2016.

[21] J. Hua and R. Shaw, ‘‘Corona virus (COVID-19) ‘infodemic’ and emerging
issues through a data lens: The case of China,’’ Int. J. Environ. Res. Public
Health, vol. 17, no. 7, p. 2309, Mar. 2020.

[22] R. K. Kaliyar, A. Goswami, P. Narang, and S. Sinha, ‘‘FNDNet—A deep
convolutional neural network for fake news detection,’’ Cognit. Syst. Res.,
vol. 61, pp. 32–44, Jun. 2020.

[23] J. Y. Khan,M. T. I. Khondaker, S. Afroz, G. Uddin, andA. Iqbal, ‘‘A bench-
mark study of machine learning models for online fake news detection,’’
Mach. Learn. With Appl., vol. 4, Jun. 2021, Art. no. 100032.

[24] S. Kula, M. Choraś, and R. Kozik, ‘‘Application of the bert-based
architecture in fake news detection,’’ in Proc. Conf. Complex, Intell.,
Softw. Intensive Syst., Burgos, Spain. Cham, Switzerland: Springer, 2020,
pp. 239–249.

[25] L. Kurasinski and R.-C. Mihailescu, ‘‘Towards machine learning explain-
ability in text classification for fake news detection,’’ in Proc. 19th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2020, pp. 775–781.

[26] S. Lai, L. Xu, K. Liu, and J. Zhao, ‘‘Recurrent convolutional neu-
ral networks for text classification,’’ in Proc. AAAI, vol. 333, 2015,
pp. 2267–2273.

[27] Q. Li, Q. Hu, Y. Lu, Y. Yang, and J. Cheng, ‘‘Multi-level word features
based on CNN for fake news detection in cultural communication,’’ Pers.
Ubiquitous Comput., vol. 24, no. 2, pp. 259–272, 2019.

[28] Y. Li and J. Ye, ‘‘Learning adversarial networks for semi-supervised text
classification via policy gradient,’’ in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Jul. 2018, pp. 1715–1723.

[29] T. Linzen, ‘‘Issues in evaluating semantic spaces using word analogies,’’
in Proc. 1st Workshop Evaluating Vector-Space Represent. (NLP), 2016,
pp. 13–18.

[30] C. Liu, X. Wu, M. Yu, G. Li, J. Jiang, W. Huang, and X. Lu, ‘‘A two-stage
model based on bert for short fake news detection,’’ in Proc. Int. Conf.
Knowl. Sci., Eng. Manage., Athens, Greece. Cham, Switzerland: Springer,
2019, pp. 172–183.

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘Roberta: A robustly optimized bert
pretraining approach,’’ 2019, arXiv:1907.11692.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ in Proc. Int. Conf. Learn. Repre-
sent., 2013, pp. 1–12.

[33] T.Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, andA. Joulin, ‘‘Advances
in pre-training distributed word representations,’’ in Proc. Int. Conf. Lang.
Resour. Eval., 2018, pp. 52–55.

[34] R. Mishra and V. Setty, ‘‘SADHAN: Hierarchical attention networks to
learn latent aspect embeddings for fake news detection,’’ in Proc. ACM
SIGIR Int. Conf. Theory Inf. Retr., Sep. 2019, pp. 197–204.

[35] T. Murayama, S. Wakamiya, and E. Aramaki, ‘‘Fake news detection using
temporal features extracted via point process,’’ 2020, arXiv:2007.14013.

[36] J. Pennington, R. Socher, and C. D. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., Doha, Qatar, Oct. 2014, pp. 1532–1543.

[37] A. Piktus, N. B. Edizel, P. Bojanowski, E. Grave, R. Ferreira, and
F. Silvestri, ‘‘Misspelling oblivious word embeddings,’’ in Proc. Conf.
North, 2019, pp. 3226–3234.

[38] P. Przybyla, ‘‘Capturing the style of fake news,’’ in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 490–497.

[39] A. Rogers, O. Kovaleva, and A. Rumshisky, ‘‘A primer in bertology: What
we know about how bert works,’’ Trans. Assoc. Comput. Linguistics, vol. 8,
pp. 842–866, Jan. 2020.

[40] J. Roozenbeek and S. van der Linden, ‘‘The fake news game: Actively
inoculating against the risk of misinformation,’’ J. Risk Res., vol. 22, no. 5,
pp. 570–580, May 2019.

[41] V. Rubin, N. Conroy, Y. Chen, and S. Cornwell, ‘‘Fake news or truth?
Using satirical cues to detect potentially misleading news,’’ in Proc. 2nd
Workshop Comput. Approaches Deception Detection, 2016, pp. 7–17.

[42] D. Ruths, ‘‘The misinformation machine,’’ Science, vol. 363, no. 6425,
p. 348, 2019.

[43] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, ‘‘Fake news detection
on social media: A data mining perspective,’’ ACM SIGKDD Explor.
Newslett., vol. 19, no. 1, pp. 22–36, Sep. 2017.

[44] K. Shu, S. Wang, and H. Liu, ‘‘Beyond news contents: The role of social
context for fake news detection,’’ in Proc. 12th ACM Int. Conf. Web Search
Data Mining, Jan. 2019, pp. 312–320.

[45] K. Shu, G. Zheng, Y. Li, S. Mukherjee, A. Hassan Awadallah, S. Ruston,
and H. Liu, ‘‘Leveraging multi-source weak social supervision for early
detection of fake news,’’ 2020, arXiv:2004.01732.

[46] D. Teoh, ‘‘The power of social media for HPV vaccination–not fake news,’’
Amer. Soc. Clin. Oncol. Educ. Book, vol. 39, pp. 75–78, May 2019.

