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ABSTRACT Large scale pest recognition is one of crucial components in pest management in outdoor
conditions, which is much more difficult than common object recognition because of the variational image
acquisition direction, location, pest size and complex image background. To overcome the challenges, this
study proposes a CNN model by combining spatial attention mechanism and channel attention mechanism
to realize accurate pest location and recognition in field images. The proposed model consists of two major
parts. Firstly, the module Spatial Transformer Networks (STN) is incorporated into a Convolutional Neural
Network (CNN) architecture to provide image cropping out and scale-normalization of the appropriate
region, which can simplify the subsequent classification task. The second one is called Improved Split-
Attention Networks that is used to enable feature-map attention across feature-map groups. The proposed
model is evaluated on three different datasets: Li’s dataset (10 species), proposed dataset (58 species)
and IP102 dataset (102 species), achieving the classification accuracies of 96.78%, 96.50% and 73.29%,
respectively. Comparisons with five traditional CNN models and three attention-related state-of-the-art
deep learning models show that the current method outperforms these previous models. Besides, to verify
the robustness of this proposed model on different image resolutions, six datasets with different image
resolutions are constructed and all accuracies exceed 92% with the image resolution of 400 × 267 pixels
reaching the optimal performance. All results show that the proposed method provides a reliable solution to
recognize insect pest in field and support precision plant protection in agriculture production.

INDEX TERMS Insect recognition, attention mechanism, deep learning, image processing.

I. INTRODUCTION
Agricultural insect pests are responsible for causing signifi-
cant damage to crops and reducing their quantity and quality.
Therefore, it is particularly important to strengthen the ability
of pest monitoring and early warning, so as to carry out effec-
tive strategies for pest prevention and control [1]. However,
one of the prerequisites for these tasks is to identify pests
accurately and timely.

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

Traditionally, insect pest recognition mainly relies on few
plant protection experts and technicians to complete accord-
ing to the typical appearance characteristics of pests in the
field, which is a time-consuming and labor-intensive task [2].
With the development of computer vision techniques, they
have beenwidely applied in object recognition inmany fields,
including insect pest recognition and detection. In general,
the image-based insect pest recognition methods can be sum-
marized into two categories: traditional machine learning
methods and deep learning methods. The insect recogni-
tion methods based on traditional machine learning mainly
include three sequential stages: image preprocessing, feature
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extraction and feature classification. Yao et al. [3] proposed
a pest detection method by integrating Adaboost and SVM
classifier and achieved a false detection rate of 9.6%. Inspired
by the human cognitive neuroscience, Deng et al. [4] firstly
used saliency model to detect region of interest (RoI) and
then the invariant features representing the pest appearance
were extracted and trained using SVM classifier, achieving a
recognition rate of 85.5%. Unlike the aforementioned meth-
ods, Xie et al. [5] constructed a dictionary matrix and sparse
decomposition to realize species classification, performing
well on the classification of 24 common insect species. How-
ever, these traditional methods based on handcrafted features
cannot adequately extract the characteristics of insect pest
images from complex outdoor environment [6]. In addition,
it is also difficult to determine the optimal solution for feature
design and selection in these methods [7], which limit the
improvement of pest recognition accuracy and their plications
in field.

Compared with the traditional methods, the emerging deep
learning-based models in recent years, such as convolutional
neural networks (CNNs) [8], implement self-learning of fea-
tures and their relations using data itself, which is considered
as an end-to-end machine learning method [9]. To further
extract the high-level image features and avoid complexmod-
eling procedures from feature extraction to feature classifi-
cation, some deep learning methods had been proposed to
improve the accuracy and efficiency of pest recognition in
the field images. Ding and Taylor [10] detected moths by
applying a CNN into image patches at different locations, and
they achieved a precision-recall rate of 93%. Paddy field pests
were located and classified by computing a saliency map
and applying a deep convolutional neural network (DCNN),
achieving a mean accuracy precision (mAP) of 0.951 [11],
which is a significant improvement on previous methods. It is
well known that training a complex CNN from scratch to
excellent performance level requires a huge set of labeled
images and consumes a significant amount of computational
resources, which means that it is not realistic to train a dedi-
cated CNN for most image classification tasks [12].

