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ABSTRACT This work proposes a rate control model based on deep convolutional features to improve the
video coding performance of the HEVC encoders under the random access (RA) configuration. The proposed
algorithm extracts high-level features from the original and previous coded frames using a pretrained visual
geometry group (VGG-16) model by considering characteristics of a different temporal layer for the RA
configuration. Subsequently, R–λ parameters (alpha and beta), bit allocation, λ estimation, and quantization
parameter decision at frame-level are formulated by utilizing the extracted high-level features to maintain
video quality and bitrate accuracy control. In addition, bit allocation at the group-of-picture (GOP)-level
rate control is proposed with perceptual-based thresholding to control smooth bitrates and visual quality
between adjacent GOPs. The results verify that the proposed algorithm is efficient in coding performance
and bit accuracy by keeping visual quality. Compared with the existing R–λ rate model in HM-16.20, the
proposed models can achieve an average BD-rate gain of −4.39% and −8.74% in PSNR and MSSSIM
metrics for the RA configuration, respectively.

INDEX TERMS Deep neural network, high efficiency video coding (HEVC), perceptual video coding, rate
control, video coding.

I. INTRODUCTION
The media services on the wired and wireless internet, such
as video streaming and video communication, have gained
popularity. More people at diverse locations and situations
access media content and services. Thus, delivering high-
quality video content while minimizing rates over hetero-
geneous networks is a consistent requirement of content
providers and consumers. In video coding, the rate control
has been widely known to play a critical role in transmitting
high-quality video under a particular network bandwidth and
limited buffer capacity. Hence, the rate control algorithm that
can serve high video quality under the bandwidth constraint
designated for such video applications becomes essential.

Many rate control studies exist for high-efficiency video
coding (HEVC) encoders [1]–[5]. During the standardization
process of HEVC, the R–λ rate control model has been
adopted for the HEVC encoders [2], [3]. This model aims
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to (1) control the high accuracy of bitrates, (2) maintain rate-
distortion performance, and (3) optimize visual quality by
appropriately allocating bits to different rate control stages:
group-of-picture (GOP)-level, frame-level, and block-level
at a given bitrate. However, to this day, it is challenging to
find rate control algorithms designed for these video appli-
cations targeting perceptual quality optimization. In HEVC,
a random-access (RA) configuration is introduced for the
typical video streaming and broadcasting applications. Gen-
erally, the RA configuration in HEVC employs a dyadic
high-delay hierarchical B-prediction structure. Frames in a
video sequence are arranged into different temporal layers
for a higher compression rate and visual quality [6]. Such
a hierarchical B-prediction structure and advanced coding
tools [7]–[14] make developing a RA configuration rate con-
trol more challenging.

In contrast, the current rate control model in HEVC for the
RA configuration has been more stable than the other coding
configurations. However, some limitations of the existing
rate control under this configuration need to be addressed
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appropriately. The bitrate allocation for each frame could
still be misallocated. It turns into failing the bitrate accu-
racy control and causes an imbalance in a compressed video
visual quality. Previous studies reveal that the existing rate
control model miscarries several rate control parameters that
degrade rate-distortion (RD) performance, bit accuracy, and
subjective video quality [15]–[21]. The human visual system
(HVS) supports that there is much perceptual redundancy
in videos [57]. However, the current rate control model in
HEVC encoder reference software, e.g., HM-16.20, does not
entirely consider perceptual characteristics.

To this end, this work proposes a deep neural network
(DNN) feature-based GOP-level and frame-level for the
HEVC encoder by extending a perceptual adaptive quanti-
zation parameter (QP) selection algorithm [22]. There have
been many attempts to leverage the capability of DNN for
perceptual quality purposes [22]–[28]. A common conception
is that the DNN-based extracted features are primarily impli-
cated in capturing global characteristics of the input images
appealing for adaption perceptual quality problems. At the
frame-level, the proposed algorithm formulates an estimation
model for α and β parameters based on high-level visual
features extracted from the original and reconstructed frames
using a pretrained visual geometry group (VGG-16) network
model [29]. It is expected to improve the quality of α and β
decisions, affecting the R–λ relationship quality. Then, the
proposed algorithm redefines the R–λ estimation for each
frame to minimize distortion and save more bitrates without
inducing perceptible visual depressions in the compressed
video frames.

Further, the hierarchical B-prediction structure in the RA
configuration is considered when extracting the visual fea-
tures and taking other coding parameters, i.e., temporal layer
id, initial QP value at the frame level, and base QP value.
These coding parameters maintain the λ value that can
improve visual quality. Consequently, adjustment on the QP
estimation is also determined based on the proposed visual
features. Moreover, a more perceptual-friendly bit allocation
model at the GOP-level is proposed by considering the frame
rate of sequence information and proposing a perceptual-
based threshold to control bitrates smoothness between the
adjacent GOPs. Thus, the proposed algorithm demonstrates
higher coding gain evaluated under PSNR and MSSSIM by
approximately−4.39% and−8.74%, respectively, with some
visual quality improved than HM-16.20.

The remainder of this paper is organized as follows.
Section 2 briefly discusses rate control in HM and
related works. Section 3 details the proposed rate con-
trol. In Section 4, an evaluation of the proposed algorithm
is described. The conclusion of the work is presented in
Section 5.

II. CURRENT STATE OF THE R–λ MODEL
This section discusses the existing R–λ rate control model in
HM-16.20 for RA configuration. The λ value at frame-level

in the R–λ model [2], [3] is estimated as

λ = α × bppβ . (1)

The bpp term is the estimated bit per pixel, whereas α and β at
the frame-level rate control are set as +6.7542 and +1.7860
for I-frame, and other frames are α = +3.2003 and β =
−1.367. The original studies [2], [3] claimed that these values
were provided based on video content. However, studies have
discovered [30]–[32] that the existing R–λ model in the HM
software is not optimal for the coding structure for the RA
configuration.