[47] M. Umer, Z. Imtiaz, S. Ullah, A. Mehmood, G. S. Choi, and B.-W. On,
‘‘Fake news stance detection using deep learning architecture (CNN-
LSTM),’’ IEEE Access, vol. 8, pp. 156695–156706, 2020.

[48] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,
‘‘XLNet: Generalized autoregressive pretraining for language understand-
ing,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 5753–5763.

[49] D. Yi, S. Ji, and S. Bu, ‘‘An enhanced optimization scheme based on
gradient descent methods for machine learning,’’ Symmetry, vol. 11, no. 7,
p. 942, Jul. 2019.

[50] S. Zannettou, M. Sirivianos, J. Blackburn, and N. Kourtellis, ‘‘The web of
false information,’’ J. Data Inf. Qual., vol. 11, no. 3, pp. 1–37, Jul. 2019.

[51] Y. Zhang, F. Liu, Y. H. Koura, andH.Wang, ‘‘Analysing rumours spreading
considering self-purification mechanism,’’ Connection Sci., vol. 33, no. 1,
pp. 81–94, 2020.

[52] X. Zhou, R. Zafarani, K. Shu, and H. Liu, ‘‘Fake news: Fundamental
theories, detection strategies and challenges,’’ in Proc. 12th ACM Int. Conf.
Web Search Data Mining, Jan. 2019, pp. 836–837.

VLAD-IULIAN ILIE received the bachelor’s
degree in automatic control and the master’s
degree in financial computing from the University
POLITEHNICA of Bucharest, Romania, in 2018
and 2020, respectively, where he is currently pur-
suing the Ph.D. degree in distributed machine
and deep learning. His master’s thesis was on the
subject of fake news detection using deep learn-
ing methods. His research interests include deep
learning, distributed deep learning, and federated

machine learning and aims that, through his research, he will bring value in
tackling the current challenges in artificial intelligence.

CIPRIAN-OCTAVIAN TRUICĂ received the B.Sc.
degree in computer science and electrical engi-
neering, the M.Sc. degree in computer science
engineering and information technology, and the
Ph.D. degree in data management and text mining
from the University POLITEHNICA of Bucharest,
Romania, in 2011, 2013, and 2018, respectively,
and the B.Sc. degree in computer science and
mathematics from the University of Bucharest,
in 2013. During his Ph.D. studies, he was an

Invited Researcher at the ERIC laboratory, Université de Lyon, France,
in 2015 and 2016, where he worked on data management, machine learning,
and natural language processing. He was a Postdoctoral Researcher with the
Data-Intensive Systems Group, Department of Computer Science, Aarhus
University, Aarhus, Denmark, from 2019 to 2020, where he worked on big
data analytics for time series. He is an Assistant Professor of computer sci-
ence at the Computer Science and Engineering Department, Faculty of Auto-
matic Control and Computers, University POLITEHNICA of Bucharest. His
research interests include big data, data management, machine learning, text
mining, natural language processing, and time series analysis.

VOLUME 9, 2021 162145

V.-I. Ilie et al.: Context-Aware Misinformation Detection: Benchmark of Deep Learning

ELENA-SIMONA APOSTOL received the Ph.D.
degree from the University POLITEHNICA of
Bucharest (UPB), Romania, in 2014. During her
bachelor’s and master’s studies, she was an Intern
and a Junior Research Engineer at the Fraunhofer
FOKUS Institute, Berlin, Germany, where she
worked on computer networking and telecommu-
nications with a focus on mobile and service orien-
tated architectures. She was an Invited Researcher
during her Ph.D. studies at INRIA Rennes, France,

working within the joint research team between KerData at INRIA and UPB
on big data management and analytics. She was a Postdoctoral Researcher
at the Microsoft Research Center, Paris, in collaboration with The French
Institute for Research in Computer Science and Automation (INRIA), where
she worked on state-of-the-art big data analysis, multi-site cloud computing,
and bioinformatics. She is an Associate Professor of computer science at
the Computer Science and Engineering Department, Faculty of Automatic
Control and Computers, UPB. Her research interests include big data, data
management, parallel and distributed algorithms, machine learning, and data
science.

ADRIAN PASCHKE is the Head of the Corporate
Semantic Web Group (AG-CSW) and the Chair of
semantic data intelligence at the Department of
Mathematics and Computer Science, Institute
of Computer Science, Freie Universität Berlin
(FUB). He is also the Director of the Data Analyt-
ics Center (DANA), Fraunhofer Institute for Open
Communication Systems (FOKUS), the Director
of RuleML Inc., Canada, a professional member
at the Einstein Center Digital Future (ECDF), the

Dahlem Center forMachine Learning and Robotics (DCMLR), and the Insti-
tut für Angewandte Informatik (InfAI), Leipzig University, and the Founder
of the Berlin Semantic Web Meetup Group. With over 200 peer-reviewed
scientific publications, he has made substantial scientific contributions in
the field of semantic AI research and is active in standardization of semantic
technologies, such as OASIS LegalRuleML, RuleML, OMGAPI4KB, W3C
Semantic Web—W3C Rule Interchange Format, and W3C RDF Stream
Processing. He also served as an expert for industry and several ministries
and funding bodies, including the European Commission. He was an Orga-
nizer and the Chair of renowned conferences and workshops, including
DEBS, RuleML, BIS, SWAT4HCLS, ODBASE, ESWC, Reasoning Web,
Semantics, and edBPM, and an invited speaker for keynotes, tutorials, panels,
and lectures.

162146 VOLUME 9, 2021