In this study, motivated by the many successful appli-
cations of Spatial Transformer Networks (STN) in image
classification, co-localization, spatial attention [13]–[15] and
the simple and modular structure of ResNet variants in
image classification, object detection and semantic segmen-
tation [16]–[18]. A cascaded architecture based on STN and
ResNest network is developed for large-scale pest recogni-
tion, in which region of interest are located and multi-channel
features are learned from original images automatically with-
out any preprocessing rather than hand-crafted.

Our purpose is to improve representation performance of
insect pest images by using attention mechanism: focusing
on important features and suppressing unnecessary ones. Fur-
thermore, it was found that the insect targets in images have
many poses and even occupy small area in the whole image,
which makes it difficult to focus on important insect features
during model learning. To achieve this, we sequentially apply

STN network to locate the region of pest target and a novel
Split-Attention block to improve the learned feature represen-
tations to boost performance across image classification.

The main contributions of this study include:
• An insect pest dataset containing 58 pest species from

garden and forest was constructed and could be access by the
public.
• We proposed a cascaded yet effective attention archi-

tecture that can be applied to improve image representation
power.
• The effectiveness of our attention architecture was

validated through extensive comparisons on different scale
datasets.

II. RELATED WORK
An important phenomenon of the human visual system is
that one does not attempt to process a whole scene at once.
Instead, human selectively focus on the salient parts in order
to capture visual information better, which is the attention
mechanism in the human visual system. Recently, the mech-
anism is also incorporated into CNNs in large-scale clas-
sification tasks. From the perspective of attention domain,
the implementation of attention mechanism can be divided
into three types: spatial domain, channel domain and mixed
domain.

A. ATTENTION MECHANISM IN SPATIAL DOMAIN
In object classification using digital images, especially, for
the similar species, discriminative information is always
reflected in certain regions while the other regions con-
tain much redundancy, which makes object recognition an
extremely difficult computer vision task. For solving this
problem, many recent studies develop models on the atten-
tional regions, rather than the whole scenes [14], [19].

The attention mechanism in spatial domain is based on
the spatial position of feature map without distinguishing
the influence brought by channels. Although attentional
regions can be learned using deep neural networks, it is
hard to train with only class information because they have
to simultaneously complete two difficult tasks (i.e., region
localization and recognition). To overcome this difficulty,
Jaderberg et al. [20] proposed a Spatial Transformer Net-
work (STN) which can be included into a standard neural
network architecture to provide spatial transformation capa-
bilities. This model allows networks to not only select regions
of an image that are most relevant (attention), but also to
transform those regions to a canonical, expected pose to
simplify recognition in the following layers. Inspired by the
classical non-local means method,Wang et al. [21] presented
non-local operations which compute the response at a posi-
tion as a weighted sum of the features at all positions. Besides
categorical labels, the study proposed by Chen et al. [22]
requires another ground truth, the facial landmarks, which is
quite unique for face detection. In this study, we only use class
labels as ground truth.
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B. ATTENTION MECHANISM IN CHANNEL DOMAIN
The input image will become a tensor after the convolution
transformation with the number of output channels, which
is equivalent to the decomposition of the original image,
and each channel is the component of the original image
on different convolution kernels. In contrast to the spatial
domain, the channel domain focuses on the weighting of
different channels, regardless of the location difference of
each pixel in the channel.

Instead of seeking to strengthen the representational power
of a CNN by enhancing the quality of spatial encodings
throughout its feature hierarchy, Hu et al. [17] proposed
a compact module, SE block, to exploit the inter-channel
relationship, which introduces attention mechanism from
channel dimension. The SE block obtains the weight of
importance of each feature channel and assigns the weight
to each feature channel respectively. This design makes the
neural network focus on some feature channels, that is, pro-
moting the feature channels that are important to the cur-
rent task and suppressing others that are of little use to the
current task. Xie et al. [23] adopted group convolution in
the ResNet bottle block, which results in a homogeneous,
multi-branch architecture Li et al. [24] proposed a dynamic
selection mechanism in CNNs that allows each neuron to
adaptively adjust its receptive field size based on multi-
ple scales of input information. More close to our work,
Zhang et al. [25] generalized the channel-wise attention into
feature-map group representation, which can be modularized
and accelerated using unified CNN operators.