A. EXISTING R–λ RATE CONTROL MODEL IN THE RA
CONFIGURATION OF HM ENCODER
The first limitation is that the R–λ rate control model tends to
consume more bits for frames at the beginning of a sequence.
Since more bits are used to encode the first few frames, fewer
bits are available to compress the rest of the frames in a
sequence. However, this condition influences the overall rate
control performance. Figure 1 depicts the frame-by-frame
quality of bitrate, PSNR, and MSSSIM for the ‘‘BQMall’’
generated from HM-16.20 with the rate control enabled for
the RA configuration. The PSNR and MSSSIM qualities of
each frame are not well maintained when the model attempts
to code several last frames. It makes sense that a lack of
bitrate forces the encoder to code a frame with a high QP and
generate a low quality of a compressed video.

Figure 2 shows the reconstructed frames by the HEVC
encoder with the activated rate control. The quality of recon-
structed frames is progressively degraded as the available
bitrate is getting limited. This figure reflects that an adequate
bit allocation for a frame may produce a higher visual quality
subjectively than those allocated with insufficient bitrates.
This phenomenon exists because the R–λ rate control model
fails to provide appropriate α and β, leading to inaccurate
bit allocation [16], [30] and deteriorating λ and quality of
the subsequent frames [18]–[21]. For further investigation,
Table 1 lists the actual bitrates for several test sequences
generated by the current rate control model in HM-16.20 for
the RA configuration. Notably, the target bitrate is provided
to assess how well the model can control the bitrate accuracy
with different QP settings. The smaller the bitrate accuracy
value is, the better the improvements of the rate control algo-
rithm.However, the rate control bitrate accuracy inHM-16.20
is not well maintained, especially when the test sequences
are tested using higher QP settings, such as in QP 32 and 37.
In essence, the quality of α, β, λ, bit allocation, and QP
decisions impact the whole performance of the rate control
model. Hence, it is crucial to reevaluate how Eq. (1) can
provide optimum HEVC encoder performance.

B. SOME EFFORTS TO IMPROVE THE EXISTING RATE
CONTROL MODEL IN THE RA CONFIGURATION
Many studies have attempted to improve the rate control in
HEVC. For GOP-rate control, Wu et al. [33] proposed a
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FIGURE 1. Generated (a) bitrate, (b) PSNR, and (c) MSSSIM of the ‘‘BQMall’’ test sequence by the rate control in HEVC.

FIGURE 2. Subjective quality of the ‘‘BQMall’’ test sequence with the rate control in HEVC enabled.

TABLE 1. Comparisons of bpp–λ and the proposed bppCTU –λ.

rate control by exploiting the R-Q model for HM-13.0. The
proposed algorithm is designed by considering the temporal

prediction structure in HEVC. Although this algorithm aims
to tackle only GOP-level rate control, determination on
the QP value for the first frame and the coding tree unit
(CTU)-level rate control is also presented. However, the pro-
posed algorithm canmerely favor a small coding gain. To reit-
erate the aforementioned Q-domain rate control problem,
it still suffers from a general ‘‘chicken and egg’’ dilemma.
Rodriguez and Schierl [34] proposed a buffer-constrained
rate control for real-time HEVC with the hierarchical GOP
structure in HM-9.0. This algorithm operates on three layers,
namely the intra period layer, picture-level, and CTU-level.
However, this algorithm also runs under the Q-domain rate
control model, which might suffer from similar general
Q-domain rate control problems. In addition, the same limita-
tion applies to the Wang et al. [35] algorithm designed based
on the R-Q model rate control for HM-8.0.

For the frame-level rate control, Pan et al. [36] proposed
a frame-level rate control based on visual characteristics of
the input video for HEVC. This algorithm estimates the
grey-level co-occurrence matrix to determine the relationship
between the visual video characteristics and rate. However,
this algorithm is designed only for the Low-Delay-P con-
figuration, which has a more straightforward hierarchical
picture structure than the RA configuration. Gong et al. [31]
proposed a temporal-layer-motivated R–λ rate control at the
frame-level for the RA configuration in HM-14.0. Their work
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argues that the R–λ rate control model in HM is not optimal
for this configuration. Accordingly, this algorithm facilitates
a novel λ estimation by considering the frame-level motion
difference. Distinguishing these sequences with slow and
fast motions indicates this algorithm also designed the λ
estimation, including λ and QP clipped function separately.
Zhang et al. [37] proposed a frame-level rate control algo-
rithm by observing the GOP-level rate control model quality.
However, the proposed algorithm is designed only for low
delay hierarchical GOP structure. This algorithm proposed
a more adaptable quality dependency model for the current
GOP by analyzing the low delay reference structure. Subse-
quently, the current GOP quality model estimates the frame-
level bit allocation with a global rate-distortion optimization
formulation built under the total generated bitrate constraint
of a GOP. Similarly, Guo et al. [38] proposed a frame-level
and GOP-level rate control for a low delay structure. The
RD characteristics at the frame-level of the encoded frames
at the same temporal layer position in adjacent GOPs are
analyzed to formulate bitrate estimation for the GOP-level.
Then, a global RD optimization was then proposed based
on a recursive Taylor expansion model to cover the Lambda
estimation, which is then used to benefit the bit budget at
frame-level rate control.

For the CTU-level rate control, there have also been many
works attempting to improve the rate control performance
of the HEVC encoders by considering the perceptual char-
acteristics of CTU blocks. Lim and Sim [39] proposed a
luminance adaptation characteristic based on a pixel domain
just noticeable difference model to determine bit allocation
and QP value for each CTU in a frame. However, the model
tends to have a similar performance with the anchor R–λ
rate control model. Guo et al. [40] proposed an inter-block
dependency model to improve the CTU-level rate control by
estimating some propagation factors of each 16 × 16 block.
However, the algorithm was designed only for a low delay
coding structure, which may have some difficulties apply-
ing it for RA configuration. Zhou et al. [41] formulated
a clip function of λ and QP for the CTU-level rate con-
trol by proposing a visual difference predictor model for a
high dynamic range input video. Raufmehr and Rezaei [42]
designed a fuzzy rate controller-based for the scalable HEVC.
However, both algorithms were proposed for different use
cases from the proposed algorithm. Bosse et al. [43] proposed
a distortion sensitivity model based on a deep neural network
to estimate bitrate at CTU-level. The work shows a significant
improvement compared with a constant QP setting under
the ‘all-intra’ configuration of the HEVC encoder. However,
it does not provide evaluations against the rate control settings
and much information on the neural network architecture.
Li et al. [44] extracted characteristics of each CTU block to
estimate allocation bits at the CTU-level applied for the 360-
degree video.

This work proposes novel estimation models for α, β, λ,
bit allocation, and QP for the R–λ rate control model in
HM-16.20. A deep convolutional feature-based GOP- and

frame-level rate control are proposed for the RA configu-
ration. The DNN model for video coding has gained much
attention in the video coding community [45]–[52]. Thus, the
proposed algorithm obtains some advantages of using high-
level perceptual features constructed from the original and
reconstructed frames using a predefined VGG-16 model. The
proposed algorithm achieves a higher compression rate and
improves the compressed quality video against HM-16.20
with the rate control.

III. PROPOSED RATE CONTROL FOR THE RA
CONFIGURATION IN THE HEVC ENCODER
As discussed in Section 2, the existing R–λ rate control in
the HM software is not optimal for the RA configuration
coding structure. From formula (1), the R–λ rate control
model is expressed with three main factors, namely the esti-
mated bpp, α, and β parameters. In the frame-level rate
control, α and β are initialized differently from those at the
CTU-level rate control. Although the original work [2], [3]
committed that α and β were based on the characteristics
of test video sequences. However, α and β in the existing
frame-level rate control cannot correctly impact the bpp–λ
relationship. Inaccurate α and β parameters are responsible
for inaccurate bitrate control and achieving minimal rate-
distortion, as depicted in Figure 1, Figure 2, and Table 1.

This work determines the values of α and β for the frame-
level rate control by considering the high-level features of
a particular convolutional layer of the VGG-16 architecture.
From previous work in [30], it is observed that a strong
interrelationship between α–λ and β–λ is vital for improving
the quality of the bpp–λ relationship. Consequently, it will
also result in increasing the reconstructed video quality sub-
jectively. Specifically, a pre-trained VGG-16 model is aimed
to extract perceptual features from the original and recon-
structed frames to address the estimation problems at the
existing rate control, including the estimation of bit allocation
at GOP- and frame-level, parameters of α and β, λ and QP
values. In addition, the initial QP of a frame based on [22] is
involved for the proposed frame-level rate control to handle
the frame-level initial QP decision. Both spatial and temporal
perceptual features are also accustomed to these estimation
problems to satisfy the RA configuration coding structure.
Notably, this proposed algorithm is designed mainly for the
B-frame type. Therefore, it is required to check whether the
frame being coded is an I-frame or B-frame when estimating
the α, β, and λ. The I-frame type is assessed using the existing
model as in HM-16.20, whereas the B-frame is based on the
proposed ones. Finally, the QP value can be determined based
on the design of the proposed algorithm. The CTU-level rate
control and the rest process in the unit encoding are conducted
as those in HM-16.20.

A. VISUAL FEATURE EXTRACTION BASED ON THE
PRE-TRAINED VGG-16 NETWORK
This work begins by using the DVGGfeature symbol for refer-
ring to the proposed perceptual loss value for each frame.
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FIGURE 3. Perceptual loss generation based on the double-simplified VGG-16-based architecture from the original and reconstructed frames.

FIGURE 4. Illustration of the DVGGfeature employment on the dyadic B-hierarchical prediction structure of the RA configuration.

DVGGfeature is the averaged value of all perceptual loss values
of CTUs within a frame estimated from the high-level visual
features extracted using the VGG-16 network. The proposed
algorithm explores the perceptual loss for a frameDVGGfeature
to address some issues of the estimation models at GOP- and
frame-level rate control scheme in HM-16.20 for the RA
coding structure. In this work, dVGGfeature denotes the percep-
tual loss generated from a collocated CTU position between
the original and reconstructed frames based on the double-
simplified VGG-16 network, as depicted in Figure 3 and
detailed in [22]. Notably, dVGGfeature is conjectured using
the Euclidean distance as a perceptual loss function in the

range 0 to 1 to reflect the human HVS attribute. Further-
more, DVGGfeature is fashioned by considering the RA coding
configuration temporal structure in the HEVC encoder for a
better HVS attribute deliberation in the proposed algorithm,
as illustrated in Figure 4.

The proposed double-simplified VGG-16 framework is
designed based on the full-reference visual quality approach
by excluding the ‘pool5’ and ‘fully connected’ layers from
the VGG-16 network. Both layers are traditionally favored
by specific classification objects, which intuitively influ-
ence the quality of generated visual features. Consequently,
the proposed framework expects merely developed features
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from the last block of the convolution layer ‘block5conv1’
in Figure 3. A pre-trained VGG-16 network trained on
the ImageNet dataset is directly used without separately
training it on the network. The VGG-16 network has
been well-known to produce a high-quality visual feature
for many computer vision applications. To this end, the
extremely deep convolutional layer of VGG-16 is exerted
for each CTU block of the original and reconstructed
frames. Then, it is required to identify universal patterns
and generalize them for the perceptual features. Notably,
the network is prepared for the input with an RGB color
format.