C. ATTENTION MECHANISM IN MIXED DOMAINS
The works based on channel domain are short of the
mechanism of spatial attention which plays an important
role in deciding ‘where’ to focus in an image recognition
task. Therefore, some researchers provide interesting stud-
ies about the combined use of spatial and channel atten-
tion. Woo et al. [26] exploited both spatial and channel-wise
attention based on an efficient architecture and empirically
verify that exploiting both is superior to using only the
channel-wise attention. Building long-range dependencies is
helpful in most classification tasks using computer vision
techniques. Like CBAM [26], NLNet [21], SENet [17] build
interdependencies among the channel dimensions introduc-
ing spatial attention mechanisms or designing advanced
attention blocks. Another way to model long-range depen-
dency is to exploit convolutional operators with large ker-
nel windows. Liu et al. [27] presented SCNet, which is able
to heterogeneously exploit the convolutional filters nested
in a convolutional layer and adaptively builds long-range
spatial and inter-channel dependencies around each spatial
location. Inspired by the previous methods, in this study,
we exploit a new attention approach by combining spatial
transformer module and improved ResNest block to con-
struct a create a simplified network for recognition of insect
pest.

FIGURE 1. Diagram of image collection locations and samples of pest in
the proposed dataset.

FIGURE 2. Ten image samples in the Li’s dataset [28].

FIGURE 3. Ten image samples in the IP102 insect dataset [29].

III. PRINCIPLE OF THE PROPOSED METHOD
A. INSECT IMAGE DATASET
In the current study, it involved three insect image datasets.
In the first dataset, images were captured using NIKOND200
cameras at different locations in suburb of Beijing, China.
A total of 58 types of insects, including 7344 images, were
collected and this dataset is named as the proposed dataset.
Figure 1 shows 10 geographical locations and their insect
sample images of the proposed dataset. All images in the
proposed dataset and code are available from the correspond-
ing author on reasonable request. The other two datasets are
public image sets. One was reported by Li et al. [28], which
includes 10 categories and a total of 5629 images. Some
samples in the Li’s dataset are shown in Fig. 2. The other one
(IP102) was from the literature [29], including 102 types of
field crops pests and a total of 75222 images. Some insect
images in the IP102 dataset are shown in Fig.3. As a result,
three datasets representing different sizes were constructed to
evaluate the performance of the proposed model. The detail
of the three datasets is summarized in Table 1.

B. DATA PREPROCESSING
To expand the image quantities to adequately train the mod-
els, a set of online transformations was used to produce
extra images from the original datasets in this study. Unlike
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TABLE 1. Composition and comparison of the three datasets.

offline augmentation methods which were implemented by
processing the whole dataset directly before training a model,
online data augmentation divides the training data into multi-
ple batches and input to the model batch by batch, co-trained
with the target learning task This online method is both more
efficient, in the sense that it does not require expensive offline
training when entering a new domain, and more adaptive
as it adapts to the learner state [30]. Generally, it is often
applied to augmentation of large-scale datasets, which has
been supported in many deep learning frameworks and can
be optimized by using GPU calculations.

Furthermore, to fairly compare the results between dif-
ferent methods, the strategies of data preprocessing in this
study were kept consistent with the previous methods. For
Li’s and the proposed datasets, they were preprocessed using
the online augmentation to improve the generalization ability
of the model, And the large-scale dataset was not processed
for the data expansion [29].

C. THE PROPOSED MODEL
The residual network, ResNet, is widely used since its skip
connections between different layers. This superior design
can transmit the input signal to the higher layer from any
lower layer, which solves model degradation problem caused
by the increase in the number of convolutional layers. How-
ever, the ResNet network lacks cross-channel interaction,
so that there are many improvements on it. SE-Net [17] uses
a cross-channel attention mechanism on the residual block,
which makes the focus of traditional CNN from the global
information to the local feature. ResNext [18] uses the idea of
grouping convolution to put different channels into different
groups, so that each group focuses on different features, and
then the results from the groups were merged. Compared
with ResNet, the ResNext achieves a trade-off between global
and local features. The latest ResNest [25] network is also
one of ResNet’s variants, which combines the characteristics
of SENet and ResNext, and achieves state-of-the-art perfor-
mance in classification, detection, and segmentation tasks
simultaneously.

The channel attention mechanism in ResNest network
helps it to assign corresponding weights to the feature maps
obtained by different convolution kernels, so as to it can focus
on the features of interest. However, the complex background
of field pests may still mislead the model to pay attention to

features that are not related to pest itself. Therefore, the spa-
tial transformer network(STN) [31] which allows the model
to learn the importance of different spaces was introduced
into the proposed method to locate the object in the image.
As shown in Fig. 4, a pest recognition model was proposed
in this study by combining channel and spatial attention
mechanism.