B. BIT ALLOCATION FOR THE GOP-LEVEL RATE CONTROL
ALGORITHM
In the HM-16.20 software, the bitrate allocation for GOP is
governed by a fixed smooth window size parameter (SW) set
to 40, which applies to all GOP cases in a sequence. Notably,
the SW parameter is aimed to supervise the smoothness of
bitrates between the adjacent GOPs. However, in HEVC, each
test sequence may have different frame rates and varying
target bitrates. Accordingly, a static SW parameter will not
be perceptually canny for different video test conditions with
a distinct visual characteristic.

The proposed bit allocation of GOP-level rate control
TGOP, expressed in Equation (2), attempts to consider a
more visually appealing approach by assessing the perceptual
loss value of the last coded frame in a GOP. In contrast to
designing the entire bit allocation of the existing model, the
proposed algorithm extends the current model by utilizing the
frame rate FR, the remaining frames going to be encoded FL,
the average frame bitrate for the entire frames in a sequence
RpicAvg, the remaining bits after encoding the previous GOP
RbitLeft , and GOP size information of each test sequence,
when the λ value of the last coded frame at a GOP λlast is
less than the given threshold. λlast defined in Equation (3)
is introduced as a perceptual-based threshold with similar
goals as SW in HM-16.20 to control the smoothness of
bitrates between the adjacent GOPs. However, this control
function for the proposed algorithm is provided to be more
adaptive than the existing smooth window size parameter
in HM-16.20. λlast is computed based on the DVGGfeature
value, λ value of the previously coded frame λprevPic, and λ
value of the current frame λcurrPic. RpicAvg in the proposed
bit allocation of the GOP-level rate control is calculated as in
Equation (4), which is the same as the existing rate control
model in HM-16.20, where TB and NF refer to the given
target bitrate for a sequence and the full frames in a sequence,
respectively.

TGOP =



(RbitsLeft − RpicAvg ∗ (FL − SW ))
SW

×GOPsize, if λlast > 2000
(RbitsLeft − RpicAvg ∗ (FL − FR))

FR
×GOPsize, otherwise

(2)

λlast = DVGGfeature × λprevPic
+
(
1.0− DVGGfeature

)
× λcurrPic (3)

RpicAvg =
TB
NF

(4)

C. BIT ALLOCATION FOR FRAME-LEVEL RATE CONTROL
ALGORITHM
The rate control algorithm in HM-16.20 formulates bit allo-
cation at the frame-level by firstly estimating bit ratio ω
formed by considering the hierarchical B-prediction for the
RA configuration. Next, the estimated bit ratio is capped
depending on the remaining frames that will be encoded
FL set to less than 16. When this condition is unsatisfied,
the frame-level bit allocation will be estimated based on
a static scale threshold set to 0.5, determined empirically.
This existing thresholding scheme on the frame-level bitrate
estimation model in HM-16.20 does not stand with the visual
characteristic of a frame that will be coded. Depending on
the feature of a frame, the threshold scale may not favor
the rate control performance. Furthermore, it lacks temporal
information from the previously coded frame perceptual-
wise, predominantly when the model is applied to budgeting
bitrate at the frame-level designed under a dyadic high-delay
hierarchical prediction structure RA configuration.

TPropic =



TGOPbitsleft × ω∑N−1
i=0 ωi

, if FL < 16

DVGGfeature ×
(
TGOPbitsleft×ω∑N−1

i=0 ωi

)
+

(
1.0− DVGGfeature

)
×

(
TGOP × ω∑N−1

i=0 ωi

)
,

otherwise

(5)

The proposed frame-level bit allocation considers the per-
ceptual loss valueDVGGfeature to alter the thresholding scheme
of the existing bit allocation at the frame-level. DVGGfeature is
designed for the RA coding structure manner. The proposed
attempts to determine each frame bit allocation by creat-
ing the existing threshold more adaptive and broader within
the range values and getting better exposure on a visual-
friendly bit allocationmodel. Notably, the proposed extension
model applies when FL is larger than 16. Otherwise, the
exact estimation model as in HM-16.20 is applicable. The
proposed bit allocation of frame-level rate control TPropic can
be described as in Equation (5), where TGOPbitsleft denotes the
remaining bits of the current GOP after allocating bits TGOP,
ωi represents the bit ratio of the i-th frame, and N is for the
total number of frames in the sequence.

D. ESTIMATION OF A AND B PARAMETERS, 3, AND QP
FOR THE FRAME-LEVEL RATE CONTROL
After calculating each frame target bitrate, the next step
is to determine the λ value for each frame based on
Equation (1). In HM-16.20, the bpp term is derived with
the target bitrate of a picture over the number of pixels in
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a frame, or mathematically, bpp = THMpic/Npixel . Notably,
Equation (1) is only valid for not Intra frame type. The λ
value for an Intra frame λIntra is decided from Equation (6).
The estimation model uses the total cost of an Intra frame
Costintra from the Hadamard transform from CTUs within
the Intra frame, which is then capsulated as the mean abso-
lute difference for each pixel within a frame MADpixel as in
Equation (7). Costintra can adequately yield frame character-
istic information for λIntra for the proposed algorithm that
also employs the same manner of λIntra as in HM-16.20.

λIntra =
( α

256

)
×

(
MADpixel
bpp

)β
(6)

MADpixel =
(
Costintra
Npixel

)1.2517

(7)

For other frame types, the proposed algorithm initially
defines bpppro as the bpp term at the frame-level calculated
based on the proposed bit allocation of the frame-level TPropic,
described as

bpppro =
TPropic
Npixel

(8)

Subsequently, αpro and βpro are proposed to utilize the pro-
posed DVGGfeature before completing the encoding process to
improve the initialization of the model parameters α and β
of the existing rate control model parameters. An observation
on updating the existing α and β parameters for each frame
is conducted based on the existing work [2], [3]. The updated
α and β are denoted as αnew and βnew computed, as in
Equations (9) and (10).

αnew = αestimated +
(
δα
(
lnλreal − λcomp

)
× αestimated

)
(9)

βnew = βestimated +
(
δβ
(
lnλreal − λcomp

)
× lnbppreal

)
(10)

Notably, αestimated and βestimated denote the estimated α and
estimated β, respectively. δα and δβ are constants, bppreal
represents the bits per pixel required during the encoding
process, and λreal and λcomp represent the actual and the
estimated λ, respectively.

Inspired by the updating process of α and β in
Equations (9) and (10), the DVGGfeature value of each frame
is investigated experimentally to improve αestimated–λ and
βestimated–λ. Parameters, namely λreal , bppreal , δα , and δβ ,
in Equations (9) and (10) are disregarded in the experiments
to create a new estimation model for αpro and βpro, as in
Equations (11) and (12), before the encoding process.

αpro = αHM + DVGGfeature (11)

βpro = βHM + DVGGfeature (12)

The proposed Equations (11) and (12) aims to improve the
estimation of the existing α and β parameters in HM-16.20,
denoted as αHM and βHM , respectively. Thus, both parameters
are anticipated to strengthen the relationship of α–λ and β–λ
based on the proposed visual feature, which can be denoted
as αpro–λ and βpro–λ. To this end, improving the relationship
between α to λ and β to λ may also enhance the relationship

of bpp and λ. To finally be able to do that, a new estimated
model for λ based on the proposed visual feature λpro is also
required to be adjusted. The proposed λpro is defined as:

λpro =
(
αpro × bppproβpro

)
+
TLfeature
bpppro

, (13)

TL feature =
StDTLid−1 × (TLid + QPbase)

StDTLid−1 × QPTLinit
, (14)

where TL feature is introduced to perpetuate λpro for preserving
the current frame visual quality according to its temporal
layer characteristic. StDTLid−1 stands for the standard devi-
ation of the original frame in the temporal layer ID TLid − 1,
QPbase is the given base QP value, and QPTLinit denotes the
initial QP frame of the current TLid . Notably, QPTLinit is deter-
mined based on previous work in [22]. This modification of
λpro indicates the QP decision of the existing rate control
model based on the proposed DVGGfeature, defined as

QPpro = 4.2005× log
(
λpro

)
+ 13.7122+ DVGGfeature (15)

In general, QP decides the quantization step after the trans-
formation determining each predicting mode distortion level
and the residual after quantization. The proposed algorithm
also uses two constant values in Equation (15), 4.2005 and
13.7122. It was found that both existing values provide the
best coding efficiency for the proposed algorithm. How-
ever, the QP value generated by the proposed QPpro is fore-
casted based on the proposed λpro. In addition, we added
DVGGfeature to the formulation of QPpro to bias the default
value 13.7122 in HM-16.20. To validate the proposed QPpro
performance, the proposed formula in Equation (15) can also
be represented as

QPpro = QP+ DVGGfeature, (16)

where QP denote the QP formulation with λpro without
including DVGGfeature. Then, Figure 5 is provided to illus-
trate the performance of the proposed QPpro in terms of
BD-BR-PSNR and BD-BR-MSSSIM, resulting in −2.70%
and −22.99%, respectively. To validate the proposed QPpro,
different formulations of QPpro are observed to adjust the
proposed QPpro, such as QPpro = QP − DVGGfeature and
QPpro = QP + 0.5 + DVGGfeature. It shows that the other
formulas tend to worsen BD-BR-MSSSIM while strengthen-
ing the BD-BR-PSRN performance. Notably, the proposed
algorithm is aimed to maintain or even improve the visual
quality of a compressed video. Therefore, BD-BR-MSSSIM
is best considered for the proposed algorithm. A positive
BD-BR-MSSSIM score implies a low performance of the
proposed. In addition, we tried to use the original QP esti-
mation as in HM-16.20 for the proposed algorithm, which
resulted in a lower BD-BR-MSSSIM score than the proposed
QPpro. However, the proposed algorithm still exhibited sig-
nificant improvements in terms of objective and subjective
quality. To further evaluate the effectiveness of the proposed
QPpro, Figure 6 depicts the curve of the QPpro–λpro rela-
tionship. The R2 coefficients in this figure display a strong
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FIGURE 5. Validation of QPpro on BD-BR-PSNR and BD-BR-MSSSIM.

FIGURE 6. Effectiveness of QPpro towards λpro.

TABLE 2. Comparisons for the relationship of α–λ and β–λ between the
existing model in HM-16.20 and the proposed algorithm, denoted as αHM
λHM and βHM–λHM for those based on the HM-16.20, and αpro–λpro and
βpro–λpro based on the proposed algorithm, respectively.

QPpro–λpro relationship. Notably, the ‘‘BasketballPass’’ test
sequence is used to visualize this result coded with different
QP settings.

E. EFFECTIVENESS OF THE PROPOSED RATE CONTROL
MODEL
After proposing the estimation models for bit allocation
at the GOP- and frame-level, αpro, βpro, λpro, bpppro, and
QPpro, the effectiveness of those models should be evalu-
ated by comparing them with the existing estimation mod-
els in HM-16.20. To reiterate, it is crucial to inspect the
relationship of α to λ and β to λ to determine a better

FIGURE 7. Curve fitting comparisons of bppHM–λHM and bpppro–λpro.