In the proposed model, the input image firstly was pro-
cessed through an STN network based on affine transforma-
tion described in Equation (1) to locate the region of interest
(RoI), which realized a spatial transformation capabilities and
attention mechanism. As shown in Fig. 4, three convolutional
layers and two fully connected layers are used as the local-
ization network in STN to obtain the affine transformation
matrix Aθ . The generator calculates the coordinate value of
each position in the output map, Tθ (G), and the sampler
perform sampling in the original image according to the
coordinate information in Tθ (G). A RoI image is obtained
after copying the pixels of the original image to the output
image. The number of channels between input and output
image is the same in the spatial attention network, but the
RoI image will focus on key areas. The image transformed
by the spatial attention mechanism is then input the improved
ResNest network which integrates the cross-channel attention
mechanism through multiple Split-Attention Block modules.
Finally, the fully connected layer achieves accurate recogni-
tion of multiple types of pests. x ′

y′

1

 = Aθ

 x
y
1

 =
 a1 a2 tx
a3 a4 ty
0 0 1

  x
y
1

 (1)

Here, Aθ is an affine transformation matrix, tx, ty represent
the amount of image translation, and the parameter ai(i =
1,2,3,4) reflects the changes in image rotation, scaling, etc.

Then, the output of spatial attention operation is processed
by the improved ResNest50 network. In this study, this chan-
nel attention network is composed of 16 split-attention mod-
ules, as shown in the orange box in Fig. 4. The insect pest
image firstly is processed through a 7 × 7 convolutional
layer, and then the channel attention module performs feature
extraction on insect images. Unlike ResNest, it does not need
to pool the information of all channels in the feature map
at once. Instead, the feature map is divided into multiple
Cardinals by channel, then concatenating multiple groups in
Cardinal at the channel level, and performing global aver-
age pooling on the feature map after concatenation. In fact,
through grouping convolution, the association between differ-
ent feature maps is reduced, the differences between feature
maps are more apparent, and ultimately the complementary
feature maps are obtained.

As shown in Fig.5, each Split-Attention Block module
consists of a set of group convolution. The input feature maps
are divided into K cardinals, and each cardinal is divided
into R groups, so there is a total of G = k · R feature map
groups. In the improved ResNest network, the self-calibrated
convolution [27] was introduced to replace the second
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FIGURE 4. The framework structure of the proposed model.

FIGURE 5. The composition of the split-attention block module.

convolution layer in each group. Unlike the common con-
volutions that extract spatial and channel-wise information
using small kernels (e.g., 3 × 3), the self-calibrated convo-
lution adaptively builds long-range spatial and inter-channel
dependencies around each spatial location through a novel
self-calibration operation, which can help CNNs generate
more discriminative representations by explicitly incorporat-
ing richer information.

After applying the corresponding transformation into each
group {f1, f2, . . . , fG}, The intermediate result is: Ui =
fi (x) , i ∈ {1, 2 . . . ,G}. After fusing the intermediate result
Ui, global information is obtained through global average
pooling, and different groups are given with different weights

FIGURE 6. The detailed structure of each cardinal group [25].

through the Dense layer (Fig.6). The importance of each
channel is automatically obtained bymodel learning. Accord-
ing to this importance, the useful features are enhanced and
the other ones are suppressed.

By combining the spatial attention mechanism network
STN with an improved ResNest50 backbone network, the
impact of complex background on classification is reduced,
and the ability of feature representation for large-scale insect
dataset images is strengthened, thereby improving the recog-
nition performance on the insect datasets.

IV. RESULTS
In this section, the performance of different models on the
three datasets was evaluated and compared. The experiment
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FIGURE 7. Performance comparison of models on different parameter
combinations.

was implemented on the PyTorch deep learning frame-
work (https://pytorch.org/) and windows10 operating system
with RTX2080Ti 11GB GPU hardware platform (https://
www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/).
The cross-entropy loss function (loss) and the average accu-
racy (acc) was used to train and evaluate the models, respec-
tively. They are calculated as followed:

loss = −
∑
i

yi log (Pi) (2)

acc =
Number of insects predicted correctly

Total number ofinsect samples
(3)

where yi is the category label, Pi is the probability that the
predicted category of the network output is i.