TABLE 3. Comparisons for the relationship of bpp–λ between the
existing model in HM-16.20 and the proposed algorithm, denoted as
bppHM–λHM for those based on the HM-16.20, and bpppro–λpro based
on the proposed.

relationship of bpp to λ. Table 2 tabulates the aforementioned
relationship comparisons. The following test sequences
are employed: (A) ‘‘Kimono’’, (B) ‘‘BasketballDrive’’,
(C) ‘‘BQMall’’, (D) ‘‘PartyScene’’, (E) ‘‘BQSquare’’, and
(F) ‘‘BasketballPass’’.

First, the estimated α, β, and λ of the first 17 frames
of the test sequence are collected. The correlations of
each estimated α and β parameter with the λ values of
the tested frames are observed using the Pearson product-
moment correlation coefficients. From Table 2, the pro-
posed algorithm tends to yield a stronger relationship of
αpro–λpro and βpro–λpro than the existing αHM–λHM and
βHM–λHM . In addition, it is reasonable to mention that the
existing αHM–λHM and βHM–λHM relationships are critical
to the quality of the bpp–λ relationship. In particular, when
POC = 0, αHM and βHM are set to their default values, obser-
vation shows no correlation to the estimated λ. Inaccurate
αHM and βHM on the first frame led to the miscalculation
of the allocating bits, estimating λ, worsening distortion,
and decreasing visual quality — all these results may affect
the following consecutive frames. To confirm the quality of
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TABLE 4. Experimental environment.

the bpp–λ relationship based on the proposed one, Figure 7
shows some comparisons between the bppHM–λHM and
bpppro–λpro relationship. The ‘‘BQMall’’ and ‘‘BQSquare’’
test sequences are coded to display this analysis. This figure
portraits a stronger bpp–λ relationship generated by the pro-
posed than that in HM-16.20. The R2 coefficient is used for
the determination with a value in the range [0, 1]. R2 value
that is closer to 1 is the better model. Table 3 delineates the
percentage portion of the existing bppHM–λHM in comparison
with the proposed bpppro–λpro for other test sequences. This
table confirms that the proposed models tend to have a better
bpp–λ relationship than those in HM-16.20.

IV. EXPERIMENTAL RESULTS
The evaluation of the proposed rate control algorithm was
assessed based on conditions defined in Table 4. Specifically,
the proposed algorithm was evaluated under the common
test conditions of HEVC [53] to assess bitrate accuracy,
coding efficiency, objective visual quality under the peak
signal-to-noise ratio (PSNR), and the multi-scale structural
similarity (MSSSIM) metrics, and the subjective evaluation.
We compared the proposed algorithm with other rate control
algorithms in HM-16.20, initially from the R–λmodel [2] and
Li et al. [54] algorithm called model parameter estimation
(MPE) under the same experimental conditions.

A. OBJECTIVE PERFORMANCE EVALUATIONS
A total of 13 test sequences are encoded for the RA config-
uration with the GOP size set to 16, which is a typical case
in practical applications, using all QP parameters: 22, 27, 32,
and 37. Subsequently, all the experiments for each QP were
summarized by averaging the results of every test sequence.
Notably, the bitrate accuracy BA for this evaluation is below.

BA =
TB− AB
TB

(17)

Based on Equation (17), a lower BA score indicates a better
performance. TB represents the given target bitrate as listed in
Table 10. AB is for the actual generated bitrate. BA is to check
how accurately a rate control model can satisfy the given TB.
Regarding the coding efficiency performance (BD-BR), the

evaluation was obtained to measure the bitrate reduction by
both proposed and conventional algorithms.

In addition, it is calculated while maintaining the same
video quality measured by the PSNR and MSSSIM metrics,
denoted as BD-BR-PSNR and BD-BR-MSSSIM. A negative
value of BD-BR implies an improvement of BD-BR. For
the objective visual quality, the assessments were applied
by observing the difference between the generated PSNR
and MSSSIM metrics of the proposed algorithm, called as
PSNRpro and MSSSIMpro, respectively, compared with other
algorithms, PSNRcon and MSSSIM con, described as

1YPSNR = PSNRpro − PSNRcon (18)

1YMSSSIM = MSSSIMpro −MSSSIM con (19)

1YPSNR and 1YMSSSIM provide the difference values of the
objective visual quality from the PSNR andMSSSIMmetrics,
respectively. A positive result from Equations (18) and (19)
advises a higher visual quality than other algorithms.

As shown in Table 5, the proposed rate control algo-
rithm conveys a better bitrate accuracy than the existing
rate control models, with approximately 3.23% bitrate accu-
racy on average. Both the tested conventional algorithms
slightly suffer in terms of bit accuracy by approximately
5%. The objective quality of the proposed algorithm also
yields higher PSNR and MSSSIM scores than the tested
traditional algorithms. It is observed that the proposed algo-
rithm demonstrates 34.90 dB and 0.97644 for the PSNR
and MSSSIM metrics on average, respectively. In addition,
the proposed algorithm portraits consistent improvements in
objective quality in almost all the test sequences. Table 6 con-
firms the quality difference of PSNR and MSSSIM for each
class test sequence of the proposed rate control algorithm
against the MPE and R–λ models. The proposed algorithm
also yields better bitrate accuracy than the MPE algorithm by
approximately −3.88%, BD-BR-PSNR by −7.85%, and
BD-BR-MSSSIM by −4.39%. It generates better bitrate
accuracy on BD-BR-PSNR and −8.74% when compared
with the R–λ model. Accordingly, the proposed rate control
algorithm based on deep convolutional features can perform
better than the other two rate control algorithms.

B. SUBJECTIVE PERFORMANCE EVALUATIONS
For the subjective quality comparison, Figures 8 and 9 depict
several regions from different test sequences generated by
the proposed algorithm and the R–λ model of HM-16.20.
In Figure 8, a visual quality comparison of the reconstructed
‘‘BQMall’’ test sequence from frame number 85 is dis-
played. The proposed algorithm quality commits to pro-
ducing slightly higher visual quality subjectively than the
one generated by the R–λ model in HM-16.20. In addition,
the proposed algorithm can demonstrate a moderately lower
bitrate of approximately 452.59 Kbps than the R–λ model
at 456.74 Kbps. The proposed algorithm can testify to the
high video quality of a compressed video while decreasing
the generated bitrates. Accordingly, the proposed algorithm
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TABLE 5. Objective comparisons of the existing rate control and proposed algorithms for the RA configuration.

TABLE 6. Average PSNR, MSSSIM, BD-BR-PSNR, and BD-BR-MSSSIM comparisons between the existing rate control and proposed algorithms for the RA
configuration.

FIGURE 8. Visual quality comparisons of (a) the existing R–λ model at 456.74 Kbps and (b) the proposed algorithm at 452.59 Kbps on frame #85
of the ‘‘BQMall’’ sequence.

can achieve a higher coding gain than the existing R–λmodel
in HM-16.20.

Moreover, Figure 9 presents a visual quality generated
by the proposed and the existing one in the HM software
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FIGURE 9. Visual quality comparisons of (a) the existing R–λ model at 207.01 Kbps and (b) the proposed algorithm at 211.33 Kbps on frame #98 of the
‘‘BasketballPass’’ sequence.

FIGURE 10. From left to the right: frame-by-frame bits, PSNR, QP, and MSSSIM comparisons between the R–λ model in HM-16.20 and proposed
algorithms for the ‘‘BQMall’’ test sequence.

from frame number 98 of the ‘‘BasketballPass’’ test sequence.
The proposed algorithm witnesses a slightly higher actual
bitrate by approximately 211.33 Kbps than the R–λmodel in
HM-16.20 at 207.01 Kbps. However, this increased bitrate is

also followed by more improvements in the visual quality of
the proposed algorithm. Hence, the proposed algorithm can
still contribute to the overall coding gain. Additional obser-
vations are then provided to confirm these improvements to
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FIGURE 11. From left to the right: frame-by-frame bits, PSNR, QP, and MSSSIM comparisons between the R–λ model in HM-16.20 and proposed
algorithms for the ‘‘BasketballPass’’ test sequence.

observe the fluctuation changes of bits, PSNR,MSSSIM, and
QP of the ‘‘BQMall’’ and ‘‘BasketballPass’’ test sequences,
as shown in Figures 10 and 11, respectively. In these figures,
the generated bitrate by the proposed algorithm displays a
significant impact on the entire performance of the proposed
rate control algorithm. The proposed algorithm can allocate
lower bitrates than that in the R–λ model of HM-16.20 at
the beginning frames of the test sequences while maintaining
relatively similar reconstructed video qualities. This case is
also confirmed by the generated PSNR and MSSSIM fluctu-
ation changes of both test sequences. In addition, the induced
QP decision comparisons between the proposed algorithm
and the R–λ model are depicted. These figures show that
the proposed algorithm can result in even more stable QP
determination from the first to the last frames of a test
sequence. Notably, a stable QP decision is a crucial parameter
to indicate the quality of the rate control algorithm as it can
measure both bitrate and visual qualities.

C. COMPLEXITY PERFORMANCE EVALUATIONS
The proposed rate control algorithm is designed based on
deep learning features to improve the existing rate con-
trol overall performance in the R–λ model of HM-16.20
for the RA configuration. Higher time consumption is
required to extract the deep-learning-based visual features
as a tradeoff with its performance. The complexity is
mainly from the original and reconstructed frame visual
feature extraction under the VGG-16 network employment.
However, the proposed algorithm complexity is still rel-
atively similar to other existing perceptual rate control
models [27] and [28].With the same classes of test sequences
used by the proposed algorithm, the algorithms in [27]
and [28] require 15.2× and 15.3× more encoding time than
the anchor algorithm. Furthermore, the proposed algorithm
can produce comparably higher coding gain and visual qual-
ity gains than the conventional works in [27] and [28]. It is

FIGURE 12. Sample of the scene change test sequences: (a) Kimono,
(b) MarketPlace, (c) RitualDance, and (d) Mobisode2.

typical for a perceptually based rate control algorithm to
have a higher complexity than those that do not consider any
perceptual feature approaches as a tradeoff of their coding
performance.

The proposed algorithm still has room for the feature
extractions optimization in parallel. Hence, throughput can
be enhanced with a parallel machine, such as GPU, that
suppresses more encoding time. The proposed algorithm
requires 15× encoding time higher than the R–λ model of
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FIGURE 13. Frame-by-frame of buffer occupancy fullness, generated bits, PSNR, and MSSSIM comparisons between the R–λ model in
HM-16.20 and proposed algorithms for the ‘‘BasketballPass’’ (left column at 427 Kbps vs. 414 Kbps) and ‘‘BQMall’’ (right column at 1978
Kbps vs. 1611 Kbps) test sequence.

TABLE 7. Test sequences for the scene change case.

HM-16.20 or 8× higher than theMPEmodel. Notably, all the
experiments were conducted with the rate control enabled.