A. MODEL FINE-TUNING
The model hyperparameters are closely related to the model
performance. In current study, the model hyperparame-
ters were tuned by setting different gradient in multiple
experiments. In terms of model learning rate, three gradi-
ents of 0.01, 0.001, and 0.0001 were constructed, and the
training optimizer was chosen between Stochastic Gradi-
ent Descent(SGD) plus momentum and Adam [32]. In the
recognition experiment of the proposed dataset, the feature
extraction layer of the pre-trained model was fine-tuned, and
the fully connected layer of the original model was replaced
with 58 neurons. To avoid overfitting, dropout [33] was
employed into models and set to 0.3. The input image size
was fixed to 224× 224 pixels, and the data set was randomly
divided into training dataset and test dataset at a ratio of 7:3.
The fine-tuned results of the five models: AlexNet, VGG19,
GoogleNet, ResNet50, and ResNest50 are shown in Fig. 7.

By comparing the fine-tuned results with different optimiz-
ers and learning rate, it was found that all models achieved the
best recognition accuracywhen theAdamwas used and initial
learning rate was set to 0.0001. Among them, ResNest50
reached the highest accuracy rate of 96.86%. Therefore, we
applied these optimal parameters into the proposed model,
and then it was trained on the three datasets to obtain the best
recognition model, respectively.

FIGURE 8. Comparison of the recognition performance of multiple
models on self-built data sets.

FIGURE 9. The insect target is focused and corrected after STN.

B. MODEL PERFORMANCE
Firstly, the recognition results of the proposed model are
compared with five CNN models on the proposed dataset.
As shown in Fig.8, the proposed method achieves the high-
est accuracy rate of 96.51%, which is an improvement of
0.64% compared to the original ResNest50 model. The low-
est recognition accuracy rate is obtained by AlexNet, which
only reached 88.26%. The accuracies of other three models,
VGG19, GoogleNet and ResNet50 are similar around 95%.

Insects in field images are often accompanied with com-
plex background, so the recognition network is easy to be
misled by the background when it extracted image features.
In addition, the insect postures and sizes in the images are
different because of the various distances and angles when
they are photographed in the field, which increases the recog-
nition difficulty. In this study, a STN structure was trained to
locate and correct the insect target. Fig.9 shows the results
of the STN procedure. As illustrated in this figure, there are
complex background in the original input images, and the
insects have different posture and size (the first column in
Fig.9). After processed by the STN module, the insect targets
are highlighted and adjusted while the image size keeping
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FIGURE 10. The results of the proposed model for different resolution
image data recognition experiments.

unchangeable (the third column in Fig.9). In this way, a
spatial localization and attentionmechanism is integrated into
the proposed model, which reduces the probability of being
misled by the background, thus improving the recognition
accuracy.

C. MODEL ROBUSTNESS
1) THE INFLUENCE OF IMAGE RESOLUTION ON MODEL
PERFORMANCE
Field images from different sources often have different
image resolutions, so analyzing the model performance on
images of different resolutions helps to select the best image
resolution in practical tasks. In the current study, 466 images
from 10 insect categories in the proposed dataset were ran-
domly selected, and the highest resolution 7360×4912 pixels
in this dataset is used as a benchmark to design six different
gradients: 7360× 4912, 2453× 1637, 818× 545, 600× 401,
400×267, 273×182 pixels. Subsequently, six image datasets
with different image resolution are constructed to evaluate the
model performance.

The results of recognition accuracy and time are illustrated
in Fig.10. It is found that that the recognition accuracies of
all datasets with different image resolutions were over 92%,
which indicated the proposed method had a good robustness
on image resolution. In addition, the recognition time wit-
ness a downward trend as the image resolution decreased.
However, the model recognition accuracy has not the similar
results with the recognition time. In particular, the recogni-
tion accuracy reached the highest value of 95.06% when the
resolution was 400 × 267 pixels, and the lowest accuracy of
92.27% is achieved on the image dataset of 273× 182 pixels
in resolution.

2) MODEL PERFORMANCE ON DIFFERENT DATASETS
To evaluate the model performance on different-scale pest
datasets, the IP102 and Li’s datasets described in section 2
were also tested by the proposed method.