D. EVALUATION ON SCENE CHANGE CASES
An additional evaluation of several test sequences with scene
change cases was also carried out to evaluate the effectiveness

TABLE 8. BD-rate comparisons between the rate control algorithm in
HM-16.20 and the proposed algorithm for the scene change case.

of the proposed algorithm. Scene changes imply that the
retention of frames in which frame scene content is signifi-
cantly different from the previously retained frames. The def-
inition of a scene change is generalized to include the abrupt

162030 VOLUME 9, 2021



I. Marzuki et al.: Deep Convolutional Feature-Driven Rate Control for the HEVC Encoders

FIGURE 14. Visual quality comparisons of ‘‘BasketballPass’’ between HM-16.20 at 427 Kbps (left column: a, c, e) and the proposed rate control
algorithm at 414 Kbps (right column: b, d, f), where a and b are frame #30, c and d are frame #291, and e and f are frame #297.

transitions between shots and gradual transitions between
images resulting from the video editing modes and inter-
shot changes induced by the camera operations. It is argued
that measuring the significance of a change in the content
of the video frames is subjective. Figure 12 outlines several
test sequences with their scene-changing part. These test
sequences are detailed in Table 7.

The proposed algorithm outperforms the BD-BR-PSNR
and BD-BR-MSSSIM performances against the HM-16.20
by approximately −6.28% and −10.35%, respectively. This
is mainly due to the ability of the proposed algorithm tomain-
tain the generated video quality while reducing the bitrate.
To this end, the proposed frame-level QP determination based
on [44] should be acknowledged. Therefore, the proposed
algorithm has demonstrated better performance for the entire

rate control performances than the R–λ rate control model in
HM-16.20, e.g., maintaining higher bitrate accuracy, main-
taining visual quality, and improving the bitrate efficiency for
the RA configuration.

E. EVALUATION UNDER THE HYPOTHETICAL REFERENCE
DECODER (HRD) CONSTRAINT
Buffer occupancy analysis is essential for any rate control
algorithm for overflow and underflow prevention. In the
HEVC encoder, such cases can be handled by enabling the
HRD constraint along with the R–λ rate control model as
discussed in [2], [55], and [57]. The buffer size, Bsize is
defined as

Bsize = Dtime×Bwidth (20)
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TABLE 9. Comparisons of objective quality between HM-16.20 and the proposed rate control algorithm under the HRD constraint.

TABLE 10. Target bitrate (TB, in kbps) for each test sequence in class B, class C, and class D.

where Dtime and Bwidht represent the time delay and band-
width, respectively. The buffer occupancy (CPBest ) is deter-
mined by the current state of the coded picture buffer
(CPBstate) and the buffering rate of the current frame being
coded (BR), expressed as

CPBest = CPBstate+BR (21)

Table 9 shows objective quality comparisons between
the anchor HM-16.20 and the proposed algorithm.
In BD-BR-PSNR and BD-BR-MSSSIM, the proposed algo-
rithm yields BD-rate saving of approximately −6.16%
and −12.30% for ‘‘BQTerrace’’, −5.89% and −7.56% for
‘‘BQMall’’, and ‘‘BasketballPass’’ at−5.55% and−11.84%,
respectively. Figure 13 depicts comparisons of the frame-
by-frame fluctuation of buffer occupancy fullness, bitrate,
PNSR, and MSSSIM between HM-16.20 and the proposed
algorithm from the ‘‘BQMall’’ and ‘‘BasketballPass’’ test
sequences. For the ‘‘BQMall’’ sequence, although the buffer
analysis shows overflow at the last frames, the proposed
algorithm saves bitrate by −18.61% or controls the bitrate

mismatch much lower than the anchor. In another case,
the proposed algorithm maintains buffer occupancy for the
‘‘BasketballPass’’ by preventing overflow/underflow while
minimizing the generated bitrates. The generated bitrate
keeps lower at 414 Kbps than in HM-16.20 at 427 Kbps. Fur-
thermore, the proposed algorithm exhibits more stable PSNR
and MSSSIM fluctuations than HM-16.20, particularly in the
last frames of the ‘‘BasketballPass’’ sequence.

Subjectively, the proposed algorithm confirms that the
‘‘BasketballPass’’ reconstructed frames are perceptually
higher than the video quality produced by HM-16.20. The
visual quality comparisons between the proposed algorithm
and HM-16.20 are depicted in Figure 14 at frame numbers
30, 291, and 297. The right column (frame a, c, and e) con-
tains reconstructed frames by HM-16.20, and the left column
(frame b, d, and f) is from the proposed rate control algo-
rithm. In figure (b), the visual quality difference made by the
proposed algorithm is negligibly decreased against the one in
figure (a) by HM-16.20. However, as the reconstructed frame
goes to the end of the sequence, the visual quality generated
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by HM-16.20 suffers even more due to inaccurate bit alloca-
tion problems at the frame-level. As depicted in (c) and (e),
the quality of reconstructed frames from HM-16.20 is signif-
icantly improved in (d) and (f) by the proposed rate control.

V. CONCLUSION
This work proposes an improved rate control algorithm based
on a deep convolutional feature for the RA configuration in
the HEVC encoder. Note that the current version of the R–λ
rate control model is not optimal for the RA configuration set-
ting, especially in its estimation models. Therefore, the pro-
posed algorithm aims to design a novel estimation model for
the model parameter estimations (α and β), bit allocation, λ,
and QP at the frame-level by considering perceptual charac-
teristic information of a previously coded frame. In this work,
the proposed algorithm employs a full-reference visual qual-
ity approach by employing a pretrained VGG-16 architecture
to extract the visual feature from the original and previously
coded frames. The proposed algorithm controls higher bitrate
accuracy, thereby improving the coding efficiency and visual
quality of the current R–λ rate model in HM-16.20. The
proposed algorithm achieves better BD-rate performance on
average at−4.39% and−8.74% based on BD-BR-PSNR and
BD-BR-MSSSIM, respectively. The proposed algorithm is
also robust in scene changes cases. Furthermore, the proposed
algorithm demonstrates significant improvements over the
HM-16.20 by controlling the overall performance quality and
preventing buffer under/overflow when the HRD option is
activated. For future work, the proposed algorithm will be
adjusted to benefit rate control model for the RA configu-
ration of Versatile Video Coding encoder.
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