FIGURE 11. Classification performance of different models on the IP102
dataset.

FIGURE 12. Classification performance of different models on the Li’s
dataset.

In the test of the two datasets, all preprocessing methods
are consistent with the ones described in original publica-
tions. For instance, the parameters of all pre-trained models
were fine-tuned without data augmentation for IP102 dataset.
However, the parameters of all pre-trained models were
frozen on Li’s dataset, and online data enhancement including
randomly flipping and cropping the image was implemented
to train the model. The recognition results of six models on
the IP102 and Li’s datasets are shown in Fig. 11 and Fig.12,
respectively. It can be found that the proposedmodel achieved
the highest recognition accuracy of 73.29% on the IP102
dataset, which is 1.32% higher than the second highest model,
ResNest50. However, the results of VGG16, GoogleNet and
ResNet50 model are pretty close and approximately 69%,
and the lowest recognition accuracy of 58.81% is reached
by the AlexNet model. Likewise, as shown in Fig.12, the
highest recognition accuracy of 96.78% is obtained by the
proposed model in the test of Li’s dataset, while the recog-
nition results of VGG16, ResNet50 and ResNest50 are sim-
ilar (about 95%). The lowest accuracy of 91.02%, however,
is obtained by the GoogleNet model, which is approximate to
the result of AlexNet model.
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FIGURE 13. The normalized classification confusion matrix of classification on the three datasets: (a) Li’s dataset, (b) Proposed dataset, (c) IP102
dataset.

FIGURE 14. Samples of different insect species with similar features.

The comparison between Fig.11 and Fig.12 shows that
the recognition accuracy of all models on the Li’s dataset
exceeded 90%, however, for the IP102 dataset, the recog-
nition accuracy of these models is less than 75%. To fur-
ther illustrated the recognition performance of the proposed
method visually, the classification confusion matrixes on the
three datasets are plotted in Fig.13. The diagonal elements
of the confusion matrix represent the true positives, and the
rest of elements in rows mean the false positives of classifi-
cation. Overall diagonal elements in this figure showed the
maximum values as expected. However, compared with the
proposed and Li’s dataset, more small numbers were found
at non-diagonal elements on the IP102 dataset, which also
showed that the recognition performances of the proposed
method on Li’s and proposed datasets are better than that on
IP102 dataset. Figure 14 shows some similar insect images
of different species from the IP102 dataset. The two images
in the same column represents two different insect species,
but there are similar appearance features, which is one of
main reasons to cause the relative low recognition accuracy
on IP102 dataset.

V. DISCUSSION
A. MODEL ARCHITECTURE
By comparing the results with other models on IP102, pro-
posed and Li’s datasets, the excellent performance of the
proposed method was proved. Spatial attention mechanism

FIGURE 15. The key areas that the model focuses on during image
processing.

helps the model more accurately locate the insect target in the
image with complex backgrounds, and the channel attention
mechanism contributes the extraction of discriminant features
in the proposed model. Fig.15 shows the visualization results
of the key areas that the model focuses on during species
recognition and prediction. it is found that most insect areas
in most images can be accurately located, which helps to
improve the recognition performance of the proposed model.
However, some images in the IP102 dataset are not well
positioned, such as the image in row 2, column 4. The target
in the image is a piece of insect egg, which was not located
accurately by the model. The image quality of most images
in the IP102 dataset is relatively worse, including advertising
words, blurry target and so on. All these factors bring chal-
lenges to the recognition model on the IP102 dataset. How-
ever, the proposed method still achieved a new benchmark of
73.29% on this dataset.

The proposed method improves the recognition perfor-
mance by incorporating a spatial attention mechanism into
the improved ResNest50 network. The visualization results
of the attention regions (Fig.16) in the recognition pro-
cedure on the IP102 dataset shows that the model can
focus on the target more effectively under the spatial atten-
tion mechanism, and the classification feature is more
dependent on the insect itself rather than the surrounding
background.
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FIGURE 16. Location results of the models with and without STN network
on the IP102 dataset.

B. THE EFFECT OF IMAGE RESOLUTION ON MODEL
PERFORMANCE
The experimental results in Fig.10 shows that the classifica-
tion performance of the proposed model reaches the highest
value when the image resolution is 400 × 267 pixels. This
result is not consistent with our intuition—the higher the
image resolution is, the easier the insect in the field image
is recognized. Actually, the result in current study shows the
higher image resolution does not mean the better classifica-
tion performance. Instead, it spends more time in the image
processing. The possible reason is that the image needs to be
scaled to 224 × 224 pixels before being input to the model.
The higher the image resolution, more serious the image is
distorted and more information will be lost when it is com-
pressed to a fixed resolution, which causes inaccurate features
extraction. On the other hand, the insect target in an image
with pretty low resolution is blurry, which causes fine-grained
features are hard to be extracted by the model, so the classifi-
cation performance on the low-resolution (273× 182) image
dataset is also not good.

C. COMPARISON WITH PREVIOUS STUDIES
Fig.11 and Fig.12 show the performance of different models
on two public datasets (the IP102 and Li’s datasets). For the
IP102 dataset, Wu et al. [29] extracted manual features and
deep features and fine-tuned ResNet50 to reach the highest
accuracy rate of 49.7%, while the proposed method achieved
a 4.35% improvement compared to the previous result.
Li et al. [28] fine-tunedGoogleNetmodel to classify 10 types
of pests, achieved 93% accuracy in the Li’s dataset, which is
lower than the result (96.78%) of the proposed method. Three
pre-trained CNN models were used to integrate into a model,
and achieved 67.13% classification accuracy on the IP102
dataset [34], while the proposed model achieved 73.29%
Nanni et al. [35] proposed a classifier by the fusion between
saliency methods and convolutional neural networks and the
classification accuracy on the IP102 dataset is 61.93%, which

TABLE 2. Comparison different advanced methods’ performance on the
IP102 dataset, including some models with attention mechanism and
ablation experiments on spatial attention mechanism.

is 11.36% lower than that of the proposed model. Therefore,
all comparisons show the proposed method reaches the state-
of-the-art accuracy on the three different-scale datasets and
provides a novel approach for the recognition of insect images
under complex background in field.

On the other hand, although the proposed model achieves
a new benchmark of 73.29% on the IP102 dataset, it is much
lower than that on Li’s dataset. The reasons may include two
aspects: one is the fine-grained differences between many
similar insect species and low image quality in the IP102
dataset, as shown in Fig.14, and the other one is the long-tail
effect of the dataset, which means insect categories with huge
sample sizes have received more attention from the model
in the IP102 dataset, while rare categories are often under-
focused. So, the two aspects are the difficulties needed to be
conquered to further improve the model performance in the
future.

D. COMPARISON WITH ATTENTION-RELATED MODELS
AND ABLATION EXPERIMENTS
In order to further demonstrate the performance of the
proposed model in this study, it was also compared with
the other attention mechanism model on the IP102 dataset.
Furthermore, the ablation experiment was conducted to
prove the effectiveness of the spatial attention mechanism.
Table 2 lists the recognition performance of different mod-
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els on IP102 insect data sets, as well as the calculation
consumption and the inference time on the test dataset.
It is found that the proposed method has better perfor-
mance than SE-Net with channel attention mechanism and
SA-Net and CBAM with both spatial and channel attention
mechanisms. However, the proposed method needs the high-
est floating-point operations (FLOPs) in image recognition,
which means it has the highest model complexity. The testing
time of the four attention-related models on the test dataset is
approximate.

In the ablation experiments, it is found that the STN mod-
ule can improve the performance of these models listed in
table 2 by different extents. For example, the best result
is STN-DenseNet121, which has an improvement of 2.86%
compared to the original model. The experiments show the
STN module can provide a spatial attention mechanism to
reduce the impact of image complex backgrounds. However,
the metric, FLOPS, indicates that the models with STN will
increase the computational load.

VI. CONCLUSION
This study proposed a pest recognition framework by inte-
grating spatial and channel attention mechanism based on
STN and ResNest50 networks. A medium-scale dataset col-
lected manually and other two public datasets (Li’s and
IP102) were constructed to evaluate the proposed model. The
experimental results showed the proposed method outper-
formed other five classic models and three attention-related
state-of-the-art methods, and reached a new benchmark of
73.29% on the IP102 dataset. Moreover, an optimal image
resolution of 400× 267 pixels was determined after multiple
experiments using six datasets of different image resolutions.
The results show the proposed model has great potential
in pest recognition in agricultural field. In the future, more
attention should be paid to solve the fine-grained insect iden-
tification and the effects from long tail distribution of insect
datasets.
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